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AMTRAm 

We present new algorithms for computing the 
transitive closure of large database relations. Unlike 
iterative algorithms, such as the semi-naive and the 
logarithmic algorithms, the termination of our 
algorithms does not depend on the length of paths in 
the underlying graph (hence, the name direct 
algorithms). We also present simulation results that 
show that these direct algorithms perform uniformly 
better than the best of the iterative algorithms. A 
side benefit of this work is that we have proposed a 
new methodology for evaluating the performance of 
recursive queries. 

1. INTRODU~ION 

With the increasing “non-traditional” uses of 
relational databases, several extensions have been 
proposed to the relational query languages in order to 
efficiently support these applications. A common 
operator that appears in many of these proposals is 
the transitive closure operation (see, for example, 
Zloofs QBE Il71, Guttman’s l extension to Quel 171, 
Probe’s traversal recursion [lll, and Agrawal’s (r- 
extended relational algebra I1 I). In [91, it has been 
shown that every linearly recursive query can be 
expressed as a transitive closure possibly preceded and 
followed by operations already available in relational 
algebra, once again emphasizing the importance of 
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transitive closure as a primitive database operation. 

Much of the success of the relational database 
systems can be attributed to the discovery of efficient 
algorithms for implementing various relational 
operators. A similar research effort is required into 
investigation of algorithms for computing transitive 
closure of large database relations. We categorize the 
known transitive closure algorithms into iterative 
algorithms and direct algorithms. Examples of 
iterative algorithms include the semi-naive I31 and the 
logarithmic I8.141 algorithms, developed in the 
context of evaluation of general recursive queries. 
These algorithms do not utilize the special structure 
of a transitive closure problem. Direct algorithms, on 
the other hand, do not view the problem as one of 
evaluating a recursion, but rather obtain the closure 
from first principles. These algorithms were originally 
presented in a different context and expect the 
starting point to be a Boolean matrix. Examples of 
direct algorithms include, among others, Warshall’s 
algorithm 1161, Warren’s algorithm I1 51, Schmitz’s 
Algorithm 1121, and Schnorr’s algorithm (131. 

In this paper, we present new algorithms for 
implementing transitive closure in the database 
context. These algorithms were obtained by 
modifying the existing direct techniques for computing 
transitive closure, and by combining more than one 
technique in some cases. We also evaluate the 
performance of these algorithms against the iterative 
algorithms, and show that, for a large range of 
underlying datasets, these direct algorithms perform 
better than the best of the iterative algorithms. In 
many cases we were able to show an improvement 
several orders of magnitude. 

The organization of the rest of the paper is as follows. 
In Section 2, we briefly describe some well-known 
direct algorithms for computing transitive closures of 
a Boolean matrix, and also show how these algorithms 
could be used in the context of relational databases. 
Section 3 is the heart of this paper where we present 
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new direct algorithms for computing the transitive 
closure of large database relations. In Section 4, we 
propose a methodology for evaluating the performance 
of recursive queries, and evaluate the performance of 
the algorithms developed in Section 3 against the best 
iterative algorithm. Finally, in Section 5, we 
summarize the main conclusions of this study. 

2. NAIVE DIRECl- ALGORITHMS 

In this section, we give a brief overview of some of the 
popular algorithms that were originally proposed to 
compute the transitive closure of Boolean matrices. 
The new algorithms that we propose in Section 3 have 
been inspired by these algorithms. We also indicate 
for the purposes of comparison how one could obtain a 
straightforward adaptation of these algorithms to 
compute the transitive closure of database relations. 

2.1 Tbe warsllau Algorithm 

Given an initial YXV Boolean matrix of elements Qij 
over a v node graph, with uij being 1 if there is an arc 
from node i to node j and 0 otherwise, its transitive 
closure can be obtained as 1161: 

For k-l to v 
For i-l to v 

For j-1 to v 
aij - aijV(ai~lb,) 

If a graph is represented as a relation with each tuple 
representing an arc, the Warshall algorithm can be 
implemented in the following manner. For each node 
n, first fetch its successor list. Then for each 
predecessor p of n, fetch the successor list of p, and 
add to the successor list of p the successor list of n 
(removing duplicates if any). In order to determine 
the predecessors of n, the successor list of all other 
nodes may be scanned to see if n appears in them. 
An alternative would be to maintain, in addition to 
the successor list, a predecessor list also with each 
node. In that case, the determination of the 
predecessors of n would become trivial, but at the 
time of updating the successor list of the predecessor 
p, the predecessor list associated with each of the 
successors of n must also be updated to include p in 
them. 

the Warshall algorithm 
bits from the Boolean 

modification that would 
permit direct operation upon Boolean vectors without 
the overhead of bit extraction: 

2.2 Tbe warrea AIgorlthm 

Warren [151 noted that 
involves fetching random 
matrix, and proposed a 
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For i-l to v 
For k-l to i-l 

For j-1 to v 
aij - aijV(ai&kj) 

For i-l to v 
For k-i+1 to v 

For j-1 to v 
aij a ilijV(ai~flil~j) 

The only change is that the i and k loops have been 
interchanged. However, this interchange could result 
in some paths being missed out and so the algorithm 
now requires two “passes” before it completes. The 
modification in the range of the second loop index, k, 
is an optimization that reduces the cost of two passes. 

A straightforward database implementation of the 
Warren algorithm can readily be derived. Sort the 
existing database to form a successor list. Then, for 
every node, fetch its successor list, and for every 
successor of this node, fetch the successor list in turn 
and add it to the successor list of the original node, 
avoiding duplicates. 

2.3 Other Direct Algorithms 

Schnorr’s algorithm [ 131 and Schmitz’s Algorithm 
[121 are two other popular direct algorithms for the 
computation of transitive closure. However, a 
drawback of these techniques is that they may often 
simply state that there exists a path between two 
nodes without actually stating what the path is. If 
one is also interested in a relationship between the two 
nodes that is path dependent (such as shortest path, 
for example), these algorithms cannot be used. In 
view of this difficulty, we decided not to consider 
Schnorr, Schmitz, and similar algorithms. 

3. EFFICIENT DIRm ALGORITHMS 

In this section, we present some modifications of the 
algorithms discussed in the previous section, and 
suggest some non-obvious implementations that we 
expect will perform much better than the naive 
implementations discussed above. All the algorithms 
below assume that the initial relation has been sorted 
on the fields participating in the transitive closure, so 
that all the “successors’* of a given node can be found 
in a contiguous set of tuples in the relation. 

We assume that the relation whose transitive closure 
is to be computed is large compared to the memory 
available, and must be partitioned into pieces each of 
which can fit in memory. A partition will consist of 
the successor lists of several nodes. These lists grow 
as the closure is computed, and the initial partitions 
may no longer fit in the memory. To handle this 
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situation, all of the algorithms below rely on dynamic 
partitions - there is no need to create partitions 
ahead of time. When it is time to read a partition 
into memory, enough tuples are read to fill a pre- 
defined fraction of memory. As the computation 
proceeds, if the memory starts filling up, some 
successor lists are deleted or written back out of 
memory to be included with the next partition that is 
read in. 

We find it convenient to continue to think of the 
transitive closure as a matrix problem. To facilitate 
understanding of the algorithms, they will first be 
presented as if the partitions were pre-defined, static, 
and never adjusted. The re-partitioning discussed in 
the previous paragraph will be dealt with towards the 
end of the discussion of each algorithm. 

Our objective in each of the algorithms presented 
below is to recognize the constraint that the entire 
relation cannot reside in the main memory all at once. 
Given that only one partition (or a block, as we find it 
convenient to call it) resides in the memory, we wish 
to devise direct algorithms that minimize the input- 
output required for tuples that are not in the memory. 
Our approach will be to begin with the Warshall 
algorithm described in Section 3, and to reorder the 
computations performed satisfying the two precedence 
constraints (see I21 for the derivation of these 
constraints): 

1. (i,k) precedes (i,j) for all k < j, for all i 

2. (j,k) precedes (i, j) for all k C j, for all i 

Where by (i, j) we mean “the examination of whether 
there is an arc from node i to node j (that is, the 
tuple Ci, j > exists) and the possible action 
consequent upon finding that there is one (adding the 
successor list of j to the successor list of i, with 
duplicates eliminated)“. We shall refer to such 
examination and possible update as the processing of 
element 6, j). 

3.1 The Blocked Warskdl Algorithm 

We motivate the rationale of the Blocked Warshall 
algorithm through an example. Suppose that the 
graph is such that there are arcs from node 3 to nodes 
1 and 2. Normally, the Warshall algorithm processes 
all the matrix elements column by column, that is, it 
will first process node 1, then node 2, and so on. For 
processing node 1, all the successors of 1 are first 
fetched into the memory, and then all the 
predecessors of 1 are examined one after the other. 
So, the successors of 3 will be fetched and to this 
successor list, the successors of 1 will be added. Let 

us assume that 1 has many predecessors, so at some 
stage of processing of 1, the successor list of 3 is 
paged out of the memory. After the processing for 
node 1 has finished, the successors of 2 will be 
fetched, and then the predecessors of 2 will be 
examined. Consequently, the successor list of 3 will 
have to be again paged in from disk into memory. To 
minimize this I/O traffic, we would like, if possible, to 
consider the nodes 1 and 2 together, so that when the 
successor list of 3 is brought into memory, successors 
of both 1 and 2 are added to it. In other words, 
instead of processing one column at a time, we would 
like to process a block of columns at a time. A block 
of column constitutes a partition, and within a 
partition, we would like to process row-wise, that is, 
after examining (3,1), we would like to examine (3,2) 
before going over to (4.1 I. 

Attempting to examine elements in this order, we find 
that after processing element (l,l), we cannot even 
examine (1,2) without violating the second precedence 
constraint ((2,l) should be examined before (1,211. 
Let us take a step back and review the situation to 
come up with a possible remedy. When element (i,j) 
is processed, we guarantee that the successor list of j 
is in memory. If i does not belong to the same 
partition as j, all the arguments of the previous 
paragraphs apply, and we would like to proceed row- 
wise for the row i to minimize fetches to such i lists. 
However, if i is in the same partition as j, then the 
successor lists of both i and j are already in memory, 
and neither has to be fetched when element 6.j) is 
examined. Therefore, for all such i in the same 
partition as j, the I/O is not affected by the order in 
which the nodes are processed. In particular, we 
could process such “diagonal block” elements column- 
wise rather than row-wise, without degrading 
performance. (The “diagonal block” consists of 
elements whose row numbers and whose column 
numbers both lie within the range of the partition 
currently in memory). 

Another point to notice is that if (i,j) is in the 
diagonal block, then all (j,k) that are material to the 
second precedence constraint are in the same set of 
rows as the diagonal block and in a column to the left 
of j. The first precedence constraint always applies 
only between elements on the same row. Therefore, 
given a column partition that is to be processed and 
that all the column partitions to the left of this 
partition have been processed, we may first process 
the diagonal block (doing so column-wise as discussed 
above), without violating any precedence constraints. 
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Having processed the diagonal block in a column 
partition, we claim that the elements in the off- 
diagonal rowst within this column partition may be 
processed row-wise. Row-wise processing 
automatically satisfies the first precedence constraint. 
All (j,k) that are now relevant to the second 
constraint are in a row that belongs to the diagonal 
block and in a column that is in the diagonal block or 
to the left of it, and the second constraint is also 
satisfied. Another consequence of this observation is 
that it is not necessary to process the off-diagonal 
rows in any particular order (like top to bottom) - 
they may be processed in any convenient order. 

One can now write the Blocked Warshall algorithm: 

Algoritkm 1: Blocked WarskaU 

For each column partition 
(columns jb to jc inclusive) 

/* Processing of diagonal block */ 
For j - jb to jc 

For i - jb to j, 
If tuple <i, j > exists 

Add succ. list j to succ. list i 

/* Processing of off-diagonal rows */ 
For i - 1 to v A i $? jb to j, 

For j - jb to j, 
If tuple <i, j > exists 

Add succ. list j to succ. list i 

Figure 1 shows a 7 x 7 matrix and the order in which 
the elements of this matrix will be processed using the 
Blocked Warshall algorithm. The vertical lines 
bracket the column partitions, and the horizontal lines 
together with the vertical lines delineates the diagonal 
blocks. Notice that the order of computation is 
significantly different from the straight Warshall 
algorithm. 

1. We will use the phrase “off-diagonal <entity>” to refer to an 
<entity> not in the diagonal block. 
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1 3 24 25 26 40 41 
2 4 27 28 29 42 43 

5 6 15 18 21 44 45 
7 8 16 19 22 46 47 
9 10 17 20 23 48 49 

11 12 30 31 32 36 38 
13 14 33 34 35 37 39 

Figure 1. The order of computation in the Blocked 
Warshall algorithm 

Dynamic Partitioniog 

Notice that Blocked Warshall first reads a set of 
successor lists corresponding to a column partition 
into the memory, and processes the diagonal block. 
After the diagonal block processing, one off-diagonal 
row at a time is read and processed. During the 
processing of a off-diagonal row, the successor lists 
corresponding to the rows in the diagonal blocks may 
be added to the successor list corresponding to the 
current off-diagonal row. However, before the next 
off-diagonal row is read, the current off-diagonal row 
is written out to the disk. Therefore, except during 
the processing of the diagonal block, there is little 
addition to the contents of memory. However during 
the processing of the diagonal block, it is possible that 
the successor lists in memory grow until the memory 
becomes full. If the partitioning were static, such an 
unanticipated growth could be catastrophic and could 
result in forcing the entire algorithm to be re-executed 
with smaller partitions. We would like to be able to 
dynamically alter the partitions when the need arises. 

During the diagonal block processing, the size of the 
partition may be dynamically reduced by discarding 
the successor list corresponding to the last column and 
including it in the next partition instead. If further 
memory space is needed, the same discard procedure 
could be repeated whenever and as often as required. 
The only constraint is that at the time of the discard, 
one should not yet have begun processing the column 
being discarded (or if such processing has 
commenced, one should be able to undo its effects). 
We thereby guarantee that none of the successor lists 
not discarded could have been affected as a result of 
the discarded node. (During the column-wise 
processing of a diagonal block, the successor list of the 
node corresponding to a column is not added to any 
other successor list, unless the processing of that 
column begins). However, in processing the diagonal 
block column-wise, some ‘elements in the discarded 
row (corresponding to the column being discarded) 
could have been processed, updating the discarded 
successor list. This update is immaterial, since the 
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rows not in the diagonal block will shortly be 
processed any way. We have two choices. We can 
undo the effect of the updates by simply not writing 
back the discarded successor list, and recompute these 
updates when this list is later read back for off- 
diagonal row processing. Alternatively, we could 
write back the discarded successor list, remember till 
what point it has already been updated, and save on 
some computation when this successor list is read 
back for row-wise processing. 

3.4 Tke Blocked Warslull Algoritkm with Predecessor Lists 

One drawback of the Blocked Warshall algorithm (or 
indeed of even the plain Warshall if implemented only 
with successor lists) is that processing an off-diagonal 
element 6.i) involves determining whether i is a 
successor of i, and to make this determination one has 
to look at the successor list of i which is not in 
memory. Therefore, the successor list of every off- 
diagonal row i is always fetched into the memory 
whether or not the successor list is updated. The 
successor list of some diagonal-block row j (which is 
already in memory) is added to i only if indeed i is a 
successor of i. If the predecessor list of i was also 
available in memory along with its successor list, only 
those i need be fetched that actually have to be 
updated and one can eliminate some wasteful I/O. 
This also implies that during the processing of a 
column partition, the predecessor lists of only those 
nodes whose successor lists are in the current diagonal 
block need to be present in the memory. 

One has to perform some initial effort in forming the 
predecessor lists from the original relation. The 
storage requirement for the predecessor list is not 
necessarily severe. Only the two fields involved in the 
transitive closure need to participate in the 
predecessor list. If each tuple in the relation consists 
of several extraneous fields not directly participating 
in the determination of the transitive closure, it is 
possible that the size of the predecessor lists is only a 
small fraction of the size of the successor lists. 

Besides the cost of I/O of the predecessor lists, the 
biggest extra cost of the Blocked Warshall with 
Predecessors algorithm is that every time one 
examines element (i,j) and adds the successor list of i 
to the successor list of i, one also has to add i to the 
predecessor list of every successor of J Normally, 
predecessor lists of the successors of i would not be in 
memory (except for those successors which are in the 
diagonal block), and will have to be fetched from 
disk, updated, and written back to disk, a fairly 
expensive proposition. We would like to somehow 
reorganize the order of these updates to render them 

more efficient. In particular, if possible, we would like 
to postpone all the predecessor updates to the end of 
the processing of a column partition, and then do all 
the updates for a node in one shot. We had noted 
earlier that the predecessor lists of all the nodes in the 
diagonal block has to be kept in the memory during 
the whole processing of a column partition. We can, 
therefore, allow continuous update of such lists 
without degradation in performance. 

The algorithm given below realizes the above 
objective. One may be led into thinking that Blocked 
Warshall with Predecessors would be a 
straightforward adaptation of Blocked Warshall, but 
the predecessor-update optimization makes it an 
interesting and rather unintuitive algorithm. For a 
column partition, as in Blocked Warshall, this 
algorithm first processes the diagonal block, and then 
the off-diagonal rows. In the off-diagonal processing, 
we split the update of successor lists and the update of 
predecessor lists, performing each in its entirety. Let 
us call these three steps Phases I, II, and III 
respectively. During Phases I and II, the predecessor 
lists (already in memory) of the nodes in the diagonal 
block are always kept current. However, ‘the 
predecessor list (not in memory) of any off-diagonal 
node is not updated. We can defer this update 
because during the processing of a column partition, 
the predecessor list of any off-diagonal node is not 
consulted. In Phase III, the predecessor lists of the 
off-diagonal nodes are updated. What is interesting is 
that for this update only the rows (successor lists) in 
the current diagonal block (which are already in the 
memory) need to be consulted. If an off-diagonal 
node is present in any of the successor lists, the 
predecessor list of this node is fetched from the disk 
and to it are added the predecessor lists (already in 
memory) of those nodes in whose successor list this 
node was found2. The reason for the correctness of 
this procedure is that for any new arc (i,j), created 
through the merger of arcs (i,k) and (k,j), the node 
k has to be in the diagonal block. 

2. There may be nodes whose pred-r updates were not 
deferred but they are in the successor list of some node in the 
diagonal block. Unnecessary reading and processing of such 
predecessor lists may be avoided by keeping track in a bit vector 
during Phase I and II of those nodes whose predecessor updates 
have been deferred. 
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Algorithm 2 : Blocked Warsball with Predecessors 

For each column partition 
(columns jb to j, inclusive) 

/* 
For 

Phase I: Processing of diagonal block */ 
j - jb to je 

For i = jb to jc 
If tuple <i, j > exists 

Add succ. list j to succ. list i 
For every k in succ. list of j jb <k <j, 

Add i to pred. list of k 

/* Phase II: Processing of off-diagonal rows */ 
For i - 1 to v A i @ jb to j, 

For j - jb to j, 
If tuple <i, j > exists 

Add succ. list j to succ. list i 
For every k in succ. list of j jb Q k d j, 

is not required then, during Phase III, the predecessor 
lists of off-diagonal nodes to the left of the diagonal 
block (nodes 1 to jb-1) need not be updated, as these 
predecessor lists are not referenced in further 
processing. A little thought will convince the reader 
that in such a situation the predecessor updates 
during Phase I and II of the algorithm are also not 
required. Recall that the only function of the 
predecessor lists is to restrict during Phase II the 
input of those ofl-diagonal successor lists whose row 
number is not present in the predecessor list of any of 
the nodes in the current diagonal block. Clearly, 
predecessor lists are not required during Phases I. 
The result of not updating the predecessor lists in 
Phases I and II is that the predecessor lists of some 
nodes may be too short in that they miss some nodes 
whose successor lists have been updated. However, all 
such missing nodes belong to the diagonal block and 
they are immaterial for row selections in Phase II. 

Add i to pred. list of k 
Dynamic Partitioning 

/* Phase III: Predecessor Updates 
of off-diagonal nodes */ 

For j = 1 to v A j P jb to j, 
For i - jb to jc 

If tuple <i, j > exists 
Add pred. list i to pred. list j 

Consider again the matrix in Figure 1, and assume 
that the column partitions are same as before. Figure 
2 shows the order in which various matrix elements 
would be examined for processing the middle 
partition. In this figure, d i’s give the ordering during 
Phase I, s i’s during Phase II, and p i’s during Phase 
III. 

Sl s2 s3 
s4 s5 s6 

pl p4 dl d4 d7 p7 p10 
p2 p5 d2 d5 d8 p8 pll 
p3 p6 d3 d6 d9 p9 ~12 

s7 s8 s9 
SlO sll s12 

Figure 2. Processing of Middle Column Partition in 
Blocked Warshall with Predecessors 

The relative order in which the off-diagonal successor 
lists are updated in Phase II, and the order in which 
predecessor lists of the off-diagonal nodes are updated 
in Phase III can be arbitrarily changed without 
affecting correctness. Further note that if at the end 
of the computation of closure, the complete and 
correct predecessor list of each node (reverse closure) 

The dynamic partitioning works in a way very similar 
to Blocked Warshall. If the memory becomes full 
during the diagonal block processing, the size of the 
partition may be reduced by discarding the successor 
and predecessor lists corresponding to the last column 
from the memory. The only difference is that if these 
lists have been partially updated, we do not have the 
option of writing back these partial updates and 
saving some future computation - we will have to 
discard the updates for the algorithm to correctly 
compute the closure. 

3.7 Blacked Warren Algorithm 

Consider once again the problem posed at the 
beginning of the previous sub-section. In the Blocked 
Warshall algorithm, we have the successor list of j in 
memory at the time that we process element (i, j), 
and the successor list of i has to be read in if 
required. The problem is that whether this successor 
list is required for update depends on whether a tuple 
6, j) exists, and this information available only in the 
successor list of i which is not in memory. One way 
to fix this problem was to maintain predecessor lists, 
as in Blocked Warshall with Predecessors. Another 
way is to reverse the roles of i and j. What if the 
successor list of i is in memory when element (i, j) is 
processed, so that successor list j need be read only if 
it is required to update i ? Now our objective becomes 
to minimize such fetches to row j. In a manner 
analogous to algorithm 1, this objective suggests a 
blocking technique wherein a row partition is 
processed at a time. We can then proceed column- 
wise within each row partition, fetching j only once 
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for all the (i,j), (k,j), etc., elements within the 
partition. 

We find that the first precedence constraint is easily 
satisfied, but the second precedence constraint 
prevents us from going beyond the diagonal block as 
we process each row partition in turn . A second pass 
is required to mop up the rest just as in the ordinary 
Warren algorithm. The Blocked Warren algorithm 
can now be written: 

Algoritkm 3 : Blocked Warren 

/* First Pass */ 
For each row partition (rows ib to i, inclusive) 

For j - 1 to i, 
For i - ib to i, 

If tuple <i, j > exists 
Add succ. list j to succ. list i 

/* Second Pass */ 
For each row partition (rows ib to ic inclusive) 

For j - ib to n 
For i - ib to i, 

If tuple Xi, j > exists 
Add succ. list j to succ. list i 

In the second pass, one could remember all the last 
element in each row examined in the first pass 
(remember that we evaluated beyond the diagonal 
element in many cases) and examine the rest. 
Furthermore, the row partitioning in the second pass 
need not be same as in the first pass. 

Figure 3 shows the order in which the elements of a 7 
x 7 matrix will be processed using the Blocked 
Warren algorithm. The horizontal lines bracket the 
row partitions and the thick stair-way lines separate 
the two passes. Notice that the order of computation 
is significantly different from the straight Warren, 
straight Warshall, or Blocked Warshall. 

6 9 12 15 18 46 48 
I 7 10 13 16 19 47 49 
I 

20 22 24 26 28 30 32 
21 23 25 27 29 31 33 

Figure 3. The order of computation in the Blocked 
Warrren algorithm 

Dynamic Partitioning 

In Blocked Warren also, it is possible that the set of 
successor lists in memory may keep adding on tuples 
until it is too large to fit in memory any more. In 
that case, the last successor list can be discarded, and 
the corresponding row included in the next partition. 
As in Blocked Warshall, we have a choice about 
whether the discarded successor list is written back, so 
that some computing and update may be saved in the 
processing of the next partition, or whether the 
discarded list is simply written over in memory, saving 
I/O but requiring a recomputing of some updates. 

4. PEBFOBMANCE EVALUATION 

In this section we present the results of simulation 
experiments that we performed to study the 
performance of the algorithms presented in Section 4. 
We first make a few comments on the performance 
evaluation methodology, and describe the datasets 
used in the study. 

4.1 Mehdology 

Since the publication of I41, the Wisconsin 
Benchmarks have become the de facto standard for 
evaluating the performance of database systems and 
algorithms. The main merit of these benchmarks, in 
our opinion, is the ability to specify the selectivity for 
a relational operation. As a consequence, given an 
initial relation, one can exercise control over the size 
of the result relation by modifying this selectivity. 

Following the same argument, it would be nice to 
specify some single parameter that would, in 
conjunction with the size of the starting relation, be a 
good predictor of the size of the relation that results 
upon taking a transitive closure. The average degree 
of a node makes an excellent choice in this regard. It 
is a property that is easy to determine for any given 
initial relation, and it is easy to see that the size of 
the result relation will grow as the average node 
degree grows. 

In a directed graph, one must be concerned with both 
the out-degree and the in-degree of a node. However, 
in a random graph, each in-degree for some node 
must be balanced by an out-degree for some other 
node, and the average in-degree must be equal to the 
average out-degree. Therefore, as long as we are 
dealing only with averages, it, does not matter which 
of the two we consider. Indeed we tried out several 
datasets in which the in-degree was specified and 
found that the results obtained were not significantly 
different from corresponding datasets in which the 
out-degree was specified. We, therefore, present only 
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the datasets with the out-degree specified, and the 
corresponding results. The out-degree of each node is 
obtained from a uniform distribution between zero 
and twice the specified mean. 

There is one other aspect of a directed graph that we 
consider important - that is its loculify, measured as 
the average length of an arc, where the length of 
every arc is the absolute difference of its source node 
number and destination node number. Thus in a 
graph with high locality, most arcs from a node would 
connect nearby nodes, with a few arcs that connect 
far-away nodes. One might expect to find such a 
property, for example, in a database of inter-city bus- 
routes. The length of each arc is obtained from an 
exponential distribution with a specified mean. 
(Nodes are assumed to be numbered modulo the 
maximum node number so that an arc from the last 
node to the first would be considered of length 1 and 
so on). Thus, low values for this mean length cause 
high locality, and high values result in a uniform arc 
distribution (low locality). Notice that a uniform 
graph will have an average arc-length equal to one- 
quarter the number of nodes in the graph, and given 
our exponential generation model, it is not possible to 
consistently obtain a greater average arc length. 

In addition to the random graphs discussed thus far, 
we also considered trees and inverted trees. For these 
kinds of graphs, we specified the average branching 
factor, which happens to be the same as the average 
out-degree for a tree and average in-degree for an 
inverted tree, excluding the leaf nodes. The actual 
branching factor for each node was once again 
obtained from a uniform distribution. Locality is not 
a parameter for these graphs. 

Our experiments were performed with the databases 
shown in Table 1. The random tuples generated were 
sorted and duplicates eliminated in a post-processing 
step. In most cases, this duplicate elimination did not 
make a significant difference. However, when the 
locality was very high (very low average arc-length 
specified), there was considerable duplication of arcs 
between immediately neighboring nodes. Therefore 
the actual degree of each node became considerably 
less than the nominal degree specified. Also, the 
actual average arc-length was substantially greater 
(since the duplicates eliminated were predominantly 
short arcs) than the nominal arc-length specified. 

The performance metric used was the total I/O 
generated by the algorithms in kilobytes 3. We did 

not collect statistics on CPU costs, as for large 
database relations, the total cost would be dominated 
by the I/O costs. We also did not model buffering, 
the justification being that when the size of the 
memory is a small fraction of the result relation size, 
it is unlikely that significant useful information will be 
found in the memory itself without having to access 
disk. On the other hand, if the size of the memory 
approaches the size of the final relation size (or is 
greater than it), then buffering is an important 
consideration, but also, the I/O costs drop (and are 
actually the same for any algorithm if the memory 
can hold the entire result relation - input equal to 
the initial relation size, and output equal to the final 
relation size) so that a model that ignores compute 
costs is not interesting in the first place. In short, our 
cost models are appropriate for databases which are 
large relative to the size of the memory available. 

4.2 Experiments 

Table 2 shows the values of the simulation parameters 
used in the performance experiments, unless otherwise 
stated: 

Table 2. Simulation Parameters 

1 Size of the Key Fields 1 10 Bytes 

The size of the memory was chosen so that it was 
approximately one-tenth of the size of the final 
relation 4. All of the databases discussed here were 
generated to produce a result relation approximately 
equal in size (5 Megabytes), so that we could see the 
effect of using different types of database structures. 
A tuple size of 100 Bytes was used throughout. It 
should be evident that a change in the tuple size 
automatically causes a change in the size of the 
relations that have to be stored and is equivalent to an 
inverse change in the size of the memory. We varied 
memory size when required rather than tuple size. 
The size of the key fields is important only for 
Warshall with Predecessors, where the predecessor 

We also collected statistics in terms of I/O blocks, but these 
results have not been presented since they exhibited similar 
trends overall yet could have specific values manipulated by 
altering the disk placement and blocking strategy. 

We performed some preliminary experiments with larger 
memory size and larger result relations, but similar trends were 
observed. We resorted to smaller memory size to keep the 
simulation times reasonable. 
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Table 1. Synthetic Databases 

a: Average Out-degree of non-leaf nodes. 
b: Average In-degree of non-leaf nodes. 

lists consist of abbreviated tuples with only the key 
fields, while the successor lists as usual carry the 
entire tuple information with them. The larger the 
fraction of the tuple occupied by the key fields, the 
larger the overhead for storing and manipulating 
predecessor lists, and hence the worse the performance 
of Warshall with Predecessors. 

4.2.1 Experiment 1: Compnrative Performance of the 
Algoritlum 

Figure 4a shows the comparative performance the 
three algorithms for nine database?. Figures 4b and 
4c show the total number of bytes read from disk and 
the total number of bytes written to disk respectively. 
These numbers add up to give the total numbers 
plotted in Figure 4a. The reduction in reading costs 
for Warshall on account of keeping predecessor lists is 
evident from Figure 4b. On the other hand, no 
benefit accrues in the cost of writing on this account, 
and in fact some overhead results. 

5. We have not presented the results for t.lO. Notice that in such 
a database, there would he a path to every node from the root 
node, and the successor list of the root node requires a 
disproportionately large amount of storage, and exhibits an 
astonishing growth rate. In fact the successor list for the root of 
the tree in t.10 does not even fit in the entire (half a megabyte 
00 memory that we have. 

Total 
I/O 

(MB) 

Blocked Warshall: •I 
Blocked Warshall with Predecessors: l 

Blacked Warren: A 

80 

1 

60 

40 

20 

i 

i.10 i.1 t.l h.1 m.l u.1 u.10m.10b.10 

database 

Figure 4a. Comparative performance of the three 
algorithms (Total I/O) 

Overall, Blocked Warren performs better than the 
other two algorithms, especially as the degree of the 
graph increases and locality is absent. The reason for 
this behavior is that each successor list is likely to be 
updated more often, the higher the degree of the 
graph. In the absence of locality, these updates will 
all take place due to interaction with many different 
nodes which are all in different partitions. In the case 
of the two Warshall algorithms, a successor list is 
written back after being updated once for each 
partition processed. In Warren, the list is written 
back only once, when the partition to which this list 
belongs is processed. The lower writing costs of 
Warren, therefore, are evident. 
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Figure 4b. Comparative performance of the three 
algorithms (Reads only) 
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database 

Figure 4c. Comparative performance of the three 
algorithms (Writes only) 

Most of the reading costs is not in reading the 
partition to be processed but in reading the successor 
lists that interact with this partition (this is an n 
versus n-squared type of situation). Therefore the 
fact that Blocked Warren reads each partition twice is 
not a major added cost. On the other hand, the 
unnecessary reads in Blocked Warshall, and the 
overhead of the predecessors in Blocked Warshall with 
Predecessors, both are significant additional costs. 
Therefore, Blocked Warren outperforms these 
algorithms in the read cost as well. 

We varied the memory size for all of the above cases 
and found that the results obtained were similar. 
These results are not presented here for conciseness. 
The only point we wish to make is that the 
performance of Blocked Warshall is extremely 
sensitive to the memory size (primarily on account of 
the unnecessary reads), whereas the performance of 
the other two algorithms is only moderately sensitive 
to the memory size. No significant changes in the 
relative performances of these algorithms is expected 
for any memory size that is much smaller than the 
final relation size. 

4.2.2 Experiment 2: Comparison with an Iterative Algorithm 

In I141, the performance of the semi-naive algorithm 
has been compared to the performance of a 
logarithmic algorithm, and the semi-naive and several 
logarithmic algorithms have been compared in 181. 
The logarithmic algorithms were found to perform 
better than the semi-naive algorithm in both I141 and 
I81. We, therefore, selected the logarithmic algorithm 
as the best iterative algorithm to compare it against 
our direct algorithms. We simulated the optimized 
version of this algorithm as presented in [lo]. 
Because of the superior performance of hash-based 
join algorithms 161, the joins were performed using an 
idealized hash-based join algorithm. The major 
problem with the hash-based join algorithms is that of 
guaranteeing that a chosen partitioning of hash values 
will result in buckets that will fit in memory, and 
many strategies such as bucket tuning and recursive 
repartitioning have been proposed to deal with this 
problem 161. In our simulation, we assumed perfect 
partitioning of relations so that the partitions never 
overflow and never have to be adjusted. Thus the 
numbers presented below for the logarithmic 
algorithm represent a lower bound on the I/O cost 
that is the best that the cleverest partitioning scheme 
could hope to achieve. As in the simulation of the 
direct algorithms, we assumed that there was no 
buffering. 

Figure 5 shows the relative performance of Blocked 
Warren against the lower bound for the logarithmic 
algorithm. It is clear that the direct algorithms are 
considerably superior to the iterative ones. In fact, 
for the random graphs with degree 10, the 
performance of the logarithmic algorithm was so poor 
that the costs could not reasonably be plotted on the 
same linear scale as the costs for the direct 
algorithms. We present these results in Table 3. 

264 Proceedings of the 13th VLDB Conference, Brighton 1987 



160 

Total 120 
I/O 

(MB) 80 

40 

Logarithmic: x 
Blocked Warren: A 

< 
i.10 i.1 m.1 u.1 

database 

Figure 5. Comparative performance of Direct and 
Iterative algorithms 

Table 3. Comparison of Iterative and 
Direct Algorithm I/O Costs 

5. CONCLUSIONS 

We have presented three algorithms to compute the 
transitive closure of a database relation. These 
algorithms are “direct” in the sense that they rely 
upon the special structure of the transitive closure 
problem rather than solving a general recursion. All 
three algorithms consistently out-performed the well- 
regarded logarithmic algorithm for computing 
transitive closure, for each of several databases 
studied. In many cases we were able to show an 
improvement several orders of magnitude. Of the 
three algorithms presented, Blocked Warren seemed, 
by and large, to do better than the others. Blocked 
Warshall with Predecessors could be an option worth 
considering for sparse graphs with high locality. 

In our simulation experiments, we assumed that the 
memory size is small compared to the result relation 
size. In a recent paper [lOI, a straightforward 
implementation of Warren was compared against the 
logarithmic algorithm and was found to do better 
when the memory size was not much smaller than the 
final relation size. It is easy to show that the Blocked 
Warren algorithm that we propose will always 

perform at least as well as the straightforward 
Warren used in 1101. Therefore, we expect that 
Blocked Warren will perform better than iterative 
algorithms even when the memory size is large. 
Moreover, the performance of Blocked Warshall 
improves rapidly with increasing memory size, and we 
expect that it too will perform well with large memory 
size. 

We may have given the impression that the 
algorithms given in this paper can only be used to 
determine reachability in a graph (whether a path 
exists between two nodes). However, if a problem 
obeys the path algebra developed by Carre tsl (and 
many important path problems such as the shortest 
path, the maximum reliability path, the critical path 
etc. fall in that category), then such computations can 
be performed with obvious minor modifications to 
these algorithms. Let us consider the computation of 
the shortest path in a graph. Now, at the time of 
adding j to the successor list of i as a result 
combining the two arcs (i,k) and (k,j), the distance 
attribute of (i,j) is also computed (as the sum of the 
distance attributes of (i,k) and (k, j) respectively) 
and stored along with j in the successor list of i. If j 
is already in the successor list of i, the duplicate is 
eliminated by retaining the tuple with the smaller 
value for the distance. 
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