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ABSTRACT 

Behavioural aspects ot Information Systems are nou taken. 
into account in a lot of Conceptual Hodels. However. the 
behavioural concepts ot these liodels have rarely been fully 
irpleaented in DIMS. 

RUBIS is an extended Relational DBtlS which supports an 
extended relational schema (including event and operation 
concepts) and automatic control ot the dynamic aspects of 
Applications, i.e event recognition, operation triggering and 
tire handling. 

After a short presentation of the basic concepts and the 
specification language used for the ertended Schema, we focus on 
tuo internal rechanisms : 

- the Temporal Processor, which ranages the temporal 
aspects of specifications and recognizes temporal events, 

- the Event Processor, which manages events treatment and 
synchronization. 

These tuo mechanisms permit an autoaatic execution of the 
extended schera and so provide rapid prototyping capabilities. 

lNTRODUCl’l0N 

The dynamic aspect of data is increasingly taken into 
account by Conceptual Hodels and by Relational DBtiS. 

Numerous Seaantic Data Hodels (SDM LHAtUii83, YAXIS [MYLO6OI, 
[SNlT771...) are only concerned with data structure. 

More recent flodels also perait the aodelling ot data behaviour 
I AWPCN I BROD82 I, CIAH (BUBE821, REWORA IROLLW, [CRISLJ, 
IBORG85JJ. 

Finally, Object Oriented Hodels are now frequently encountered 
in Data Base works. The spirit ot such models is also a aixed 
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repxesentatlon of the stocturat tstatict arrd bebavf7mrat 
Idynaaio aspects of knowledge MHBASE lKING881, GODEL 
[KERS861). But there are feu realizations of DBHS rich fully 
support the dynamic concepts of these Hodels. 

On the other hand, there are regular trials for lntegratlng 
dynamic capabilities into existing DBHS. 

There uas first the notion of trigger in System R [ESYA761 
and alerter in Daisy tBUNE791; then, other trials uere rade 
ILLIN 841, MELMI , [ClMNBlI... I but no real Complete 
integration of these aechanisrs in a global model has been 
accoapl ished. 

The ain ot the RUBIS System is to provide a complete dynaric 
Hodel, tuliy supported by a Relational DBtlS. 

Uur Hodel is based on REHDRA [ROLL821; the static objects are 
aodelled by relations, uhile operations telerentary actions On 
an object, and events telerentary state changes triggering one 
or several operations) permit the rodelilng of the dyaaaic 
aspects ot the objects. The Conceptual Schera is called the R- 
Scheaa tRUBlS-Scheral. In this schema, the temporal aspects of 
the Application are also taken into account; they are aodelled 
using the time types provided by the RUBIS Hodel. 

In this paper, we are only concerned uith : 
- the A-Schera, which is specified using our Specification 

Language cal ied PRU@.hZL (PRDgrauing PUEry Language). 
The possibilities ot this language will be demonstrated 
by the examples given in the first section. 

- physical handling of the dynamic concepts. This is 
achieved by the Terporal Processor, which ranages 
temporal aspects ot the specification; and by the Event 
Processor, which ranages event recognition and 
synchronization. 
These two aechanisrs will be described in section II. 

I THE R-SCHEMA 

I .1 UNDERLY I NC CONCEPTS 

The R-Schera is based upon three kinds of elerents uhich allou 
a complete description ot a Database Application : 
a) Relations represent entity types or relationship types from 

the real world (e.g CUSTORERS, BANKS, LOANS,...). 
b) Events represent special situations in the Database life 

cycle, in which one or several operations acting ofi the 
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Database must be triggered. 
There are three kinds of events : 

x an internal event describes a ‘noticeable state change” 
ahme and on& one cdation kg.. .an 2ccOUnt.W a. 
debit account: an employee salary becones greater than his 
wager’s,, . . ). The ‘noticeable state change* is specified 
in the event predicate and generally concerns two 

ttmmin ti-at?s t ran0 t’ ~dsr&l~~-BtO wtmi NEWof a 
relation tuple. 
For instance : “the balance of an account was positive or 
nil (s.BALANCE )= Oi and is nou negative fs’.BALANCE ( 01”. 
In inteiial cvat is thus said to “ascerfain’ its 
associated relation, because it ascertains the relation 
state changes. 

e an external event describes the arrival of a meseage’fcoe 
the real uorld fe.g “loan requirerent arrival”, “cheque 
arrival’ ,.,). The external event predicate describes the 
acceptance condition of the message fe.g “the date of the 
cheque is valid’). 

e a temporal event describes a situation uith reference to 
tine. This situation can be either an absolute reference 
(e.g 25i10187), or a periodic reference fe.g the thirteenth 
day of each month). or a reference to another event ce.g 3 
days after the occurrence of the “cheque arrival” event). 

Successful testing of the event predicate means recognizing 
the event: it is at this moment that the event occurs: there 
is event occurrence. 

c) Operations represent the elementary actions triggered by the 
events when they occur. An operation stands for an action type 
fe.g send a uarning letter, Modify an account balance,...) and 
can modify at rost one relation. An operation instance ii.e 
operation executed in fact, can modify at most one relation 
tuple te.g modify the account no 445321, uith respect to the 
elementarity principle. 

The triggering of an operation can be : 
- conditional, in this case, the operation is executed only 

if the triggering condition is true (e.g put the order 
note in the ‘uait” mode only if the stock is not 
sufficientl. 

- iterative, then the triggering factor conputes all the 
tuples that will be used as effective parameters for the 
execution of the operation te.g the sending of a 
Christmas letter to al I ‘good” custorersl. 

Notes: 

1) Operations, conditions and factors can appear several tires 
in the R-Schema : an operatron can oe triggered by several 
events and tuo different operations can have the same 
triggering condition or factor. In the sane uay, a relation 
can be nodified and/or ascertained by several different 
operations and/or events. For this reason. events. relations, 
operations, condition5 and factors can be specified 
independently. 

21 Splitting update operations into : “elementary action + 
condition + factor” ray seea quite restrictive but permits us 
to exercise entire control over system behaviour, as will be 
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seen below. Worover, such splitting helps avoid redundancy 
and helps obtain a modular description of the processing. 

$1 The follouing notation is used to construct a graphic 
representation of the R-Scheaa : 

4 the 
:*ascertain” v fV’ : an event 

OPi 
+ : an operation 

OPi 

V relationship 

Y the 
:Yrigger” 
reIafXonsEip 

_I$ : a conditionally 
ik triggered operation 

OPi 
* : an iteratively 

0 triggered operation 

the 
:“rodify* 
relationship 

4i According to the definitions of operations and events. the 
key concept of behaviour modeling is Dynamic Transition. 
It is composed of : 

- the event, 
- all the operations it triggers, 
- all the relations aodified by these operations. 

The following figure represents a dynamic transition : 

r ----- ------ -, Dynaaic 

I f Transition 

Figure 1 : A Dynamic Transition 

This figure highlights an important aspect of behaviour 
Modeling : the succedence of Dynamic Transitions. For example, 
in fig. 1, the transition of EVJ follows the transition of EV2. 
Host of RUBIS’ uork lies in the handling of these transitions 
and of their ordering, as ue will see further on. 

1.2 THE TIME HDDEL 

1.2. TME IN DATABASE APPLICATIONS 

The tile concept occurs at different levels during the 
specification of static and dynamic aspects of data tB8LO821. 
e On one hand, time enables us to express sole static properties 

of entities or relationships (for instance, the 
~OBTAINING-DATE” of the “LOAN” relationl. 
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-- 

t On tlv Ahm-hand, as in Hidticat Batabmi tie is-me&to 
eanage successive versions of data (the “tinestamp noiion” 
TDADAB@I. LADI9b611 and to access these different versions by 
asking questions like: “what was the address of the subscriber 
“Jones” at 08i!B/&5 ‘?“. 

i Finally, the concept of time allous automatic triggering of 
some actrons according to teeporal assertions te.g “send an 
acknowledgerent no sore than three days after the order-note 
arrival*). 

&t~ent%tractfon 
tS tjwe cefs iycisely specifffq t!res 16: 

terporal specl r&ions 
supported. For instance, it is possible to express “predefined 
temporal types” (points, intervals, durations, periodic tires) 
a4 a-ll ebskfaet4eft kvels. 

Sole functions are provided for handling relationships between 
tiles. This is necessary for specific applications like planning 
IfSleNs, ulere causal .- relationships between tires are ,eore 
ieportant than precise tires. 
Two kinds of specifications are handled : absolute tires te.g 
dates, and relative tires, such as tires defined relative to an 
event occurrence te.g three days after the order-note arrival) 
LBARBBSI. In the following, ue briefly. define tire types and the 
primitives used in RUBIS. 

1.2.2 TINE TYPES 

Tire assertions are described using a calendar. The predefined 
calendar is the comeon gregorian calendar augmented with hours. 
minutes and seconds. 
Tire ray be specified at six levels ot abstraction : year 
(19&y, month i19WiiJ.... second (19Bb/12/04:?3h54r03si. 
Year is considered to be a higher level than ronth, uhich is a 

higher level than day, and so on. Elements within a given level 
are specified using only upper ievels. 

For each level of abstraction. the follouing types are defined : 
- Tire Point type : The tise point type is based on the 

primitive concept of the terporal axis origin. A time point is 
defined using the calendar schema. For instance, ‘1966~05/11” 
is a valid specification at the day abstraction level. 

- Time interval type : A tine interval is defined by its bounds. 
uhich are of point typo. For instance, 11986/05/11-1986~05/1~1 
is a valid interval at the day abstraction level. 

- Duration type: duration type allows reference to the distance 
between tuo points. A value from this type is defined in terns 
of eleeentary durations (according to the calendar scheaal. 
For instance, ‘1 year, 3 months, 23 days’, and “15 days” are 
valid durations at the day abstraction level. 

- Periodic tire type : A periodic tine is defined by its base 
(point or interval type) and its period [duration type). For 
instance. ‘the 25th day of each ronth” is a valid periodic 
fine at the-day abstraction level. 
A periodic tire say be limited by an interval. so : “every 
fortnight from order-note arrival and until delivery’ is a 
valid periodic tiue too. 

Tire functions and operations. such, as before, after, equal.... 
are provided. Cowers ran ‘Punctrons ore atso provided when 
roving froa a given level of abstraction to an other). For 

i&nce, khf3 fdtte+i* sFwc+f* t we 
‘is equrvarcnt to “at 1986105”, and “after l inutes(l5 days)” is 
equivalent to “after 21600 minutes” 

The uay in which temporal assertions (expressed via the above 
types, functions and operations) are organized tn provide a 
structure for autoaatic triggering of operations uili be 
discussed in subsequent sections. 

The description of the R-Scheaa can be rade increaentally : 
- first, the static sub-schema can be described uith 

relation -specifications tintrvdnceaap~. 
Second, a first version of the dynaaic sub-schema can tte 
obtained by specifying dynaaic transitions (these 
specifications are introduced by DEFllE EVElIT). 
third, the dynamic sub-schema can be completed by 
operation, condition and factor specifications 
trespectively introduced by BEPINE OPERATION, DEFINE 
CONDITIQN, and DEFINE FACTS. 

The static sub-schema used in the examples (drawn from a Bank 
Application) is shown belou. Figure 2 presents the LOAN relation 
specification. 

CUSTOHER (Cm, CUSTNAHE, CUSTADR, TYPE) 
LOAN tL=, CUSTg, OBTAINING-DATE, ABOUNT, REF-NB, FREQ) 
ACCOUNT (Am, CUSTI, BALANCE) 
SAVINGS-ACCOUNT (E, CUSTt. BALANCE, OPENING-DATE.RATE) 
CEILINGS~HISTDRIC tHBATE, CEILING, 

DEFINE RELATION LOAN 
I LOANI : INTEGER KEY; 

CUSTI : INTEGER; 
OBTAINING-DATE : GATE; 
AHOUNT : DOLLARS; 
REF-NB : INTEGER; /fi total nurber of refunds k/ 
FREQ : DURATION 1; /s refunds frequency x/ 

Fig. L : Specification of the LOAN relatlon 

EXAHPLE I: INTEBNAL EVENT SPECIFICATION 

Figure 3 associates the textual, graphic and forral 
specitications of a savings-account management rule. 

m The ascertained relation name and the type of the state-change 
are introduced by ON. 

r PRED contains the “noticeable state change” statement. 
Here, the operator LAST helps to retrieve the CEILING that was 
in effect just before the SAUINGS-ACCOUNT opening date. 
It the predicate is complex (such as here) the final 
computation of the ‘return value” of the event predicate is 
made using the BETUBN operator. The predicate can be empty if 
the state-change is a sirple insertion, deletion or update. 

In each internal event specification, the ascertained relation 
(here: SAVINGS-ACCOUNT) is the iaplicit parameter of the 
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assertion introduced by P5ED. The formal paraaeter is the 
relation name. while the effective paraaeter, also called 
“context”, is composed of the tuple pair which defines two 
successive states of the modified entity (here: the savings- 
account state before and-after its 5ALAfiCE modification). 
The OLD prefix and the NEV prefir allow us to reference (and 
to differentiate) the two tuples or. to be more precise, the 

old aad aeu values of their attributes te.g N~Y.~ALAUCEJ, 
The CDM’EXT prefix is used te.g CllNTEXT.OPENING-DATEI when no 
differentiation has to be aade (the attribute value hasn’t 
changed f . 

EnvAL SPEc1FlCATl05 
* Each savings-account possesses a ceiling that should 

not be overstepped (this ceiling depends upon the 
_ .op@ &.#& 
( If the custorer also possesses a current+count in 

the bank, the surplus is transferred into it. 
t If the customer doesn’t possesses another account, a 

uarning letter is send to hir. 

IRAPNIC SPECIFICATION n 
SAY I NGS-ACCOUNT 

cE1L-sh 
- - 

3 ACCDUN 

WJEL SPECIFICATION 

DEFfffE EVENT EV4 IS ACC-OVER 
ON UPDATE OF SAVINGS-ACCOUNT 
WMEffT “The savings-account exceeds its ceiling” 

PRED 
f VAR (CEIL : DOLLARS: 

CCEIL:=SELECT CEILING FROB LAST CEILINGS~HISTCIRI 
MERE HDATE i= CONTEXT.OPENINC~DATE: 

RETURN NE&BALANCE j (CEIL 1 
TRIGGER 

IF Cl THE5 I UPD-ACC-5ALtNEY.5ALANCE-SCEILJ 
DN ACCOUNT; 

CEIL-SAVt(CEILJ 05 SAVINGS-ACCOUNT 1 
ELSE SEND-YARN ; 

Fig. 3 : Specification of the internal event EV4 

fi The TRlW5 part introduces the operations, their respective 
triggering conditions and factors, and the relations they 
rodify lif any,. In the exarple. UPD-ACC-BAL (DP3: transfer 
the surplus of the neu BALABCE to the customer’s current- 
accountI and CEIL-SAY (level the savings-account balance to 
the ceiling) are executed if the condition Cl (the customer 
possesses a currentramwnt# is, .&we.. If not, SEND-YARN (send 
a earning letter) is executed. 

The specification of Dynamic Transitions corresponds to the 
first version oi the scheea definition. 

After checking for consistency, second level R-Schema 
specification can start. This includes the definition ef 
conditions. factors and operations texts. 
An example of such definitions is given in figures 4 and 3, 
which respectively introduce the Cl and W3 specifications. 

TEXT EXISTS ACCOUNT UHERE CUSTg = CONTEXT.CUSTI; 

Fig. 4 : Specification of the triggering condition Cl 

DEFINE OpERATI#I OP3 IS UPD-AK-BAL 
MIDIF ACCOUNT 
TV? DPDATE 
f%III&M ‘Hodify the customer’s current-account balance 
INPUT (Icredit : DOLLARS) 
TEXT UPDATE ACCOUNT 

SET BALANCE = BALANCE + tcredit 
MERE CUSTg = CONTEXT.CUST#; 

Fig. 5 : Specification of the operation OP3 

Conditions, factors and operations have tuo kinds of parameters: 
- their explicit parameters (ex: Icredit), introduced by 

INPUT end receiving a value during the call (i.e in the 
TRIGGER part of the triggering event(sJJ, 

- au implicit parameter : that of the triggering event 
(here: the two tuples representing the modified savings- 
accountI. The attributes of this implicit parareter are 
retrieved using the OLD, NEU or CONTEXT prefix (e.g 
CONTEXT.CUSTg J . 

In an operation specification, the aodified relation naae is 

introduced by 5DDlF. The TTPE part introduces the modification 
type (INSERT, DELETE or UPDATE). The TEXT part contains the 
operation’s algorithmic specification. 

Each operation possesses an irplicit output parareter: the two 
versions of the tuple it modifies. 

NOTE: These tuo specifications could have been incorporated in 
the EV4 specification, using a special notation : 

IF Cl [DEFINED AS ..I THEN I.. 

EKAHPL5 2: EXTEML EVENT SPu;IFICATlUN 

Figure 6 represents the specification of the external event : 
‘Arrival of a list of eoverents for a savings-account” (f9f3). 

An external event ascertains the arrival of an appropriate 
message. The structure of this message (which is the external 
event “contewt”J can be quite complex and is described in a 
special part. 

f Since an external event ascertains no relation, the 5ESSAGE 
keyword is used in the BN part, 

a PROP describes the structure of the message the event is 
waiting for. This structure isn’t in 1st Nornal Fora, so it 
may contain embedded structures, optional fields and lists 
tc.f LIST-OF if fig. 6). 
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s The eessage validity condition is described in ‘the PRB) part’ 
ihere: ‘the SAVINGS~ACSOUNT referenced by its number in the 
message, oust already exist in the Catabase”). 

x The TRIGGER part of an external event is identical to that of 
an internal event. In this example, note that UPD-SAV_BAL 
iupdate the SAVlDCS~ACCOUNT balance) is unconditional, and 
HIS?-HVT (save a roveaent into the historio is iterative (cf. 
factor Fl, described further on). 

* The message is the ‘context” of the external event. 
The values of this message are still accessible from the PRED 
and TRIGGER parts of the event, and also from all the 
specifications of. .condiUnaa. factors and operations vbich 
appear in the TRIGGER part of the event. 
Here again, the prefix to use is CONTEXT te.g CONTEXT.svnuaJ. 

IXTDAL SPECIFlCATlON 
x On each arrival of a list of roverents for a savings 

-account. update the savings-account. 
I The savings-account referenced by the message must 

already exist in the Data Base. 
x Each savings-account eoveaent rust be historicized. 

WHIC SPECIFICATION 

H I ST-MT 

ROQDEL SPECIFICATION 

DEFINE EVENT EV.3 IS HVT-ARR 

ON DESSAGE 
CDfRfwD(T “Arrival of a list of aoveeents 

for a savings-account” 
PROP 

1 svnum : INTEGER; t* savings-account nurber*J 
I-evt : LIST-OF t date-mvt : DATE: 

avt : DDLLARS I ) 
PRED EXISTS SAVINGS-ACCOUNT UHERE SAWCONTEXT. svnun 
TRIGGER 
IUPD-SAV-BAL ON SAVINGS-ACCOUNT: 
HIS?-NVTtCONTEXT.svnum, FACT. dat.FACT.rove.FACT. type; 

OH MS-HISTURK FOR Fl I; 

Fig. 6 : Specification of the external event EV3 

Fig. 5 presents the Fl triggering factor specification. 
The OUTPUT part describes the structure of the FACT relation. 
uhich is the implicit output paraneter of every factor. 
How the FAi2 tupJcsare geaekated Is described in the TEXT Part. 
These tuples will be used as effective parameters during the 
call of the operation to trigger iteratively (cf. ‘FACT.xx’ in 
the EV3 TRIGGER part). 

DEFINE FACTOR Fl IS ALL-HVTS 
CDMEDT ‘For all the moments included in the msaga’ 
OUTPUT tdat: DATE, move: DOLLARS, type: M-TYPE) 
TEXT FOR EACH I IN CONTEXT.I-nvt 

DU IF a.avt >= D - 
THEN INSERT INTO FACT (e.dat_rvt,r.Ivt,‘CREDlT’) 
ELSE INSERT INTO FACT (I.dat_rvt,-l.rvt,‘DEBIT’); 

Fig. 7 : Specification ot the triRgerin; factor Fl 

Each tenporal event is associated with the predefine4 
relation named CALEDDAR. Its predicate is a twporrl assertion 
which is def iced wing el I-tergetrr+ redtc e+e@#kW 
in this section, tire assertions have been specified using the 
following subset of operations and language clauses : 

OPERATORS 
= :equality redefined on tire types. 
f :rultiplication of an integer and a duration. 

The result is a duration. 
t :addition of a point and a duration. The result is a point. 

CLAUSES 
d af p :d is a duration, p is a time point. 

The result is a tile point z, such as z = p + d. 
from p 
a p’ 

:tire interval starting at point p 
:tire interval ending at paint p’ 

everyd :periodic time defined with a duration (this duration 
represents the distance betueen two realizations). 

& <tire-assertion> :refers to the first point for which the 
assertion is true. 
For exuple, eat day=26” defines the first 

point from current time, for vhich day=% 
each <time-assertioni:refers to the set of points from current - 

tile, for which the assertion is true. 

For exarple, ‘e& day=W generates one 
realization per month. 

Figure 6 describes the temporal event EVl which triggers the 
pay-r01 I publishing periodically. Here, the F4 factor #Bans “for 
all the employees”. 

Fig. B : Specification of the EVl temporal event 

If EVS is the external event ascertaining an order-note arrival, 
then “EVS. tine’ represents the real occurrence tire of an EV5 
instance !the occurrence tire is an implicit property of every 
eventi. Thus, the predicate of event EV6 : “at nest 3 days after 
each order-note arrival” can be specified in the follouing uay : 

PRED a 3 days of& EV5. tire 

Here, EV6 has been defined ‘by reference to EVY. there will be 
one occurrence of EV6 after each occurrence of EV5. 
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fiore complex temporal assertions can be expressed. For example, 
if ve consider the operation of ‘automatic levy for loan 
refunds”, pay-days are defined by the following expiession : 

“on the 26th day of the month, each FREQ, from the eonth 
f. and. during a. -period equal kQ 
GtEF-NB x FREW 

FREG, OBTAINING-DATE. and REF-NB are attributes of the LOAN 
relation which is described in Fig. 2. 

Figure B : A nore complex predicate specification 

Finally, an interesting application of teeporal events is the 
automatic eanagerent of Database Snapshots, uhich can be easily 
oodelled using such events. 

II RANAGING DTNAMGS 

Il.1 GLUBAL ARGHlTEGTURE OF RUBIS 

Autoaatic eanageoent of the database dynamics from the R- 
Schema specification involves : 

- automatic recognition of events. 
- autoratic triggering of appropriate operations when an 

event occurs, 
- operations execution control, 
- event synchronization. 

Attaining such automation requires : 
aJ a Relational DBBS to deal with : 

- nanaging the relations and the lieta-Raw corresponding to 
the R-Schena specifications, 

- executing operations text9 and evaluating factors. 
conditions and predicates: this requires an interpreter 
mere pouerful than a simple SQL interpretet: 

b) a rechanisr able to : 
- recognize an event, 
- determine which operations to execute. 
- trigger and control operations execution, 

and to synchronize event-chaining. 

This rechanisn is similar to the inference engine of a 
forward chaining expert system, uhose cyclic function is to : 

- test the rujes prenises. 
- choose a candidate rule, 
- execute the action part of the rule, 

and which possesses a rule-chaining strategy. 
Such a nechanisa has to exist in the DBUS itself for an 
efficient management of the database dynamics. 

The rechanisa we proptie (4 ae#poeed o!::thxee units managing all 
kinds of events : 

- the Applications Honitor recognizes external events, 
- the Temporal Processor recognites temporal events, 

- the Event Processor recognires internal events and t.reats 
all events and their synchroniration. 

Il.2 THE RUBIS’ RUNNING 

I The Heta-Ease contains the relational description of the R- 
Schwa. Texts, like any ethw GBIpoRoRt axe- etoced ini& 
thus, they can be nodified easily. For exarpie, modifying a 
text (like an event predicate or an operation) doesn’t imply 
recompiling the application; it doesn’t even Inply stopping 
the usets’ acttuftles if the text isn4t useo at%atmmeut. 

r---1 
,I - 

.ij 1 END-USER i 

I PRUQUEL INTEIWRETER 
I 

I 
I 

I 
I 

I 
I 

RELATIONAL D.B.ll.S I 

Fig. 10 : Global Architecture 

x The Applications Monitor is the end-user interface. For each 
external event specification, a corresponding Application 
Program (A.P.) is generated. The A.P. construction is based 
upon the event structure tits PROP part) and predicate (which 
is the message validation conditionl. 
The Applications noni tor executes Application Programs 
according to end-user requests. In fact, executing an A,p. 
corresponds to a message acquisition and validation. Yhen the 
A.P. is correctly finished, the Applications Monitor sends the 
valid message into the tlessage Uueue. 
Since the external event predicate is verified by the 
corresponding A.P., one nay consider the reception of a valid 
message in the Hsssage Owe as an external event occurrence. 
Each tire a user is connected to RUBIS, a process containing 
an Applications Monitor is created. . 

n The Temporal Processor works independently. It sends a message 
into the flessage Queue each tine it recognizes a temporal 
event. 
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* The Event Processor recognizes internal events, takes into 
account, processes and spchronizes events. 

- taking into account an external or teaporal event is 
accomplished by removing the corresponding aessage fro1 the 
Rueue . 

- processing an event includes : 
- evaluation of all conditions and factors appearing in 

the TRIGGER part of the event, 
- controlled execution of all operations having a true 

condition and a not erpty factor. 
Event processing is the atoeic execution unit, which 
means that it aust be executed entirely and in one 
block or not at all. Furtheraore, it is also the 
consistency unit, since it rust leave the database in a 
valid state. 

- event synchronization is based upon the following strategy: 
the interoal consequences of an external or terporal event 
(1.e the internal events it ray generate), receives 
priority processing before any other external or temporal 
event can be taken into account . 

* The PRWEL Interpreter evaluates predicates, conditions and 
factors, and supervises execution of operations. It executes 
all texts eritten in PROWL, by sending queries to the DBBS 
and managing : local variables, control structures and 
parameter passing. 
It is being developped using the LEX and YACC tools of the 
UNIX System. Rueries (expressed in relational algebra) are 
sent to a wall Relational DBHS called PEPIN tBOUC811. 

Ye uill nou focus on the two Processors, which are the rest 
interesting parts of the Syster. 

I I .2 THE TERPllRAL PRDCESSDR 

The role of the Teaporal Processor is to recognize 
autoratioally each occurrence of a teaporal event, and to inform 
the Event Processor of such occurrences (by sending a aessage 
into the Rueue). Its strategy is based on a dywic unagerent 
of the agenda. 

The agenda is a chronologically organized list describing a 
pertinent subset of future temporal event occurences. 
This list is constructed : 

- either by directly using the R-Schema specifications (the 
case for teaporal events in which the predicate defines an 
absolute tieel, 

- or a time propagation through the Temporal RElationships 
Graph (the case for temporal events in uhich the predicate 
defines a relative tire). 

11.2.1 THE AGENDA SYRUCYURE 

1) Yke ocowrence domin notion 

In theory, a temporal event occurs vhen its predicate becomes 
true for Current-Time (“Current-lime’ is the value returned by 
the “now’ function which reads the computer clock). 
In fact, due to our rodel, such a predicate may be true during a 
time interval. Therefore, in order to deal with these 

“imprecisely defined times’, the occurrence-domain notion NSt 

be distinguished from the occurrence-time notion. 

The occurrence-douin of a given (temporal evmt) RVi instance 
is a time interval during which the EVi predicate is true; that 
is to say during with an instance of RVi may occur. As sbovn in 
fig. 6, the occurrence-domain of the EVl instance X could be: 

t 19BB/12/23:UOhDOmDOs - 1988/12/23:23bS9mB% I 
and the occurrence-domain of the instance X+1 : 

1 19B6/12/24:WhDWOs - 19BB/12/24:23bSSmB9r 1 

Occurrence-time is the precise time at rhich a given event ir 
effectively ascertained. An event occurrence is thm 
instantaneous and the assertion : voccurrence-time is during 

occurrence-domain’ must aluays be true. 

2) The agenda organization 

list of related events 

NEXT-PO INTER 

--9 

v--’ 
list of domains 

Fig. 11 : The AGENDA structure 

Each element within the list of domains : 
- corresponds to a particular occurrence domain, 
- is associated with the events whose predicate is always 

true during this domain. 

Occurrence domains are defined in terms of time intervals like 
IBEG-TIHE - END-TIBEI. Therefore, it is possible to represent : 

- occurrence-domains reduced to a single point 
(if BEG-TIRE = END-TIRE), 

- occurrence-domains infinite in the past (or the future) 
by assigning to BEG-TIRE (or END-TIRE) the ‘INFINITB” 
value. 

The agenda is sorted in increasing order of ‘BEG~TIBE”; a domain 
8 appears “later. than a domain A : 

- uhen the assertion : “BBEG-TIRE is after A.BEG-THE” is 
true: no assumption is made concerning A&ND-TIRE and 
B.END-TIHE; so, doaain B oan be included in domain A when 
the assertion vA.END-TIME is-after B.END-TIRE’ is true. 

- or when the tvo assertions : ‘B.BEG-TIRE epu;lls A.BEG-TIRE* 
and vB,END-TIRE is-after A.END-TIRE. are true. 
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11.2.2 Illumffi MsoLuTELT 9EFlNEo EWE Two vertices Vl and V2 are connected by an edge (Vl,V2) if V2 is 
defined by reference to Vi. 

Formlly, a temporal event is absolutely defined if its 
predicate directly or indirectly refers to the calendar origin. 
For exaeplr, all tha follouing predicates define absolute tires: 

Pm & 1900105/11 
?Gal u t1988/05/11 - 1955/05/111 
PGED fror 19GG/O5/11 and until 1955/06111 -v 
FRE9 ItlO days after 1955/11/30 

In the graph presented in figure 12, the EV49 predicate is the 
most coaplex and has the form : 

PRED frDm 7 days aftsr EV47. time 
and until 1 aonth after EV4l.time; 

EV41 EV47 EV51 
The absolute definition is transitive, so a tiae expressed 
relatively to an absolute tire is interpreted as an absolute 
time. 
lmertion of an absolutely defined event into the agenda can be 
executed iamadiatly after validation of its specification. The 
Teeporal Processor then executes the following actions : 

- it examines the event specification (located in the R- 
S&ma) in order to determine the occurrence-dorain of the 
event: 

until 
1 month 
after 
EV5l.tims 

EV52 

- it searches for this occurrence-douin in the agenda: 
- if the cccurrenco-domain is already present, it simply adds 

the event into the doaain’s related events list; 
if not, it inserts a new occurrence-domain into the agenda, 
The related event list of this domain contains at this pcfnt 
only the considered event. Domain location within the agenda 
is determined by coaparing the domain bounds with those of 
the other domains. 

I froa 
N42. tire 

Ev44 

until 10 days 
after MZ.tiw 

I 
and until 

1987/07/l’ 
Et’53 

Fig. 12 : An example of temporal REferences Graph (T.R.E.G) 

mm : if the event predicate defines a periodic time, only the 
first future occurrence is inserted into the agenda. 

11.2.3 ORGAG12lGG RELAl’lVELY DEFIGRD EVMTS 

A temporal event iS relatively defined if its predicate 
doesn’t refer to the calendar origin at specification time. This 
is tha case vben the event predicate references : 

- the occurrence-time of another event, 
- a temporal attribute of a database relation. 

Therefore, it is impossible to determine the occurrence-domain 
of a relatively defined event just after its specification. 
For example, if the Nk predicate is the following : 

x The TREG is built by the temporal language interpreter, which 
tests the consistency of each new temporal specification. For 
example, incoherent constructs such as the one below are 
detected using the transitive closure mechanism. 

after ;:!ii/c\g EVl.time 

from 2 days 
after EV2. tine 

a The TREG viii also be used by a “Tire Expert’ in order to 
answer questions like : vcan EV43 occur before EV42 7” or 
‘what is the distance between EV42 and EV41 7’. 

PGEG ~otfJ 3 days lfter EV3. time 

the corresponding occurrence-domain can be determined only when 
EVLtime li.9 the occurrence-time of an instance of EV3) is 
known. At this moaent, an absolute tire can be derived from the 
relative specification. Consequently, a relatively defined event 
can become an absolutely defined event (applying transitiveness) 
during the system evolution. 
In order to allw such transforaations, the Temporal Processor 
manages a graph vhich organizes temporal events according to 
their relationships lKAHN771 fHITT521. 

x Events from the TREG are grouped together in precedener 
classes. PJlasstEVi) is composed of all the events which are 
defined relatively to EVi. Five P-Classes can be derived from 
the TREG of Fig. 12 : 
P-CIassfEV411 = 1 EV43, N42, EV44, EV49 t 
P~ClasstEV42) = 1 N44 1 P-Class(EV471 = t EV49 1 
P-ClasstEV51) : f EV52,EV53 ) P-CIassfEV52) = f EV53 1 

2) Propagation mechanisms 

I) The Temporal UEferences Graph ITREG) 

This graph is a directed graph which consists of a finite set 
of vertices and adges. 
A vertex V describes a non-temporal event (and then corresponds 
to a root) or a relatively defined event. 

s Uhen an event EVi occurs, the Temporal Processor verifies the 
existence of P-ClassWi). If this class enists, it then 
propagates the EVi.time value through the TREG, in order to 
deteraine the occurrence-domains of the next instances of 
events belonging to the class. fn fig. 12, the EV4l.time 
propagation determines the occurrence-domains of nen instances 
of events EV43 and EV42; and fixes the upper bound of the 
occurrence-domain of a neu EV49 instance. This mechanism is 
called forward propagation. 

s A second mechanism, called badward propagation, is used to 
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deteraine the occurrence-domains aore precisely, 
As shown in figure 12; if ‘dayiEV51.timel” = 1987/0?/01, then 

the two following occurrence-domains are deduced using forward 
propagation : occ~do~(EV521:[1967/07/01 - 1967/06/011 

then, occ-doa(EVSJJ=[EV52.tiae - 1987/06/111 
inter fEU5Z.tiae - 1987/07/141 

But obviously, if daylEVIZ.tiae) is great.er than 1967/07/14, it 
is impossible for EV53 to occur. Therefore, backward propagation 
is used to reduce the occurrence-doaain of EV52 so that EV53 
may occur : occ_dor(EV52)= [1967/07/01-1967/07/141 

Non-ascertainaent of an event is still possible. For emple, 
this situation occurs when EU5l.tire is greater than 1967/07/14. 
For this type of situation, the designer aust define exception 
handling statements. 

Uhen a referenced event EVi occurs, forward and backuard 
propagations are executed. Then, the vnou corpletely defined 
occurrence-doaains” and their related *future events 
occurrences” are inserted into the agenda. 

Il.33 THE TENPORAL PRDCESSOR ALGORITNH 

Tl he 

w there are sore events related to the considered 
occurrence-doaain 

10 BEGIN -- 
/I . send to the Events Processor a ressagewl 
14 notifying the occurrence of the first a/ 

PROCESS 1; /x event of the related list, f/ 
/x . propagate the event occurrence-time inal 
/I the TREG, *t 
h * insert, if necessary, deduced domains xl 
/I and events into the agenda; */ 

E the recognized event predicate corresponds to a 
periodic tire 

TgiEJ 
/a .deteraine the next occurrence domainxl 

PROCESS 2; /x .insert this domain and its related t/ 
/x event into the agenda; I/ 

PROCESS 3; /a . delete the recognized event from the f/ 
ifi agenda: f/ 

END; 
/x . delete the occurrence-doaain from the a/ 

PROCESS 4; /x agenda and sleep until the beginning x/ 
/a of the next domain. 41 

Fig. 13 : Global algorithr of the Temporal Processor 

Only future domains and events are present in the agenda. 
first element in the list of doaains is always the next 

domain to occur. Therefore, it determines the next event 
occurrences to be ascertained. So, the Temporal Processor rust 
wait for “Current-Tire’ to belong to this first doaain. When 
true, the processor executes the set of processes shoes above. 

NOTE : this algoritha is a basic version of the Processor. It 
is, indeed, possible to take into account event 
priorities (depending on resources al location, for 

instance). In this case, the Processor should dynarieally 
reorder the different lists of the agenda after each 
temporal event occurrence. 

I I .4 THE EVENT PROCESSOR 

The event processor fulfils three lain functions : 
- takes into account external and terporal events: 
- processes events: 
- orders thea. 

The first function is based on a FIFO usagerant of tha 
Nessage Queue. The second function consists of a rta-base 
search for appropriate conditions, factors and operations that 
uill be evaluated or executed by the relational DBHS. These tw 
functions do not present any major difficulties, as opposed to 
the third function, presented in the following section. 

11.4.1 EVENT SVNCl6WZATlDN 

The chosen strategy is based on the induction notion, and on 
the use of the induction graph, rhich is derived fro1 the R- 
Schema. 

a) The induction notion 

DEFINITION : 
An event EVi inducts an event EVj if and only if : 

- EVi triggers OPn uhich modifies the relation 
ascertained by EVJ, 

- an occurrence of EVI, folloued by the execution of 
OPn can produce an occurrence of EVJ. 

Graphically, the situation is the following : 

WPh 

The notation used to represent an induction is : EVi3EVj 

But, if OPn has a triggering factor, the induction is called a 
v,n 

multiple induction and is written : EVi --3) EVj 
This leans that an occurrence of EVi can induce several 
occurrences of EVj. 

The EV3 and EV4 events (described in section I, Fig.6 and Fig.31 
give us the folioving induction : 

WI, 
EV3 + EVI 

this is because OPl modifies the SAVlllGS~ACC6MT relation ad 
may produce a “ceiling exoeeded’ event tEV4). 

B) The Induction Graph construction 

The Induction Graph uses the above notation. It contains : 
- vertices representing R-Scheaa events, 
- directed edges representing inductions, 
- weights on the edges, which represent operations and are 
used as ‘induction conditions”. 
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The Induction Graph construction is accomplished in tuo steps : 
- an automatic step, producing the kximal Induction Graph, 
- a manual step transforming the Maximal induction Graph into 

the Induction Graph. 

1st STEP 

The Uaximal Induction Graph can be automatically deduced fror 
the R-S&as : 

- va priori possible chainina* are obtained by analysing the 
IH, MJDIF and TRIGGBR parts of event and operation 
specfflcations. 
Far a given event EVi, the chain is composed of all those 
events ascertaining relations modified by the operations 
triggered by EVi, 

- in order to keep only vstructurally possible chainings”, 
the occurrence of each operation’s TTPE (INSERT, DELETE, 
UPDATE) is checked within the UR part of the internal 
event(s) it seems to induce. So, impossible chainings like 
van account closure produces an overdraft’ will be 
from the graph. 

EV9 EVlO 

Fig. I4 : A kxiul Induction Graph 

2ndsrEP 

re !aoved 

The designer now manually aodifies the Maximal Induction 
Graph, until he obtains the final Induction Graph. 
During this step, the designer reaoves all the chainings that 
seea impossible to him from the graph. 
For example, the EV4 event (cf. figure 3) seeas to induce 
itself: 

EVPP2 
this is because EV4 ascertains a SAVINGS-ACCOUNT update, uhile 
UP2 updates SAVINGS-ACCOUNT. In reality, two EV4 occurrences 
wi II never be chained, because OP2 always produces a BALANCE 
decrease, rhile EV4 (“ceiling exceeded’) can only occur when 
the BALANCE increases. 
this kind of *false induction’ cannot be detected 
automatically since it involves a semantical interpretation of 
predicates, conditions, factors and operations. 

The final Induction Graph is an optimized and generally non- 
connected graph, which contains only ‘semantically possible 
chaininns’. Figure 15 presents the Induction Graph corresponding 
to the Haxiaal Induction Graph of figure 14. 

If there are cycles in the Induction Graph, they are detected 
automatically, and the designer is asked to a confira an 
“impossible infinite loop’. 

EVl EV2 

+G/\ 

EV3 

Dpsl\ m[N oN)“(fo 

EV6 EVB EV7 EV9 EVlO 

Fig. 15 : Induction Graph 

C) tnternal event chaining strategy 

Given an external or temporal event to be processed, the 
chosen strategy. is based on a ‘breadth-first’ evaluation of the 
event Induction sub-graph. 

xw The induction sub-graph of an event is the aaxiral connected 
component, uhose root is the event concerned. 
By using this kind of sub-graph when an external or temporal 
event EVi occurs, the Event Processor can learn iwdiately 
vhat ‘the ret of internal events it will probably have to 
process” is. This set of internal events is called the EVI 
Induction Class and is written Cvvc. For example, the EVl 
Induction Class is : 

Gv* = 1 EV3, EV4, EVB, EV7, EV6 I 

*x The internal event sequence construction is based 
breadth-first traversal of the Induction sub-graph. 

c EVl 1st cycle 

Ev3= EV4 2nd cycle 

OPB 

Y 
[EVB 

Y -u 
EV6 EV7 3rd cycle 

on a 

Fig. 16 : Internal event sequence 

For example, if EVl occurs, the complete processing cycle will 
include : 

1” cycle: EVl 
2” cycle: EV3 + EV4 
3” cycle: EV6 t EV7 + EV6 

It means that vithin each cycle, all events from the same level 
are processed. 

The processing is the same if there is multiple induction. For 
example, if EV2 occurs, the sequence will be : 

1” cycle: m 
2” cycle: EV4 + EV5, + EV5v + . . . . + EV5. 
w cycle: EV7 4 EVS, +...+ EV$, + EVlO, +...+ EVlO, 

194 Proceedings of the 13th VLDB Conference. Brighton 1987 



I I.42 GLOBAL ALGGRIlM OF THE EVENT PROCESSOR 

!lLJ TRUE 
!W 
!ll& there are soae aessages in the Pueue 
NJ BEGIN 

/x . take 1st message in the Rueue; El 
PROCESS 1; /t . generate appropriate external-event x! 

ffi and ressaga references: fl 

Y!I there are sooe event references 
Do BEGIN /* beginning of basic cycle *I 

/f For all event references do : n/ 
If . identify operations to trigger, xl 
I* . evaluate all triggering conditions */ 

PROCESS 2; /x and factors, fJ 
If . generate “operations to execute” W 
I* references, fJ 
Jf . generate “may-be-induced’ event */ 
/f references; fJ 

E there are “operations to execute* references 
TNEN BEGIN 

/x . execute all operations, */ 
/t . generate references for those fJ 

PROCESS 3; If state changes uhich say f/ 
Jf correspond to induced events: xl 

E there are *may-be-induced’ event references 

GE!! 
/f , evaluate their predicate */ 
Jf . generate references for x/ 

PROCESS 4; lf recognized events and f/ 
Jf correponding state changes: fJ 

urn: 
END; /x of basic cycle xi 

END; 
‘co; 

Fig. 17 : Global Ilgoriths of the Event Processor 

The requirerents for this algorithm (given in PROWL) are : 
1) existence of a Reta-Base describing the R-Scheaa part 

containing all inforaation on events, operations and the 
Induction Graph. 

2) knageeent of References containing local information for 
each Event Processor cycle : 

- event occurrences (recognized event instances), 
- “operations to execute” instances, 
- “say-be-induced’ events (not yet recognized event 

instances), 
- oessages. 
- factor results, 
- state changes that say correspond to internal events, 
- state changes that correspond in fact to internal 

events. 

I I A.3 SGRE REtlARKS ON EVENT PROCESSOR PERFGRMNCE 

1) Strategy 

The “breadth-first’ strategy f&g EVl, RVS+RV4, RVW~+EW 
has a real advantage over a “depth-first’ (EVL, RVS, EM, RV4, 
EV7) or a “randos’ strategy WI, RVS, RV5, RV4, RV7, EV5I. 
Indeed, this strategy permits optful mnagewnt of tk’ 
input/output iaplicit paraseters. Idle tin betueen : 

- generation of an “operation output paraWer*, 
- and its use as input parameter to process ths event induced 

by this operation, 
is einisal. internal events are recognized as soen as 
‘noticeable state changes’ occur (in fact : just after all 
operatfons triggered at the saae level have been executed); and 
these events are processed as soon as they are reoognitsd (1.0 
during the next basic cycle of the event processor). 

In this aanner, there is 110 puamkr waiting for uss daring a 
corplete basic cycle. This is not true uith other strategies: 
for instance, in the l depth-firrta strategy, the N4 input 
paraeeters l ust be kept in memory as long as N3 aad RVR are 
still being processed. 

2) The basic cycle 
Recognizing induced events at the end of the barfc cycle (cf. 

PROCESS 4J allows us to keep only thsse state chan(n 
corresponding to real internal events in mewry frm one cycle 
to another. The set of such state chan;es is called riniui 
context and contains only those input paramterr essential to 
the next level of processing. 

3) Using the Induction Graph 
During the generation of moperations to execute’ referems 

(cf. PROCESS 21, a prelirinary selection of %ay-be-fnducedm 
events say be aade. For exaaple, as early as ths first cycle of 
EV2 processing, if OP4 isn’t in the list of operations to 
execute, a uhole part of the EV2 Induction sub-;@ can be 
pruned off : 

So it pereits : 
- avoidance of useless predicate tests tRV5, EV9, EVlO), 
- avoidance of useless parameter recordin;, 
- an earlier freeing of resources (‘read-locked” relatioss 

for predicate, condition and factor evaluation: ‘write- 
locked’ relations for operation execution). 

It appears that an exterual or temporal Induction Class uill 
becore ssal ler and sraller after each basic cycle, and will 
finally reach the empty state. (another extereal or tesporal 
event will then be processed.) 

At any rorent, the Event Processor know uhat it is 
processing and what it rust deal uith next; so it controls the 
whole process fully. 

in a future version, this uill surely provide efficient 
managerent of parallelisr and concurrency. Nor, the parallelisr 
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witerion UC are implementing is based on an "occurrence-tine" 
reeervrtion of all resources needed for each external event 
processing. Several external events can be processed together if 
they or their induced events can't produce any concurrency 
conflict. The dynamic release of the resources (cf. pruning) 
provides real-time management of concurrency. 

This paper has presented RUBIS as an extended relational DBRS 
want to : 

s allow uniform and modular description of data (relations) 
and processing (events and operations), 

* imediately take into account any schema change : all texts 
are interpreted and the schema is stored in reta-relations, 

a automatically recognize predefined situations connected 
sith : - external information arrival, 

- noticeable internal state changes, 
- tise floe; 

* auteNticaIly trigger appropriate operations and control 
their execution, 

* synchronize event processing. 

Such a system perrits better eanageeent of applications 
consistency, and some transaction-vriting facilities Iuhich 
irplles an error rate reduction). 

Four kinds of Designer interfaces are actually being developped: 
- a eenu interface based on the PROQUEL language (introduced 

in section 11, 
- a graphic interface using an icon-based representation of 

the R-Schema concepts, 
- a Natural bn(Uage interface based on a French Language 

subset IROLL881, 
- a Seeantic IIodel interface managing high level concepts 

(such as generalization1 which are then napped onto the 
Relational IIodel ICAUV881. 

A prototype version of RUBIS Ibased on the PEPIN DBHS iBOUC811) 
is running on VAX/UNIX. The first applications of RUBIS are 
Inforeation Systee Rapid Pcototyping. In this kind of 
application, the RUBIS' schema aodification capabilities are 
useful. 
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