
BEHAVIOUR MANAGEMENT IN DATABASE APPLICATIDNS

J.Y LINGAT * , P. NOBECOURT *‘, C. ROLLAND”

I THUN’6 33, roe de IkwiiiP 75015 PARIS FRANCE
” univsrsita PARIS 1 12, Place du Panthkon 75005 PARIS FRANCE

ABSTRACT

Behavioural aspects ot Information Systems are nou taken.
into account in a lot of Conceptual Hodels. However. the
behavioural concepts ot these liodels have rarely been fully
irpleaented in DIMS.

RUBIS is an extended Relational DBtlS which supports an
extended relational schema (including event and operation
concepts) and automatic control ot the dynamic aspects of
Applications, i.e event recognition, operation triggering and
tire handling.

After a short presentation of the basic concepts and the
specification language used for the ertended Schema, we focus on
tuo internal rechanisms :

- the Temporal Processor, which ranages the temporal
aspects of specifications and recognizes temporal events,

- the Event Processor, which manages events treatment and
synchronization.

These tuo mechanisms permit an autoaatic execution of the
extended schera and so provide rapid prototyping capabilities.

lNTRODUCl’l0N

The dynamic aspect of data is increasingly taken into
account by Conceptual Hodels and by Relational DBtiS.

Numerous Seaantic Data Hodels (SDM LHAtUii83, YAXIS [MYLO6OI,
[SNlT771...) are only concerned with data structure.

More recent flodels also perait the aodelling ot data behaviour
I AWPCN I BROD82 I, CIAH (BUBE821, REWORA IROLLW, [CRISLJ,
IBORG85JJ.

Finally, Object Oriented Hodels are now frequently encountered
in Data Base works. The spirit ot such models is also a aixed

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and the
title of the publication and its date appear. and notice is given that
copying is by permission of the Very Large Data Base Endow-
ment. To copy otherwise, or to republish, requires a fee and/or spe
cial permission from the Endowment.

~oceedings of the 13th VLDB Conference, Brighton 1987

repxesentatlon of the stocturat tstatict arrd bebavf7mrat
Idynaaio aspects of knowledge MHBASE lKING881, GODEL
[KERS861). But there are feu realizations of DBHS rich fully
support the dynamic concepts of these Hodels.

On the other hand, there are regular trials for lntegratlng
dynamic capabilities into existing DBHS.

There uas first the notion of trigger in System R [ESYA761
and alerter in Daisy tBUNE791; then, other trials uere rade
ILLIN 841, MELMI , [ClMNBlI... I but no real Complete
integration of these aechanisrs in a global model has been
accoapl ished.

The ain ot the RUBIS System is to provide a complete dynaric
Hodel, tuliy supported by a Relational DBtlS.

Uur Hodel is based on REHDRA [ROLL821; the static objects are
aodelled by relations, uhile operations telerentary actions On
an object, and events telerentary state changes triggering one
or several operations) permit the rodelilng of the dyaaaic
aspects ot the objects. The Conceptual Schera is called the R-
Scheaa tRUBlS-Scheral. In this schema, the temporal aspects of
the Application are also taken into account; they are aodelled
using the time types provided by the RUBIS Hodel.

In this paper, we are only concerned uith :
- the A-Schera, which is specified using our Specification

Language cal ied PRU@.hZL (PRDgrauing PUEry Language).
The possibilities ot this language will be demonstrated
by the examples given in the first section.

- physical handling of the dynamic concepts. This is
achieved by the Terporal Processor, which ranages
temporal aspects ot the specification; and by the Event
Processor, which ranages event recognition and
synchronization.
These two aechanisrs will be described in section II.

I THE R-SCHEMA

I .1 UNDERLY I NC CONCEPTS

The R-Schera is based upon three kinds of elerents uhich allou
a complete description ot a Database Application :
a) Relations represent entity types or relationship types from

the real world (e.g CUSTORERS, BANKS, LOANS,...).
b) Events represent special situations in the Database life

cycle, in which one or several operations acting ofi the

185

Database must be triggered.
There are three kinds of events :

x an internal event describes a ‘noticeable state change”
ahme and on& one cdation kg.. .an 2ccOUnt.W a.
debit account: an employee salary becones greater than his
wager’s,, . .). The ‘noticeable state change* is specified
in the event predicate and generally concerns two

ttmmin ti-at?s t ran0 t’ ~dsr&l~~-BtO wtmi NEWof a
relation tuple.
For instance : “the balance of an account was positive or
nil (s.BALANCE)= Oi and is nou negative fs’.BALANCE (01”.
In inteiial cvat is thus said to “ascerfain’ its
associated relation, because it ascertains the relation
state changes.

e an external event describes the arrival of a meseage’fcoe
the real uorld fe.g “loan requirerent arrival”, “cheque
arrival’ ,.,). The external event predicate describes the
acceptance condition of the message fe.g “the date of the
cheque is valid’).

e a temporal event describes a situation uith reference to
tine. This situation can be either an absolute reference
(e.g 25i10187), or a periodic reference fe.g the thirteenth
day of each month). or a reference to another event ce.g 3
days after the occurrence of the “cheque arrival” event).

Successful testing of the event predicate means recognizing
the event: it is at this moment that the event occurs: there
is event occurrence.

c) Operations represent the elementary actions triggered by the
events when they occur. An operation stands for an action type
fe.g send a uarning letter, Modify an account balance,...) and
can modify at rost one relation. An operation instance ii.e
operation executed in fact, can modify at most one relation
tuple te.g modify the account no 445321, uith respect to the
elementarity principle.

The triggering of an operation can be :
- conditional, in this case, the operation is executed only

if the triggering condition is true (e.g put the order
note in the ‘uait” mode only if the stock is not
sufficientl.

- iterative, then the triggering factor conputes all the
tuples that will be used as effective parameters for the
execution of the operation te.g the sending of a
Christmas letter to al I ‘good” custorersl.

Notes:

1) Operations, conditions and factors can appear several tires
in the R-Schema : an operatron can oe triggered by several
events and tuo different operations can have the same
triggering condition or factor. In the sane uay, a relation
can be nodified and/or ascertained by several different
operations and/or events. For this reason. events. relations,
operations, condition5 and factors can be specified
independently.

21 Splitting update operations into : “elementary action +
condition + factor” ray seea quite restrictive but permits us
to exercise entire control over system behaviour, as will be

186

seen below. Worover, such splitting helps avoid redundancy
and helps obtain a modular description of the processing.

$1 The follouing notation is used to construct a graphic
representation of the R-Scheaa :

4 the
:*ascertain” v fV’ : an event

OPi
+ : an operation

OPi

V relationship

Y the
:Yrigger”
reIafXonsEip

_I$: a conditionally
ik triggered operation

OPi
* : an iteratively

0 triggered operation

the
:“rodify*
relationship

4i According to the definitions of operations and events. the
key concept of behaviour modeling is Dynamic Transition.
It is composed of :

- the event,
- all the operations it triggers,
- all the relations aodified by these operations.

The following figure represents a dynamic transition :

r ----- ------ -, Dynaaic

I f Transition

Figure 1 : A Dynamic Transition

This figure highlights an important aspect of behaviour
Modeling : the succedence of Dynamic Transitions. For example,
in fig. 1, the transition of EVJ follows the transition of EV2.
Host of RUBIS’ uork lies in the handling of these transitions
and of their ordering, as ue will see further on.

1.2 THE TIME HDDEL

1.2. TME IN DATABASE APPLICATIONS

The tile concept occurs at different levels during the
specification of static and dynamic aspects of data tB8LO821.
e On one hand, time enables us to express sole static properties

of entities or relationships (for instance, the
~OBTAINING-DATE” of the “LOAN” relationl.

Proceedings of the 13th VLDB Conference, Brighton 1987

--

t On tlv Ahm-hand, as in Hidticat Batabmi tie is-me&to
eanage successive versions of data (the “tinestamp noiion”
TDADAB@I. LADI9b611 and to access these different versions by
asking questions like: “what was the address of the subscriber
“Jones” at 08i!B/&5 ‘?“.

i Finally, the concept of time allous automatic triggering of
some actrons according to teeporal assertions te.g “send an
acknowledgerent no sore than three days after the order-note
arrival*).

&t~ent%tractfon
tS tjwe cefs iycisely specifffq t!res 16:

terporal specl r&ions
supported. For instance, it is possible to express “predefined
temporal types” (points, intervals, durations, periodic tires)
a4 a-ll ebskfaet4eft kvels.

Sole functions are provided for handling relationships between
tiles. This is necessary for specific applications like planning
IfSleNs, ulere causal .- relationships between tires are ,eore
ieportant than precise tires.
Two kinds of specifications are handled : absolute tires te.g
dates, and relative tires, such as tires defined relative to an
event occurrence te.g three days after the order-note arrival)
LBARBBSI. In the following, ue briefly. define tire types and the
primitives used in RUBIS.

1.2.2 TINE TYPES

Tire assertions are described using a calendar. The predefined
calendar is the comeon gregorian calendar augmented with hours.
minutes and seconds.
Tire ray be specified at six levels ot abstraction : year
(19&y, month i19WiiJ.... second (19Bb/12/04:?3h54r03si.
Year is considered to be a higher level than ronth, uhich is a

higher level than day, and so on. Elements within a given level
are specified using only upper ievels.

For each level of abstraction. the follouing types are defined :
- Tire Point type : The tise point type is based on the

primitive concept of the terporal axis origin. A time point is
defined using the calendar schema. For instance, ‘1966~05/11”
is a valid specification at the day abstraction level.

- Time interval type : A tine interval is defined by its bounds.
uhich are of point typo. For instance, 11986/05/11-1986~05/1~1
is a valid interval at the day abstraction level.

- Duration type: duration type allows reference to the distance
between tuo points. A value from this type is defined in terns
of eleeentary durations (according to the calendar scheaal.
For instance, ‘1 year, 3 months, 23 days’, and “15 days” are
valid durations at the day abstraction level.

- Periodic tire type : A periodic tine is defined by its base
(point or interval type) and its period [duration type). For
instance. ‘the 25th day of each ronth” is a valid periodic
fine at the-day abstraction level.
A periodic tire say be limited by an interval. so : “every
fortnight from order-note arrival and until delivery’ is a
valid periodic tiue too.

Tire functions and operations. such, as before, after, equal....
are provided. Cowers ran ‘Punctrons ore atso provided when
roving froa a given level of abstraction to an other). For

i&nce, khf3 fdtte+i* sFwc+f* t we
‘is equrvarcnt to “at 1986105”, and “after l inutes(l5 days)” is
equivalent to “after 21600 minutes”

The uay in which temporal assertions (expressed via the above
types, functions and operations) are organized tn provide a
structure for autoaatic triggering of operations uili be
discussed in subsequent sections.

The description of the R-Scheaa can be rade increaentally :
- first, the static sub-schema can be described uith

relation -specifications tintrvdnceaap~.
Second, a first version of the dynaaic sub-schema can tte
obtained by specifying dynaaic transitions (these
specifications are introduced by DEFllE EVElIT).
third, the dynamic sub-schema can be completed by
operation, condition and factor specifications
trespectively introduced by BEPINE OPERATION, DEFINE
CONDITIQN, and DEFINE FACTS.

The static sub-schema used in the examples (drawn from a Bank
Application) is shown belou. Figure 2 presents the LOAN relation
specification.

CUSTOHER (Cm, CUSTNAHE, CUSTADR, TYPE)
LOAN tL=, CUSTg, OBTAINING-DATE, ABOUNT, REF-NB, FREQ)
ACCOUNT (Am, CUSTI, BALANCE)
SAVINGS-ACCOUNT (E, CUSTt. BALANCE, OPENING-DATE.RATE)
CEILINGS~HISTDRIC tHBATE, CEILING,

DEFINE RELATION LOAN
I LOANI : INTEGER KEY;

CUSTI : INTEGER;
OBTAINING-DATE : GATE;
AHOUNT : DOLLARS;
REF-NB : INTEGER; /fi total nurber of refunds k/
FREQ : DURATION 1; /s refunds frequency x/

Fig. L : Specification of the LOAN relatlon

EXAHPLE I: INTEBNAL EVENT SPECIFICATION

Figure 3 associates the textual, graphic and forral
specitications of a savings-account management rule.

m The ascertained relation name and the type of the state-change
are introduced by ON.

r PRED contains the “noticeable state change” statement.
Here, the operator LAST helps to retrieve the CEILING that was
in effect just before the SAUINGS-ACCOUNT opening date.
It the predicate is complex (such as here) the final
computation of the ‘return value” of the event predicate is
made using the BETUBN operator. The predicate can be empty if
the state-change is a sirple insertion, deletion or update.

In each internal event specification, the ascertained relation
(here: SAVINGS-ACCOUNT) is the iaplicit parameter of the

Proceedings of the 13th VLDB Conference, Brighton 1987 187

assertion introduced by P5ED. The formal paraaeter is the
relation name. while the effective paraaeter, also called
“context”, is composed of the tuple pair which defines two
successive states of the modified entity (here: the savings-
account state before and-after its 5ALAfiCE modification).
The OLD prefix and the NEV prefir allow us to reference (and
to differentiate) the two tuples or. to be more precise, the

old aad aeu values of their attributes te.g N~Y.~ALAUCEJ,
The CDM’EXT prefix is used te.g CllNTEXT.OPENING-DATEI when no
differentiation has to be aade (the attribute value hasn’t
changed f .

EnvAL SPEc1FlCATl05
* Each savings-account possesses a ceiling that should

not be overstepped (this ceiling depends upon the
_ .op@ &.#&
(If the custorer also possesses a current+count in

the bank, the surplus is transferred into it.
t If the customer doesn’t possesses another account, a

uarning letter is send to hir.

IRAPNIC SPECIFICATION n
SAY I NGS-ACCOUNT

cE1L-sh
- -

3 ACCDUN

WJEL SPECIFICATION

DEFfffE EVENT EV4 IS ACC-OVER
ON UPDATE OF SAVINGS-ACCOUNT
WMEffT “The savings-account exceeds its ceiling”

PRED
f VAR (CEIL : DOLLARS:

CCEIL:=SELECT CEILING FROB LAST CEILINGS~HISTCIRI
MERE HDATE i= CONTEXT.OPENINC~DATE:

RETURN NE&BALANCE j (CEIL 1
TRIGGER

IF Cl THE5 I UPD-ACC-5ALtNEY.5ALANCE-SCEILJ
DN ACCOUNT;

CEIL-SAVt(CEILJ 05 SAVINGS-ACCOUNT 1
ELSE SEND-YARN ;

Fig. 3 : Specification of the internal event EV4

fi The TRlW5 part introduces the operations, their respective
triggering conditions and factors, and the relations they
rodify lif any,. In the exarple. UPD-ACC-BAL (DP3: transfer
the surplus of the neu BALABCE to the customer’s current-
accountI and CEIL-SAY (level the savings-account balance to
the ceiling) are executed if the condition Cl (the customer
possesses a currentramwnt# is, .&we.. If not, SEND-YARN (send
a earning letter) is executed.

The specification of Dynamic Transitions corresponds to the
first version oi the scheea definition.

After checking for consistency, second level R-Schema
specification can start. This includes the definition ef
conditions. factors and operations texts.
An example of such definitions is given in figures 4 and 3,
which respectively introduce the Cl and W3 specifications.

TEXT EXISTS ACCOUNT UHERE CUSTg = CONTEXT.CUSTI;

Fig. 4 : Specification of the triggering condition Cl

DEFINE OpERATI#I OP3 IS UPD-AK-BAL
MIDIF ACCOUNT
TV? DPDATE
f%III&M ‘Hodify the customer’s current-account balance
INPUT (Icredit : DOLLARS)
TEXT UPDATE ACCOUNT

SET BALANCE = BALANCE + tcredit
MERE CUSTg = CONTEXT.CUST#;

Fig. 5 : Specification of the operation OP3

Conditions, factors and operations have tuo kinds of parameters:
- their explicit parameters (ex: Icredit), introduced by

INPUT end receiving a value during the call (i.e in the
TRIGGER part of the triggering event(sJJ,

- au implicit parameter : that of the triggering event
(here: the two tuples representing the modified savings-
accountI. The attributes of this implicit parareter are
retrieved using the OLD, NEU or CONTEXT prefix (e.g
CONTEXT.CUSTg J .

In an operation specification, the aodified relation naae is

introduced by 5DDlF. The TTPE part introduces the modification
type (INSERT, DELETE or UPDATE). The TEXT part contains the
operation’s algorithmic specification.

Each operation possesses an irplicit output parareter: the two
versions of the tuple it modifies.

NOTE: These tuo specifications could have been incorporated in
the EV4 specification, using a special notation :

IF Cl [DEFINED AS ..I THEN I..

EKAHPL5 2: EXTEML EVENT SPu;IFICATlUN

Figure 6 represents the specification of the external event :
‘Arrival of a list of eoverents for a savings-account” (f9f3).

An external event ascertains the arrival of an appropriate
message. The structure of this message (which is the external
event “contewt”J can be quite complex and is described in a
special part.

f Since an external event ascertains no relation, the 5ESSAGE
keyword is used in the BN part,

a PROP describes the structure of the message the event is
waiting for. This structure isn’t in 1st Nornal Fora, so it
may contain embedded structures, optional fields and lists
tc.f LIST-OF if fig. 6).

188 Proceedings of the 13th VLDB Conference, Brighton 1987

s The eessage validity condition is described in ‘the PRB) part’
ihere: ‘the SAVINGS~ACSOUNT referenced by its number in the
message, oust already exist in the Catabase”).

x The TRIGGER part of an external event is identical to that of
an internal event. In this example, note that UPD-SAV_BAL
iupdate the SAVlDCS~ACCOUNT balance) is unconditional, and
HIS?-HVT (save a roveaent into the historio is iterative (cf.
factor Fl, described further on).

* The message is the ‘context” of the external event.
The values of this message are still accessible from the PRED
and TRIGGER parts of the event, and also from all the
specifications of. .condiUnaa. factors and operations vbich
appear in the TRIGGER part of the event.
Here again, the prefix to use is CONTEXT te.g CONTEXT.svnuaJ.

IXTDAL SPECIFlCATlON
x On each arrival of a list of roverents for a savings

-account. update the savings-account.
I The savings-account referenced by the message must

already exist in the Data Base.
x Each savings-account eoveaent rust be historicized.

WHIC SPECIFICATION

H I ST-MT

ROQDEL SPECIFICATION

DEFINE EVENT EV.3 IS HVT-ARR

ON DESSAGE
CDfRfwD(T “Arrival of a list of aoveeents

for a savings-account”
PROP

1 svnum : INTEGER; t* savings-account nurber*J
I-evt : LIST-OF t date-mvt : DATE:

avt : DDLLARS I)
PRED EXISTS SAVINGS-ACCOUNT UHERE SAWCONTEXT. svnun
TRIGGER
IUPD-SAV-BAL ON SAVINGS-ACCOUNT:
HIS?-NVTtCONTEXT.svnum, FACT. dat.FACT.rove.FACT. type;

OH MS-HISTURK FOR Fl I;

Fig. 6 : Specification of the external event EV3

Fig. 5 presents the Fl triggering factor specification.
The OUTPUT part describes the structure of the FACT relation.
uhich is the implicit output paraneter of every factor.
How the FAi2 tupJcsare geaekated Is described in the TEXT Part.
These tuples will be used as effective parameters during the
call of the operation to trigger iteratively (cf. ‘FACT.xx’ in
the EV3 TRIGGER part).

DEFINE FACTOR Fl IS ALL-HVTS
CDMEDT ‘For all the moments included in the msaga’
OUTPUT tdat: DATE, move: DOLLARS, type: M-TYPE)
TEXT FOR EACH I IN CONTEXT.I-nvt

DU IF a.avt >= D -
THEN INSERT INTO FACT (e.dat_rvt,r.Ivt,‘CREDlT’)
ELSE INSERT INTO FACT (I.dat_rvt,-l.rvt,‘DEBIT’);

Fig. 7 : Specification ot the triRgerin; factor Fl

Each tenporal event is associated with the predefine4
relation named CALEDDAR. Its predicate is a twporrl assertion
which is def iced wing el I-tergetrr+ redtc e+e@#kW
in this section, tire assertions have been specified using the
following subset of operations and language clauses :

OPERATORS
= :equality redefined on tire types.
f :rultiplication of an integer and a duration.

The result is a duration.
t :addition of a point and a duration. The result is a point.

CLAUSES
d af p :d is a duration, p is a time point.

The result is a tile point z, such as z = p + d.
from p
a p’

:tire interval starting at point p
:tire interval ending at paint p’

everyd :periodic time defined with a duration (this duration
represents the distance betueen two realizations).

& <tire-assertion> :refers to the first point for which the
assertion is true.
For exuple, eat day=26” defines the first

point from current time, for vhich day=%
each <time-assertioni:refers to the set of points from current -

tile, for which the assertion is true.

For exarple, ‘e& day=W generates one
realization per month.

Figure 6 describes the temporal event EVl which triggers the
pay-r01 I publishing periodically. Here, the F4 factor #Bans “for
all the employees”.

Fig. B : Specification of the EVl temporal event

If EVS is the external event ascertaining an order-note arrival,
then “EVS. tine’ represents the real occurrence tire of an EV5
instance !the occurrence tire is an implicit property of every
eventi. Thus, the predicate of event EV6 : “at nest 3 days after
each order-note arrival” can be specified in the follouing uay :

PRED a 3 days of& EV5. tire

Here, EV6 has been defined ‘by reference to EVY. there will be
one occurrence of EV6 after each occurrence of EV5.

Praceedings of the 13th VLDB Conference, Brighton 1987 189

fiore complex temporal assertions can be expressed. For example,
if ve consider the operation of ‘automatic levy for loan
refunds”, pay-days are defined by the following expiession :

“on the 26th day of the month, each FREQ, from the eonth
f. and. during a. -period equal kQ
GtEF-NB x FREW

FREG, OBTAINING-DATE. and REF-NB are attributes of the LOAN
relation which is described in Fig. 2.

Figure B : A nore complex predicate specification

Finally, an interesting application of teeporal events is the
automatic eanagerent of Database Snapshots, uhich can be easily
oodelled using such events.

II RANAGING DTNAMGS

Il.1 GLUBAL ARGHlTEGTURE OF RUBIS

Autoaatic eanageoent of the database dynamics from the R-
Schema specification involves :

- automatic recognition of events.
- autoratic triggering of appropriate operations when an

event occurs,
- operations execution control,
- event synchronization.

Attaining such automation requires :
aJ a Relational DBBS to deal with :

- nanaging the relations and the lieta-Raw corresponding to
the R-Schena specifications,

- executing operations text9 and evaluating factors.
conditions and predicates: this requires an interpreter
mere pouerful than a simple SQL interpretet:

b) a rechanisr able to :
- recognize an event,
- determine which operations to execute.
- trigger and control operations execution,

and to synchronize event-chaining.

This rechanisn is similar to the inference engine of a
forward chaining expert system, uhose cyclic function is to :

- test the rujes prenises.
- choose a candidate rule,
- execute the action part of the rule,

and which possesses a rule-chaining strategy.
Such a nechanisa has to exist in the DBUS itself for an
efficient management of the database dynamics.

The rechanisa we proptie (4 ae#poeed o!::thxee units managing all
kinds of events :

- the Applications Honitor recognizes external events,
- the Temporal Processor recognites temporal events,

- the Event Processor recognires internal events and t.reats
all events and their synchroniration.

Il.2 THE RUBIS’ RUNNING

I The Heta-Ease contains the relational description of the R-
Schwa. Texts, like any ethw GBIpoRoRt axe- etoced ini&
thus, they can be nodified easily. For exarpie, modifying a
text (like an event predicate or an operation) doesn’t imply
recompiling the application; it doesn’t even Inply stopping
the usets’ acttuftles if the text isn4t useo at%atmmeut.

r---1
,I -

.ij 1 END-USER i

I PRUQUEL INTEIWRETER
I

I
I

I
I

I
I

RELATIONAL D.B.ll.S I

Fig. 10 : Global Architecture

x The Applications Monitor is the end-user interface. For each
external event specification, a corresponding Application
Program (A.P.) is generated. The A.P. construction is based
upon the event structure tits PROP part) and predicate (which
is the message validation conditionl.
The Applications noni tor executes Application Programs
according to end-user requests. In fact, executing an A,p.
corresponds to a message acquisition and validation. Yhen the
A.P. is correctly finished, the Applications Monitor sends the
valid message into the tlessage Uueue.
Since the external event predicate is verified by the
corresponding A.P., one nay consider the reception of a valid
message in the Hsssage Owe as an external event occurrence.
Each tire a user is connected to RUBIS, a process containing
an Applications Monitor is created. .

n The Temporal Processor works independently. It sends a message
into the flessage Queue each tine it recognizes a temporal
event.

190 Proceedings of the 13th VLDB Conference, Brighton 1987

* The Event Processor recognizes internal events, takes into
account, processes and spchronizes events.

- taking into account an external or teaporal event is
accomplished by removing the corresponding aessage fro1 the
Rueue .

- processing an event includes :
- evaluation of all conditions and factors appearing in

the TRIGGER part of the event,
- controlled execution of all operations having a true

condition and a not erpty factor.
Event processing is the atoeic execution unit, which
means that it aust be executed entirely and in one
block or not at all. Furtheraore, it is also the
consistency unit, since it rust leave the database in a
valid state.

- event synchronization is based upon the following strategy:
the interoal consequences of an external or terporal event
(1.e the internal events it ray generate), receives
priority processing before any other external or temporal
event can be taken into account .

* The PRWEL Interpreter evaluates predicates, conditions and
factors, and supervises execution of operations. It executes
all texts eritten in PROWL, by sending queries to the DBBS
and managing : local variables, control structures and
parameter passing.
It is being developped using the LEX and YACC tools of the
UNIX System. Rueries (expressed in relational algebra) are
sent to a wall Relational DBHS called PEPIN tBOUC811.

Ye uill nou focus on the two Processors, which are the rest
interesting parts of the Syster.

I I .2 THE TERPllRAL PRDCESSDR

The role of the Teaporal Processor is to recognize
autoratioally each occurrence of a teaporal event, and to inform
the Event Processor of such occurrences (by sending a aessage
into the Rueue). Its strategy is based on a dywic unagerent
of the agenda.

The agenda is a chronologically organized list describing a
pertinent subset of future temporal event occurences.
This list is constructed :

- either by directly using the R-Schema specifications (the
case for teaporal events in which the predicate defines an
absolute tieel,

- or a time propagation through the Temporal RElationships
Graph (the case for temporal events in uhich the predicate
defines a relative tire).

11.2.1 THE AGENDA SYRUCYURE

1) Yke ocowrence domin notion

In theory, a temporal event occurs vhen its predicate becomes
true for Current-Time (“Current-lime’ is the value returned by
the “now’ function which reads the computer clock).
In fact, due to our rodel, such a predicate may be true during a
time interval. Therefore, in order to deal with these

“imprecisely defined times’, the occurrence-domain notion NSt

be distinguished from the occurrence-time notion.

The occurrence-douin of a given (temporal evmt) RVi instance
is a time interval during which the EVi predicate is true; that
is to say during with an instance of RVi may occur. As sbovn in
fig. 6, the occurrence-domain of the EVl instance X could be:

t 19BB/12/23:UOhDOmDOs - 1988/12/23:23bS9mB% I
and the occurrence-domain of the instance X+1 :

1 19B6/12/24:WhDWOs - 19BB/12/24:23bSSmB9r 1

Occurrence-time is the precise time at rhich a given event ir
effectively ascertained. An event occurrence is thm
instantaneous and the assertion : voccurrence-time is during

occurrence-domain’ must aluays be true.

2) The agenda organization

list of related events

NEXT-PO INTER

--9

v--’
list of domains

Fig. 11 : The AGENDA structure

Each element within the list of domains :
- corresponds to a particular occurrence domain,
- is associated with the events whose predicate is always

true during this domain.

Occurrence domains are defined in terms of time intervals like
IBEG-TIHE - END-TIBEI. Therefore, it is possible to represent :

- occurrence-domains reduced to a single point
(if BEG-TIRE = END-TIRE),

- occurrence-domains infinite in the past (or the future)
by assigning to BEG-TIRE (or END-TIRE) the ‘INFINITB”
value.

The agenda is sorted in increasing order of ‘BEG~TIBE”; a domain
8 appears “later. than a domain A :

- uhen the assertion : “BBEG-TIRE is after A.BEG-THE” is
true: no assumption is made concerning A&ND-TIRE and
B.END-TIHE; so, doaain B oan be included in domain A when
the assertion vA.END-TIME is-after B.END-TIRE’ is true.

- or when the tvo assertions : ‘B.BEG-TIRE epu;lls A.BEG-TIRE*
and vB,END-TIRE is-after A.END-TIRE. are true.

Proceedings of the 13th VLDB Conference, Brighton 1987 191

11.2.2 Illumffi MsoLuTELT 9EFlNEo EWE Two vertices Vl and V2 are connected by an edge (Vl,V2) if V2 is
defined by reference to Vi.

Formlly, a temporal event is absolutely defined if its
predicate directly or indirectly refers to the calendar origin.
For exaeplr, all tha follouing predicates define absolute tires:

Pm & 1900105/11
?Gal u t1988/05/11 - 1955/05/111
PGED fror 19GG/O5/11 and until 1955/06111 -v
FRE9 ItlO days after 1955/11/30

In the graph presented in figure 12, the EV49 predicate is the
most coaplex and has the form :

PRED frDm 7 days aftsr EV47. time
and until 1 aonth after EV4l.time;

EV41 EV47 EV51
The absolute definition is transitive, so a tiae expressed
relatively to an absolute tire is interpreted as an absolute
time.
lmertion of an absolutely defined event into the agenda can be
executed iamadiatly after validation of its specification. The
Teeporal Processor then executes the following actions :

- it examines the event specification (located in the R-
S&ma) in order to determine the occurrence-dorain of the
event:

until
1 month
after
EV5l.tims

EV52

- it searches for this occurrence-douin in the agenda:
- if the cccurrenco-domain is already present, it simply adds

the event into the doaain’s related events list;
if not, it inserts a new occurrence-domain into the agenda,
The related event list of this domain contains at this pcfnt
only the considered event. Domain location within the agenda
is determined by coaparing the domain bounds with those of
the other domains.

I froa
N42. tire

Ev44

until 10 days
after MZ.tiw

I
and until

1987/07/l’
Et’53

Fig. 12 : An example of temporal REferences Graph (T.R.E.G)

mm : if the event predicate defines a periodic time, only the
first future occurrence is inserted into the agenda.

11.2.3 ORGAG12lGG RELAl’lVELY DEFIGRD EVMTS

A temporal event iS relatively defined if its predicate
doesn’t refer to the calendar origin at specification time. This
is tha case vben the event predicate references :

- the occurrence-time of another event,
- a temporal attribute of a database relation.

Therefore, it is impossible to determine the occurrence-domain
of a relatively defined event just after its specification.
For example, if the Nk predicate is the following :

x The TREG is built by the temporal language interpreter, which
tests the consistency of each new temporal specification. For
example, incoherent constructs such as the one below are
detected using the transitive closure mechanism.

after ;:!ii/c\g EVl.time

from 2 days
after EV2. tine

a The TREG viii also be used by a “Tire Expert’ in order to
answer questions like : vcan EV43 occur before EV42 7” or
‘what is the distance between EV42 and EV41 7’.

PGEG ~otfJ 3 days lfter EV3. time

the corresponding occurrence-domain can be determined only when
EVLtime li.9 the occurrence-time of an instance of EV3) is
known. At this moaent, an absolute tire can be derived from the
relative specification. Consequently, a relatively defined event
can become an absolutely defined event (applying transitiveness)
during the system evolution.
In order to allw such transforaations, the Temporal Processor
manages a graph vhich organizes temporal events according to
their relationships lKAHN771 fHITT521.

x Events from the TREG are grouped together in precedener
classes. PJlasstEVi) is composed of all the events which are
defined relatively to EVi. Five P-Classes can be derived from
the TREG of Fig. 12 :
P-CIassfEV411 = 1 EV43, N42, EV44, EV49 t
P~ClasstEV42) = 1 N44 1 P-Class(EV471 = t EV49 1
P-ClasstEV51) : f EV52,EV53) P-CIassfEV52) = f EV53 1

2) Propagation mechanisms

I) The Temporal UEferences Graph ITREG)

This graph is a directed graph which consists of a finite set
of vertices and adges.
A vertex V describes a non-temporal event (and then corresponds
to a root) or a relatively defined event.

s Uhen an event EVi occurs, the Temporal Processor verifies the
existence of P-ClassWi). If this class enists, it then
propagates the EVi.time value through the TREG, in order to
deteraine the occurrence-domains of the next instances of
events belonging to the class. fn fig. 12, the EV4l.time
propagation determines the occurrence-domains of nen instances
of events EV43 and EV42; and fixes the upper bound of the
occurrence-domain of a neu EV49 instance. This mechanism is
called forward propagation.

s A second mechanism, called badward propagation, is used to

192 proceedings of the 13th VLDB Conference, Brighton 1987

deteraine the occurrence-domains aore precisely,
As shown in figure 12; if ‘dayiEV51.timel” = 1987/0?/01, then

the two following occurrence-domains are deduced using forward
propagation : occ~do~(EV521:[1967/07/01 - 1967/06/011

then, occ-doa(EVSJJ=[EV52.tiae - 1987/06/111
inter fEU5Z.tiae - 1987/07/141

But obviously, if daylEVIZ.tiae) is great.er than 1967/07/14, it
is impossible for EV53 to occur. Therefore, backward propagation
is used to reduce the occurrence-doaain of EV52 so that EV53
may occur : occ_dor(EV52)= [1967/07/01-1967/07/141

Non-ascertainaent of an event is still possible. For emple,
this situation occurs when EU5l.tire is greater than 1967/07/14.
For this type of situation, the designer aust define exception
handling statements.

Uhen a referenced event EVi occurs, forward and backuard
propagations are executed. Then, the vnou corpletely defined
occurrence-doaains” and their related *future events
occurrences” are inserted into the agenda.

Il.33 THE TENPORAL PRDCESSOR ALGORITNH

Tl he

w there are sore events related to the considered
occurrence-doaain

10 BEGIN --
/I . send to the Events Processor a ressagewl
14 notifying the occurrence of the first a/

PROCESS 1; /x event of the related list, f/
/x . propagate the event occurrence-time inal
/I the TREG, *t
h * insert, if necessary, deduced domains xl
/I and events into the agenda; */

E the recognized event predicate corresponds to a
periodic tire

TgiEJ
/a .deteraine the next occurrence domainxl

PROCESS 2; /x .insert this domain and its related t/
/x event into the agenda; I/

PROCESS 3; /a . delete the recognized event from the f/
ifi agenda: f/

END;
/x . delete the occurrence-doaain from the a/

PROCESS 4; /x agenda and sleep until the beginning x/
/a of the next domain. 41

Fig. 13 : Global algorithr of the Temporal Processor

Only future domains and events are present in the agenda.
first element in the list of doaains is always the next

domain to occur. Therefore, it determines the next event
occurrences to be ascertained. So, the Temporal Processor rust
wait for “Current-Tire’ to belong to this first doaain. When
true, the processor executes the set of processes shoes above.

NOTE : this algoritha is a basic version of the Processor. It
is, indeed, possible to take into account event
priorities (depending on resources al location, for

instance). In this case, the Processor should dynarieally
reorder the different lists of the agenda after each
temporal event occurrence.

I I .4 THE EVENT PROCESSOR

The event processor fulfils three lain functions :
- takes into account external and terporal events:
- processes events:
- orders thea.

The first function is based on a FIFO usagerant of tha
Nessage Queue. The second function consists of a rta-base
search for appropriate conditions, factors and operations that
uill be evaluated or executed by the relational DBHS. These tw
functions do not present any major difficulties, as opposed to
the third function, presented in the following section.

11.4.1 EVENT SVNCl6WZATlDN

The chosen strategy is based on the induction notion, and on
the use of the induction graph, rhich is derived fro1 the R-
Schema.

a) The induction notion

DEFINITION :
An event EVi inducts an event EVj if and only if :

- EVi triggers OPn uhich modifies the relation
ascertained by EVJ,

- an occurrence of EVI, folloued by the execution of
OPn can produce an occurrence of EVJ.

Graphically, the situation is the following :

WPh

The notation used to represent an induction is : EVi3EVj

But, if OPn has a triggering factor, the induction is called a
v,n

multiple induction and is written : EVi --3) EVj
This leans that an occurrence of EVi can induce several
occurrences of EVj.

The EV3 and EV4 events (described in section I, Fig.6 and Fig.31
give us the folioving induction :

WI,
EV3 + EVI

this is because OPl modifies the SAVlllGS~ACC6MT relation ad
may produce a “ceiling exoeeded’ event tEV4).

B) The Induction Graph construction

The Induction Graph uses the above notation. It contains :
- vertices representing R-Scheaa events,
- directed edges representing inductions,
- weights on the edges, which represent operations and are
used as ‘induction conditions”.

Proceedings of the 13th VLDB Conference, Brighton 1987 193

The Induction Graph construction is accomplished in tuo steps :
- an automatic step, producing the kximal Induction Graph,
- a manual step transforming the Maximal induction Graph into

the Induction Graph.

1st STEP

The Uaximal Induction Graph can be automatically deduced fror
the R-S&as :

- va priori possible chainina* are obtained by analysing the
IH, MJDIF and TRIGGBR parts of event and operation
specfflcations.
Far a given event EVi, the chain is composed of all those
events ascertaining relations modified by the operations
triggered by EVi,

- in order to keep only vstructurally possible chainings”,
the occurrence of each operation’s TTPE (INSERT, DELETE,
UPDATE) is checked within the UR part of the internal
event(s) it seems to induce. So, impossible chainings like
van account closure produces an overdraft’ will be
from the graph.

EV9 EVlO

Fig. I4 : A kxiul Induction Graph

2ndsrEP

re !aoved

The designer now manually aodifies the Maximal Induction
Graph, until he obtains the final Induction Graph.
During this step, the designer reaoves all the chainings that
seea impossible to him from the graph.
For example, the EV4 event (cf. figure 3) seeas to induce
itself:

EVPP2
this is because EV4 ascertains a SAVINGS-ACCOUNT update, uhile
UP2 updates SAVINGS-ACCOUNT. In reality, two EV4 occurrences
wi II never be chained, because OP2 always produces a BALANCE
decrease, rhile EV4 (“ceiling exceeded’) can only occur when
the BALANCE increases.
this kind of *false induction’ cannot be detected
automatically since it involves a semantical interpretation of
predicates, conditions, factors and operations.

The final Induction Graph is an optimized and generally non-
connected graph, which contains only ‘semantically possible
chaininns’. Figure 15 presents the Induction Graph corresponding
to the Haxiaal Induction Graph of figure 14.

If there are cycles in the Induction Graph, they are detected
automatically, and the designer is asked to a confira an
“impossible infinite loop’.

EVl EV2

+G/\

EV3

Dpsl\ m[N oN)“(fo

EV6 EVB EV7 EV9 EVlO

Fig. 15 : Induction Graph

C) tnternal event chaining strategy

Given an external or temporal event to be processed, the
chosen strategy. is based on a ‘breadth-first’ evaluation of the
event Induction sub-graph.

xw The induction sub-graph of an event is the aaxiral connected
component, uhose root is the event concerned.
By using this kind of sub-graph when an external or temporal
event EVi occurs, the Event Processor can learn iwdiately
vhat ‘the ret of internal events it will probably have to
process” is. This set of internal events is called the EVI
Induction Class and is written Cvvc. For example, the EVl
Induction Class is :

Gv* = 1 EV3, EV4, EVB, EV7, EV6 I

*x The internal event sequence construction is based
breadth-first traversal of the Induction sub-graph.

c EVl 1st cycle

Ev3= EV4 2nd cycle

OPB

Y
[EVB

Y -u
EV6 EV7 3rd cycle

on a

Fig. 16 : Internal event sequence

For example, if EVl occurs, the complete processing cycle will
include :

1” cycle: EVl
2” cycle: EV3 + EV4
3” cycle: EV6 t EV7 + EV6

It means that vithin each cycle, all events from the same level
are processed.

The processing is the same if there is multiple induction. For
example, if EV2 occurs, the sequence will be :

1” cycle: m
2” cycle: EV4 + EV5, + EV5v + + EV5.
w cycle: EV7 4 EVS, +...+ EV$, + EVlO, +...+ EVlO,

194 Proceedings of the 13th VLDB Conference. Brighton 1987

I I.42 GLOBAL ALGGRIlM OF THE EVENT PROCESSOR

!lLJ TRUE
!W
!ll& there are soae aessages in the Pueue
NJ BEGIN

/x . take 1st message in the Rueue; El
PROCESS 1; /t . generate appropriate external-event x!

ffi and ressaga references: fl

Y!I there are sooe event references
Do BEGIN /* beginning of basic cycle *I

/f For all event references do : n/
If . identify operations to trigger, xl
I* . evaluate all triggering conditions */

PROCESS 2; /x and factors, fJ
If . generate “operations to execute” W
I* references, fJ
Jf . generate “may-be-induced’ event */
/f references; fJ

E there are “operations to execute* references
TNEN BEGIN

/x . execute all operations, */
/t . generate references for those fJ

PROCESS 3; If state changes uhich say f/
Jf correspond to induced events: xl

E there are *may-be-induced’ event references

GE!!
/f , evaluate their predicate */
Jf . generate references for x/

PROCESS 4; lf recognized events and f/
Jf correponding state changes: fJ

urn:
END; /x of basic cycle xi

END;
‘co;

Fig. 17 : Global Ilgoriths of the Event Processor

The requirerents for this algorithm (given in PROWL) are :
1) existence of a Reta-Base describing the R-Scheaa part

containing all inforaation on events, operations and the
Induction Graph.

2) knageeent of References containing local information for
each Event Processor cycle :

- event occurrences (recognized event instances),
- “operations to execute” instances,
- “say-be-induced’ events (not yet recognized event

instances),
- oessages.
- factor results,
- state changes that say correspond to internal events,
- state changes that correspond in fact to internal

events.

I I A.3 SGRE REtlARKS ON EVENT PROCESSOR PERFGRMNCE

1) Strategy

The “breadth-first’ strategy f&g EVl, RVS+RV4, RVW~+EW
has a real advantage over a “depth-first’ (EVL, RVS, EM, RV4,
EV7) or a “randos’ strategy WI, RVS, RV5, RV4, RV7, EV5I.
Indeed, this strategy permits optful mnagewnt of tk’
input/output iaplicit paraseters. Idle tin betueen :

- generation of an “operation output paraWer*,
- and its use as input parameter to process ths event induced

by this operation,
is einisal. internal events are recognized as soen as
‘noticeable state changes’ occur (in fact : just after all
operatfons triggered at the saae level have been executed); and
these events are processed as soon as they are reoognitsd (1.0
during the next basic cycle of the event processor).

In this aanner, there is 110 puamkr waiting for uss daring a
corplete basic cycle. This is not true uith other strategies:
for instance, in the l depth-firrta strategy, the N4 input
paraeeters l ust be kept in memory as long as N3 aad RVR are
still being processed.

2) The basic cycle
Recognizing induced events at the end of the barfc cycle (cf.

PROCESS 4J allows us to keep only thsse state chan(n
corresponding to real internal events in mewry frm one cycle
to another. The set of such state chan;es is called riniui
context and contains only those input paramterr essential to
the next level of processing.

3) Using the Induction Graph
During the generation of moperations to execute’ referems

(cf. PROCESS 21, a prelirinary selection of %ay-be-fnducedm
events say be aade. For exaaple, as early as ths first cycle of
EV2 processing, if OP4 isn’t in the list of operations to
execute, a uhole part of the EV2 Induction sub-;@ can be
pruned off :

So it pereits :
- avoidance of useless predicate tests tRV5, EV9, EVlO),
- avoidance of useless parameter recordin;,
- an earlier freeing of resources (‘read-locked” relatioss

for predicate, condition and factor evaluation: ‘write-
locked’ relations for operation execution).

It appears that an exterual or temporal Induction Class uill
becore ssal ler and sraller after each basic cycle, and will
finally reach the empty state. (another extereal or tesporal
event will then be processed.)

At any rorent, the Event Processor know uhat it is
processing and what it rust deal uith next; so it controls the
whole process fully.

in a future version, this uill surely provide efficient
managerent of parallelisr and concurrency. Nor, the parallelisr

Proceedings of the 13th VLDB Conference, Brighton I987 195

witerion UC are implementing is based on an "occurrence-tine"
reeervrtion of all resources needed for each external event
processing. Several external events can be processed together if
they or their induced events can't produce any concurrency
conflict. The dynamic release of the resources (cf. pruning)
provides real-time management of concurrency.

This paper has presented RUBIS as an extended relational DBRS
want to :

s allow uniform and modular description of data (relations)
and processing (events and operations),

* imediately take into account any schema change : all texts
are interpreted and the schema is stored in reta-relations,

a automatically recognize predefined situations connected
sith : - external information arrival,

- noticeable internal state changes,
- tise floe;

* auteNticaIly trigger appropriate operations and control
their execution,

* synchronize event processing.

Such a system perrits better eanageeent of applications
consistency, and some transaction-vriting facilities Iuhich
irplles an error rate reduction).

Four kinds of Designer interfaces are actually being developped:
- a eenu interface based on the PROQUEL language (introduced

in section 11,
- a graphic interface using an icon-based representation of

the R-Schema concepts,
- a Natural bn(Uage interface based on a French Language

subset IROLL881,
- a Seeantic IIodel interface managing high level concepts

(such as generalization1 which are then napped onto the
Relational IIodel ICAUV881.

A prototype version of RUBIS Ibased on the PEPIN DBHS iBOUC811)
is running on VAX/UNIX. The first applications of RUBIS are
Inforeation Systee Rapid Pcototyping. In this kind of
application, the RUBIS' schema aodification capabilities are
useful.

IADlB881 AlIlBA 8, EUI QUARK N. : 'Aspects Historiques dans les
Bases de Don&es Generaliseesv Conf. ED3 1988, Giens
FRANCE, INRIA 1988.

[BARB851 BARBIC F., PFRNICI B. : "Tile llodeling in Office
Information Systems" AC8 SIGHOD 85, Austin, Texas, Ray
1085.

IBOLO821 BOLOUR A. and al. : *The Role of Tire in Inforration

Processing : A Survey" SIGART Newsletters, Apr. 1982.

IBDRG851 BDRGIDA A. :"Features of Languages for the Developwnt
of Information Systems at the Conceptual Level" IEEE
Software, Vol. 2, NO 1, Jan. 1985.

MOUC811 IIOUCHET and al. : "Databases for Hicrocorputers : the
PEPIN Approach' ACIi SIG8OD/SlGS8ALLS, Orlando, Florida,
Oct.1981.

IDUNE BUNEMN O.P, CLEHONS E.K : 'Efficiently IIonitoring
Relational Databases" ACA TODS Vol.4, N03, Sept. 1979.

[gROD821 ERDDIE ILL, SILVA E. : "Active and Passive Component
Nodeling' in ICRISII.

ICAUV881 CAUVET C., LIRGAT J.Y., NOBECOURT P.: "RUBIS: a DRIIS
for the description and management of Data Dyaasics"
Proc. lnfornation Conrunication 88, PARIS, June 1988.

ICHAN821 CHANG J.li, CHANG S.K : 'Database Alerting Techniques
for Office Activities" IEEE COMI Vol.30, Nal, Jan.
1982.

ICRIS 11 vlnforration Systems Design Rethodologies : a
Softuare, Vol. 2, NO 1, Jan. 1985.

[DADA841 DAM P., LUlI V., UERNER H.D. : "Integration of Time
Versions into a Relational Database System* VLDB 1984.

iESYA781 ESUARAN K.P : "Specifications, Implementations and
Interactions of a Trigger Subsystem in an integrated
Data Base System' IBII Research Report RJ1820, Aug 1978.

IGUSt GUSTAFSON tl., KARLSON T., BUBENKO Jr J. : "A
Declarative Approach to Conceptual Information
tlodeling' in ICRISII.

MAllli781 HAMER It., Itc LEOD D. : 'The Semantic Data Ilodel: a
liodelling rechanisr for Database Applications" Proc.
1978 ACII SlGlIOD Conf. on flanagement of Data.

[KAHN771 KAHN K., GORRY G. A. : "Hechaniring Temporal Knowledge'
Artificial Intelligence, Vol.9, Nvl, Aug. 1977.

IKERS881 KERSTEN ILL, SCHIPPERS F.H : 'Using the Guardian
Paradige to support Database evolution" IFIP TC2
uorking conf. on Knowledge k Data

IKING KING R. : "A Database Management System Based on an
Object-Oriented liodelv Proc. Expert Database System
Conf, 1988.

ILIN 841 LIN U.K, RIES D-R, BLAUSTEIN B.T, CHILENSKAS R.II :
'Office Procedures as a distributed Database
Application" Data Base, Vol 15, nv2, 1984.

MEW1831 IIELKANOFF I!., CHEN 9. : "Integrating Action
Capabilities into Information Databases. 2nd lnt, Conf.
on Data Bases, Cambridge, Sept 83.

IWlTT821 IIITTAL S. : "Event-based Organization of temporal
Databases' Proc. CSCSllSCElO Conf. 82, Saskatoon,
Saskatchewan, 17-19 Ray 1982.

IIiYLO801 HYLDPOULOS J., YONG H. : 'Some features of the TAXIS
Data flodelv VLDB 1980.

IOVER821 OVERRYER R., STONEBRAKER H. : "Implementation of a Tire-
Expert in a Database System" AClI SIGROD Vol.12, No3,
Apr. 1982.

IROLL ROLLAND C., RICHARD C. : 'The REMORA llethodology for
lnfornation Systems Design and 8aMgement" in ICRlSlI.

IROLL ROLLAND C., PRDIX C. : 'An Expert Systee Approach to
lnforeation Systee Design' IFIP Conf. 1988, Dublin,
Oct. 1988.

ISlllT771 SfllTH J.8, SIIITII D. : "Database Abstractions :
Aggregation and Generalization' AC8 TODS 1977.

196 proceedings of the 13th VLDB Conference, Brighton 1987

