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ABSTRACT 

A ia* number of aiQorithms haw been developed to 
compute the transitive cbaure of a database relation. Thir paper 
presents two new strategies that furlher reduce the data size 
dynamlcatly durtng the ocmputatbn and rpeed up the cower- 
gence b the least fixed pdnt of Uw bansittve dosum reiation. A 
hash-based algorithm Utat in&grates hese new strategies Is then 
devebped. The performance analysh Mcatea that ule new 
atgodthm outperforms 0Uwr aiQorHhms in most cases. 

1. lntrcductfon 

Recurshre query PlUCBSSiIlQ la one of Ule key pmbfems In 
lnbegrattng database technology and arUfklal lntetllgence technd- 
OQy to devebp experf d&base ayafema. Among the large family 
of rscurshfe quertes, a &ar~siffve cbsurw query, a query whose 
prowslng mqulres Ihe computabn of the transitive dosure of a 
database reiatlon, is a tdattvety simple but very Important ciass 
of reoursive quertes. They em tmportant because (i) a tar~e 
number of recumlve quertes oan be expressed using Uansittve 
dower [Afp87, Ftoae36], (ii) most appkakns problems Invoiv- 
InQ recursive querlea whldl we can see now am actually lransl- 
Uve dosum querfes, and (Iii) efftdent fxucesdn~ of transitive de 
sure queries will provide a sound base for solving more ccmpli- 
oated recursive queries. It la thus not surprtsin~ that much effort 
has been devoted b the effiient computation of the transitive 
doaures of database relations recentty [IoanQQ, LuQ7, RcseQQ, 
Vat&Q]. There is even a tendency to extend relational algebra 
to include Re operation of trandtive dosure in relational data- 
base management rystems [AQraQ7J. 

After examining the avaihbte transitive dosure algorithms 
that am summarized In Section 2, we fed that it k pcssibts to 
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further optimize the ccmputaUcn of the trensitivs dosures of data- 
base relations. In Section 3, two new strategies am presented. 
InSection4,analgo~thmbasedonlherenewstrategieranda 
modfti hash join method b pmposed. Md its performance b 
compared with two previour af~orithms. The last sectbn 
dkcusses some possible extensbns lo the algorithm. 

2. Transfthm Closure of a Databaso Refatlon 

if %(&I) la a trandtive database f&don, its transittve 
dosureR=~isdefinedby 

R-4-p 

ROS-~(X,r)I~Y(Xti* R A WI* s) 

Usln~ relational algebra, this ocmpositlon can be expressed as 

Graphidly, rdatbn 5 can be represented &x a dkected Qraph 
qV,E), where a node 8 E Y represents a domain value of 

a a {&,.A,~.s), and a directed edge e in E, a$ repmenb a 
tupte (a& h the rehtbn &. Then, a node pair (xy) is In the 
bansitlvedowreof%R(or~wheneverlhereisapathof 
tlOK)NWO hQth horn X b y. The bllQf3St @h hQth, that i8, #I@ 
targest number of edQes oomprisin~ a path, is somettmes 
refemd to a Ihe &pUt of Uw translttve dosure. We will fotbw 
the sane conventton in our disa~sston. 

More formally, the transitive cbsure of r&ion & 
represents the derived reiatton R defined by the folbwin~ Horn 
dauses: 

2.1. Algorithms Computing trsnaitive Closure 

In this subsection we are going to briefly summarize the 
atgorithms fwwosed in the ltterature that compute the transittve 
dosum of a database n&ton. These algorithms can be dii 
hb tW0 QroUpS: ift7dvle and E’CU/SibW dQOtithtll6. 
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2.1.1. Iterative Algorithms 

The lteratlve algorithms compute fransltlve closure R of a 
database relalion & by computing the led flxed point of the 
fdlowing equauon: 

A number of algorithms have been developed b implement this 
OOlllpUktbtl. 

Naive algorithm 

The most straightforward method, the nalw algorithm. fof- 
lows the aemantlce of the above least fixed point equation and 
uses the fofbwlng lteraffve program: 

Old-R- %; 
do-( - 

R-oM_Rydd-RQ%; 
AR- R-dd R: 
okiR=R- 

)whG(ARtO) 

Seml4ulvo algorithm 

Thenalvealgorfthmtsfneffblentdnceftusesthewhole 
result datbn generated so far In each lteratbn to obtain more 
mulk and thus duplicates some efforl in Uw oomputatbn. In 
fact only tuplw genefakd In the most recent lteratlon will Intro- 
duce new tuph into the hndUve dosure. The blbwlng algo- 
rlthm elfmlnates such duptbatbn: 

f;J$$ 
wl1ilo(AR#0)~ 

AR=ARol+,; 
AR=AR- R. 
R= RyaRj 

1 

Adoptfng well known tennlndogy [Banc85], this algorithm is 
eded the ad-n&w algorithm. 

Logarithmk atgorithm 

The semf-nafve algorithm optimizes ths oomputatbn of 
hwitive cbsuret? of a refation by redudng the data size involved 
in Uw oomputatbn. Vafdudet and Boral pmpoaed another algo- 
tlthm paId@] hat optlmtzes the oomputalfon by mdudng tie 
number of ltefatkn6 but funding larger dafa sefs during each 
Itefalbn. The al@lhm I6 as follows: 

g’!$&); 

WI=& 
while (AR # 0) { 

&R=tiRO6R; 
AR=RObf); 
R=RvARvW 

I 

In this algorithm, after fteratfon 1, the result relation Rcontains he 

tupks In R&R& * * * ,#‘-1, that k, 

R=&,y%... v#-’ 

Themfore. If the deplh of fhe hnslhe dosure is p, only 
/ml) - 1 lbratbns are needed to oomplete tfle computatfon. 

In lb&on /. hnro join6 em computed. The fkst computes the join 
ofdandF):andIhe~jdnstheresultdmeRrstjohwlth 

the result relaflon obtained In the last iteration. That is, for each 
Iteration, more tuples are processed, and more result tupfes are 
generated than tie naive and semi-naive algorithms. The oom- 
putatbn converges to the least fixed pointer faster. 

Snarl algorithms 

bannidls recently proposed a new set of algorithms, smti 
algorithms. to compute the transitfve cbsure of a relatktn 
[ban66]. A frame work of optimizing the oomputatbn along the 
same dredon as the bgalthmic algorithm was provfded. 
Accordng to the smart algorithms, Ihe transltlve dosure of mla- 
tbn I& Is expressed se 

Rc = ii@* 

With a different m value, different afgoriUvns can be obtained. 
The logarithmic algorithm is actually the special case of m=2. 

R+=( l+/&)(l+@)(l+@)*** 

21.2. Recurrivo Algorithm 

Lu ef d. adapted the Wmn’s algorithm, which is used for 
computing he transhive dosum of a binary relatbn represented 
by a boolean ma&lx. b compute the transltfve cbsure of a dafa- 
base relation [Lu67) This a&prithm Is recursive in nature. When 
atuplefln%~p~ed,aP~ulthrpleddenvabbhomfare 
generated. For lmplementatfon reasons, lhe algorfthm sorts Uw 
refatbnfifstandthenprocessesithtwopasses: 

Ifndsll I in Twhere t.B - fA; 
lneotl { (U. r.E) } into T; 

end; 
tonsch(feTsndtA<otf3jdc 

bgln 
tlndell I in Tuhre 1.8 - rA; 
inewt ( (U. r.9) ) into T; 

md; 

where >D mptwsenk the partial ordering on domain D. 

21.3. Use of Join Indttr 

In order to reduce fhe data fn the unnpufation of transitive 
dosures, Valdwiez and Boral also ruggesbd applying tie kga- 
rfthmb algorithm to a data sbudum called join Indices Instead of 
Ihe mlatlon lkelf [vald86]. A join index on two rehtbns, A(A.4 
and gA,g, b defined as the set of 

whereqands,representthetupbsofRandS. Ifthejoinselec- 
tivity between two relatbns is bw (that is, the number of tuples in 
the result of a join between R and S is far less than the product 
of Ihe number of hrples in R and s), the size of the jdn index 
will be small. Their analysis indkated that both the semi-naive 
and bgadthtnb algorithms perform better when they are applied 
to the join indces than when applied to the original relations. 
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2.1.4. Dircussfon 

We have b&fly summarized the major algorithms pm 
posed h ths literature that axnpub the bansltive dosure of a 
database relation. Except he naive algorithm, which Is 
apparentfy hefflcient, other iterattve algortthms and the recursive 
algorithm have their own merits and defldendes. The real per- 
formance will depend on Ihe appkatbn end the characterfstics of 
the relatbn for whkh he translUve closure Is computed [loan66, 
LuU7, Vald86). 

3. New Stmlegks GpttmWng the Cemputetion 

In thh en. we am f@ng b propose two new stra- 
tegles that further optlmlze he computation of tie hnsltlve de 
sum of a databr~ relation. We first assume that the relation we 
are dealing with Is so large that It b Impossible to hold all Its 
tuplss h maln memory. In this case the computation of transitfve 
dosum, no matter which algorithm is used, mqufres a large 
number of join, unian and set dfference operations on very large 
relatbne. t ParUtbdng a voy large relatbn Inb smaller dsjolnt 
partftlons has been proved a reasonable way to dramatically 
reduce the 03s~ of joln operatbn on we relattons [DeWlsd]. 
Solh Ihe analysis of tie recur&m al@thm [Lu87j and the bga- 
tltilc algmfthm (ValdUS] are based on he hash joh method. 
We assums lhat ths same technique Is used In our dscussbn. 

3.1. stmtegyl:ReduoetheSfzeof& 

Compared to the nalve atgorlthm, the sml-naive algorithm 
focus on ellminatln~ the &qkatbn of computatbn by only using 
the newly Qmmhid tuples as one of the souse reiatbns of the 
join In he next ltefatlon. However, none of the prevbus atgct 
dlhms tied to rec&ce the dze of another source m&ton ln the 
join operaUon, retatfon &. Since relatbn I& b used in each 
bratton, its slxe perhaps has more influence on the performance 
of the transitive dosure atgodthms. 

Our fbst opUmlxaUun strategy is to eliminate dynamically 
ulose hrples from relauon & Rat will not gf#nerate tuples in the 
result relation h the tabr iterations. The next example h used to 
explah the slfab&)y. RelaUan 5 conslsbs of 13 tupfes. Figure 1 

isaereph~mb% 

Table 1 shows Ihe bples generated during oomputin~ 5. 
Forthe~vealgorlthm,thefkstlteraUonjohs~wfth~ 
and generam dR,=&,oFb, whkh constsk of 12 tuples. T&i- 
uonally,th666conditefauonwllljoh~wlth~~togen- 
erats A&+%. However, if we examine the job process. 
wacanfhdIhatsomebpfesh~wfUneverintroducenew 
t&s. Thesebptes,inthecolumnof~abouethedottedUne, 
canaduaUybemmovedfrom~wtthoutaffedlngthefhalresuft 
Anewrelatkn%lfonnedlnthlswaycanbeueedhIhesecond 
iteration b compute A&. In this example. I&’ consists of only 6 
tuples, less Um 60 percent of & 

Flgure 2 Usls algorithm REDUCE, an algorithmic dascrip 
lion of Uw suggested strategy for redudng the size of mlatbn & 
llw notation used Is slmllar b lhat used h the semi-nahre algo- 
rithm:~relaUons~~jdnedIniteratknl~aR,and~. AR, 
contahs new h~ples h Um transltfve closure generated h the 
(Cl)” itaratbn. Rdatbn 4 = & and R& fs reduced to @, 
which ls to be used In the next Ibratlon to join wfth A&,. Note 
that algorithm REDUCE as descrfbed above is for general cases. 
For a par&k atgortthm, for example. the semf-naive algorithm, 
theremovdoftt@esfromaR,fsonlyneededforthefimtltere 
Uon of join I+, and &: for the ssml-nalve algorfhm, Al?, only 
cmtahs newly generated tuples which am not In &, 

FIgurn 1: Graph of Rdatton & 

Table 1: Computing & 

Algorllhm REDUCE: 
input : Two intermed&e relations AR, and 4 
ou(pUt:Relation@’ 

Wn 
nput 

knachtupbk/+do 
aab 

tfAf?pt-0 
thm bqln 

nmovsfhomf& 
Hfe AR, 
tlmnmmonthumAR~ 

ti 

Figure 2: Algorithm Reducing the Size of FtO. 

Graphically, removing tupfes zw described tn the elgorlthm 
Is Ihe process of removing outgdng edges from nodes satisfying 
Uwfollowingcondlthns:(l)lhereisnohaMlhg6dgeb~ 
node,and(Y)alloutgoingedOesarealready~(otherela- 
Uon. The second condtion is automaticatly satisfied because ths 
original relation 5 is copied hb the result Since Ihere Is no 
hcomingedgebthenode,nomorepathscanbegenerabdvia 
~node,andIbremovalhomthegraphwilnotloseresul~.In 
the abovs example. node 1 has no lmxxning edges; after Ute 
edOesstartedfromItarelnsertedbIheredultrelatkn,itcenbe 
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removed along wfth those edges. This removal of nods 1 further 
causes the removal of nodes 2 and 3, rlnce only lnccming edges 
fornodss2and3arefromnodel. 

For large database relallons, lt will be very expensive H 
afgorltfun REDUCE ls implemented as It ts de&bed in Figure 2. 
In tffe next se&n, one fx@ble lmplementatlon is dssalbecl 
whkh modlfles Urhe hash join metffod to dynamically reduce the 
size of 5 wllhout heavy overhead. Another pdnt we would like 
b make is lhat &is rfrategy fms some fhvor of using join lndces 
b compute ths bansltlve dosure phld66]: only those bples 
which we johtble em kept for oomputaUon. However, Joln 
lndlces we rfatlo data sbuctures and do not cf’fangs for different 
lterdonr of &e cofnputatbn. In our algorfUun, rlxe reductbn b 
dynamlcafly wed. We have the benefit of redudng the data 
size WlUtout the dSadvantaQe assodated with join indices: the 
costs of generaUng Ihe Join lndces and mafntafnlng fhem in a 
database; he dfficuiQ of determining which relations and on 
which attribute8 Ihe jdn lndces should be mafntdned; snd the 
compled~ b de&mine whether it is beneklal to use he join 
hdkes. 

3.2. stmtegy 2: sped up the collwrgonco 

The number of lteratbns needed to complete Ure transitive 
cbsure compufafbn fs another source of ofMfmizaticn. Ths bga- 
tithmlo algorithm and smart algorlBms outperform Ure seminsfvs 
afgorltfrm dnce they generate more lupfes In one iteration and 
fewer kmUons are needed. Intultlvefy, Ihe sourcs relsUon8 are 
only read from he disks once In one Iteration. The more tupfes 
generated ln one iteration, Ihe fewer number of lteratfons needed 
b compleb the computation. Thus, one of the major processing 
costs, dsk l/Ck for reading in Ihe source relation, is reduced. 
The CPU cost, such a~ rehashing, if hash join Is used, is also 
reduced par@. The savings gives Ihe logarithmic and smart algo- 
rithm better f&orm~ [Vald%,lenn67). 

The rtmrshre algorithm Is an extreme along fhis drechn: 
when a tupfe k proces&, afl tuples derivable from this tuple are 
generated. The performance of the algorithm Q irrelevant to fhe 
maximum palh length of the bansiffve closure of the relation. If 
then, are soms very long pafhs in the fransitfve dosure, this algo- 
rithm will outfMorm Ufe lteratlve algorithms. The limltaUon of 
thhalgorHhmkIha;InordertofhdaWhrpl~derlvablefroma 
tuple, the fIfwesdng fms he flavor of the depth-first sear&. In 
cases where the size of memory Is much smaller tffan tffe rela- 
tion size, a large amount of disk access is required, which leads 
b bad perbmam [Lu87j. 

Ths strategy ruggesbd here combines Ihe Ibrathm 
metfw& WIUI Ihe t-ecu&e algorithm. For each pair of buckets 
which CM be hekl in maln memory, all tuples In the transltfvs do- 
sum d&able from them are generated. These tupfes are output 
either b the conespondng buckets for furfher proc%slng 01 to 
the find result mlatbn. 

Algorithm PROCESSING in hure 3 describes the algo- 
Mm of processing the r” budret pair in the ti lterafbn using the 
strategy. A*’ contains (he tupler generated in iteraUon Cl and 
is hashed on Uw second atbibute. 4: is he corresponding 

bucket parUtbnsd on Ihe first attrfbub. RI b the P bucket of the 
multrektbn~titransitivedosureof~ FunctlonGetEuck- 
etNo() returns he bud& number a tupls belongs to when hash- 
ing on he second etbibute. The algorithm works as follows: for 
each tuple 1(a,b) h A@‘, it finds atI mabfhg tupies from I$&. 

Newtuplesarebrmedandhashedontfresecondatfributeb 
findtfmbuckefsbwhwhlchthetuplesbelong. Thetuplesfaiifngb 
UwcurrentfxJcketareusedbfurWrprobeIhefwhtat4e. 

Algortthm PROCESSING: 
Input : A pair of buckeb, A*‘. !$: 

Output : Tuple~8 In the bnndtive douue of 4 
(inssfted Into cafreoponding takeb) 

Wn 
fowchbrplefinA@do 

*: 

bure 3: Algcdthm PROCESSING. 

Tupfec of other buckets are output b fhe corresponding buckets. 
Theyereellherpr~In~e~eiteraUon(Hthebucket~ 
not been processed yet), or processed fn Ure next Iteration. For 
each tuple, ti processing will terminate when cydic Qta (a 
tupfs 1(a,e) Is obtained) is encountered, or no more matching 
tuples can be found In F&,% 

We use a simple example to expfafn the algorithm. Rela- 
tion 4 shown in Figure 4 consists of 6 tuples. They are parti- 
Uoned into two pairs of buckets, (Rbo,,R$,) and (&s,f$). on 

atfrlbute b and a, respectively, because of the Umitatbn of 
memory size. A tuple f(a,b)E R$, fff hesh(tb) in (1, 2, 3) end 

I(qb)ER$+ lff hasytb) in (4, 5, 6). ParUUons R”s, and R$ are 

fcrmed in a cimilaf way. 

Tablo 2 shows the tuples generabd during computing 4 
using the algorithm. The computation starts with the fkst pair of 
buckets, A@ = R”‘, and I&, = R’o,. Algortmm PRGCESSING 

is applied and tfte result tuples are hashed on the second athf- 
bute. lhose tuples wlfh hash vaktes in (4,5.8) (five of them h 
hk example) iy8 md b the bucket Aa (as shown in the 
figumundertidottediii). Ofhwfupfes(inhiicase,hree) 
~output~Ihen3sl4Jt Thesecaldpdrofkrdcetsispro- 
cased In a rbnlar way. The dfference is thaf ffte tuples gen- 
erated with tie hash vafue of the second aftrbute In (1,2,3} are 
used b form A*, which b3 uscad in the IWXI iteration. t 

This strategy can be explained lntuitfvefy with the graphic 
representation of 4 as follows: The hashing technique partitions 
he directed graph, 6 into a number of subgraphs Cip, An edge 

cpfrbisinwbgraphOo,NfbhInbucketI. Foreachedgeee 

C&, ( Lb ), afgorlthm PROCESSING fmds all paths that start 

fromnodeaandarecontainedinsubgtaph~, Ifthereba 

palh leading to a node c in another subgraph. Go/ fhe ouPut of 
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Table 2: An Example of Using Strategy 2. 

ahrple(dc)bbucket~dwingtheprooesslngcanbeviewed 
aslnserUnganMe~andanedge&+clnsubgraph~, There- 

fore, any path starling from node a in subgraph G&, and ending 

with another nods b In subgraph C&, can be Internally found In 

subaraph Gpb” on* 

The dfectkmss of lhis strategy is cl&y shown by Ihe 
example in Figure 4. The longest palh in the transltlve dosure 
includer five edp (1-+2+&4-r&1), whkh rec&Jlms five 
iterations for tie semi-naive algorithms and Uuee Mations for 
the b~arlthmlo algorfthm. However, onfy two iteratbns are 
needed using our sbategy. 

From tha example, we can also see some savings other 
than tie re&ctbn of Ihe number of iterations. In the previous 
iterative alplthms, new tuples generabd cMng computatbn 
have b be read in at least onoe to join with tie orfginal rebtlon. 
In our rtrabegy, the msult tuples mng to tie paths which 
donotaosrtheborderof~ubgraphrsrenotreedInqain. In 
the example, &nong 28 tuplec Q@llW@Ed In ule bm6illW dosure 
(exduding the OdQilWi tuple!a In &), only 12 tuflles are written out 
and then reread in for later processing. 
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4. Algorlthm HYBRIDTC 

In this section, we desoribe a hash-based trandtlve do- 
sure algorithm. It Integrates the rtrategles de&bed In the fast 
section. Slnm Ihis algorithm combines Ihe merits of both itera- 
tive and recursive methods, we name it algorithm HYWDTC (a 
hywd transitive dowre algorithm). 

4.1. The Algorfthm 

Ngorlthm HYBRIDTC; 
Inpul : ralatlon 5 

than PrcceasingBudcet Q, k, A@, &,$; 

etaeAR::-0; 
tar i :- 1 to N do 

vn A@:-A/$-b+; 
until all A/?fs are empty; 
R:- v R,; 

IsisM 
mld. 

Figure 5: Algorithm HYDRIDTC. 

The algorithm Is shown In Figure 5. Relation 5 Is pad- 
ekned~to~setr,d~ona~bu~e%.Aand~Earin 
traditional hash Jdns. Thtwe two set of bud&s am denoted by 
5,! and 5,’ (1 S Is hl), respectfvely. We will use subscripts to 

denote the bud& number and supe%odpts b denote the i&a- 
tbnnumber. Letb~contahthenewbuplecinthefransitivedo- 
sure that bebng to bucket i ( hashed on attrfbute e) generated 
dutlng Ute (I#’ lteratfon, and Rok be ti reduced bucket I of 

5 after (k-l) karations. The bucLt pafr processed in the P 
iteration ls AR/ and 5,‘f where AR{ = 5,!‘, and 5; = 5,‘. 

After &e rqlation is pprtitfoned, tie Ah (YB initialized to 
be the cormpondlng set of buckeb. The procesdng of bucket 
palm proceeds ltaratively unl ell A@3 am empty for the fl itera- 
tlcm. Since ARK contains the most recently generated tupies, and 
5: I6 also reduced during each iteration, procedure Processing- 

&c&et is only called when both of them am nonempty. During 
the processing of bucket pair A/?1 and 5:, some result tuples 
IYB inserted Into R, and others are InseMi to other buckeLp 
AR, (/+ I), as desaibed In algorithm PROCESSING. After each 
fteratbn If, dupkates are eliminated from the A@+‘8 whti are 
going to be used In the next lteratfon. 

The unbn and duplicate elimination procedures are Uw 
same as any trandtlve dosure afgoriUuns, and we are not going 
todscuss~mhere. Flgure6andFigure7giveonepassibb 
implementation of the plocedums Ruces&gBu&et and &uces- 
singTup!a. In this Implementation, a hash table is consttucted 
br Rq as in h hditkd hash join atgorlthmr. However, ens 
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pmoedura PKl6666Jn@u&6t 
( buc3wno, lbrauon : lnbg6r; 

tIei- budtetR0 : budcob ); 
Wn 

BuildtiashT&le(budcotRo); 
tonMhtUpklftd-dO 

ProceulngTuple@udMno, Iteralion. tuple); 
kroaoh tupk In 60 huh tablo do 

It bpb.nlafk 
then outpumuckotRo(tuplo,krdrom,I~tl#l+l); 

end: 

Rgure 6: Pro6edum6 Pmcessb7gBu~el 

extrafMd”rrudCkaddedbthehashtabteen6y. ltkusedto 
mark Ute hrpler aduaity padfdpathg In ti Joh. Procedurs Pxh 
casshgTu~ Is called for each brpla h dellabucket (A@). After 
all tuples have been procsesed, only those marked tupfes are 
wrlml baok by calling ptnce&Jm oulpumudtetR9 lo form I?$+,. 

prooedun ProcsssingTuple 
( budwmo, IteraUon: integer; inputuple : TupbType ); 

vu curmnUupb. matchtupb. nawtupb : TupleType; 
rwwbudwm : Integer; 

Wn 
~~SWinplthrrWo); 
whlk (NOT EmptyStack) do 

Wn 
cwrenttupb j PopSladc 
H (cumnHupb.a o currentluple.b) 
then bogin 

matchtuple :- LookUp(cwenUup&); 
fomach matchtupledo 

Wn 
If (NOT mat&tupk.m&) 
then makhtupb.mak :- truq 
newtupb ‘r FonnTupb ( awrenkpb.a. 

matchtupkb); 
rwhucbw :- GetBucketNo(nentuple); 
If (newbudwblo - budwblo) 
than PuohStadc(newiupl0); 
W(-<bucb3tno) 
then OWuWW~e, 

nswbudwtno, ltefatlon+l); 

lf(->km) 
thn Ou@utDeka(newluple, 

n6wbudwtno, lbralbn); 
md; 

flgurw 7: Procedwe of Proc666lng a Tuple In A@. 

Procedure PnnawshgTuple lmpkment6 strategy 2 uskg a 
stack d tupkr. Pu&Sfa& fb@fa& and EmptySack am pro- 
cedur6eandfundkn6manlpul6llngthe6lttdt. Thetupleonlhe 
togoftherSadcburedlpkok~the~htableto~ndmatichee. 
lhose matching tupk6 nan be dvfd6d Into three cabgotie6 
accordng t6 Ute bucket lt belong6 b. The bucket number of a 
tuple Is returned by funotbn GetBucketNo. The hrples of other 
buczketn am Inserted b A/?’ b&k by proc6&re OufputDefta. 
The luplss of current prnc666kg bucket6 are pushed onto the 
stsck f6r later pmo666ing. Thl6 process continue6 until the stack 
is empty. 

The advantage of u6kg a &a& Is it6 simplicity. Another 
advantage, perhap a more Important one, t6 ease of memory 

management. If there Is a large number of tuples derived from - 
some particular tuple in the b&et which leads to a full stack, we 
am just wtlte part of the bottom of the stack on the disk and 
reread it back In to free memory 6pac6 later on for continuing the 
process. Thrw, algorithm HYBRIDTC doe6 not Introduce new 
ls6ues In memory management Techniques of partitbning a 
relation Into buckets and of handing overflow bucket6 developed 
In hash joln method6 can bs directty used. 

Now, we prove th6 folkwlng Lemma: 

Lemma: Algodihm HYBRIDTC conact& computes Ihe bpnollyvp 
ckxu~9 of a d&these tddon. 

Pmof: The proof of the Lemma eon6btr of two par@. Flnt, w6 
have already explained In Se&n 2 that tie removal of 
unmarked tupks, the tupl66 not partktpating ln the join ln 616 
current lteratkn, will not lead to bss of the result tuples. Second, 
we prove that the algorfthm will find all tuples In he transltkm ck 
sum. In other words, the algorithm can find all paths In graph q 
ifrdatkn ~isrepmsentedby00. Letpbeapalhofgraph G,. 
It is obvious that. if all nodes on path p are contained in one sub- 
graph of 0, Um path can bs found by the algorithm when the 
correspondng bucket6 ars processed. It Is more likely that paths 

cross over the border of subgraphs. Let e, (aftb) 6 6. be an 
edge,andtheendnodesdobeaandb.andtheyarein~o 
different s&graphs, C&, and Go/ respectively. Then tuple (66) is 

in bucket j. During processing of bucket j, all paths of p starling 
frombandendingatsomenodesyiin~,canbefound,anda 

set d tuples { (b. y,), . . . , (b, y), . ..} is generated. If there sre 
SOIIW paths starting from some node Xi and ending at node a, the 
processing of bucket iwill not only generate a set of tupks (xja}, 
but also ganerata a set of tupks {X&I). They an3 inserted Into 
buc4cet j. Thus. in he next iteration of processing bucket j, ait 
paths starling from nods xi and ending at nods y/ can be found. 
Ths proof can bs extended to the paths across any number of 
Mlrapt@. 0 

4.2. Performance Comprrkonr 

Quatiitively. algorithm HYBRIDTC i6 expected to knprov6 
performance h the folbwlng ways: 

(1) Reduce the nunbar of i&aiions. 

For the semi-naive and kgarflhmk algorithms, only paths 
wlth certain lengths can be found In each iteratkn. The 
number of Jteratkn6 needed to complete the axnputatkn 
k determIned by ale depth of the transifive do6ur6, alat 63, 
lh6 bngest palh. Foe algorithm HYBRIDTC. palhs am- 
talned in a subgraph can be generated in a single iteratkn 
no matter how bng it b3. Furlhermore, the later processed 
buckat make use of the new tuples generated by the 
bwkels whkh have been pmcessed in the same iteration. 
As a r66ult, the number of Iterations needsd largety 
depends on how the reblbn Is partltkned and Is usually 
less than the deplh of he transltlve closure. The reduo 
tbn In ths number of IteralJons at least reduces the disk 
Vo needed to read In 4 and CPU Ume for constructing 
the hash tables. 

(2) Ra&caLYIenumbaroi&kYCMnaadadktwadIntha 
delta relations. 

For both the semi-naive and kqarilhmb algorithms, the 
result tuples generaW in one iteration have b be written 
bIhedskandreadina~h~nextIteratbn. How- 
BYBT, 61 algorithm HYBFUDTC. the tupfes generated h ona 
Heretlonneedto~readInaOalnonlyIflheybekngto 
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other buckets. Again, the extent of this savtngs largely 
depends on the data dlstrlbutbn and the partltbns. 

(3) R4dce fh13 he d tie 8oum9 n3Won. 

As explained In Se&n 2, the souroe rdaUon used to 
compute the banslttve dosure ls dynamlcaUy reduced dur- 
ing processing. oompared to the constant sire ln Ihe 
semi-naive algorithm and no optlmizatbn In the kga- 
rlthmb algofithm. 

Any quantitative analysis of algorithm HYBRIDTC is 
dUficulf since the performance will wuy drematbally with different 
data chamotdrtbs and the padtkmlng. In order to validate our 
qualhatlve natysls above, we made some comparisons between 
the perfomtance of the semi-naive algodthm, the logarfthmlc 
algodthm, and algorfthm HYBRIDTC as bllow~ 

(1) Ths data model proposed by Bancilhon and Ramakrish- 
nan [Ban&61 Is used. We examined two simple cases, 
I&s and trees having fanout 2. 

(2) We use the number of tuples read in during the computa- 
tbn as the performana3 measure for the comparison. 
This number roughly reflects he total costs of the compu- 
tatbn. The lager the number Is. the more disk t/O cost 
and CPU cost for constructtng the hash tables. Further- 
more, we assume that dupitcation elimination costs are the 
same for all three atgorithms, and they are not taken into 
account 

(3) Some of the lmplementatbn details am ignored. For 
example, for the semi-naive algorithm and the l~arithmk 
algorithm, we only cakutate the total number of hrples of 
two refatlons joined in each relatbn. This number is 
lherefom Independent of the memory size and the number 
of hash buckets. We actually assume that the pipeline 
method is used to reducs the number of diik l/OS [L&7). 
That is, each hrple in the transiUve dosure only oounts 
once: no sepatak part&n phass ls assumed. 

with the above assumptions, the total number of tuples for 
the semi-naive and the bgarithmk algorithms are calculated as 
follows: 

For the semi-naive aborithm, h iterations are needsd to 
generate all tuples In the transitive closure. One more iteration is 
actually completed, resulting ln the termination of tlm computa- 
tion. Dub each lteratlon, there Is only one join. The total 
number of tuples partidpatfng in the jdn operatbns is: 

The number of Iterations needed &I the logarithmic algo- 
rithm, &, ls determined by k= htl) - 1. For each lteratbn I, 
there are two joins: the join of % wlth R! and the jojn,of the result 

tuplesinthetransitlvedosuresofar,whkhts jdwtththe 

newly generated relatbn @! The total number of tuples partid- 
pating In the computation b: 

The number of tuples read In algorithm HYBRIDTC is 
obtained by slmutation: a program was coded to implement the 
algorithm In memory. A random number generator was used to 
assign bucket numbers for krptes. The corresponding buckets 
were ulun jolned lterttuvely to compute the bansltlve dosum 
When each bucket pak was pmces& the number of tuples In 

the buckets was counted. The total number of tuples mad ln 
could PIUS be obtained. In Ute slmulatbn, we used a small 
budcet size (typically each bucket contains 10 tuples). Therefore 
the slmulatlon actualty does not favor algorithm HYBRIDTC. 
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Figwe 8: Performance Compersion 1 ( &: List). 
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Flgure 9: Performance Comparsbn 2 ( &: Tree). 

The resull of this comparison b shown ln Figures 8 and 9. 
The lengths of the lists vary from 100 to 1024. The tree depth 
varlesfrom4to12.Thecompa&onusesthenumberoftuplesin 
II-be semi-naive algorithm as a reference. The ratio of 
bgarkhmldsemi-nalv and hybrfd/seml-nalve are computed. The 
results ln the figures show that algorithm HYBRIDTC consistently 
oulperforms the other two algorithms. For lists, the ratio 
hyM&emi-nalve Is about 50 percent. However, the ratio of 
bgarithmk/semlnaive is about 60 to 70 percent. This result b 
expected as we dlscusd above. 

In both Rgures, the ratio of lo@thmk to semi-naive is not 
momtonb. Bometlmes, the seml-nafve algorithm even outper- 
form the logarlthmk algorithm. This happens when the depth ls 
just larger than 2’! lhb ls atso observed by loannlds [loan86]. 
The explanation b that the number of iteratbns of the logarlthmic 
algorithm is determined by the de@. When the depth increases 
to past 2&, fhe number of lteratbns Increases by 1. That Ir, 
enother lteratkn Is required to complete the computatton to ftnd 
just a few more tuptss. That ls one dsadvantage of the loga- 
rlthmlc algodthm. 
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Figure 10: Performanoe vs. Number of Buckets ( 5: Lkt). 

We dd not compare the performance of afgorithm 
HYBRIDTC wilh he teourcive afgorithm. lb pedomwnoe 
becomes much wome then the kgadthmic algorithm when tie 
memory clxe k small, oompamd with the relation cite [Lu97j. 
However, algorithm HYBRIDTC stiff performs better ban the 
other two a@rfthnw, even In hi case. Figure 10 illuctratec the 
number of dck Vo tupfec wfth the different number of buoketc 
into which the relation fc partitbned. When we fnorease Ihe 
number of krokeb, which cimubtec smaller and smaller bucket 
size, the number of dck f/O hrpfec afso increases. However, H is 
still lee43 than what needed in the other two algorithms. 

5. Conofuotono 

We have diicced two strategies which optimize the 
oomputatlon of the transitfve docure of a database relation. We 
also presented a hash-based algorithm that integrates these two 
stratsgies together. The afgorithm is easy to implement in real 
systems by modifying Ihe traditional hash join methods. A simple 
pedomance analyck was oonduotcd, and the results fndcate 
that tfte new algotlthm does outpehm pmbuc algorithms. 
Thlc pcdofmanoe mdyclc k far from complete. However, It 
doec pro* the evfdenoe Utat our new ctrategtec in optlmfzatlon 
are In the rfgftt dkeotbn. Father dctalfed fmpfementatbn In refa- 
Uonal dakbace systems and performance anafyclc k one of the 
possible pmjeob for future work. 

Beddos bettar petformanoe, he dgoflthm haa come other 
advantagec. For example, the afgorflhm lc eacy to extend to 
beoome a dlcWbuted or parallel algorflhm. In afgorlthm 
HYBAIDTC, there Is no fnherent sequence among tfte iteratbnc. 
For other algodtfxnc, Ihe recuft of an iteralfon Ic used ac he 
input of Ure next fteratlon. In the fogadfhmfo algorithm the 
seoond join In each Iteration oan only be started after the ffmt join 
finihec. For Ihe d&fbuted venbn of algorithm HYBRIDTC, 
eechp~orornodecculworkononeormorepalnofbu~- 
eb. Thetuplecgeneratedatoneprooeccorareeltherprooecced 
locally or cent b otfrer pmceccom. The only cynohrontzatfon 
neededlcutefhalbutnlnatbnofutewholecomputatbn. 

Thk dgodthm oan be furtfwr opttmlxed afong the drew- 
Uonc proposed. One poccibfflty fc = foflowc: he new tupfec gen- 
eratcdarenotonlyftashedontheceoondatMbuteandlnsertcd 
into the oorrecpondlng buokeb, but also hashed on the Rrst attd- 
bute and Imetied Inb the 8eoond felatbn In lhe job (513. 

Thus, more tuplec oan be generated fn eadr lbratlon, and p&or- 
manoe Improvement oan be expeoted. Hanever, It Ir somewhat 

dtflcult to Implement In real ryrtem rbwa the l lze of 4: will - 

change durfng procecdng. S0ttb8 MphlCU&ed memory 
management strategy and bucket overffow teohnfquec have to be 
developed. 

Algorithm HYBRIDTC fc a bar40 algorithm for computing 
the cfmple transftlve docun of a relatfond databace. lnterectlng 
future wotk Is b u&e II as a bate for extending a relaffond data- 
bece management system to lndude trancftfve obcure ac one 
back operatbn. To tifeve thb, the algorithm choufd be further 
augmented co that more oomplloated trancltfve obcum querfec 
can be procesced effkientfy [Agrae’l]. 
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