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ABSTRACT

A large number of algorithms have been developed to
compute the transitive closure of a database relation. This paper
presents two new strategies that further reduce the data size
dynamically during the computation and speed up the conver-
gence to the least fixed point of the transitive closure relation. A
hash-based algorithm that integrates these new strategies Is then
developed. The performance analysis indicates that the new
algorithm outperforms other algorithms in most cases.

1. Introduction

Recursive query processing is one of the key problems In
Integrating database technology and artificial Intelligence technol-
ogy to develop expert database systems. Among the large family
of recursive querles, a transitive closure query, a query whose
processing requires the computation of the transitive closure of a
database relation, is a relatively simple but very important class
of recursive queries. They are important because (i) a large
number of recursive queries can be expressed using transitive
closures [Agra87, Rose86), (i) most applications problems Involv-
ing recursive queries which we can see now are actually transi-
tive closure queries, and (li) efficient processing of transitive clo-
sure queries will provide a sound base for solving more compli-
cated recursive queries. It is thus not surprising that much effort
has been devoted to the efficient computation of the transitive
closures of database relations recently [loan86, Lu87, Rose86,
Vald86]. There is even a tendency to extend relational algebra
to include the operation of transitive closure in relational data-
base management systems [Agra87).

After examining the available transitive dlosure algorithms
that are summarized In Section 2, we feel that it Is possible to
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further optimize the computation of the transitive closures of data-
base relations. In Section 3, two new strategies are presented.
In Section 4, an algorithm based on these new strategies and a
modified hash join method is proposed, and its performance is
compared with two previous algorithms. The last section
discusses some possible extensions o the algorithm.

2. Transitive Closure of a Database Relation

if Ry(ab) ls a transitive database relation, its transitive
closure A= R} Is defined by

R-FE-%{H

where R denotes the /" power of Ry: A' = Ryand R"= R~ OR
for n> 1. The composition operator © on the two binary relations
Rand Ss deflned by

ROS={(x2)|3y(xy)e R A (r.2) e S}
Using relational algebra, this composlition can be expressed as

ROS=rrash APLS )

Graphically, relation Ry can be represented as a directed graph
QV,E), where a node aeV represents a domain value of

®

ae{R,.AR,.B)}, and a directed edge e in E, a—b, represents a
tuple (a,b) in the relation R,. Then, a node pair (x.y) is in the
transitive closure of Ry, R (or R}) whenever there is a path of
nonzero length from x to y. The longest path length, that is, the
largest number of edges comprising a path, is sometimes
referred to as the depth of the transitive closure. We will follow
the same convention In our discussion.

More formally, the transitive closure of relaton R,
represents the derived relation R defined by the following Hom
dauses:

F‘X-n - Ro(x-n-
Rx-y) = RX.Z). RO(Z-”-

2.1. Algorithms Computing Transitive Closure

In this subsection we are going to briefly summarize the
algorithms proposed in the literature that compute the transitive
closure of a database relation. These algorithms can be divided
into two groups: iterative and recursive algorithms.
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2.1.1. lterative Algorithms

The iterative algorithms compute transitive closure R of a
database relation A, by computing the least fixed point of the
following equation;

R=Fo U *aagodA L Ro

A number of algorithms have been developed to implement this
computation,

Naive algorithm

The most straightforward method, the nalve algorithm, fol-
lows the semantics of the above least fixed point equation and
uses the following iterative program:

old R= Ry
do

{
R=old_R\_) old_R O Ry,
AR = R-o0ld R
old A=A
} while (AR D)

Semi-nalve sigorithm

The nalve algorithm Is inefficlent since it uses the whole
result relation generated so far in each iteration to obtain more
results and thus duplicates some effort in the computation. In
fact, only tuples generated In the most recent lteration will intro-
duce new tuples into the transitive closure. The following algo-
rithm eliminates such duplication:

A= Ry

AR= Ry;

while (AR Q) {
AR=AR OR,,
AR=AR-R
R=Ry ARy

}

Adopting well known terminology [BancBS5), this algorithm is
called the semi-naive algorithm.

Logarithmic algorithm

The semi-nalve algorithm optimizes the computation of
transitive closures of a relation by reducing the data size involved
in the computation. Valduriez and Boral proposed another algo-
rthm [Valde6] that optimizes the computation by reducing the
number of iterations but handiing larger data sets during each
lteration. The algorithm is as follows:

R=FRy;

ARy = Ry;

8Ry = Ry,

while (AR # @) {
SA=3RO8R
AR=RO%R
R=R\AR oA,

In this algorithm, after iteration J, the result relation R contains the
tuples in RS, - - - AE'-, that s,

R'ROUFS"' Uﬁ"'-!

Therofore, if the depth of the transitive closure is p, only
lg{p+1) - 1 iterations are needed %o complete the computation.
in iteration J, two joins are computed. The first computes the join
of A and A, and the second joins the result of the first join with
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the result relation obtained in the last lteration. That is, for each
fteration, more tuples are processed, and more result tuples are
generated than the naive and semi-naive algorithms. The com-
putation converges to the least fixed pointer faster.

Smart slgorithms

loannidis recently proposed a new set of algorithms, smart
algorithms, to compute the transitive closure of a relation
[loan86]. A frame work of optimizing the computation along the
same direction as the logarithmic algorithm was provided.
According to the smart algorithms, the transitive closure of rela-
tion Ry Is expressed as

- m1
A= I ER™)

With a different m value, different algorithms can be obtained.
The logarithmic algorithm is actually the special case of m=2.

Rr=(14+R X 1+RE N 1+R8) - -+

2.1.2. Recursive Algorithm

Lu et &l. adapted the Waren's algorithm, which Is used for
computing the transitive closure of a binary relation represented
by a boolean matrix, to compute the transitive closure of a data-
base relation [Lu87). This algorithm ls recursive in nature. When
a tuple tin Ry s processed, all result tuples derivable from t are
generated. For implementation reasons, the algorithm sorts the
relation first and then processes it in two passes:

T = Ry sorted on attributes <A, B>;
foreach (fc Tand tA>p tB) do
begin
findall { in Twhere tB = FA;
insert { (LA, t.B) }into T:
ond;
foresch (te Tand LA <p t.B) do
begin
findall { in Twhere tB = T A;
Insert { (tA,t.B) }into T;

where >p represents the partial ordering on domain D.

2.1.3. Use of Join Indices

In order to reduce the data in the computation of transitive
closures, Valduriez and Boral also suggested applying the loga-
rithmic algorithm to a data structure called join Indices Instead of
the relation itself [Vald86). A join index on two relations, R(A,B)
and S(A,B), is defined as the set of

Jl= (f' sll r,.A=s,.Q

where 1, and s; represent the tuples of Rand S. If the join selec-
tivity between two relations is low (that is, the number of tuples in
the result of a join between R and S is far less than the product
of the number of tuples In R and S), the size of the join index
will be small. Their analysis indicated that both the semi-naive
and logarithmic algorithms perform better when they are applied
to the join indices than when applied to the original relations.

1 The non-lterative aigorithm doss not require explickly the join opera-
tons. However, the processing of sach tuple can be viewed as & join of the tu-
ple and a subrelation of A.
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2.1.4. Discussion

We have briefly summarized the major algorithms pro-
posed in the literature that compute the transitive closure of a
database relaion. Except the nalve algorithm, which is
apparently inefficient, other iterative algorithms and the recursive
algorithm have their own merits and deficiencles. The real per-
formance will depend on the application and the characteristics of
the relation for which the transitive closure ls computed [loan86,
LuB7, Vald8e).

3. New Strategles Optimizing the Computation

In this section, we are going to propose two new stra-
tegles that further optimize the computation of the transitive do-
sure of a database relation. We first assume that the relation we
are dealing with Is so large that it is Impossible to hold all its
tuples in main memory. In this case the computation of transitive
closure, no matter which algorithm is used, requires a large
number of join, union and set difference operations on very large
relations. 1 Partitioning a very large relation into emaller disjoint
partifons has been proved a reasonable way to dramatically
reduce the costs of join operation on large relations [DeWig4).
Both the analysis of the recursive algorithm [Lu87] and the loga-
rithmic algorithm [Vaki8é] are based on the hash join method.
We assume that the same technique Is used In our discussion.

3.1. Strategy 1: Reduce the Size of Ry

Compared to the naive algorithm, the semi-nalve aligorithm
focus on eliminating the duplication of computation by only using
the newly generated tuples as one of the source relations of the
join In the next iteration. However, none of the previous algo-
rithms tried to reduce the size of another source relation in the
join operation, relation R,. Since relation R; ls used in each
iteration, its size perhaps has more influence on the performance
of the transitive dlosure aigorithms.

Our first optimization strategy is to eliminate dynamically
those tuples from relation R, that will not generate tuples in the
result relation in the later iterations. The next example is used to
explain the strategy. Relation R, conslsts of 13 tuples. Figure 1
is a graph which represents R,

Table 1 shows the Wples generated during computing R,
For the semi-naive algorithm, the first iteration joins Ry with R,
and generales AR=RyOR,, which consists of 12 tuples. Tradl-
tionally, the second iteration will join AR, with R, again to gen-
erate AR=AR,OR,. However, if we examine the join process,
we can find that some tuples in Ry wil never introduce new
tuples. These tuples, in the column of R, above the dotted line,
can actually be removed from R, without affecting the final result.
A new relation R,' formed in this way can be used in the second
iteration fo compute AR,. In this example, Ry’ consists of only 6
tuples, less than 50 percent of Ay

Figure 2 lists algorithm REDUCE, an algorithmic descrip-
tion of the suggested strategy for reducing the size of relation R,.
The notation used is skmilar to that used in the semi-naive algo-
rithm: two relations to be joined in iteration /are AR and R). AR,
contains new tuples in the transitive closure generated in the
(F1)* ioration. Relation A= R, and R} is reduced o R%',
which s to be used in the next iteration 1o join with AR,,;. Note
that aigorithm REDUCE as described above ls for general cases.
For a particular algorithm, for example, the semi-naive aigorithm,
the removal of tuples from AR is only needed for the first itera-
tion of join Ay and R,: for the semi-naive algorithm, AR, only
contains newly generated tuples which are not in Ry
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Figure 1: Graph of Relation R,.
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Table 1: Computing Rp.

Algorithm REDUCE:
Input : Two intermediate relations AR, and R
Output : Relation RY?

begin

repeat
foreach tuple k& R do
begin
#AROt=
then begin
nmvotkom%:
#te AR,
then remove tfrom ARy
ond;
ond;
until no tuple can be removed from F;
Ao = R
ond;

Figure 2: Algorithm Reducing the Size of RO.

Graphically, removing tuples as described in the algorithm
Is the process of removing outgoing edges from nodes satisfying
the following conditions: (i) there is no incoming edge to the
node, and (i) all outgoing edges are already inserted to the rela-
tion. The second condition is automatically satisfied because the
original relation Ry is copled into the result Since there is no
incoming edge o the node, no more paths can be generated via
the node, and its removal from the graph will not lose results. In
the above example, node 1 has no incoming edges; after the
edges started from It are inserted to the result relation, it can be
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removed along with those edges. This removal of node 1 further
causes the removal of nodes 2 and 3, since only incoming edges
for nodes 2 and 3 are from node 1.

For large database relations, It will be very expensive If
algorithm REDUCE Is implemented as It Is described in Figure 2.
In the next section, one possible Implementation is described
which modifies the hash join method to dynamically reduce the
size of Ry without heavy overhead. Another point we would like
to make is that this strategy has some flavor of using join indices
to compute the transitive closure [Vakig6]: only those tuples
which are Jjoinable are kept for computation. However, join
indices are static data structures and do not change for different
iterations of the computation. In our algorithm, size reduction Is
dynamically performed. We have the benefit of reducing the data
size without the disadvantage assoclated with join indices: the
costs of generating the join Indices and maintaining them in a
database; the difficulty of determining which relations and on
which attributes the join indices should be maintained; and the
complexity 1o determine whether it is beneficlal to use the Join
indices.

3.2, Strategy 2: Speed Up the Convergence

The number of iterations needed to complete the transitive
closure computation is another source of optimization. The loga-
rithmic algorithm and smart algorithms outperform the semi-naive
algorithm since they generate more tuples in one iteration and
fewer iterations are needed. Intultively, the source relations are
only read from the disks once in one Hteration. The more tuples
generated in one lteration, the fewer number of lterations needed
to complete the computation. Thus, one of the major processing
costs, disk Os for reading in the source relation, is reduced.
The CPU cost, such as rehashing, if hash join is used, is also
reduced partly. The savings gives the logarithmic and smart algo-
rithm better performance [Vald86, lann87].

The recursive algorithm Is an extreme along this direction:
when a tuple is processed, all tuples derivable from this tuple are
generated. The performance of the algorithm is irrelevant to the
maximum path length of the transitive closure of the relation. If
there are some very long paths in the transitive closure, this algo-
rithm will outperform the herative algorithms. The limitation of
this algorithm is that, in order to find all tuples derivable from a
tuple, the processing has the flavor of the depth-first search. In
cases where the size of memory is much smaller than the rela-
tion size, a large amount of disk access Is required, which leads
to bad performance [Lu87).

The strategy suggested here combines the iterative
methods with the recursive algorithm. For each pair of buckets
which can be held in main memory, all tuples in the transitive clo-
sure derivable from them are generated. These tuples are output
either to the corresponding buckets for further processing or to
the final result relation.

Algorithm PROCESSING in Figure 3 describes the algo-
rithm of processing the " bucket pair in the X iteration using the
strategy. ARF' contains the tuples generated In iteration k-1 and
is hashed on the second attribute. F{,I" is the comesponding

bucket partiioned on the first attribute. R is the / bucket of the
result relation R, the transltive closure of R,. Function GetBuck-
etNo() returns the bucket number a tuple belongs to when hash-
ing on the second attribute. The algorithm works as follows: for
each tuple fab) in AR, it finds a¥ matching tuples from Rol*.
New tuples are formed and hashed on the second attribute to
find the buckets to which the tuples belong. The tuples falling to
the cument bucket are used to further probe the hash table.
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Algorithm PROCESSING:

Input : A palir of buckets, AR, Ro!

Output : Tuples in the transitive closure of Ay
(inserted into corresponding buckets)

in
foreach tuple tin ARY do

it there is & match tuple f in Rol"wim tB=f.A
then begin
form a new tuple newXtA,f.B);
j= G.md‘m'.ﬂ:
itg>i
then output newt o AR
LERY)]
then output newt 1o ARF:
t (=0
then It (LA # 1.5)
then goto probe;
else output newt into R;
ond;
ond;

Figure 3: Algorithm PROCESSING.

Tuples of other buckets are output to the corresponding buckets.
They are either processed In the same iteration (if the bucket has
not been processed yet), or processed In the next iteration. For
each tuple, the processing will terminate when cyclic data (a
tuple fa,a) is obtained) is encountered, or no more matching
tuples can be found in Rol“.

We use a simple example to explain the algorithm. Rela-
tion Ay shown in Figure 4 consists of 8 tuples. They are parti-
tioned Into two pairs of buckets, (R”o‘.R'o‘) and (Rb%'n“)z)' on

attribute b and a, respectively, because of the limitation of
memory size. A tuple Xa bl R"o‘ iff hash(tb) In {1, 2, 3} and
{a,b) R"oz #f hash(t.b) in {4, 5, 6}. Partitions A% and R'oz are
formed in a similar way.

Table 2 shows the tuples generated during computing R
using the algorithm. The computation starts with the first pair of
buckets, AR} = R"01 and R°°1 = R.°1' Algorithm PROCESSING

is applied and the result tuples are hashed on the second attri-
bute. Those tuples with hash values in {4, 5, 6} (five of them in
this example) are appendad to the bucket AR (as shown in the
figure under the dotted line). Other tuples (in this case, three )
are output as the result. The second palr of buckets is pro-
cessed In a similar way. The difference is that the tuples gen-
erated with the hash value of the second attribute in {1, 2, 3} are
used to form AR, which is used in the next iteration. 1

This strategy can be explained intuitively with the graphic
representation of R, as follows: The hashing technique partitions
the directed graph, Gy into a number of subgraphs G°I An edge

[
e a-b s in subgraph Golmusinbuckatl. For each edge e €

G°l( a—.»b ), algorithm PROCESSING finds all paths that start
from node a and are contained in subgraph Gy, If there is a
path leading to a node ¢ in another subgraph, Go, the output of

1 In the example we did not show the elimination of duplicates: dupl-
cades in the result tupies are sliminated before the next Reration, as when using
the semi-naive algorthm.
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Figure 4: An Example Relation R,

iteration 1
ARy R,} Al [[aF] R,y RF

€en (1L @aLen (1L (3,2
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23 (23 1LI|6) 3 4.2
5.3 (3.4 2.1 @349 49
(4.4
5.2
(2.2

(3.4 (4,6) (3,6)}| — (4.6)
(1.5 6.3 ((1.6)}|@>.5 (53
(4.6) (5.6) (1,1)|| 6. 1)
(5.6) (6,1 (6,6)
(6. 4)
(6.5)
(1.4
(2, 4)
(5. 4)

RG®
L]

Table 2: An Example of Using Strategy 2.

a tuple (a,) to bucket ARP during the processing can be viewed
as Inserting a node a and an edge a-»¢ In subgraph G, There-

fore, any path starting from node a in subgraph G°l and ending
with another node b In subgraph Golcan be Iintemally found In

subgraph G"'I later on.

The effectiveness of this strategy i clearly shown by the
example in Figure 4. The longest path in the transitive closure
includes five edges (1-+2—3—4-6—1), which requires five
itorations for the semi-naive algorithms and three [terations for
the logarithmic algorithm. However, only two iterations are
needed using our strategy.

From the example, we can also see some savings other
than the reduction of the number of iterations. In the previous
iterative algorithms, new tuples generated during computation
have to be read in at least once 1o join with the original relation.
In our strategy, the result tuples comesponding to the paths which
do not cross the border of subgraphs are not read In again. In
the example, among 23 tuples generated in the transitive closure
(excluding the original tuples in Ry), only 12 tuples are written out
and then reread in for later processing.
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4. Algorithm HYBRIDTC

In this section, we describe a hash-based transitive clo-
sure algorithm. It integrates the strategles described in the last
section. Since this algorithm combines the merits of both itera-
tive and recursive methods, we name It algorithm HYBRIDTC (a
hybrid transitive closure algorithm).

4.1. The Algorithm

Algorithm HYBRIDTC;
input : relation Ay
Output: relation R, the transitive ciosure of relation Ry

I
mp:nﬂonﬁoonﬂo.Amd Binw
buckets R and Ro.® (1<iSNY;
hrl.ﬂoNdobogm
AR, .-Ho

&I-

u:-o;
repeat
k:-k#"
for i .= 110 N do
"t (AR":G).M(HO‘:Q)
then ProoessmgBuckot(I x AR, Ro")
slse ARK = 2,
for | := 110 N do begin
ARf = ARY- RFY;
until all An"- are empty;
R:= URI-
15N
ond.

Figure 5: Algorithm HYDRIDTC,

The algorithm is shown In Figure 5. Relation R, is parti-
tioned into two sets of buckets on attribute R,.A and R,.B as in
traditional hash joins. These two set of buckets are denoted by
Ro," and Ryf (1515 N), respectively. We will use subscripts to
denote the bucket number and superscripts to denote the itera-
tion number. Let ARF contain the new tuples in the transitive clo-
sure that belong to bucket / ( hashed on attribute B) generated
during the (k~1)* lteration, and Ry be the reduced buckst / of

i

Ry after (k-1) iterations. The bucket pair processed in the K®
eration Is AR and Ryf, where AR} = Ry, and Ry = Ry’

After the relation Is partiioned, the ARs are initialized to
be the comasponding set of buckets. The processing of bucket
pairs proceeds lteratively until all AR's are empty for the k™ itera-
tion. Since AR contains the most recently generated tuples, and
Ro," Is also reduced during each iteration, procedure Processing-

Bucket is only called when both of them are nonempty. During
the processing of bucket pair AR/ and Hol“. some result ples
are Inserted into R, and others are Inserled to other buckets
AR, (J= ), as described In algorithm PROCESSING. After each
Ileratlon k, duplicates are eliminated from the AR*'s which are
going to be used in the next iteration.

The union and duplicate elimination procedures are the
same as any fransitive dlosure algorithms, and we are not going
to discuss them here. Figure 6 and Figure 7 give one possible
implementation of the procedures ProcessingBucket and Proces-
singTuple. In this implementation, a hash table is constructed
for Rof as in the traditional hash join algorithms. However, one

271



procedure ProcessingBucket
( bucketno, iteration : nteger;
deltabucket, bucketRO : buckets );
begin
BuildHashTable({bucketR0);
foreach tuple In deitabucket do
ProcessingTuple(bucketno, iteration, tuple);
foreach tuple in the hash table do
#  tuple.mark
then OutputBucketRO (tuple, bucketno, iteration+1);
ond;

Figure 6: Procedures ProcessingBucket

exira fleld "mark" is added to the hash table entry. It Is used to
mark the tuples actually participating in the Joln. Procedure Pro-
cessingTuple is called for each tuple In deltabucket (AR]). After
all tuples have been processed, only those marked tuples are
written back by calling procedure OutputBucketR0 to form Rof'"

procedure ProcessingTuple
( bucketno, iteration: integer; inputuple : TupleType );

var currenttuple, matchtupie, newtuple : TupleType;
newbuckeino : integer;
begin
PushStack(inputtuple);
while (NOT EmptyStack) do
begin
currenttuple := PopStack;
it (curenttuple.a < currenttuple.b)
then begin
matchiuple := LookUp{currentiuple);
foreach matchtuple do
begin
it (NOT matchiuple.mark)
then matchtuple.mark := true;
newtuple = FormTuple { currentiuple.a,
matchtuple.b);
newbucketno := GetBucketNo(newtuple):
it (newbucketno = bucketno)
then PushStack(newtuple);
it (newbucketno < bucketno)
then OutputDelta{newtuple,
newbucketno, iteration+1);
It (newbucketno > bucketno)
then OutputDeita(newtuple,
newbucketno, iteration);
ond;
ond;
OutputResult{bucketno, cumrenttuple);
ond;
ond; (* procedure ProcessingTuple *)

Figure 7: Procedure of Processing a Tuple In AR,

Procedure ProcessingTuple implements strategy 2 using a
stack of tuples. PushStack, PopStack, and EmplyStack are pro-
cedures and functions manipulating the stack. The tuple on the
top of the stack Is used o look up the hash table to find matches.
Those maiching tuples can be divided into three categorles
according to the bucket it belongs #0. The bucket number of a
tuple Is returned by function GetBucketNo. The tuples of other
buckets are Inserted to AR buckets by procedure OutputDelta.
The tuples of current processing buckets are pushed onto the
stack for later processing. This process continues until the stack
is empty.

The advantage of using a stack is its simplicity. Another
advantage, perhaps a more important one, is ease of memory
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management. If there Is a large number of tuples derived from
some particular tuple in the bucket which leads to a full stack, we
can just write part of the bottom of the stack on the disk and
reread it back in to free memory space later on for continuing the
process. Thus, algorithm HYBRIDTC does not introduce new
lssues In memory management Techniques of partitioning a
relation Into buckets and of handling overflow buckets developed
In hash joln methods can be directly used.

Now, we prove the following Lemma:

Lemma: Algorithm HYBRIDTC comectly computes the transitive
closure of a database relation.

Proof: The proof of the Lemma consists of two parts. First, we
have already explained In Section 2 that the removal of
unmarked tuples, the tuples not participating in the join in the
current lteration, wilt not lead to loss of the result tuples. Second,
we prove that the algorithm will find all tuples in the transitive clo-
sure. In other words, the algorithm can find all paths in graph G,
if relation R, is represented by Go. Let p be a path of graph Gy.
It is obvious that, if all nodes on path p are contained in one sub-
graph of Gy, the path can be found by the algorithm when the
comresponding buckets are processed. It is more likely that paths

[
cross over the border of subgraphs. Let e, (a—b) € G, be an
edge, and the end nodes of @ be a and b, and they are in two
different subgraphs, G‘,’ and G°I respectively. Then tuple (a,b) is

in bucket j. During processing of bucket j, all paths of p starting
from b and ending at some nodes y; in Golwn be found, and a

set of tuples { (b, y3), ... . (b, y). ...} Is generated. If there are
some paths starting from some node x; and ending at node a, the
processing of bucket / will not only generate a set of tuples {x;a},
but also generate a set of tuples {x,b}. They are inserted into
bucket j. Thue, in the next iteration of processing bucket j all
paths starting from node x; and ending at node y; can be found.
The proof can be extended to the paths across any number of
subgraphs. @]

4.2. Performance Comparisons

Qualitatively, algorithm HYBRIDTC is expected to improve
performance in the following ways:

(1)  Reduce the number of iterations.

For the semi-naive and logarithmic algorithms, only paths
with certain lengths can be found in each iteration. The
number of iterations needed to complete the computation
is determined by the depth of the transitive closure, that is,
the longest path. For algorithm HYBRIDTC, paths con-
tained in a subgraph can be generated in a single iteration
no matter how long itis. Furthermore, the later processed
buckets make use of the new tuples generated by the
buckets which have been processed in the same iteration.
As a result, the number of lterations needed largely
depends on how the relation is partiioned and ls usually
less than the depth of the transitive closure. The reduc-
tion In the number of iterations at least reduces the disk
VO needed to read In R, and CPU time for constructing
the hash tables.

(20 Reduce the number of disk ¥Os needed to read In the
delta relations.

For both the semi-naive and logarithmic algorithms, the
result tuples generated in one iteration have to be written
to the disk and read in again In the next iteration. How-
ever, in algorithm HYBRIDTC, the tuples generated in one
lteration need to be read in again only If they belong to
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other buckets. Agaln, the extent of this savings largely
depends on the data distribution and the partitions.

Reduce the size of the source relation.

As explained In Section 2, the source relation used to
compute the transitive closure s dynamically reduced dur-
ing processing, compared to the constant size In the
semi-naive algorithm and no optimization In the loga-
rithmic algorithm.

Any quantitative analysis of algorithm HYBRIDTC Is
difficult, since the performance will vary dramatically with different
data characteristics and the partitioning. in order to validate our
qualitative analysis above, we made some comparisons between
the performance of the semi-naive algoritim, the logarithmic
algorithm, and algorithm HYBRIDTC as follows:

(1) The data model proposed by Bancilhon and Ramakrish-
nan [Banc86] Is used. We examined two simple cases,
lists and trees having fanout 2.

We use the number of tuples read in during the computa-
ton as the performance measure for the comparison.
This number roughly reflects the total costs of the compu-
tation. The larger the number is, the more disk O cost
and CPU cost for constructing the hash tables. Further-
more, we assume that duplication elimination costs are the
same for all three aigorithms, and they are not taken into
acoount.

Some of the implementation details are ignored. For
example, for the semi-naive algorithm and the logarithmic
algorithm, we only calculate the total number of tples of
two relations joined in each relation. This number is
therefore independent of the memory size and the number
of hash buckets. We actually assume that the pipeline
method is used to reduce the number of disk 1/Oe [Lu87).
That is, each tuple in the transitive closure only counts
once: no separate partition phase ls assumed.

With the above assumptions, the total number of tuples for
the semi-nalve and the logarithmic algorithms are calculated as
follows:

For the semi-naive algorithm, h iterations are needed to
generate all tuples in the transitive closure. One more iteration Is
actually completed, resulting in the termination of the computa-
tion. During each Heration, there Is only one join. The total
number of tuples participating In the join operations Is:

Nean-nawve = IR A 1)I| Roll

The number of lterations needed in the logarithmic algo-
rithm, k, is determined by k= R’Ig(hn) - 1. For each iteration /,
there are two joins: the join of A with A, and the join of the result

Ly
Mpleshmetransiﬂvedosuresofar,whld\b*}l:‘mwlmme

newly generated relation A%, The total number of tuples partic-
pating In the computation is:

3

(2

]

X ?
Niogartrmic = (2 F"H'ﬁ'%)

The number of tuples read In algorithm HYBRIDTC is
obtained by simulation: a program was coded to implement the
algorithm in memory. A random number generator was used to
assign bucket numbers for tuples. The corresponding buckets
were then joined iteratively to compute the transitive closure.
When each bucket pair was processed, the number of tuples in
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the buckets was counted. The total number of tuples read in
could thus be obtained. In the simulation, we used a small
bucket size (typically each bucket contains 10 tuples). Therefore
the simulation actually does not favor algorithm HYBRIDTC.

¢
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Figure 8: Performance Comparsion 1 ( Ry: List).
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Figure 9: Performance Comparsion 2 ( Ry: Tree).

The result of this comparison is shown In Figures 8 and 9.
The lengths of the lists vary from 100 to 1024. The tree depth
varies from 4 to 12. The comparison uses the number of tuples in
the semi-nalve algorithm as a reference. The ratio of
logarithmic/semi-nalve and hybrid/semi-nalve are computed. The
results in the figures show that algorithm HYBRIDTC consistently
outperforms the other two aigorithms. For lists, the ratio
hybrdd/semi-naive is about 50 percent. However, the ratio of
logarithmic/semi-naive Is about 60 to 70 percent. This resuilt is
expected as we discussed above.

In both figures, the ratio of logarithmic to seml-naive is not
monotonic. Sometimes, the seml-nalve algorithm even outper-
form the logarithmic algorithm. This happens when the depth e
just larger than 2% This is also observed by loannidis [loan8s].
The explanation is that the number of iterations of the logarithmic
algorithm is determined by the depth. When the depth increases
1o past 2% the number of ierations increases by 1. That is,
another iteration Is required to complete the computation to find
just a few more tuples. That is one disadvantage of the loga-
rithmic algorithm.
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Figure 10: Performance vs. Number of Buckets ( Ry: List).

We did not compare the performance of aigorithm
HYBRIDTC with the recursive algorithm. Its performance
becomes much worse than the logarithmic algorithm when the
memory size Is small, compared with the relation size [Lu87].
However, algorithm HYBRIDTC still performs better than the
other two aigorithms, even in this case. Figure 10 illustrates the
number of disk VO tuples with the different number of buckets
into which the relation is paritioned. When we increase the
number of buckets, which simulatee smaller and smaller bucket
size, the number of disk VO tuples also increases. However, it is
still less than what needed in the other two algorithms.

5. Conclusions

We have discussed two strategies which optimize the
computation of the transitive closure of a database relation. We
also presented a hash-based algorithm that integrates these two
stratogies together. The algorithm is easy to implement in real
systems by modifying the traditional hash join methods. A simple
performance analysis was conducted, and the results indicate
that the new algorithm does outperform previous algorithms.
This performance analysis I8 far from complete. However, it
does provide the evidence that our new strategies in optimization
are In the right direction. Further detailed implementation In rela-
tional database systems and performance analysis Is one of the
possible projects for future work.

Besides better performance, the algorithm has some other
advantages. For example, the algorithm Is easy to extend to
become a distributed or parallel algorithm. in algorithm
HYBRIDTC, there Is no inherent sequence among the Hiterations.
For other algorithms, the result of an iteration is used as the
input of the next iteration. In the logarithmic algorithm the
second join in each lteration can only be started after the first join
finishes. For the distributed version of algorithm HYBRIDTC,
each processor or node can work on one or more pairs of buck-
ots. The tuples generated at one processor are either processed
locally or sent to other processors. The only synchronization
needed Is the final termination of the whole computation.

This algorithm can be further optimized along the direc-
tions proposed. One possibllity Is as follows: the new tuples gen-
erated are not only hashed on the second attribute and Inserted
into the corresponding buckets, but also hashed on the first attri-
bute and inserted into the second relation in the join (Rol").

Thus, more tuples can be generated In each iteration, and perfor-
mance improvement can be expected. However, it is somewhat
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difficult to implement in real system since the size of Rol" will -

change during processing. Some sophisticated memory
management strategy and bucket overflow techniques have to be
developed.

Algorithm HYBRIDTC e a basic algorithm for computing
the simple transhive closure of a relational database. Interesting
future work is 1o use it as a base for extending a relational data-
base management system to include transitive closure as one
basic operation. To achieve this, the algorithm should be further
augmented so that more complicated transitive closure queries
can be processed efficlently [Agra87].
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