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Abstract 

The goal of the Persistent Programming 
Research Group is the provision of an environment 
which incorporates the principle of orthogonal 
persistence in order to facilitate the production of 
large and complex software. A database 
management system constitutes such software and in 
this paper we show how a persistent store assists in 
the construction of such a system. We show that a 
small number of features in a simple persistent 
programming language enable efficient 
implementations of various data models to be built 
quickly. The paper surveys three attempts to 
provide database programs using PS-algol. In the 
first, the implementation of a single interface 
system is greatly aided by persistence. The second 
shows how it is possible to provide software which 
includes a multiplicity of interfaces and a 
multiplicity of underlying data models. Finally we 
present a novel approach which makes use of run- 
time compilation to create efficient storage 
structures tailored to the application. These 
experiments represent the early development of a 
methodology for choosing an appropriate mixture of 
static and dynamic binding when using persistent 
programming languages. 

Permission to copy without fee all or part of this 
material is granted provided that the copies are not made 
or distributed for direct commercial advantage, the 
VLDB copyright notice and the title of the publication 
and its date appear, and notice is given that copying is 
by permission of the Very Large Data Base Endowment. 
To copy otherwise, or to republish, requires a fee and/or 
special Permission from the Endowment. 

Introduction. 

When producing database systems in 
conventional programming environments, the 
programmer faces many kinds of problem. Some of 
these, such as organising data on backing store and 
linking to library modules, should not be the main 
concern. Instead, effort should be concentrated on 
ensuring that the most efficient storage structure is 
used and providing the interface best suited to the 
task in hand. It is also difficult in conventional 
environments to provide a flexible system. It is well 
known that different applications require different 
storage methods, while different interfaces suit 
different users’ needs. However, providing more 
than one storage method or user interface will 
usually create a considerable increase in the 
complexity of the system. 

The provision of a persistent environment 
[ATKI86a, ATKI86bl allows the programmer to 
concentrate on important issues and to ignore 
problems which should be handled automatically. 
Persistence is defined as the length of time for 
which an object exists. This may vary from short- 
lived local variables, which are created and 
deleted within a block, to data which are stored 
and intended to outlast, the computer system on 
which they are created. We believe that the way 
in which the programmer refers to a data object 
within a program should not be related to its 
persistence. Essentially, this means that the 
programmer will not have to refer to any 
mechanisms extraneous to the programming 
language (such as file managers) to handle the 
storage of data. It should be possible to use the 
structure used by the program to organise the data in 
the backing store. For instance, if the data is 
relational, to store all of the data in a relation the 
program only needs to enter a pointer to the 
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relations’s header into the backing store and all of 
the associated data (tuples, column names, etc.) will 
be stored automatically. 

This paper describes three database systems 
which have been implemented using the persistent 
language, PS-algol: a version of the Functional Data 
Model; a relational system, supporting a number of 
user interfaces; and a relational system utilising a 
run-time compile facility to create structures of 
greater efficiency. We will describe the benefits 
accrued from using PS-algol, although this is not an 
attempt to sell the language PSalgol, but rather to 
apprise the database and programming language 
researchers and practioners of the value of certain 
constructs which could be present in other languages. 

Features of PS-algol. 

PS-algol [ATKI83, ATK185, PSAL861 is a block- 
structured persistent programming language. It 
incorporates the following features: 

Orthogonal Persistence. All PS-algol data 
objects are manipulated in the same way, 
irrespective of their persistence. The PS-algol 
environment includes a Persistent Object 
Management System [CQCK84, CAMP861, which 
handles all the details of data storage. Data to be 
stored is organised into ‘databases’ and any object 
reachable from the top level of a database will be 
dragged into backing store as part of that database, 
when a commit command is given. Data are copied 
to active memory incrementally as references to data 
objects are dereferenced. 

The Universal Pointer Type. The PS-algol type 
system contains a constructor for record-like objjts. 
These may contain any number of fields, each of 
which may have any PS-algol type. The references 
to the union of objects that may be constructed in this 
way have a common type, pntr. This allows the 
programmer a degree of polymorphism, in that 
values of type pntr may be tokens for instances of any 
existing structure class and therefore objects of 
different types can be passed along the same route, 
or referenced from the same location. Type checking 
is still rigorous, although it does not occur until a 
pntr is dereferenced, prior to performing some 
operation on the referend. All other type checking 
is performed at compile time. 

First-class procedures. Procedures are first-class 
objects, in that they may be manipulated like any 

other object. They may be: assigned to variables; 
used as the arguments or produced as the result of 
another procedure; and, most importantly, stored in 
a database just like any other data value [ATKI86b]. 
The implication of the latter is that, having been 
designed in a modular fashion, a program can be 
developed incrementally. Each module can be coded 
and tested separately and, as will be seen, different 
versions of a module can be simultaneously 
available. Experiments can be run which determine 
the most effective version and more than one version 
can be left in the system. This leads to flexibility. 
It also permits the development of system libraries 
of procedures and allows the access to data to be 
limited to a set of procedures, forming an abstract 
data type (ADTI and allows active data to be 
modelled [COOP87]. 

A Callable Compiler. I?+algol contains, as a 
library function, a call to the compiler. This means 
that a program, during its run, can construct a 
procedure as a string and then compile that string 
and apply the resulting procedure. This is 
extremely useful as, while the type system of PS 
algol is strict (allowing early detection of data 
misuse), the callable compiler enables a procedure 
which is truly polymorphic to be written. The 
structure of such a procedure is given an object of any 
type, examine its type, build a procedure which 
handles such a type, compile it and run it against 
the input object. The cost of compilation can be 
recovered if the procedure is stored and often re-used 
when objects of the same type are encountered. 

Indexed Objects. There exists in I%algol a data 
structure in the form of a table - a set of pairs of 
keys and associated structures, accessed through a 
universal pointer. This provides instances of 
adaptive index structures. 

Graphics Facilities. The language has bit map, 
multifont text and line drawing graphics facilities. 
The implications of this for the production of good 
user interfaces will not be discussed in this paper, 
but machine independence is derived from having 
good tools for producing interfaces within the 
language. Furthermore, graphical data can be 
modelled with the same ease as textual and 
numerical data. [MORR86] describes the graphics 
facilities in more detail. 

A Uniform Portable System. PS-algol aims to 
provide a uniform environment within a number of 
systems. At present, implementations exist for the 
UNIX systems on VAX, ICL PERQ and SUN 
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computers, as well as for the Apple Macintosh and 
within VME on the ICL 3900 series machines. In 
each of these implementations, the program 
developer needs only to know PS-algol and has no 
need to understand the details of the underlying 
system. 

Binding in PS Algol 

To sum up, PS-algol gives the programmer a 
uniform view of data objects. Long-term and short- 
term objects are handled in the same way, as are 
numerical, textual and graphical data and program 
modules. On the other hand, the availability of 
the universal pointer type and the callable compiler 
lets the programmer choose when binding should 
take place. Arguments for the desirability of a 
range of options on binding time are given in 
[ATKIWI - here we show how that range of options 
may be exploited. 

In languages such as Poly and Galileo, the 
program is completely and statically bound at 
compile time. In PS-algal, there are a number of 
times when binding could take place: 

l The program can be written so that 
everything is bound statically at compile- 
time. 

l Using the universal pointer, the binding 
may be deferred until an object is actually 
dereferenced. The program may pass an object 
about and check its type only when fields of 
that object are manipulated. Thus the 
program is still strictly type-checked, but the 
type-checking occurs at run-time. In this case, 
the binding will occur every time a field of 
the object is dereferenced. 

l Using the callable compiler, the binding 
of data to program may be made any time 
between the receipt by the program of a 
description of the type of a data object and 
the first use of such an object. It will then be 
bound once and for all to structures which are 
specific to data of this type. For instance, a 
database management system could organise 
the binding at any time between receiving the 
database schema and the first attempt to 
populate the database. This opens up the 
attractive alternative of supplying the 
schema one day and having the compilation 
of efficient storage and retrieval modules 
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performed automatically overnight by a 
daemon process which checks the persistent 
store to find any object types waiting to be 
bound to the program. 

The choice made between these alternatives 
will depend upon the application. In some cases, it 
is necessary to choose to defer the binding and by use 
of the universal pointer. Usually, however the 
preferred method would be to factor out the binding 
process by binding as soon as possible, using the 
callable compiler. 

EFDM: Extended Functional Data Model. 

EFDM is an implementation of the Functional 
Data Model (FDM) as described by 
Shipman[SHIPSl] constructed by Krishna Kulkarni 
([KULK83], [KULK86], [KULK87]). The FDM 
models data as sets of entities and functions relating 
the entities. Kulkarni’s initial attempt at 
implementation used the PASCAL language. 
However, this required interfacing the system to a 
low-level data management system and when ES- 
algol became available, he re-implemented EFDM 
entirely in PS-algol. There was a reduction in the 
amount of source code to about a third compared 
with the earlier PASCAL version. 

Among the benefits identified by Kulkami were: 

l the organisation of data movement being 
handled by the system; 

l the reduction in data misuse due to type 
security; 

l the ability to organise the data in a 
uniform way through PS-algol’s universal 
pointer type; 

l and an increase in speed of access to 
database items due to efficient heap 
management. 

The construction of the system is much 
simplified by having user data and meta-data 
stored in the sarne way, thus allowing the functions 
of the database handler to be used for both. There is 
a ES-algol structure for storing the information about 
each function and another universal structure for the 
data for each entity and these are used for system 
and user-defined functions alike. The base function 
data are explicitly stored in container structures, 
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which are referred to via pointer fields in the entity 
structures. This simple mechanism permits a degree 
of polymorphism, in that the result of an EFDM 
function may be referenced in a uniform way 
whatever its type. If the function is a single valued 
function whose result is a string, the pointer will 
point to a string container. If the function is multi- 
valued, the pointer will point to a list of values. 

There is also a saving in storage space since 
there is no need to store a key with each object in PS 
algol. The pointer to the the object is unique and 
consistent and therefore may be used as the internal 
identifier for the entity. Wherever the data 
resides, it will always be referred to by the same 
pointer value. All objects and sub-objects of the 
system are referred to via PS-algol pointers. 
Preservation of all of the data for an object merely 
requires that a pointer to the object be placed in a 
database - all the sub-objects follow it into the 
database automatically. 

Derived functions, queries and programs are 
stored in the form of the tree returned from the 
Syntax Analyser. The Interpreter then uses this tree 
any time the function is called. 

Kulkarni could have made yet more gains by 
using two more facilities offered by the PS-algol 
system. Firstly, the program as it stands is a single 
unit of about 3000 lines of code. ES-algol offers the 
ability to break the program into small modules, 
compile them separately and store them in the 
database. This means that the program could be 
developed incrementally, with consequent savings in 
compilation time and debugging time. Secondly, the 
code for queries, programs and derived functions is 
stored as a parsed tree and is then executed by the 
interpreter. This is an example of deferred binding, 
but the speed of the system is reduced by this. Using 
the callable compiler, EFDM could factor out the 
binding by compiling the code instead. It could 
transform the tree into a PS-algol program and then 
compile it and store it in a form which would have a 
much greater execution speed. 

A Database Architecture With Several 
Query Languages and Data Models. 

Another database system was implemented at 
the University of Edinburgh by Pedro Hepp 
[HEPP83a, I-IEPPSSb, NORR851. The goal of this 
research was the creation of a system which 
provided a multiplicity of user interfaces to a 
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uniform internal data model. In the system 
produced by Hepp, the Query Languages provided 
were: TABLES, a screen oriented query and update 
language for a relational database; RAQUEL, a 
relational algebra language, also for querying and 
updating a relational database; FQL IBUNE821; and 
a Report Generator. 

In his arguments for using IS-algol, Hepp puts 
forward many of the same reasons as Kulkami, but 
his main benefit from using PS-algol is not stated 
directly, but is implicit in every section of his 
thesis: the ability to create a program 
incrementally. He made use of this in four ways 
(apart from the reduction in compilation time 
obtained by breaking down source code into small 
modules). Firstly, he started with a very small 
system consisting of crude versions of the modules 
and replaced these with more sophisticated 
versions, using the persistent store to hold the most 
recent. This enabled him to develop each module 
separately. As the database access implicitly 
provided by ES-algol is based on lazy fetching from 
disc and strict type checking, program construction is 
performed as necessary by an incremental type- 
checked linker - the persistent system itself. It is 
possible for the programmer to arrange to use 
permanently one particular implementation of the 
module, or to use the latest version, or one chosen by 
any other algorithm. 

Secondly, once the internal model was put into 
the persistent store, as many user interfaces as were 
required could be added, one at a time. In fact, 
having got the RAQUEL interface working (with 
all of the modification and debugging of the internal 
system implied by this), Hepp got the TABLES 
interface working “in less than a week” and the FQL 
interface “in approximately one week of work”. 

Thirdly, in making the decision on which 
underlying storage structures to use, he could 
independently try a number of different options 
before selecting the best one. This was done by 
replacing the storage handler with a number of 
variants and testing the resulting system for speed of 
access, storage requirements and ease of 
programming. He tested whether to represent a 
relation by lists or vectors and whether to represent 
tuples as strings, vectors of strings, vectors of 
pointers or as a list of pointers. His analysis led 
him to a different choice than Kulkarni: he 
represented his tuples as a vector of strings, which 
requires a set of procedures to translate between 
strings and other types. The application of these 
translation procedures is equivalent to dereferencing 
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the fields of a structure and so is another technique 
for deferring binding in that most of the program can 
manipulate the data without knowing its type. 

Finally, he used the persistent store to record 
patterns of usage of the various interfaces and 
modified them to overcome users’ problems with the 
system. Furthermore, an analysis of the frequency of 
usage of objects in the system revealed that “a small 
set of columns and relations are used more frequently 
in query composition than the rest.” Clearly this 
fact could be used to provide more efficient storage 
and retrieval methods. 

simplified form in Figure 1. The header for the 
relation consists of four fields: the relation name; a 
pointer to the body, which is a doubly linked list of 
tuples; a pointer to the primary key header (here 
shown to be a single column, but in general a list of 
columns); and a pointer to the rest of the column 
headers of the relation (also pointed to by the 
primary key). The column headers are organised 
into a linked list of structures each containing the 
column’s name and a pointer to an instance of an 
Abstract Data Type defined on domains. In our 
initial scheme, each tuple consists of a vector of 
pointers to value containers. 

The availability of the compiler as a system 
procedure in PS-algol would permit the system to be 
improved in two ways. Firstly, the storage 
structures for the data, currently chosen by analysis 
to be a static structure, could be created 
dynamically, according to the nature of the data. 
The next section carries this proposal further. 
Secondly, the analysis of usage, also at present 
performed off-line, could be performed regularly by 
the system itself. For example, a demon, activated 
at times of low system usage, would carry out some 
analysis of the usage of each data object, refer to 
some normative data on usage, and change to a more 
appropriate structure for the pattern of usage found. 
The user would not notice the change in underlying 
structure, except in that his response times would be 
improved. These ideas are similar to those put 
forward by Stocker [STOC73], but the freedom to 
devise and manipulate any data structure would 
facilitate experiment and implementation. 

A Polymorphic Architecture for Relations. 

We present here a new internal model for a 
database engine, on top of which multiple user 
interfaces are provided. We take as our starting 
point a data storage model similar to that used by 
Hepp, using the universal pointer type to provide a 
polymorphic storage scheme for the tuples of a 
relation. We amend the interface to take advantage 
of PS-algal’s facility for producing Abstract Data 
Types. In the next section we will show how the 
storage of tuple structures may be tailored to the 
form of the relation using the compiler function. 
Thus we show how PSalgol permits polymorphic 
schemes by use of late or early binding. 

After some investigation, we produced a storage 
scheme for a relation structured as shown in a 

c 
Figure 1 - Storage Structure for a Relation 

The interfaces provided to both relations and 
domains are in the form of Abstract Data Types. 
Domains are represented by an ADT that contains at 
least the following operations: 

proc(string-> pntr) putDomVa2 !package a value 
proc(pntr-> string) getDomVd !unpack a value 
proctpntr, pntr -> boo1 1 compDomVa1 

!compare two values 

Domains are created by calls to a creation procedure 
by the user interface programs and stored in a table 
in the persistent store. 

Relations are created similarly, using the 
following procedure - 

MakeRel = proc( string description -> pntr) 

which is given a description of the relation in the 
form of a string (containing attribute names, 
attribute domain types and which attributes are 
used as the key) and returns a packaged set of 
procedures, which contain all of the operations 
permitted on this relation, such as adding a tuple, 
looking up a tuple from the key, traversing the 
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tuples, checking whether or not the relation is 
empty, etc. Each call of MakeReZ binds the same 
code bodies to a new instance of data structures with 
the same definition. 

Take as an example the relation 

ADDR(string name I int house, string street) 

in which the field nume is to be used as the 
primary key. The construction of a simplified 
polymorphic representation in PS-algol 
(corresponding to Figure 1) of the tuple “R. Cooper, 
73, Bow Rd.” would be 

structure tuple ( pntr last, next; *pntr values ) 
structure StringContainer( string stringVuZue ) 
structurelntContainer( int intVaZuc ) 
let RC = tuple ( . . . . . . . . 8 1 of pntr 

[ StringContainer( “R. Cooper” 1, 
ZntContainer( 73 1, 
StringContainer( ‘Bow Rd.“) ] ) 

This creates an instance of the tuple structure, RC, 
consisting of pointers to the adjacent tuples in the 
list and a vector of pointers to the three field 
values. The 73 would be de-referenced by 

RC( values )( 2 )( intVulue 1 

which first takes the values field of RC, takes the 
second element of the vector and then unpacks it 

The original version of MakeReZ is shown 
simplified in Figure 2. The procedure constructs all 
the information it needs from description (looking 
up the domain information from the domain table). 
It then creates an empty instance of the relation 
structure as ThisReZ. Then it defines operations on 
ThisReZ, of which only the AddTupZe operation, 
which adds a new tuple to the relation from values 
input from the calling program, is shown. Finally, it 
packages the operation procedures as an ADT for 
export to the calling program. AddTupZe merely 
looks in the body of the relation to find where it 
should put the tuple, constructs the tuple from the 
values input and then inserts it. Note that 
MakeReI creates a new relation structure and then 
binds a copy of the operation procedures to it. 

This version of MukeReZ can be written once to 
handle any kind of relation since all of the values 
are stored via pointers. It achieves polymorphism 
by using the pntt type to defer binding. The calling 
program handles all the packaging and 
dereferencing of the data allowing MakeReZ to be 
general purpose. 
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StructureRefHead ( stringmame; 
pntr body, pkey , columns) 

structureColHead ( string cname; 
pntr domType, nextCol ) 

structurefuple ( pntr last , next; *pntr values 1 
1etMnkeReZ = proc( string description -> pntr) 

begin 
let RelName = 1 et these from 
let PkeyName = ig 
let PkeyType = I 
let CoWames = ! the description 
let PkADT= s.lookup(PkeyType , DomainTable) 
let ColTypes = . . . . 
let CoZADTs = . . . . 
let PkeyComp = PkADT ( compDomVa1) 

let TheseCoZs := nil 
for i = 1 to upb( ColNames ) do 

Thesexols := ColHead ( ColNames(i 1, 
ColADTs( i ), 
TheseCoZs ) 

let ThisPkey := CoIHead ( PkeyName, 
PkADT, TheseCoZs ) 

let ThisRel = ReZHead ( ReZNume; nil, 
ThisPkey , TheseCols ) 

let AddTupZe=proc(pntr pkVal ; *pntr COW& ) 
begin 

let before: = ThisRel ( body ) 
while before -= ThisRel and 

PkeyComp (before( values Xl), PkVal ) 
do be ore 

let after I 
:= before( nexf ) 

= be ore( next ) 
let NewVals = ! code to construct a vector of 

! pointers to the input values 
let NewTupZe:= tuple ( 

before, after , NewVals 1 
before( next ) := NewTuple 
after ( last ) := NewTuple 
end 

. . . . . . ! other operations of the ADT 

StructurereZationADT ( 
prc(pntr,*pntr) addTupZe; 

. . . . 1 ! other procedure holders 
relationADT ( AddTuple, . . . . ) 

end 

Figure 2 The First Form of the MakeRel 
Procedure. 

A New Architecture which Tailors Tuple 
Structures to Suit the Relation Type 

-In the above model, the operation to dereference 
the “73” field of RC required three levels of 
indirection. The new model proposes to replace the 
tuple structure given above with one that is more 
appropriate to the particular relation. We would 
prefer to create RC by 
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structureAddrTupZe( string name; int house; 
string sfreet ) 

let RC = AddrTuple( “R.Cooper”, 73, “Bow Rd.” ) 

and de-reference the 73 by 

RC( house ) 

but to do this, we must bind the MdrTuple structure 
into the program. When writing the system, we do 
not know that the user is going to create this relation 
and we certainly do not want to restrict the relations 
that can be created. A mechanism is needed which 
operates dynamically (as does our original structure) 
and produces the more efficient structure above. The 
MakeReZ procedure therefore has to use a new 
strategy. 

To use the more efficient second structure and 
still retain polymorphism, we use a technique 
introduced in the PS-algol Database Browser 
([DEAR87J). This is to construct all those procedures 
which make use of the tuple structure at run-time. 
The browser allows the traversal of objects in the 
persistent store by following pointers. Each time a 
pointer is followed, the resulting structure is 
examined and, from it, code to display such a 
structure is constructed during the run of the program. 

In the database system, procedures like the one 
which checks whether a relation is empty can be 
statically determined, as they only reference the 
relation header which is the same for all relations. 
In contrast, procedures which use the tuple structure, 
like AddTupZe, cannot be specified in advance. 
Thus we rewrite the parts of MakeReZ which are 
concerned with these procedures, as shown in Figure 
3. 

In this second version, AddTupZe cannot be 
directly specified. Nor can it be specified simply as 
a string, since this would not permit the specific 
instance of the relation structure to be bound into the 
procedure. Just adding references to an object called 
ThisRel into the string defining AddTupZe will 
note make them refer to the required object as 
AddTupZe must be compiled separately. Instead a 
procedure generating procedure, MakeAdTup, itself 
constructed as a string, takes in a pointer to ThisReZ 
and produces a version of AddTupZe which operates 
on ThisRel. 

letTuple.Class = . . . ! get these from 
letField.types = . . . 
1etMakeAdTup = 

! the description 

” proc( pntr TheRel -> proc( pntr, *pna ) ) 
begin 

structure RelHead( . . . . ! as above 
structure ” ++ TupJeCZass ++ * 
let NewAddTuple= proc( pntr pkVal; *pntr ColVals) 

begin 
let before= . ..! as before using TheRel(body) 
let after = before( next ) 
let NewTuple := tuple( before, after, KeyVal( ” 

MakeAdTup:= MakeAdTup ++ FieldType (1) ++ ” Val)” 
for i = 1 to upb( FieldName ) do 

MakeAdTup :=MakeAdTup ++” ,ColVals( ” ++ 
FieldType (i+l) ++ ” Val)” 

MakeAdTup := MakeAdTup ++ “) 
before( next ) := NewTuple 
after( last ) := NewTuple 

end 
NewAddTuple 

end’ 
structureProcBox( 

pro4 pntr-> proc(pntr,*pntr) 1 Makeproc) 
let EmptyBox :=ProcBox( 

pro4 pntr-> proc( pntr, l pntr)); nullproc 
letCompiledForm= compile( MakeAdTup,EmptyBox) 
1etAddTupZe = CompiZedForm( Makeproc )( ThisReZ ) 

Figure 3. MukeReZ Using the Callable Compiler. 

MakeReZ takes in the current relation and 
generates the string containing the tuple structure, 
TupZeCZass, and the vector of field types, 
FieZdType, from the input description. Then it 
constructs the MakeAdTup procedure as a string 
which varies only in the tuple structure and the line 
of code constructing the tuple. In this line, the 
values of the fields are unpacked from their 
containers by dereferencing the field of the 
container. If the field is an integer field, for 
instance, it is contained in an IntConfuiner, whose 
field name is intVu2. Conventionally the fields of 
a container structure are always of the form type 
++“Val”, and so can be created by MakeAdTup 
simply. In the case of the address structure above, 
MukeAdTup would be as shown in Figure 4. 

MakeAdTup is then compiled and run with 
ThisReZ as its argument. It returns the appropriate 
AddTupZe procedure as its result. It is at this point 
that the relation structure is bound to the AddTupZe 
code to return a procedure which adds a tuple to this 
relation. This procedure is then packaged as part of 
the ADT returned by MukeReZ. 

proc( pntrTheRel -> proc( pntr, l pntr) ) 
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begin 
structure RelHead ( . . . . ! as above 
structure tllple ( pntr last ,next; string name; 

int house; int value 1 
let NewAddTuple = pro4 pntr KeyVal ; 

*pntrCoZVals ) 
begin 

let before= . . . . 
let after = beforet next 1 
let NewTuple := tuple ( before, after , 

KeyVaZ ( StringVal 1, 
CoZVaZs ( 1 X lntVal 1, 
CoZVaZs (2XStringVal 1 1 

before( next ) := NewTuple 
after ( last ) := NewTuple 

end 
NewAddTuple 

end 

Figure 4. AddTupZe generated for the 
ADDR structure. 

Further Speeding By Memo-ising. 

There are some overheads when using this 
method. Relation creation is a more expensive 
operation as it involves compilation. Although this 
should be offset by more efficient access to the 
relation once it has been created, we can do 
something to cut down on the need to compile every 
time a relation is created. Again we utilise a 
technique introduced in the PA-algol browser, 
which is to transform the tuple structure definition 
into a canonical form involving only the types of the 
columns. Thus the address structure would be 
referred to as a string.int.string structure and the 
structure defined in MukzAdTup above, would be: 

structure tuple (string& 1; int id2 ; string&3 1 

When the address structure is encountered, 
MakeReZ refers to a table in the database to find if 
it has already encountered a structure keyed by 
“string.int.string”. If it has, compiled forms of the 
procedure generating procedures, like MakeAdTup 
in the example above, are retrieved from the 
database and re-used. Otherwise, it will compile 
new versions and enter them into the table, ready for 
any other structure, for instance: 

structure student (stringsname; int sno; string class) 

which will be mapped onto the same canonical form 
and will look up and use the same procedures. 
Further savings still, are achieved by permuting the 
column types into a canonical order. This method of 

“memo-ising” a structure is supported by PS-algol 
tables. 

Conclusions. 

We have examined three database systems 
programmed in IS-algol. EFDM is a single program 
providing an implementation of the Functional Data 
Model. The persistent environment frees the 
programmer from the chores involved in organising 
backing store. The development of EFDM shows how 
this speeds program development and coherence. 
Moreover, the provision of a universal pointer type 
allowed the bindings to data objects to be deferred 
and greatly simplified the storage structures 
involved. 

An examination of Pedro Hepp’s work showed 
how he used the persistent store to develop his 
system incrementally. The program was divided 
into manageable modules, each of which was 
implemented separately. Not only did this make 
program development faster by reducing compilation 
time, but it allowed him to experiment on the 
internal model of the data by trying different 
versions. It also allowed him to provide a number of 
user interfaces which operate independently of each 
other. He used the persistent store to record 
information about system usage, an analysis of 
which enabled him to make improvements to it. He 
transformed all of his data types to strings to defer 
data binding. 

Our own work has centred around attempts to 
increase system efficiency by using a callable version 
of the compiler to factor out these bindings. We 
have shown how the “database engine” could be 
programmed to provide a relation as an Abstract 
Data Type. Our motive for this was an enforced and 
formal definition of module boundaries, 
guaranteeing that module replacement was feasible. 
We have shown how access to a compiler at run-time 
has enabled us to generate the ADT, using a more 
efficient representation as its internal model. 
Finally, we have shown how the cost of creating a 
relation can be reduced by a canonical representation 
of relations, which enable those with the same 
types to share code. 

In summary, we have shown that programming a 
DBMS in a persistent environment frees the 
programmer from the time consuming issues involved 
in organising backing store and allows concentration 
on more important problems, such as a more efficient 
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access to data and a more ergonomic user interface. 
We have also shown that the programmer should be 
provided with a range of options on when the 
binding of data to the program occurs. In particular, 
we have shown how the availability of run-time 
compilation within the implementation language 
permits storage schemes which are both efficient 
and type-secure. 
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