
New Strategies for Corn utin the Transitive Closure of a
Data!&ase%elation

Hong&n Lu t
Honeywell Inc.

Corporate S stems Development Division
Goden Valley, MN 55427

ABSTRACT

A ia* number of aiQorithms haw been developed to
compute the transitive cbaure of a database relation. Thir paper
presents two new strategies that furlher reduce the data size
dynamlcatly durtng the ocmputatbn and rpeed up the cower-
gence b the least fixed pdnt of Uw bansittve dosum reiation. A
hash-based algorithm Utat in&grates hese new strategies Is then
devebped. The performance analysh Mcatea that ule new
atgodthm outperforms 0Uwr aiQorHhms in most cases.

1. lntrcductfon

Recurshre query PlUCBSSiIlQ la one of Ule key pmbfems In
lnbegrattng database technology and arUfklal lntetllgence technd-
OQy to devebp experf d&base ayafema. Among the large family
of rscurshfe quertes, a &ar~siffve cbsurw query, a query whose
prowslng mqulres Ihe computabn of the transitive dosure of a
database reiatlon, is a tdattvety simple but very Important ciass
of reoursive quertes. They em tmportant because (i) a tar~e
number of recumlve quertes oan be expressed using Uansittve
dower [Afp87, Ftoae36], (ii) most appkakns problems Invoiv-
InQ recursive querlea whldl we can see now am actually lransl-
Uve dosum querfes, and (Iii) efftdent fxucesdn~ of transitive de
sure queries will provide a sound base for solving more ccmpli-
oated recursive queries. It la thus not surprtsin~ that much effort
has been devoted b the effiient computation of the transitive
doaures of database relations recentty [IoanQQ, LuQ7, RcseQQ,
Vat&Q]. There is even a tendency to extend relational algebra
to include Re operation of trandtive dosure in relational data-
base management rystems [AQraQ7J.

After examining the avaihbte transitive dosure algorithms
that am summarized In Section 2, we fed that it k pcssibts to

tcunoraAddru:Dlpu(mcllol lnlarmuonsYm-ud~
scMnca,NIknrlunhw8nyof9hgga*KrcllR#gh8hgrpon0511

Permission to copy without fee all or part of this
material is granted provided that the copies are not made
or distributed for direct commercial advantage, the
VLDB copyright notice and the title of the publication
and its date appear, and notice is given that copying is
by permission of the Very Large Data Base Endowment.
To copy otherwise, or to republish, requires a fee and/or
special permission from the Endowment.

Proceedings of the 13th VLDB Conference, Brighton 1987

further optimize the ccmputaUcn of the trensitivs dosures of data-
base relations. In Section 3, two new strategies am presented.
InSection4,analgo~thmbasedonlherenewstrategieranda
modfti hash join method b pmposed. Md its performance b
compared with two previour af~orithms. The last sectbn
dkcusses some possible extensbns lo the algorithm.

2. Transfthm Closure of a Databaso Refatlon

if %(&I) la a trandtive database f&don, its transittve
dosureR=~isdefinedby

R-4-p

ROS-~(X,r)I~Y(Xti* R A WI* s)

Usln~ relational algebra, this ocmpositlon can be expressed as

Graphidly, rdatbn 5 can be represented &x a dkected Qraph
qV,E), where a node 8 E Y represents a domain value of

a a {&,.A,~.s), and a directed edge e in E, a$ repmenb a
tupte (a& h the rehtbn &. Then, a node pair (xy) is In the
bansitlvedowreof%R(or~wheneverlhereisapathof
tlOK)NWO hQth horn X b y. The bllQf3St @h hQth, that i8, #I@
targest number of edQes oomprisin~ a path, is somettmes
refemd to a Ihe &pUt of Uw translttve dosure. We will fotbw
the sane conventton in our disa~sston.

More formally, the transitive cbsure of r&ion &
represents the derived reiatton R defined by the folbwin~ Horn
dauses:

2.1. Algorithms Computing trsnaitive Closure

In this subsection we are going to briefly summarize the
atgorithms fwwosed in the ltterature that compute the transittve
dosum of a database n&ton. These algorithms can be dii
hb tW0 QroUpS: ift7dvle and E’CU/SibW dQOtithtll6.

267

2.1.1. Iterative Algorithms

The lteratlve algorithms compute fransltlve closure R of a
database relalion & by computing the led flxed point of the
fdlowing equauon:

A number of algorithms have been developed b implement this
OOlllpUktbtl.

Naive algorithm

The most straightforward method, the nalw algorithm. fof-
lows the aemantlce of the above least fixed point equation and
uses the fofbwlng lteraffve program:

Old-R- %;
do-(-

R-oM_Rydd-RQ%;
AR- R-dd R:
okiR=R-

)whG(ARtO)

Seml4ulvo algorithm

Thenalvealgorfthmtsfneffblentdnceftusesthewhole
result datbn generated so far In each lteratbn to obtain more
mulk and thus duplicates some efforl in Uw oomputatbn. In
fact only tuplw genefakd In the most recent lteratlon will Intro-
duce new tuph into the hndUve dosure. The blbwlng algo-
rlthm elfmlnates such duptbatbn:

f;J$$
wl1ilo(AR#0)~

AR=ARol+,;
AR=AR- R.
R= RyaRj

1

Adoptfng well known tennlndogy [Banc85], this algorithm is
eded the ad-n&w algorithm.

Logarithmk atgorithm

The semf-nafve algorithm optimizes ths oomputatbn of
hwitive cbsuret? of a refation by redudng the data size involved
in Uw oomputatbn. Vafdudet and Boral pmpoaed another algo-
tlthm paId@] hat optlmtzes the oomputalfon by mdudng tie
number of ltefatkn6 but funding larger dafa sefs during each
Itefalbn. The al@lhm I6 as follows:

g’!$&);

WI=&
while (AR # 0) {

&R=tiRO6R;
AR=RObf);
R=RvARvW

I

In this algorithm, after fteratfon 1, the result relation Rcontains he

tupks In R&R& * * * ,#‘-1, that k,

R=&,y%... v#-’

Themfore. If the deplh of fhe hnslhe dosure is p, only
/ml) - 1 lbratbns are needed to oomplete tfle computatfon.

In lb&on /. hnro join6 em computed. The fkst computes the join
ofdandF):andIhe~jdnstheresultdmeRrstjohwlth

the result relaflon obtained In the last iteration. That is, for each
Iteration, more tuples are processed, and more result tupfes are
generated than tie naive and semi-naive algorithms. The oom-
putatbn converges to the least fixed pointer faster.

Snarl algorithms

bannidls recently proposed a new set of algorithms, smti
algorithms. to compute the transitfve cbsure of a relatktn
[ban66]. A frame work of optimizing the oomputatbn along the
same dredon as the bgalthmic algorithm was provfded.
Accordng to the smart algorithms, Ihe transltlve dosure of mla-
tbn I& Is expressed se

Rc = ii@*

With a different m value, different afgoriUvns can be obtained.
The logarithmic algorithm is actually the special case of m=2.

R+=(l+/&)(l+@)(l+@)***

21.2. Recurrivo Algorithm

Lu ef d. adapted the Wmn’s algorithm, which is used for
computing he transhive dosum of a binary relatbn represented
by a boolean ma&lx. b compute the transltfve cbsure of a dafa-
base relation [Lu67) This a&prithm Is recursive in nature. When
atuplefln%~p~ed,aP~ulthrpleddenvabbhomfare
generated. For lmplementatfon reasons, lhe algorfthm sorts Uw
refatbnfifstandthenprocessesithtwopasses:

Ifndsll I in Twhere t.B - fA;
lneotl { (U. r.E) } into T;

end;
tonsch(feTsndtA<otf3jdc

bgln
tlndell I in Tuhre 1.8 - rA;
inewt ((U. r.9)) into T;

md;

where >D mptwsenk the partial ordering on domain D.

21.3. Use of Join Indttr

In order to reduce fhe data fn the unnpufation of transitive
dosures, Valdwiez and Boral also ruggesbd applying tie kga-
rfthmb algorithm to a data sbudum called join Indices Instead of
Ihe mlatlon lkelf [vald86]. A join index on two rehtbns, A(A.4
and gA,g, b defined as the set of

whereqands,representthetupbsofRandS. Ifthejoinselec-
tivity between two relatbns is bw (that is, the number of tuples in
the result of a join between R and S is far less than the product
of Ihe number of hrples in R and s), the size of the jdn index
will be small. Their analysis indkated that both the semi-naive
and bgadthtnb algorithms perform better when they are applied
to the join indces than when applied to the original relations.

268 F’roceedings of the 13th VLDB Conference, Brighton 1987

2.1.4. Dircussfon

We have b&fly summarized the major algorithms pm
posed h ths literature that axnpub the bansltive dosure of a
database relation. Except he naive algorithm, which Is
apparentfy hefflcient, other iterattve algortthms and the recursive
algorithm have their own merits and defldendes. The real per-
formance will depend on Ihe appkatbn end the characterfstics of
the relatbn for whkh he translUve closure Is computed [loan66,
LuU7, Vald86).

3. New Stmlegks GpttmWng the Cemputetion

In thh en. we am f@ng b propose two new stra-
tegles that further optlmlze he computation of tie hnsltlve de
sum of a databr~ relation. We first assume that the relation we
are dealing with Is so large that It b Impossible to hold all Its
tuplss h maln memory. In this case the computation of transitfve
dosum, no matter which algorithm is used, mqufres a large
number of join, unian and set dfference operations on very large
relatbne. t ParUtbdng a voy large relatbn Inb smaller dsjolnt
partftlons has been proved a reasonable way to dramatically
reduce the 03s~ of joln operatbn on we relattons [DeWlsd].
Solh Ihe analysis of tie recur&m al@thm [Lu87j and the bga-
tltilc algmfthm (ValdUS] are based on he hash joh method.
We assums lhat ths same technique Is used In our dscussbn.

3.1. stmtegyl:ReduoetheSfzeof&

Compared to the nalve atgorlthm, the sml-naive algorithm
focus on ellminatln~ the &qkatbn of computatbn by only using
the newly Qmmhid tuples as one of the souse reiatbns of the
join In he next ltefatlon. However, none of the prevbus atgct
dlhms tied to rec&ce the dze of another source m&ton ln the
join operaUon, retatfon &. Since relatbn I& b used in each
bratton, its slxe perhaps has more influence on the performance
of the transitive dosure atgodthms.

Our fbst opUmlxaUun strategy is to eliminate dynamically
ulose hrples from relauon & Rat will not gf#nerate tuples in the
result relation h the tabr iterations. The next example h used to
explah the slfab&)y. RelaUan 5 conslsbs of 13 tupfes. Figure 1

isaereph~mb%

Table 1 shows Ihe bples generated during oomputin~ 5.
Forthe~vealgorlthm,thefkstlteraUonjohs~wfth~
and generam dR,=&,oFb, whkh constsk of 12 tuples. T&i-
uonally,th666conditefauonwllljoh~wlth~~togen-
erats A&+%. However, if we examine the job process.
wacanfhdIhatsomebpfesh~wfUneverintroducenew
t&s. Thesebptes,inthecolumnof~abouethedottedUne,
canaduaUybemmovedfrom~wtthoutaffedlngthefhalresuft
Anewrelatkn%lfonnedlnthlswaycanbeueedhIhesecond
iteration b compute A&. In this example. I&’ consists of only 6
tuples, less Um 60 percent of &

Flgure 2 Usls algorithm REDUCE, an algorithmic dascrip
lion of Uw suggested strategy for redudng the size of mlatbn &
llw notation used Is slmllar b lhat used h the semi-nahre algo-
rithm:~relaUons~~jdnedIniteratknl~aR,and~. AR,
contahs new h~ples h Um transltfve closure generated h the
(Cl)” itaratbn. Rdatbn 4 = & and R& fs reduced to @,
which ls to be used In the next Ibratlon to join wfth A&,. Note
that algorithm REDUCE as descrfbed above is for general cases.
For a par&k atgortthm, for example. the semf-naive algorithm,
theremovdoftt@esfromaR,fsonlyneededforthefimtltere
Uon of join I+, and &: for the ssml-nalve algorfhm, Al?, only
cmtahs newly generated tuples which am not In &,

FIgurn 1: Graph of Rdatton &

Table 1: Computing &

Algorllhm REDUCE:
input : Two intermed&e relations AR, and 4
ou(pUt:Relation@’

Wn
nput

knachtupbk/+do
aab

tfAf?pt-0
thm bqln

nmovsfhomf&
Hfe AR,
tlmnmmonthumAR~

ti

Figure 2: Algorithm Reducing the Size of FtO.

Graphically, removing tupfes zw described tn the elgorlthm
Is Ihe process of removing outgdng edges from nodes satisfying
Uwfollowingcondlthns:(l)lhereisnohaMlhg6dgeb~
node,and(Y)alloutgoingedOesarealready~(otherela-
Uon. The second condtion is automaticatly satisfied because ths
original relation 5 is copied hb the result Since Ihere Is no
hcomingedgebthenode,nomorepathscanbegenerabdvia
~node,andIbremovalhomthegraphwilnotloseresul~.In
the abovs example. node 1 has no lmxxning edges; after Ute
edOesstartedfromItarelnsertedbIheredultrelatkn,itcenbe

FWmedings of the 13th VLDB Conference, Brighton 1987 269

removed along wfth those edges. This removal of nods 1 further
causes the removal of nodes 2 and 3, rlnce only lnccming edges
fornodss2and3arefromnodel.

For large database relallons, lt will be very expensive H
afgorltfun REDUCE ls implemented as It ts de&bed in Figure 2.
In tffe next se&n, one fx@ble lmplementatlon is dssalbecl
whkh modlfles Urhe hash join metffod to dynamically reduce the
size of 5 wllhout heavy overhead. Another pdnt we would like
b make is lhat &is rfrategy fms some fhvor of using join lndces
b compute ths bansltlve dosure phld66]: only those bples
which we johtble em kept for oomputaUon. However, Joln
lndlces we rfatlo data sbuctures and do not cf’fangs for different
lterdonr of &e cofnputatbn. In our algorfUun, rlxe reductbn b
dynamlcafly wed. We have the benefit of redudng the data
size WlUtout the dSadvantaQe assodated with join indices: the
costs of generaUng Ihe Join lndces and mafntafnlng fhem in a
database; he dfficuiQ of determining which relations and on
which attribute8 Ihe jdn lndces should be mafntdned; snd the
compled~ b de&mine whether it is beneklal to use he join
hdkes.

3.2. stmtegy 2: sped up the collwrgonco

The number of lteratbns needed to complete Ure transitive
cbsure compufafbn fs another source of ofMfmizaticn. Ths bga-
tithmlo algorithm and smart algorlBms outperform Ure seminsfvs
afgorltfrm dnce they generate more lupfes In one iteration and
fewer kmUons are needed. Intultlvefy, Ihe sourcs relsUon8 are
only read from he disks once In one Iteration. The more tupfes
generated ln one iteration, Ihe fewer number of lteratfons needed
b compleb the computation. Thus, one of the major processing
costs, dsk l/Ck for reading in Ihe source relation, is reduced.
The CPU cost, such a~ rehashing, if hash join Is used, is also
reduced par@. The savings gives Ihe logarithmic and smart algo-
rithm better f&orm~ [Vald%,lenn67).

The rtmrshre algorithm Is an extreme along fhis drechn:
when a tupfe k proces&, afl tuples derivable from this tuple are
generated. The performance of the algorithm Q irrelevant to fhe
maximum palh length of the bansiffve closure of the relation. If
then, are soms very long pafhs in the fransitfve dosure, this algo-
rithm will outfMorm Ufe lteratlve algorithms. The limltaUon of
thhalgorHhmkIha;InordertofhdaWhrpl~derlvablefroma
tuple, the fIfwesdng fms he flavor of the depth-first sear&. In
cases where the size of memory Is much smaller tffan tffe rela-
tion size, a large amount of disk access is required, which leads
b bad perbmam [Lu87j.

Ths strategy ruggesbd here combines Ihe Ibrathm
metfw& WIUI Ihe t-ecu&e algorithm. For each pair of buckets
which CM be hekl in maln memory, all tuples In the transltfvs do-
sum d&able from them are generated. These tupfes are output
either b the conespondng buckets for furfher proc%slng 01 to
the find result mlatbn.

Algorithm PROCESSING in hure 3 describes the algo-
Mm of processing the r” budret pair in the ti lterafbn using the
strategy. A*’ contains (he tupler generated in iteraUon Cl and
is hashed on Uw second atbibute. 4: is he corresponding

bucket parUtbnsd on Ihe first attrfbub. RI b the P bucket of the
multrektbn~titransitivedosureof~ FunctlonGetEuck-
etNo() returns he bud& number a tupls belongs to when hash-
ing on he second etbibute. The algorithm works as follows: for
each tuple 1(a,b) h A@‘, it finds atI mabfhg tupies from I$&.

Newtuplesarebrmedandhashedontfresecondatfributeb
findtfmbuckefsbwhwhlchthetuplesbelong. Thetuplesfaiifngb
UwcurrentfxJcketareusedbfurWrprobeIhefwhtat4e.

Algortthm PROCESSING:
Input : A pair of buckeb, A*‘. !$:

Output : Tuple~8 In the bnndtive douue of 4
(inssfted Into cafreoponding takeb)

Wn
fowchbrplefinA@do

*:

bure 3: Algcdthm PROCESSING.

Tupfec of other buckets are output b fhe corresponding buckets.
Theyereellherpr~In~e~eiteraUon(Hthebucket~
not been processed yet), or processed fn Ure next Iteration. For
each tuple, ti processing will terminate when cydic Qta (a
tupfs 1(a,e) Is obtained) is encountered, or no more matching
tuples can be found In F&,%

We use a simple example to expfafn the algorithm. Rela-
tion 4 shown in Figure 4 consists of 6 tuples. They are parti-
Uoned into two pairs of buckets, (Rbo,,R$,) and (&s,f$). on

atfrlbute b and a, respectively, because of the Umitatbn of
memory size. A tuple f(a,b)E R$, fff hesh(tb) in (1, 2, 3) end

I(qb)ER$+ lff hasytb) in (4, 5, 6). ParUUons R”s, and R$ are

fcrmed in a cimilaf way.

Tablo 2 shows the tuples generabd during computing 4
using the algorithm. The computation starts with the fkst pair of
buckets, A@ = R”‘, and I&, = R’o,. Algortmm PRGCESSING

is applied and tfte result tuples are hashed on the second athf-
bute. lhose tuples wlfh hash vaktes in (4,5.8) (five of them h
hk example) iy8 md b the bucket Aa (as shown in the
figumundertidottediii). Ofhwfupfes(inhiicase,hree)
~output~Ihen3sl4Jt Thesecaldpdrofkrdcetsispro-
cased In a rbnlar way. The dfference is thaf ffte tuples gen-
erated with tie hash vafue of the second aftrbute In (1,2,3} are
used b form A*, which b3 uscad in the IWXI iteration. t

This strategy can be explained lntuitfvefy with the graphic
representation of 4 as follows: The hashing technique partitions
he directed graph, 6 into a number of subgraphs Cip, An edge

cpfrbisinwbgraphOo,NfbhInbucketI. Foreachedgeee

C&, (Lb), afgorlthm PROCESSING fmds all paths that start

fromnodeaandarecontainedinsubgtaph~, Ifthereba

palh leading to a node c in another subgraph. Go/ fhe ouPut of

270 Proceedings of the 13th V&DB Conference, Brighton 1987

Table 2: An Example of Using Strategy 2.

ahrple(dc)bbucket~dwingtheprooesslngcanbeviewed
aslnserUnganMe~andanedge&+clnsubgraph~, There-

fore, any path starling from node a in subgraph G&, and ending

with another nods b In subgraph C&, can be Internally found In

subaraph Gpb” on*

The dfectkmss of lhis strategy is cl&y shown by Ihe
example in Figure 4. The longest palh in the transltlve dosure
includer five edp (1-+2+&4-r&1), whkh rec&Jlms five
iterations for tie semi-naive algorithms and Uuee Mations for
the b~arlthmlo algorfthm. However, onfy two iteratbns are
needed using our sbategy.

From tha example, we can also see some savings other
than tie re&ctbn of Ihe number of iterations. In the previous
iterative alplthms, new tuples generabd cMng computatbn
have b be read in at least onoe to join with tie orfginal rebtlon.
In our rtrabegy, the msult tuples mng to tie paths which
donotaosrtheborderof~ubgraphrsrenotreedInqain. In
the example, &nong 28 tuplec Q@llW@Ed In ule bm6illW dosure
(exduding the OdQilWi tuple!a In &), only 12 tuflles are written out
and then reread in for later processing.

Proceedings of the 13th VLDB Conference, Brighton 1987

.-

4. Algorlthm HYBRIDTC

In this section, we desoribe a hash-based trandtlve do-
sure algorithm. It Integrates the rtrategles de&bed In the fast
section. Slnm Ihis algorithm combines Ihe merits of both itera-
tive and recursive methods, we name it algorithm HYWDTC (a
hywd transitive dowre algorithm).

4.1. The Algorfthm

Ngorlthm HYBRIDTC;
Inpul : ralatlon 5

than PrcceasingBudcet Q, k, A@, &,$;

etaeAR::-0;
tar i :- 1 to N do

vn A@:-A/$-b+;
until all A/?fs are empty;
R:- v R,;

IsisM
mld.

Figure 5: Algorithm HYDRIDTC.

The algorithm Is shown In Figure 5. Relation 5 Is pad-
ekned~to~setr,d~ona~bu~e%.Aand~Earin
traditional hash Jdns. Thtwe two set of bud&s am denoted by
5,! and 5,’ (1 S Is hl), respectfvely. We will use subscripts to

denote the bud& number and supe%odpts b denote the i&a-
tbnnumber. Letb~contahthenewbuplecinthefransitivedo-
sure that bebng to bucket i (hashed on attrfbute e) generated
dutlng Ute (I#’ lteratfon, and Rok be ti reduced bucket I of

5 after (k-l) karations. The bucLt pafr processed in the P
iteration ls AR/ and 5,‘f where AR{ = 5,!‘, and 5; = 5,‘.

After &e rqlation is pprtitfoned, tie Ah (YB initialized to
be the cormpondlng set of buckeb. The procesdng of bucket
palm proceeds ltaratively unl ell A@3 am empty for the fl itera-
tlcm. Since ARK contains the most recently generated tupies, and
5: I6 also reduced during each iteration, procedure Processing-

&c&et is only called when both of them am nonempty. During
the processing of bucket pair A/?1 and 5:, some result tuples
IYB inserted Into R, and others are InseMi to other buckeLp
AR, (/+ I), as desaibed In algorithm PROCESSING. After each
fteratbn If, dupkates are eliminated from the A@+‘8 whti are
going to be used In the next lteratfon.

The unbn and duplicate elimination procedures are Uw
same as any trandtlve dosure afgoriUuns, and we are not going
todscuss~mhere. Flgure6andFigure7giveonepassibb
implementation of the plocedums Ruces&gBu&et and &uces-
singTup!a. In this Implementation, a hash table is consttucted
br Rq as in h hditkd hash join atgorlthmr. However, ens

271

pmoedura PKl6666Jn@u&6t
(buc3wno, lbrauon : lnbg6r;

tIei- budtetR0 : budcob);
Wn

BuildtiashT&le(budcotRo);
tonMhtUpklftd-dO

ProceulngTuple@udMno, Iteralion. tuple);
kroaoh tupk In 60 huh tablo do

It bpb.nlafk
then outpumuckotRo(tuplo,krdrom,I~tl#l+l);

end:

Rgure 6: Pro6edum6 Pmcessb7gBu~el

extrafMd”rrudCkaddedbthehashtabteen6y. ltkusedto
mark Ute hrpler aduaity padfdpathg In ti Joh. Procedurs Pxh
casshgTu~ Is called for each brpla h dellabucket (A@). After
all tuples have been procsesed, only those marked tupfes are
wrlml baok by calling ptnce&Jm oulpumudtetR9 lo form I?$+,.

prooedun ProcsssingTuple
(budwmo, IteraUon: integer; inputuple : TupbType);

vu curmnUupb. matchtupb. nawtupb : TupleType;
rwwbudwm : Integer;

Wn
~~SWinplthrrWo);
whlk (NOT EmptyStack) do

Wn
cwrenttupb j PopSladc
H (cumnHupb.a o currentluple.b)
then bogin

matchtuple :- LookUp(cwenUup&);
fomach matchtupledo

Wn
If (NOT mat&tupk.m&)
then makhtupb.mak :- truq
newtupb ‘r FonnTupb (awrenkpb.a.

matchtupkb);
rwhucbw :- GetBucketNo(nentuple);
If (newbudwblo - budwblo)
than PuohStadc(newiupl0);
W(-<bucb3tno)
then OWuWW~e,

nswbudwtno, ltefatlon+l);

lf(->km)
thn Ou@utDeka(newluple,

n6wbudwtno, lbralbn);
md;

flgurw 7: Procedwe of Proc666lng a Tuple In A@.

Procedure PnnawshgTuple lmpkment6 strategy 2 uskg a
stack d tupkr. Pu&Sfa& fb@fa& and EmptySack am pro-
cedur6eandfundkn6manlpul6llngthe6lttdt. Thetupleonlhe
togoftherSadcburedlpkok~the~htableto~ndmatichee.
lhose matching tupk6 nan be dvfd6d Into three cabgotie6
accordng t6 Ute bucket lt belong6 b. The bucket number of a
tuple Is returned by funotbn GetBucketNo. The hrples of other
buczketn am Inserted b A/?’ b&k by proc6&re OufputDefta.
The luplss of current prnc666kg bucket6 are pushed onto the
stsck f6r later pmo666ing. Thl6 process continue6 until the stack
is empty.

The advantage of u6kg a &a& Is it6 simplicity. Another
advantage, perhap a more Important one, t6 ease of memory

management. If there Is a large number of tuples derived from -
some particular tuple in the b&et which leads to a full stack, we
am just wtlte part of the bottom of the stack on the disk and
reread it back In to free memory 6pac6 later on for continuing the
process. Thrw, algorithm HYBRIDTC doe6 not Introduce new
ls6ues In memory management Techniques of partitbning a
relation Into buckets and of handing overflow bucket6 developed
In hash joln method6 can bs directty used.

Now, we prove th6 folkwlng Lemma:

Lemma: Algodihm HYBRIDTC conact& computes Ihe bpnollyvp
ckxu~9 of a d&these tddon.

Pmof: The proof of the Lemma eon6btr of two par@. Flnt, w6
have already explained In Se&n 2 that tie removal of
unmarked tupks, the tupl66 not partktpating ln the join ln 616
current lteratkn, will not lead to bss of the result tuples. Second,
we prove that the algorfthm will find all tuples In he transltkm ck
sum. In other words, the algorithm can find all paths In graph q
ifrdatkn ~isrepmsentedby00. Letpbeapalhofgraph G,.
It is obvious that. if all nodes on path p are contained in one sub-
graph of 0, Um path can bs found by the algorithm when the
correspondng bucket6 ars processed. It Is more likely that paths

cross over the border of subgraphs. Let e, (aftb) 6 6. be an
edge,andtheendnodesdobeaandb.andtheyarein~o
different s&graphs, C&, and Go/ respectively. Then tuple (66) is

in bucket j. During processing of bucket j, all paths of p starling
frombandendingatsomenodesyiin~,canbefound,anda

set d tuples { (b. y,), . . . , (b, y), . ..} is generated. If there sre
SOIIW paths starting from some node Xi and ending at node a, the
processing of bucket iwill not only generate a set of tupks (xja},
but also ganerata a set of tupks {X&I). They an3 inserted Into
buc4cet j. Thus. in he next iteration of processing bucket j, ait
paths starling from nods xi and ending at nods y/ can be found.
Ths proof can bs extended to the paths across any number of
Mlrapt@. 0

4.2. Performance Comprrkonr

Quatiitively. algorithm HYBRIDTC i6 expected to knprov6
performance h the folbwlng ways:

(1) Reduce the nunbar of i&aiions.

For the semi-naive and kgarflhmk algorithms, only paths
wlth certain lengths can be found In each iteratkn. The
number of Jteratkn6 needed to complete the axnputatkn
k determIned by ale depth of the transifive do6ur6, alat 63,
lh6 bngest palh. Foe algorithm HYBRIDTC. palhs am-
talned in a subgraph can be generated in a single iteratkn
no matter how bng it b3. Furlhermore, the later processed
buckat make use of the new tuples generated by the
bwkels whkh have been pmcessed in the same iteration.
As a r66ult, the number of Iterations needsd largety
depends on how the reblbn Is partltkned and Is usually
less than the deplh of he transltlve closure. The reduo
tbn In ths number of IteralJons at least reduces the disk
Vo needed to read In 4 and CPU Ume for constructing
the hash tables.

(2) Ra&caLYIenumbaroi&kYCMnaadadktwadIntha
delta relations.

For both the semi-naive and kqarilhmb algorithms, the
result tuples generaW in one iteration have b be written
bIhedskandreadina~h~nextIteratbn. How-
BYBT, 61 algorithm HYBFUDTC. the tupfes generated h ona
Heretlonneedto~readInaOalnonlyIflheybekngto

272 Proceedings of the 13th VLDB Conference, Brighton 1987

other buckets. Again, the extent of this savtngs largely
depends on the data dlstrlbutbn and the partltbns.

(3) R4dce fh13 he d tie 8oum9 n3Won.

As explained In Se&n 2, the souroe rdaUon used to
compute the banslttve dosure ls dynamlcaUy reduced dur-
ing processing. oompared to the constant sire ln Ihe
semi-naive algorithm and no optlmizatbn In the kga-
rlthmb algofithm.

Any quantitative analysis of algorithm HYBRIDTC is
dUficulf since the performance will wuy drematbally with different
data chamotdrtbs and the padtkmlng. In order to validate our
qualhatlve natysls above, we made some comparisons between
the perfomtance of the semi-naive algodthm, the logarfthmlc
algodthm, and algorfthm HYBRIDTC as bllow~

(1) Ths data model proposed by Bancilhon and Ramakrish-
nan [Ban&61 Is used. We examined two simple cases,
I&s and trees having fanout 2.

(2) We use the number of tuples read in during the computa-
tbn as the performana3 measure for the comparison.
This number roughly reflects he total costs of the compu-
tatbn. The lager the number Is. the more disk t/O cost
and CPU cost for constructtng the hash tables. Further-
more, we assume that dupitcation elimination costs are the
same for all three atgorithms, and they are not taken into
account

(3) Some of the lmplementatbn details am ignored. For
example, for the semi-naive algorithm and the l~arithmk
algorithm, we only cakutate the total number of hrples of
two refatlons joined in each relatbn. This number is
lherefom Independent of the memory size and the number
of hash buckets. We actually assume that the pipeline
method is used to reducs the number of diik l/OS [L&7).
That is, each hrple in the transiUve dosure only oounts
once: no sepatak part&n phass ls assumed.

with the above assumptions, the total number of tuples for
the semi-naive and the bgarithmk algorithms are calculated as
follows:

For the semi-naive aborithm, h iterations are needsd to
generate all tuples In the transitive closure. One more iteration is
actually completed, resulting ln the termination of tlm computa-
tion. Dub each lteratlon, there Is only one join. The total
number of tuples partidpatfng in the jdn operatbns is:

The number of Iterations needed &I the logarithmic algo-
rithm, &, ls determined by k= htl) - 1. For each lteratbn I,
there are two joins: the join of % wlth R! and the jojn,of the result

tuplesinthetransitlvedosuresofar,whkhts jdwtththe

newly generated relatbn @! The total number of tuples partid-
pating In the computation b:

The number of tuples read In algorithm HYBRIDTC is
obtained by slmutation: a program was coded to implement the
algorithm In memory. A random number generator was used to
assign bucket numbers for krptes. The corresponding buckets
were ulun jolned lterttuvely to compute the bansltlve dosum
When each bucket pak was pmces& the number of tuples In

the buckets was counted. The total number of tuples mad ln
could PIUS be obtained. In Ute slmulatbn, we used a small
budcet size (typically each bucket contains 10 tuples). Therefore
the slmulatlon actualty does not favor algorithm HYBRIDTC.

Logorlthmlohoml-nob.
0.8 -

o 0.s -
=
:

0.4 -
ttybrldlromi-n&o

0.2 -

0.0 I I I I I I I I I
100 200 300 400 500 600 700 000 800 *

UOI bngth

Figwe 8: Performance Compersion 1 (&: List).

+
1.4

t
1.2 -

1.0 ---.

0.8 -

o 0.s -
=
:

0.4 -

0.2 -

o.oL ’ 1 I I 1 I I I I *

4 5 8 7 0 a 10 11 12

TrawghttMovt=i)

Flgure 9: Performance Comparsbn 2 (&: Tree).

The resull of this comparison b shown ln Figures 8 and 9.
The lengths of the lists vary from 100 to 1024. The tree depth
varlesfrom4to12.Thecompa&onusesthenumberoftuplesin
II-be semi-naive algorithm as a reference. The ratio of
bgarkhmldsemi-nalv and hybrfd/seml-nalve are computed. The
results ln the figures show that algorithm HYBRIDTC consistently
oulperforms the other two algorithms. For lists, the ratio
hyM&emi-nalve Is about 50 percent. However, the ratio of
bgarithmk/semlnaive is about 60 to 70 percent. This result b
expected as we dlscusd above.

In both Rgures, the ratio of lo@thmk to semi-naive is not
momtonb. Bometlmes, the seml-nafve algorithm even outper-
form the logarlthmk algorithm. This happens when the depth ls
just larger than 2’! lhb ls atso observed by loannlds [loan86].
The explanation b that the number of iteratbns of the logarlthmic
algorithm is determined by the de@. When the depth increases
to past 2&, fhe number of lteratbns Increases by 1. That Ir,
enother lteratkn Is required to complete the computatton to ftnd
just a few more tuptss. That ls one dsadvantage of the loga-
rlthmlc algodthm.

Pmmdings of the 13th VLDB Conference, Brighton 1987 273

.,-

t
1.0 -._-.....___.__------..--.-...-..-..-.....--

0.0

Logorlthmlc/roml-n&o
o 0.0
=
:

0.4

lm-- -

l4ybrldhrml-rmlvr

0.2 o.ow 10 20 20 40 50 co 70
Numbor Of auckota

Figure 10: Performanoe vs. Number of Buckets (5: Lkt).

We dd not compare the performance of afgorithm
HYBRIDTC wilh he teourcive afgorithm. lb pedomwnoe
becomes much wome then the kgadthmic algorithm when tie
memory clxe k small, oompamd with the relation cite [Lu97j.
However, algorithm HYBRIDTC stiff performs better ban the
other two a@rfthnw, even In hi case. Figure 10 illuctratec the
number of dck Vo tupfec wfth the different number of buoketc
into which the relation fc partitbned. When we fnorease Ihe
number of krokeb, which cimubtec smaller and smaller bucket
size, the number of dck f/O hrpfec afso increases. However, H is
still lee43 than what needed in the other two algorithms.

5. Conofuotono

We have diicced two strategies which optimize the
oomputatlon of the transitfve docure of a database relation. We
also presented a hash-based algorithm that integrates these two
stratsgies together. The afgorithm is easy to implement in real
systems by modifying Ihe traditional hash join methods. A simple
pedomance analyck was oonduotcd, and the results fndcate
that tfte new algotlthm does outpehm pmbuc algorithms.
Thlc pcdofmanoe mdyclc k far from complete. However, It
doec pro* the evfdenoe Utat our new ctrategtec in optlmfzatlon
are In the rfgftt dkeotbn. Father dctalfed fmpfementatbn In refa-
Uonal dakbace systems and performance anafyclc k one of the
possible pmjeob for future work.

Beddos bettar petformanoe, he dgoflthm haa come other
advantagec. For example, the afgorflhm lc eacy to extend to
beoome a dlcWbuted or parallel algorflhm. In afgorlthm
HYBAIDTC, there Is no fnherent sequence among tfte iteratbnc.
For other algodtfxnc, Ihe recuft of an iteralfon Ic used ac he
input of Ure next fteratlon. In the fogadfhmfo algorithm the
seoond join In each Iteration oan only be started after the ffmt join
finihec. For Ihe d&fbuted venbn of algorithm HYBRIDTC,
eechp~orornodecculworkononeormorepalnofbu~-
eb. Thetuplecgeneratedatoneprooeccorareeltherprooecced
locally or cent b otfrer pmceccom. The only cynohrontzatfon
neededlcutefhalbutnlnatbnofutewholecomputatbn.

Thk dgodthm oan be furtfwr opttmlxed afong the drew-
Uonc proposed. One poccibfflty fc = foflowc: he new tupfec gen-
eratcdarenotonlyftashedontheceoondatMbuteandlnsertcd
into the oorrecpondlng buokeb, but also hashed on the Rrst attd-
bute and Imetied Inb the 8eoond felatbn In lhe job (513.

Thus, more tuplec oan be generated fn eadr lbratlon, and p&or-
manoe Improvement oan be expeoted. Hanever, It Ir somewhat

dtflcult to Implement In real ryrtem rbwa the l lze of 4: will -

change durfng procecdng. S0ttb8 MphlCU&ed memory
management strategy and bucket overffow teohnfquec have to be
developed.

Algorithm HYBRIDTC fc a bar40 algorithm for computing
the cfmple transftlve docun of a relatfond databace. lnterectlng
future wotk Is b u&e II as a bate for extending a relaffond data-
bece management system to lndude trancftfve obcure ac one
back operatbn. To tifeve thb, the algorithm choufd be further
augmented co that more oomplloated trancltfve obcum querfec
can be procesced effkientfy [Agrae’l].

Aofrnowledgement

The author wishes to thank Guy Lohmen who provlded
with cuggestlonc which fmptoved hfc paper.

Referenoec

[D&Vii]

[loan86]

W7l

F-9361

Agrawd, R., “Alpha: An Extensfon of Relatbnal
Algebra b Expresc a Class of Recursive Queries,
In Prvcee&gs of Um Third lnlemaiional Confer-
ence 011 Data Engindng, Lot Ar~elec, CA.,
February 35,1997.

Bandlhon, F., “Naive Evaluation of Recursively
Defined Relatbns, In ProceedqJs of me
Icla~1or8da Wot-kshop on large Scab Know&&e
&se and Reasoniig Systems, Iclamarada, FL,
February 1995.

Banoilhon, F. and Ramalufshnan, R., “An
Amate& IntmduoUon b Rearrcive Query Pro-
cessing Strategies,” In Pmceedngs of tie 19B6
ACMSIG&QD Con~rsncw, Washington, D.C., May
1999.

DeWitt, D. J., Katz, R.H., Olken, F. Shapiro, L. D.,
Btonebraker, M. R., and Wood, D., “Impfementatbn
Techniques for Maln Memory Database Systems,”
In Pmceedngs d tie 1984 ACMSIGMOC Co&u-
enoe, Bo6ton, MA, June 1994.

loannfdii, Y. E., “01 the Computation of the Tranci-
Uve Cbcure of Refaffonal Operations,” in Proceed
ings of he TweltM Inttmaffond Conbrence on
Very Large Date Bases, Kyoto, Japan, Auguct
1999.

Lu, H., Mikkflinenl, K , and Richardson, J. P.,
“Declgn and Evaluation of Algorithms to compute
fhe Transitive Closure of a Database Relation,” ln
Proce8dngs of uta mfd lntam8uolld ctwlft?rance
on Data Enghedng, Lot Angelec, CA., February
3-5, lQ07.

Rosenthal, A., Heiler, S., Dayaf, U., and Mar&, F.,
“Traversal Reambn: A Practical Approach to Sup-
porting Recursive ApplkaUonc,” In Pmcmdhgr of
ttm 1986 ACM-SIGD Con~renoe, Wachlngton,
D.C., May 1996.

Vakfurfez, P., and Boral, H., “EvakraUon of Reour-
clve Ouerlec Uclng Jofn Indloec,” In Pruoce&g8 ol
he 1st hiemdicma/ conft3mm2 on Ekpeti Data-
base sycfenta, chadeston, south carollna, Apta
1986.

274 Proceedings of the 13th VLDB Conference, Brighton 1987

