
AN EXTENDED DISJUNCTIVE NORMAL FORM APPROACH FOR
OPTIMIZING RECURSIVE LOGIC QUERIES IN LOOSELY COUPLED ENVIRONMENTS

Kyu-Young Whang
Shamkant B. Navathei

IBM Themes J. Watson Research Center
P. 0. Box 704, Yorktown Heights, New York 10598

AIisTRAcr

We present an approach to processing logic queries in loosely
coupled environments. We emphasize the importance of the loose
coupling technique as a practkal solution to provide deductive ca-
pabiities to existing DBMS+especially when an efficient access to
a very large database is required in the. process of inferencing. We
propose the Extended Disjunctive Normal Form (EDNF) as the
basis of our approach. The EDNF is an extension of the disjunctive
normal form of relational algebra expressions so as to include
recursion. The EDNF is well suited for a loosely coupled environ-
ment, where an existing DBMS and optimiition can be fully ex-
ploited. It also serves as a clear, graphical characterixation of
various recursions that can occur in logic queries. We first present
the basic form of the EDNF and then use it as a building block to
process a more general class of queries. We extend valid usage of
Clark% negation-as-failure evaluation technique to incorporate ne-
gation for most practical situations. We also propose new criteria
for safety and termination in the presence of negation. To the extent
of the authors’ knowledge, optimixation in loosely coupled environ-
ments has not been seriously addressed in previous research. We
believe our technique provides significant progress in this dhection.

. 1.0 Inmdudm

Recently, a number of studies [Ull85, Ban86, Ban86a, Vie86,
Boc86. Kri86, Kif86, Kif86a. Loz85, Sac86, Agr87. Jag87a, Mac81,
Van861 have concentrated on providing inferencing capabilities to
traditional databases. These facilities are geared so that complex
views, especially those involving recursion, can be supported. The
view mechanisms in the present DBMSs support no derivation of
information besides straightforward relational operations. The work
to-date ln this area has focused on PROLOG as an inference lan-
guage for DBMSs due to the “natural fit” between PROLOG and
the relational data model. Allowing a language such as PROLOG
as the query language provides the system with the power of Hom-
clause logic &3 well as the inherent theorem-proving capability.

I Pemmuttt Addrcs Database Systems R md D. Center. University of
Fhida,E-46OcsEBki&,~,FL32611.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and the
title of the publication and its date appear, and notice is given that
copying is by permission of the Very Large Data Base Endow-
ment. To copy otherwise, or to republish, requires a fee and/or spc-
cial permission from the Endowment.

WeproposeinthispPpcranq~’ ’ ~‘mteclm@xmofpmviding
thesecP~b~~tormexistingDB~inaboeljr~nrarmct,
especially when an efficient access to a very large database (that
cannotfitinmainmemory)is~~inthepnmssaf~e~~.
Although the Ioose coupling idea has been introduced in the litera-
ture, to the extent of the authors’ knowledge, optlmixation aspects
have not been seriously addremed.

1.1 Issues in Recursive Query Processing and
Previous Research

Inthissectionwehighlighttheissuestbnthevebeenaddnsaed
in the previous research. An excellent survey of the work as of
mid-1985 appears in [Ban86]. From an overall analysk of the pre-
vious research, we conclude that a viable and efficient strategy for
pxocessing recursive queries in a deductive database shoukl provide
the followin characterist&

l FeasIhllltyarul~ Itshouldhaveaguaranteedtermi-
nation and produce a correctresult.

l Coup& eff&uey: For databases having a large amount of
data on secondary storage, it should provide an efficient access
totbedata.

0 seamhmg~: Itshouldha~theFRDproperty(Focus
on Relewnt Doto) [Vie86, Nic86]. This property may be fur-
ther divided into FRD-A and FRD-B properties as follows:
. FRD-A: It should not process irrelevant tuples, which am

not necesmy to formulate the results.
0 FRD-B: It should not process the rekvant tuples repeat-

edly (i.e., no duplication).

To determine the feasibility of a given approach, the following
issues must be carefully considered
1. Cyelk Dam: Cycles in data cause certain evaluation algorithms

to get ioto an infiuite loop. For example, suppose we have a
relation FLIGHT that shows the origin and de&mtion cities
of flights: the relation contains tuples <new yo* Chicago>,
<chicago, dallas>, and &llas, new york>. Consider the
rules:

l7%ch(x.Y):- flight(XY)
reach(X,Y):- reach(X,Z), flight(Z,y)

If a query such as ?reach(X, new york) or ?reach(chicago. Y)
islssuedagainsttherelarjonFLIGHT,In~spporches,tlle

Proceedings of the 13th VLDB Conference, Brighton 1987 275

evaluation algorithm gets into infinite recursion. For example,
PROLGG has this problem, and so does Counting [Ban86a].
.The approach we propose is able to deal with cycles in data and
poses no termination problem. In general, approaches classi-
fii as “bottom up” [Ban863 are capable of dealing with cycles
in data without any difficulty.

Negatlou: A number of existing approaches totally disallow
negation since it violates the definition of Horn-clause logic
In Section 4 we extend Clark’s negation-a+failure evaluation
technique [CLA78] to handle negation in most practical cases.
Extension of negation as failure for general first-order logic
databases is discussed in [~aq86]. More scrutiny on negation
in conjunction with the closed-world assumption [Rei781 ap-
peprs in [Nq86al.

Safety: The safety issue deals with the sixe of the final or
iotemmliate results of a query. A qwry is safe if the final n-
sult is finite. We also define query execution to be safe if all the
intermediate results are fioite. To guarantee safety of the
query and query execution, we require rules to be “bottom-up
evaluable” [Ban86]. To handle the case of negation properly,
we extend the definition of bottom-up evaluability in Section
4.
N~ncrpsioll: A nxursive rule P :- Pl, P2,..., Pn is lineur
ifthereexistsoneandonlyonePiinthebodyofthenrlethat
is mutually recursive with P [Ba1186]. A rule is nonhem if
there is more than one Pi that is mutually recursive with P.
Further, a set of rules is linear/nonlinear if every/any rule in
that set is linear/nonlinear. The approach we propose is able
to handle both linear and nonlinear rules.

A wide range of approaches to providing the DBMS with de-
ductive capabilities have been Proposed
[Cha85,Vie86,Boc86~Ban86,Kif86]. In one set of approaches,
classifii as tight coupling, a DBMS is extended to incorporate rule
management and inferencing, thereby integrating the database ca-
pabilities with deductive capabilities. However, such approaches
have not exploited the query optimization techniques existing in the
DBMSs.

The other set of approaches is classified as loose coupling. In the
loose coupling philosophy, a DBMS is considered a complete, inde-
pendent system. The communication with the DBMS is supposed
to occur at the level of a database query language (in our case SQL).
This approach has the following potential advantages:

l It allows one to use a relational DBMS without having to re-
design (and reimplement) it.

l It allows the full power of relational query optimization to be
exploited while retaining the option of performing additional
optimlxatioo in the logic program itself.

In loose coupling, however, care must be taken to achieve effi-
cient database access. For example, in a technique that we term
nuiw loose coupling, requests are made to the DBMS whenever the
necessary data reside in the DBMS. However, this technique may
cause excessive database access that could lead to tuple-by-tuple
access to data in the worst case. Typically, interpretation (vs. com-
pilation) is dominant in naive coupling.

276

I0 the type of loose coupling we propose (smurt loose coupling),
compilation [UllSS, Hen84.1 is preferred to interpretation. Thus, a
logic query is compiled into a small number of database queries
(with possible iterative constructs) to run on the DBMS. Since
queries are formulated at the granularity of entire relations or col-
lections of them, any tuple-by-tuple transfer of data between the
DBMS and the logic prog raouniog environment is strictly avoided.
For example, suppose we have a rule a(X,Y) :- b(X,Z), c(Z,Y),
where there are 1000 tuples each satisfying the predicates b and C.

Consider a query ?a(X,Y). In naive loose coupling, with a Prolog-
like depth-first search strategy, processing the query requires 1001
calls to the DBMS. In smart loose coupling, on the othe hand, we
need only one database query, which is the join of b and c.

The technique used in PROSQL [Cha85] allows both naive and
smart loose coupling. However, in this system, the user is repons~ble
for the translation between the logic program and SQL queries.
Jarke et al. [Jar841 discusse a loose coupling approach, but it is lhn-
ited to a nonrecursive part of the Prolog program without negation.
The system EDUCE/DEDGIN [Boc86,Nic86,Vie86] supports both
tight and loose couplings. For the part of loose coupling, the system
treats PROLOG as a host language for general application develop-
ment and poses requests for data to INGRES DBMS whenever
necessary (i.e., when the data reside in the DBMS) while procesoing
with typical PROLOG interpreter. For the part of tight coupling,
the deductive component called DEDGIN [Vie861 looks at the
function-free Horn-clause subset of PROLOG assertions and cou-
ples tightly to the same DBMS by directly calling the internal access
oldods.

We note that not much work has been done on coupling effi-
ciency, except in [Kri86] and [Cer86]. Krishnamurthy and Zaniolo
[Kri86] briefly discuss cost equations that can be used in loose COW

pling. Ceri, Gottlob, and Wiederhold [Cer86] assumes that all the
query processing is done in main memory with a memory-resident
copy of data and proposes an algorithm to load the data from the
DBMS to main memory intelligently. In this approach, however, the
query processing and optimization capabilities of the DBMS are not
utilized. We believe coupling efficiency is an important issue to be
addressed. Our approach specifically deals with this
problem-especially, in a loosely coupled environment.

h!kmhingefficiency

We have proposed two categories in the FRD property: FRD-A
and FRD-B. Many papers address searching efficiency. For exam-
ple, Sideways Capture Rules [Ull85], Magic Sets [Ban86al, Count-
ing [Ban86a, Sac863, Filtering [Kif86,Kif86a], etc. dwell largely on
the FRD-A property. The Semi-Naive evaluation technique
[Ban851 addresses the FRD-B property in the case of linear rules
However, the technique requhes the use of relational algebra ex-
pressions to calculate differentials explicitly, and sometimes these
expressions are too complicated to obtain A d$femtiul is an in-
cremental result from each iteration during evaluation. Our ap-
proach provides a simple efficient technique of achieving the FRD-B
property by implicitly (i.e., without using a formula) calculating the
differentials (See Section 3.2). This technique is applicable to any
set of linear rules. We do not cover the FRD-A property in this pa-
per, but we believe that it can be superimposed by adding an addi-
tional rule modification phase.

Another technique of achieving searching efficiency is based on

extended relational algebra [Aho79,Agr87,Dev86]: pushing the se-

Proceedings of the 13th V&DB Conference, Brighton 1987

kction operator across the fixed point operator to tbe base relations
as close as possible. ‘Ibis technique is a heuristic optimixation at the
level of a relational algebra.

1.2 Our Approach

We consider tbe class of logic queries that are expressed in
function-free Horn-clause Logic with extension to incorporate ne-
gation. For the safety of query computatioo [Ban& Xri861, we
further restrict the ruks to be “bottom-up evaluabk” [Bat&61 w&b
a modified defb&io~ to accommodate negation (see Section 4).

In a outsbell, our approach is to &compose a logic query com-
posed from a set of ruks into units termed E.xm&d DiQuncttiK
Norm11 Form (EDNF) components. The term EDNF is derived
from disjunctive normal form (more about this later in Section 3)
that can be applied to Bookan expressioos. In the context of rela-
tional algebra, conjunctions refer to joins and disjunctions to unions.
TheEDNFkanextensioothataliowsustodealwith~nin
adds00 to rehtionai operations.

We sbow tbat tbe EDNF is well suited for a loosely coupkd en-
vironmntmddiscusshowitreducesthecantotheDBMS,which
is a costly operation in such an environment. We show that a fogic
query can be decompased and transformed into an equivalent forest
of EDNF trees. We also present an algorithm to process the query
using the EDNF trees. Using a fiid point formalism, we sbow tbat
tbk transformation coupled with tire processing algorithm is sound
io that it generates tbe correct result. We discuss intemsting mmifii
catioos of the EDNF formalism inchtdiug graphical cbamcterixation
of tbe compkxity of recur&o and corresponding efficient query
pmcesshg algoritbots. Finally, we bandk negation in mast practical
situatioos by extending valid usage of Clark’s negation as faihue.
We propose new criteria for safety and tenuinatioo in tbe presence
of negation.

Currently, we are impkmeoting an inference engine based on
the EDNF approach for an expert system shell, SQL Inference En-
gine, usiog an ioterface hoguage derived from a version of
!3YLLOG [Wa1831. The system utilixes data stored in tbe underlying
DBMS: SQL/DS.

Tbe rest of tbe paper is organixed as follows. In Section 2 we In coostruc~ the query graph, we enumerate ail variabks in-
provide tbe motivation to our approach and define the notation. Jn volvedintbatrukandsbowappropriatebind@s. Bindinginfor-
Sectioo 3 we present tbe concept of tbe EDNF and prove tbat tbe matioo is passed down from tbe query node by meam of unification,
evaluation based on the EDNF is correct. In Sectioo 4 we extend NotethatthevariableLinrule2w4auairvdwlththevprinbkZin
the EDNF to iocbtde negation and present the technique of proc- thegoalnodeb(f/X,f/Z). Intbegraphtheruknode(ANDnu&)
essing logic queries by deco- them iato EDNF components. implies the coojunction of goals colllwctcd byincom@arcs;tbe
We discuss advantages of the EDNF approach in Section 5 and goal oode (OR node) implies tbe disjunction of (bodies) of ruks
summa&e our results io Section 6. connected by incoming anzs [Ull85].

bimdingstatusofthevariabksinaruleortheargumentsina~
The syohl ‘b’ omos that tbe corresponding variabk or argument
is bound, i.e., instatltiated, whereas tbe symbol T means tbat it is
free, i.e., uninstantiated. Thus, if a node r has k variabks, then are
2’ oodes marked P where u is the adornment For exampk, fl
showsaninstanaofrulerwiththefirstvPrhbkboundMdtk
other two free. Nodes are sfmilarly meated for all possibk bindmgs
of arguments of a predicate. To describe our scheme, we need to
modify the de/goal graph slightly. We call the modified one the
qlmygtujh. wbiktheruk/goalgrapbiacompwedforrhe~Cirr
Btt of ruks, we cor~tmct a query graph for a specific giron qqp. In
additio~tbequeryfixesapartk&rvalue(wecaBittbeb&&g
due) for a bound argument In essence, by u&g tbe query graph,
wetrimtberuk/goalgrapbbyntainiogonlytbaaanodesrek~
toaspecificquary. Themetbodofconnauingtbenodesbysrar
nmPinstherrameasintheNk/goPIgnph,exceptthstwedidin-
gukb diffenot bWing valuas. Note that generating rule/goal
grapbstoaccountforaUpossibkvaiueswouldnotbeplPct3c9y
feasible because tbe number of dktinct values is potentiaBy infiuhe.
Toiihstratethequerygraph,conGdertbefoUowingruksz

rl: a(X,Y):- b(X,Z), c(Z,Y)
r2: b(X,Z):- e(X,L), f(L,Z)

13: e(XL):- g(X,U b(KU

Consider tbe query ?a(XS). It corresponds to the nude fl in
the rule/goal graph with the specific binding value of 5 for the set-
ood argument We label this node a9 a(f/x b(S)/Y). The tom-
pkted query graph k shown in Figure 1.

Figure 1. The query graph for tbe query ?a(X5).

2.0 Motivation Behind Our Approach

2.1 Badcgmmd

We start with the rule/goal graph of UUman [Uh85] to describe
tbe data structmu to represent a logic query. The r&/goal graph
represents a set of rides by creating rule nodes-one for each ruk
with a specifii adornment [Ban86al for tbe variabks and guuJ
no&s-ooe for each predicate witb a spacific adommeot for the ar-
guments. An cdonvnrnr is a string of b’s ami ‘fs indicating the

NOW, kt us construct tbe query graph of a recumive query.
Consider tbe ruks:

rl: a(X,Y) :- c(XL), e&Y)

1-2: aW,W) :- d(YV), g(V,Z), aG,w)
Suppose the question ?a(X5) is asked. Tbeq tbe query graph is as
inFigure 2.

Proceedings of the 13th VLDB Conference, Brighton 1987 277

5 T/X, b(SQ? 773
W/X, f/ b(5)/Y) R(f/M, f X, b(5 /Y, f/Z

c(f/X,ffle(f,L,b()/Y) d(f,M,& g(f/ f/Z) a(fjZ%(s)/Y)

Figure 2. Quey graph for the recursive query ?a(X,5).

InFigure 2,wedrawanarcfroma()tod()becausethenode
a(f/+, b(5)/*) appears repetitively with the same binding informa-
tion. Since we cannot unify the variabks/arguments in an existing
node (i.e., one already constructed), we use mapping of variable
names;inthiscaseXinnode a()kmappedtoZinnodeR().
When we later evaluate the query graph, we have to resole the
mapping to establish the correct association of the mapped variable
with those in other nodes. A mapping is resolved by replacing the
variablenameinthenodeatthetailoftlaean:withthenameatthe
head side of the arc. (Note that in [UllflS] mapping is implicit in the
rule/goal graph, and the substantiation algorithms have to keep
t&k of it.) For exampk, in Figure 2, a broken arc shows how the
node a() looks like when the mapping has been resolved. Notice
that the mapping does not necRaparily indicate presence of mcmsion
(directed cycle) because mapping k also needed when an undirected
cyck is formed An undirected cycle typically results when more
thanonebranchofthegraphnferstothesamegoalwdewiththe
same binding information.

22 scope for Improveme&

Associated with the rule/goal graph, there are substantiation
algorithms that compute the relation for each node according to
capture rules [UllSS]. A relation is associated with each node in the
n&?/goal graph. This relation is a set of tupks that satisfy the con-
straints implied for the node by the graph. From now on, we shall
use a node in the graph and its relation as being synonymous.

In the straightforward application of these substantiation algo-
rithms, we have to create a temporary relation for each node in the
query graph, since the query ls processe d by evaluating each node
according to the structure dictated by the rule/goal graph Here,
we observe some potential for improvement:

Creating many temporary relations not only takes a potentially
excessive amount of storage space but causes an adverse effect
on performance in a loosely cpupkd environment. In partic-
ular, a join between a temporary relation in memory and a
DBMS relation could cause as many calls to the DBMS as the
numbem of tupks in the temporary relation. Therefore, we
need to mhimize the number of temporary relations created in
evaluating a query.
The snucture of the r&/goal graph is inherited from the
user-written rules. Thus, the execution structme (such as the
ordering of relations), and accordingly the performance, is
heavily dependent on these ruks. This counters the principk
of data independence. Our aim is to eliminate this limitation
by “normalixing” the query to keep only semantic information
that is tmessay to evaluate the query.
The rule/goal graph approach does not take advantage of ex-
isting DBMS optimization.

ExPmplel:CollsidertherulesandthequeyinFigure 1. Inthis
case, we need six temporary relations (one for each nonkaf rule or
goal node). Besides, the “bask capture rule” in m8S] indicates
that the joins must be evaluated in the order (((g Join h) Join f) Join

c). However, we know that we can process this query with only one
temporary relation (for the result) in main memory and that the
DBMS optimization can choose any join ordering that provides the
best performan~. The normalized query is (g Join h Join f Join c).
It can be translated to a database query as follows:

SELECT g. 1, c.2
FROM g, h, f. c
WHERE g.2=h.l AND h.21f.1 AND f.21c.1 AND c.295

In the above query, projection lists and join conditions are shown
using positional identifiers for attributes.
End Example 10

3.0 Tbe Extended Disjunctive Normal Form

In this section we define the concept of an Extended Disjunctive
Normal Form (EDNF) of a query graph. The Extended Disjunctive
Normal Form is an extension of the disjunctive normal form of re-
lational algebra expressions so as to include recursion.

Thepurposeofourtechniqueistoprocessaqperyiosuchaway
as to avoid the shortcomings of the straightforward evaluation of the
r&/goal graph that are discussed in the last section. In Section 3.1
wepresentthedefinitionoftheEDNFandwediscussthealgorithm
to transform the query graph Into the EDNF representation In
Section 3.2 we present an algorithm to generate the answer to the
query using the EDNF. In Section 3.3, using a fixed point
formalism, we prove that the answer obtained from the EDNF is
indeedtheanswertotheoriginalquery. TheEDNFcanbecon-
strutted only for those query graphs in which the query goal (de-
fined in Section 3.1) is included in any directed cyck. The
application of the EDNF to more general queries (i.e., when some
cycles do not go through the query goal) is dkcussed in Section 4.

3.1 Deftition of the EDNF

For a given set of ruks, a query graph is constructed to represent
aspecificqueryagaiustthisset Wecalltherootofsuchagraphthe
query god. Thus, the relation corresponding to the query goal is the
answer to the query. The EDNF representation of a query graph
has the following characteristics:

1. It is a set of two-level trees.
2. The root of each such tree is the query goal.

3. Each tree has one or more leaf nodes that am base relations
(i.e., they are not temporary relations). A leaf node in the tree
mustbeakafnodeinthequeygraph.

4. Atreemayhaveoneormoreloopsontherootindicating
recursion. We call such a tree a looped ttre. If a looped tree
has a single loop, we call it a single-looped ~llee; otherwise, we
callita mu/tiloopedtWe. ThesetofEDNFtreesiscalkdan
EDNF Fonst.

5. There is only one temporary relation, which is the root (query
goal) of au the trees.

TheEDNFnlinszm the number of temporary relations since
it has only one temporary relation, which is essential for storing the
result of the query. It also normal&s the quey into a two-kvel flat
structme, eliminating the arbitrary structme imposed by user-
written rules. Figure 3 shows the EDNF of the query graph in Fig-
ure 1.

278 Proceedings of the 13th VLDB Conference, Brighton 1987

-..

g(f/X,f/K) h(f/K,f/L) -%~;~c(f,z,b(5),Y) ,

Figure 3. gk&yNF for the nonrecursive query in

Figure 4 shows the EDNF of the recursive query graph in
Figure 2.

y$$) a/,X,b$SVY& f
c(f/ J/L) e(f b(5VY) d(f/M. /X)

Figure 4. The EDNF of the recursive query in Figure 2.

The loop on the root node in Figure 4 actually stands for the
root node used as a leaf node in its own definition. The mapping in
the loop represents that the variable name X is to be replaced with
the variable name Z when resolved as defined in Section 2.1. Thus.
the seamd tree (in the folded form) in Figure 4 can be alternately
shown as in Figure 5. We call it the unfokkd form of the looped
tme. In the unfolded form, the loops appear without mapping just
to indicate the presence of recursion. If the tree has multiple loops,
the mot appears as a leaf multiple times-once for each loop.

i)aU/X,b(S)/Y)~

d(f/M,f/X) t&f/&) >/Z&(5)/Y)

Figure 5. F‘hzTlded form of the looped tree in

We present a description of an intuitive (top-down) procedure
for converting the query graph into the corresponding EDNF. A
formal description of the algorithm based on bottom-up construction
is in [wha87].

1. The query graph is traversed by following one of the alternative
branches at every OR node (a nonleaf goal node). For an
ANDnode(aruknode),ifithasakafnodeasachild,the
child is attached to the output tree as a leaf node. Otherwise,
all branches coming up into that AND node are traversed
When ail these AND branches reach leaf nodes, one EDNF
tree has been constructed

2. After the firat visit, whenever the query goal is visited again,
we treat it as a leaf node. Since this indicates recursion, we
markthetreeasaloopedtree. Atsomepointinthepath,if
multiple cycles bffurcate from an AND node, it forms a multi-
looped tree. On the other hand, if multiple cycles bifurcate
from an OR node, we obtain multiple single-looped trees rather
than one mukiIooped tree. This results in an interesting
graphical characterization of linear or nonhnear rules. The
presence of any m&looped tme in the EDNF indicates that the
set of rules used in the query graph is nonlineui? if there are
only nonlooped and stigk-Iooped wes, then the set of rules is
hear.

3. Whenever a leaf node is encountered, we record on the arc the
mapping accumulated (using function composition) through
the entire path from the root to the leaf unless it is the identity
mapping. Details of manipulation of the mapping are described
in [wha87].

For ease of understanding, the algorithm as described here
produces looped trees in the folded form. To actually process the
query, however, we need to transform the trees to the unfolded
form. The algorithm in [Win1873 directly produces the looped trees
in the unfolded form.

Bxample 2: Figure 6 and Figure 7 show query graphs containing
nonlinear and linear recursive rules, respectively, and their EDNFs.
For simplicity, we represent nodes simply as OR and AND. Only
the root and leaf nodes are shown with predicate names. 7%

41 f0 80

Query Graph A EDNF of Query Graph A

Figure 6.
iLhli?s

mh and the BDNF involving

Query Graph B BDNFofQueryGraphB

Figure 7. A.%.~
rze!L

Graph and the EDNF involving onfy

Note that in Figure 6 the bifurcation of the two cycles occurs
at an AND node (thus generating a double loop), whereas in
Figure 7 it occurs at an OR node (thus generating singk loops).
End Example 2 0

IncoostructingtheEDNF,somecaremustbetalrennottolaPe
any binding information propagating upnunls through the query
graph. These bindings may come from the rule heads. Two w
cases are shown below:

case 1: aW,Y,O) :-
Cpse2: b(XW :-

Since in the EDNF, all the nonleaf nodes are eliminated, these
bindings will be Lost. We solve this problem by modifying the above
rules before conversion into EDNF as follows:

Casel: a(X,Y,Z) :- (z-0)
Cpse2: W&Y) :- (X-Y)

Thus, basically we introduce new variables in tbe heads and
move the binding information into the body of the rules. The
transformation we use is consistent with the generul form of the
clause in [Cla78].*

I This is brought up again in the dhcussii of negation in Section 4.

Proceedings of the 13th VLDB Conference, Brighton 1987 279

3.2 Processing Queries Using the EDNF

The EDNF is a data structure representing a query. We now
present an algorithm to process a query using this data structure.
Let us use the following notation:

NT: the set of nonlooped trees in the EDNF
LT: thesetofloopedt.reesintheEDNF

The algorithm is described below:

Algorithm PROCESS-QUERY (NT, LT, Result)
1. Result:- +
2.Foreachtreet c NT

Result: = Result U EVAL(t)
Elldf0r

3. repeat until no change in result
For each tree / P LT,

Result:= Result U EVAL(/)
Endfor

Bnd PROCESS-QUERY

l%e algorithm EVAL simply evaluates a nonrecursive query re-
presented by a nonlooped tree. When evaluating a looped tree, it
disregards the loops from the unfolded form of the looped tree (see
Figure 5). A nonlooped tree is evaluated as a join of all tbe leaf
wdesinthetreepropctingtheresultfortbeargumentsintheroot
(query goal). Such a join request is submitted to the DBMS. loin
conditions are derived from the matching variables in different
nodes. If the leaf is an evaluable (arithmetic) predicate such as X
>Y,tbenitistreatedasacondition. Ifallthevariablesinacondi-
tion come from database relations, the condition is imbedded in the
database query. If there is a safety dependency [Zan86] among
variables in the evaluable predicates, these predicates are evaluated
based on the order of the dependencies. A set of variables Y is
safety dependent on a set of variables X (X + I’) if there is a finite
number of Y values once values of X are fixed.

Rxample3:InFigure SthereisasafetydependencyX+Y-cZ.
Hence, the evaluation of the tree proceeds as follows. First,
II,, oo(pJ,mnd@.2 - 5.1)) is processe dbyissuingaquerytothe
DBMS.) Next, for each tuple in the result, we
1. evaluate Y-2*X and bind Y,
2. evaluate Z-Y+3 and bind Z,
3. check the condition Z>W to select tuples from the result of

join.
NotethatbothZandWareboundbythetimetheconditionis
checked. Otherwise, q(XY,Z) would not be “bottom-up
evaluable..”

z y+/+F<& I* z>w Pm-) s(LW

Figure 8. A general nonlooped tree.

End Example 3 0

It is interesting to note that the algorithm EVAL is similar to the
algorithm needed to process a domain~akulus query as in QBE

J Here and throu$lout the paper, the symbol 00 l-qmsents the pmfii join qlcm-
tar, and n the pmjection opmator.

[Zlo77]. We can therefore take advantage of optimization tech-
niques developed for this class of DBMS queries (e.g., see
[wlla85]).

A salient feature of the algorithm PROCESS-QUBRY is that
nonlooped trees are evaluated and unioned “only once.” The itera-
tive procedure is applied only to the looped trees. This makes a
significant improvement over what is implicitly indicated in Tarski’s
[Tar%] formalism. There, nonlooped trees would be unioned again
and again at each iteration. We believe that some of the existing
naive approaches do exhibit this drawback. A natural consequence
of the EDNF approach is to isolate the portion of the query to be
pmcessed iteratively to a minimal possible scope.

Algorithm PROCESS-QUERY is the basic algorithm to proc-
ess looped trees. We can construct alternative processing algorithms
suitable for processing looped trees in different situations as in the
following exampks.

Example4:

We describe an algorithm that can process the queries derived
from linear rules efficiently. These queries contain only nonlooped
and single-looped trees. This algorithm avoids duplicate processiag
of relevant data, i.e., it satisfies the FRD-B property. Further, it
does not require explicit calculation of differentials; instead, it ob-
tains them implicitly.

For the sake of simplicity, we describe the algorithm using a
specific example shown in Figure 4 and Figure 5. First, algorithm
PROCEss_QuERY described above evaluates the query as in
Figure 9.

1) u(j:- III,, oc(cp,cond(c.2 - e.1))

2) repeat (incrementing i) until Ui = Ui-1

ui - 4-* U &J o”(ujBll d,g, cOnd(Ui-*.l * g.ZM.2 I g.1))

Figure 9. Iterative evaluation of the EDNF in Figure 4.

Note that a straightforward application of this procedure in-
volves some redundant computation. The result of Step 2 at iter-
ation i - 1, qel , is processed (i.e., joined with d and e) at iteration
i to produce u,. However, this process@ is duplicated at iterations
i + k, where k - 1,2.3, etc., because u,t is a subset of all uie’s.

Algorithm ONE-PASS described below completely avoids tbis
mhmdancy. In this exampk we consider a situation in which the
result (relation a) is constructed in main memory, and relations c ,
e,d,andgareintbeDBMS.

Algorithm ONE-PASS

1) compute(c(X&&(L,S)&
check-unigue-and-addnewtupk(u(X,5)))

2) compute(u(Z,5)&~(X~&
cbeck-unique-and-addnewtupk-at-the-bottom(u(X.5)))

In algorithm ONE-PASS, the predicate compute finds all variabk
bindings that satisfy the goal passed as the argument. Step 1 proc-

280 .----~- _- _--_ ~. Proceedings of the 13th VLDB Conference, Brighton 1987

eases the nonlooped tree and constructs the initial value of relation
(I (i.e., q,), and Step 2 processes the looped tree. Step 1 and Step 2
correspond to Step 1 and Step 2 in Figure 9, respectively. For
convenience, we described the algorithm in a Prolog-like fashion.
In actuality, however, the algorithm generates calls to the DBMS in
asbigqwriesaspossibktoaccessthedataintheDBMs. Inthis
example the following database queries will be composed:
rIl#g c&e, cond(c.2 - cl)) and
II, o(dg, cond(d.2 - g.lAg.2 - 2)) , where 2 is a specific value of
2 bound by a tupk of u. The algorithm is further illustrated in Fig-
ure 10. (I

I-I, oc(ff&cond(d.2 - g.lAg.2 = I))

es the transitive closure [Ioa86, Yug7] can be applied to the EDNF
with little modification.
End Example 5 0

Siiarity between transitive closure and linear ruks has been
demonstrated in [lag871 for the case of a single recursive rule (with
a nomecursive exit rule). Our scheme shows the same observation
can be made for a sel of linear ruks. We simply treat a set of non-
looped trees effectively as one nonlooped tree. ‘Ibe kaf of the tmw
tree is the union (ie., disjunction) of the sets of kaves from the
orignial trees. Similarly, we treat a set of single-looped trees as one
single-looped tree whose kaf is the union of the sets of kaves from
the original single-looped trees. Thus, the function for which the
transitive closme is defined is the union of the joins of relatiortr
rather than a single relation. Our scheme also provides interesting
insights into nonlinear effects. Although nonlinear ruks cannot be
precisely represented as a transitive closure, any nonlinear effect ia
cleanly Isolated in the form of multiiooped trees.

3.3 Least Fwed Point F- of the
EDNF

Figure 10. The ONE-PASS algorithm that avoids duplicate
processing of relevant data

Step 2 of algorithm ONE-PASS does not contain explicit iter-
ation. Instead, it makes a “singIe pass” through relation (I, whik
adding new tupks from partial results to the bottom of a at the same
time. New tupks added are checked for uniqueness before iu-
sertion. (Note that set union in Figure 9 should also check for
uniqueness. This applies to any iterative evaluation techniques.)
When no more new tupks are added, the computation stops.

In effect, the algorithm adds (or+, - a,) as a result of processing (0, - 4-J (Le., pumg (a, - 47,-J with I), where i is a specific
iteration in Figure 9. That is, it obtains a differential at iteration
i + 1 by processing only the differential obtained at iteration i.
Thus, it avoids duplicate processing of tuples in u,-~ when producing
co;+1 - u,). Note that the algonithm does not require an explicit re-
lational algebra expression to calculate the differential. A related
work bused on diifemntials has been presented in [Cai87] in the
context of programmins languages.

TIE one-pass technique is possible for two reasons:
1. Only one relation (u in this case) is evaluated as the test&: the

EDNF representation has this property since it requires only
one temporary relation that corresponds to the query goal.

2. Only single-looped trees are considered: only linear sets of
rules provide this property.

End Exampk 4 0

-5:

Although the class of queries that can be represented in the
EDNF is far larger than that of the simple transitive closme, their
EDNF representations resemble each other. A transitive closure
~atsintheEDNFasonenonloopedtreeandonesingk-looped
tme, each having one kaf. Hence, any efficient techniques to proc-

Our goal in this section is to use the fixed point formalism to
show that our proposed transformation of the query graph into the
EDNF obtains the same result as that of the original query.
llmxem 1: Algorithm PROCESS-QUERY produces the correct
result to the query.

To prove Theorem 1, we need to introduce several theorem and
kmmas regarding fixed points Detaikd proofs of these theommp
and kmmas appear in [wha873.

-Iheorem 2 [Tar&i]:
Given:
A poser (.S, $0) is a partially ordered set with respect to a binary m-
lation5. Shasauniqueminimumekmento. Also,themcannot
he an infinite sequence of strictly ascending elements of S. We call
this condition the Ascending Chain Condition (ACC). $S + S is a
monotone increasing function with respect to 5. A fixed point off
isdefinedasanekmentxofthedomainoffsuchthatf(x)-x.
Tbe leust fixedpoint off, (Mm) , is the smallest fixed point with
nspect to 5.
Then:
UP(/) I p(o) for some finite k, i.e., the LFP can be computed as
the- value x at the termination of the following program:

x: - 0;
whilef(x) > x

x: - f(x);
cad,

Theorem 2 can be extended in a straightfotward manner to a system
of equations. Thus, we define the fixed point of a vector of func-
tions F with the equation:

x - F(X), 111
where x is a vector of fixed point variables Cu,, X, . . . , &>.
Equivalently, we have

Xi-fi(X,, . . . 0-e ,XJ,i - 1 ton 121

Proceedings of the 13th VLDB Conference, Brighton 1987 281

Lemma 1: Inheritance of AsceLlding Chain Condition

Gjven posets (Si, $oJ, i-1.2, n, each with the ACC. Then,
s- (X&9 I, < ol,q, ... >)isalsoaposetwiththeACC. Thebi-
nary%ation 2 is defined as:

<x,.x,, ... ,X>I<r,,r,,.... Y.>iff&&~foralli.

Lemma 2: Inheritance of Monotonic&y
-Let (&s * SJ be monotone increasing; i.e., if X 5 y, then

&f> SAr) . Then,
F:S+SpP(X ,,..., X,)=<f,(X, ,..., X,) ,..., f.(X, ,..., X,)>
is also monotone increasing.

‘lleorem 3: Given S in Lemma 1 and F in Lemma 2, LFP(F) can
be computed as follows:

x: - a;
while F(x) > x

x: - F(x);
end,

Theorem 4 mall]: Given :S in Lemma 1 and P in Lemma 2, LFP(
i?) can be computed as follows:

<x,,x,,...,x,>:-<~,q, . ..t o,>;
while3 c {l, . . . 94 3 txi <f;(x*,x2P ... PxJ)

xi: - f;(x,, 4, . . * 9 &I

end;

131

Theorem 4 [Xil73] basically says that LFP(F) can be computed
by iterating on individual equations. We shall refer to one step of
this iteration with any one equation as an elementmy execrrrion . In
addition, Theorem 4 allows us to choose any order of performing the
elementary executions without affecting the least fixed point.

To prove Theorem 1 we proceed as follows. We subsequently
illustrate the proof with an example.
1. First, we model the query graph as a system of equations as in

Eqs. [2]. One equation is created for each node in the graph
We call it the query graph system of equations (QGSE). Simi-
larly, we model the EDNF forest as a system of equations, but
in a slightly modified form to introduce an explicit OR node.
We caU it the modified EDNF system of equations
(MEDNFSE).

2. Next, we defii a macro execution of the system of equations
QGSE as the set of all elementary executions that are per-
formed according to the “partial order” defined by the query
graph in its unfolded form with the cycles broken. Note that,
from Theorem 4, we have the freedom of choosing any order
of elementary executions without affecting the result Simi-
larly, we define a macro execution for the modified EDNF.
From the algorithm constructing the EDNF forest, we conclude
that one iteration of the macro execution on the QGSE and one
on the MEDNFSE produce the same result for the query goal
(i.e., the root node), since the result of the latter is the
disjunctive normal form of the result of the former. Therefore,
both iterative macro executions converge to the same least
fixed point.

3. Finally, we show that the iterative macro execution terminates.
Siuce the relational algebra expressions include only selection,
projection, cartesian product or joh and union, they are

monotone increasing functions [Aho79]. (We disallow set dif-
ference by excluding negation involved in a cycle as discussed
in Section 4.1.) Since the “values” for the relations are limited
by the Cartesian product of all values in the base relations and
those derived by evaluable predicates subject to safety condi-
tions (as in Example 3), the ascending chain condition (ACC)
is satisfied with respect to set inclusion. Thus, the iteration
must terminate.

Example 6: Consider the following rules:

rl: q(X,Y) :- a(X,Z), b(Z,Y)
t-2: q(X,Y) :- c(X,Z), d(Z,Y)
r3: d(Z,Y) :- e(Z,Y)
r4: d(Z,Y) :- f(Z,L), q&Y)

The query graph for ?q(X,Y) and the corresponding EDNF for-
est are shown in Figure 11 and Figure 12, respectively.

i4 &I) rl X,Y Z)
q(x7y)f=-N (x y z)

W&Z) ,
ccxi<(2$%&z y L)

f

9

et Y) f(&) ’

Figure 11. Query graph for ?q(X,Y).

a(Xr& Y) (X !#“‘$Z,Y) c(X$“?$)! , c, ,

Figure 12. The EDNF forest of the query in Figure 11.

First, we modify the EDNF forest to introduce an explicit OR
as in Figure 13 below.

px< jE>T a(X,Z) b(Z,Y) COW e(Z,Y) 4X, 1 f(J-1

Figure 13. A modification of the EDNF forest in
Figure 12.

If we apply the bottom-up capture rule and the substantiation
algorithm [VU853 to the modified graph in Figure 13, it is easy to
show that the result remains the same as the result of
PROCESS QUERY for the EDNF in Figure 12. Basically, in
Figure 13,the two disjuncts namely, r5 and 16, are repeatedly un-
ioned with the query goal q (which is an inefficient technique), while
in the EDNF they are unioned only once. Now, we shall prove that
thequerygraphinFigure 11 andthemodifiedEDNFinFigure 13
are equivalent in that they produce the same result.

Using relational algebra the query graph above can be repres-
ented by the following system of equations. Without Loss of gener-
ality, we choose one total order of the equations that satisfies the
partial order defined by the query graph.

282 Proceedings of the 13th VLDB Conference, Brighton 1987

r3-e
r4 - n1.43 dLwWf.2 - q.1))

d = U (~3, rIIJr4)
1-2 - lIlhz m(c,d, cond(c.2 - d.1))
rl = II1,42 =(u,b, cond(a.2 = b.1))
4 - u (Qrl. q,m

[QGSEI

4.0 EDNF as a Building Block for More Com-
plex Quexies

4.1 Incorporatiug Negation in Horn-clause
LosiC

The modified EDNF in Figure 13 can be represented as follows:

r5 - 11,,4,2 =(a,b,cond(o.2 - b.1))
r6 - lIlr2 w(c,e, cond(c.2 - e.1))
~7 - ll~,h~,~ =(cf,q,cond(c.2 - f.lAf.2 = q.1))
4 - u (qy.5 q,yfi qg

[~~EDNFSE]

We now define a macro execution for the QGSE as the set of
all elementary executions in the QGSE that are performed according
to the partial order defined by the query graph in its unfolded form
with the cycle broken. Similarly, we can define a macro execution
for the MEDNFSE.

As a result of a macro execution on QGSE, we obtain

%I*, = e
%2 - &,4,2 dfffn-1. mnd(f.2 - qn-1.1))

4.3 - u v-%,l~ q2%,2)

l-2 n.4 * n1.43 a(dnd,39 WWC-2 * d,J*l))

r&,5 - Ill,43 oe(a,b, cond(a.2 - b.1))

% - ‘hr.6 - u (n1,2r1n,5~ n1,2%,4)

[QGSEI

Here, the first subscript stands for the iteration number of the macro
execution, and the second the iteration number of the elementary
execution within a macro execution. By substituting rlmJ and I$?,,,

qn - U U-b.4 44). n1.4 -(c&$)

- U (“1.4 =(dOr n~,~ =(c, U (e, “I,~ -(f. q,,J)N

- u (nl.4 mhb), n1.4 =kd, HI.6 +f, e-1))

N-4

where q. is the value at the n-th iteration. For simplicity, we dropped
the join conditions in the above equations. Siiarly, the macro ex-
ecution on MEDNFSE produces

‘ln = u t&,4 -(dd, &,4 ““(W). HI.6 =(cf, q&) [MEDNF-n]

Equations QG-n and MEDNF-n show that the results of
macro-executions on the QGSE and the MEDNFSE are identical.
In general, the resulting values of q from the QGSE and from the
MEDNFSE must be identical since, by definition, the latter is only
the disjunctive form of the former. Let us note that this property is
obtained by virtue of the definition of the macro execution as a
“partially ordered” set of elementary executions “as per the query
graph.” A set of elementary executions with an arbitrary order
would not have this property.

This completes our demonstration of (proof of) equivalence be-
tween the query graph and its EDNF representation.
End Example. 6 0

The negation-as-failure evaluation technique [Cla78] extends
the linear resolution proof technique by treating a negated literal as
a lemma This lemma is evaluated by a “failure proof.” That is, -p
is inferred if any possible proof of p fails. It has been shown in
[Cia78] that the negation-as-failure evaluation technique is a valid
inference rule in a completed aktubase. Intuitively, a completed da-
tabase is constructed by adding the “only if” counterpart of the rules
in the general form. In the geneml form, rules have no binding in the
head (i.e., the ruk head has only independent free variables); the
bindii are all moved to the rule body (i.e., the right hand side).
Also, all rules having unifiable rule heads are combined into one rule
bytreatingthebodiesoftheindividualntlesardisjunctsinthebody
ofthenewrtde.

Clark concludes that negation iis failure is valid in the completed
databaseifthenrlesarelimitedtothosehavingnovariablesthat
appear only in negated lfterais. In other words, negated fiterals must
be ground before being evaluated. For example, negation as failure
is invalid in the following rule:

(1) non-math-major(Student) :- student(Student),
core-math4ourse(Course), 4akes(Student, Course, Semester)

Note that the variable Semester does not appear in any positive li-
*NliDtlENkbOdy.

in practice, however, we have an intuitive interpretation of the
rules that do contain free variables in negated fiterak. We use such
rules mainly when we want to express “nlational projection” for a
negated literal. fn this section, we reconcife the use of these rules
with a valid construct in Clark’s negation as failure.. Also, we discuss
below safety issues and bottom-up evaluabibty when negation is in-
volved.

Consider rule (1). Intuitively, we intetpret it as saying that a
student is not a math major if s/he never took some core math
course. Equivalently, we compose a projection of relation “takes”
on the first and second attributes and use it in negation. In other
words Semester is a don’t-care variable. In pure logic, however, the
rule does not mean what we want intuitively because the variable
Semester can take any value in the domain to make ~takes(Student,
Course, Semester) true. For example, suppose John took all the core
math courses: including Calculus in Spring 86. Thus, John is a math
major. However, since takes(John, Calculus, Fall 86) is false, rule
(1) deduces that John is not a math major.

For comparison, let us consider another set of rules:

(2) non-math-major(Student) :- student(Student),
core-math-course(Course), 7 takes’(StudentQume)

(3) takes’(Stud, Cour) :- takes(Stud, Cour, Semester)
Clearly, these rules provide the same intuitive meaning as that of
ruk (1). Nevertheless, in this case, Clark’s negation as failure, as a

Proceedings of the 13th VLDB Conference, Brighton 1987 283

valid inference rule, refkcts our intuition correctly. ln the completed
database, ruk (3) is transformed to the equivalent general form as
In ruk (419

(4) takes’(W) :- Zhmester, Stud, Cow ((S-Stud), (C-Cour),
takes(Stud, Cour, Semester))

Subsequently, the compkrion low adds the “only if” part, yielding
ruk (5) :

(5) takes’(S,C) -: a&?mester, stud, corn ((s-stud), (C-Cour),
takes(Stud, Car, Semester))

Rules (2) and (5) together yield ruk (a), which correctly represents
our intuition.

a(X.Y,Z) :- b(X,Y), Y-2,
variables X and Y are secure because they appear in b(X.Y) and 2
is secure because it is safety dependent (as defiid in Section 3.2)
on a secure variable Y. However, in the ruk

d(X) :- c(X,L), y e(L,Y), Y-Z,
Z is not secure because neither Z nor Y appears in any positive li-
teral that is not an evahtable predicate.

Finally, the bottom up evaluabhlity is defined as in [Ban86], but
using the new definitions of the term “secure”.

Ddhitbn 3: A rule is bottom-up edwbk if

1. it is range restricted, and
2. every variable in the body is secure.

(6) non-math-major(Student) :- student(Student),
COR-mathcourse(- Wmesm, Sfwi, Cour((Student
-Stud), (Comae-Cour), takes (StwL Cow Semester))

lhfhdhm 4: A query is bottom-up ewlwabk if

1. ruks used to construct the query graph are bottom-up
evakabk, and

InourmethodwemodifyanyruleinfheformofNk(l)toa
set of ruks in the form of ruks (2) and(3). so that the variabks in
a negated literal not appearing in any positive fiteral correspond to
the attributes that am not projected; thus, conforming to our intui-
tion. ThismodfficationfsessentiaUythesameapthrowfnginan
existential quantifkr for each variabk in the negated literal not ap-
pearing in any positive literaf-kading to a form of ruk (6). The
f~inrule(6)cpnnowbeproassedusingtheEDNFapproach.
Let us note that the modification is exactly the same as what PRO-
LCKi impficitiy does in the presence of a negated literal comaining
free variabks. In this section, we formal&d this implicit modifii-
tion by reconciling with a valid construct In Clark’s negation as fait-
we. Asimikrtechniqueisusedin[Ull87]. Here,theruksinthe
form of ruk (1) are disallowed; instead, the users are required to
writendesintheformofruks(2)and(3).

Introducing negation causes many probkms regarding safety as
well. Con&k Nk (7):

2. negation is not part of a cyck in the query graph

To process a query, we assume that the query is bottom-up
evahtabk accotding to this new definition. In Definition 4, we re-
quire negation is not included in a cyck. If negation is involved in
a cycle, fixed points cannot be evaluated by an iterative procedmu
because the relational algebra expressions (functions for which the
fixed point is defined) are not guaranteed to be monotone increas-
inp.

4.2 FurtJm Enhancement of the EDNF Ap-
prollch

EDNF is a building block for more compkx queries. In this
section, we discuss the processing of more general queries that can-
not be represented as a simple EDNF forest. There are two reasons
why a simpk EDNF is not sufficient.

Casel: lhetearecycksthatdonotpassthroughtbequery
goal We call this case nested recursion.

Case 2: Negation of a nonkaf node (i.e., the node is not asso-
ciated with a base relation).

(7) a(X,Y,Z) :- b(XY), qc(Y.Z)
Notice that the query ?a(X,Y,Z) will produce a potentiahy infinite
relation even though the relations for b and c are finite. In priacipk,
Z can assume aIm&t any value in the (potentiaBy infinite) domain
to make d(Y,Z) true. Furthermore, it is not common to have
practicallymeaningfulruksfnthisform. Thus,weNkoutthi9ca9e
by defining the safety criteria as follows:

C~~P=~~~~*WCVW~

14. To explain Case 1, consider the query graph of Figure

Deliddoo 1: A rtde is runge mnieted [Ban861 if every vatiabk in the
head appears somewhere in the body.

For a ruk to be bottom-up evaluabk, every varkbk in the body
must be “secure” [Ban86], i.e., it carmot assume infinite number of
values. We modify the conditions for sect&y of a variable as fol-
lows:

DefMiou2:Avariabkinthebodyofarukiszcunrif
1. it appears in a positive literal that is not an evahtabk predicate,

or
2. it is safety dependent [Zan86] (see Section 3.2) on a set of se-

cure variabks.

Figure 14. A query graph involvfng nested recmxiort

Due to nested recursion, we cannot represent the query graph in
Figure 14 as one EDNF forest. fn this case. we construct the query
graph treating p as if it were the query goal. Then, we have the
EDNF as in Figure 15.

For exampk in the ruk,

284 proceedings of the 13th VLDB Conference, Brighton 1987

Figure 15. EDNF of Figure 14 using p as the root.

We cdl m, the root of the EDNF forest. The subscript F identifies
such a root. Then, mating pr as a base relation, the EDNF for q is
constructed as Figure 16.

Figure 16. lheEDNFforqcontainingprasaleaf.

Then, the evaluation of the query ?q(Y,a) proceeds as follows :
1. Fully evaluate pp using the EDNF in Figure 15.
2. Evaluate qr using the EDNF in Figure 16 treating pp as a base

relation.

In general, for a query involving an arbitrary number of
recursions placed on different nodes of the query graph, we con-
struct the EDNF graphs as follows :
1. Identify cycles that are interconnected (shongly connecred

component [Mor86]).
2. Identify a set of (goal) nodes such that each cycle contains at

kast one node in the set. We define such a set as a COW (or
fmifmck set [Gar793) of the strongly connected component

3. Construct an EDNF forest for each node in the cover set with
thatnodeastherootoftheEDNF. FortheEDNFofapar-
ticukr node, the other nodes in the cover set are treated as base
relations.

4. Construct the EDNF of the query goal (if not already in the
cover set) treating ail the nodes in the cover set as base re-
lations.

Note that, for complicated query graphs with intercomrected
cycks, the choice of the cover set itself is complex. The cover set
with minimum cardinahty is called a minimal COW set. Gur strategy
for generai recursive query processing is then to choose a minimai
cover set for each strongly cormacted component Each node in the
cover set is assigned as the root of a separate EDNF forest. Then,
the resulting forest of trees, where leaf nodes themselves may be
EDNF forests, is pmcessed by obeying an EDNF forest depend
gmph, which establishes the partial order of execution of the EDNF
forests. For example, the forest dependency graph for EDNF for-
estsinFigure 14isshowninFigure 17.

Figure 17. Forest dependency graph for the query in
Figure 14.

Figure 17 says that EDNF forest m, should be evaluated before
e, . We have developed heuristics for identifying cover sets and are
currently investigating alternative solutions to the minimization of
cover sets.

Note that an important characteristic of our approach is that we
evaluate only the 0Gnimal number of nodes (Le. the cover set) that
are absolutely necessary for processing the query. In contrast in

other methods [Mor86], oil the nodes in the original query graph
must be evaluated.

If the cover set contains more than one k, execution of the
strongly connected component involves the execution of each
EDNF forest in that component in turn until a fii point is reached
Detaikd aigorlthms for the corWru&on of the dependency graph
of EDNF forests and their proassinglnthegeneralcwee~but
they an2 beyond the scope of this paper.

IfthequeryhasnegocionoaalePfmdeinthequerygmph,m
EDNFstructumcanbecompo&fortbaqueryasinsaction3. If
it has negation on a nonleaf node, then we a3mtnuxabpaf8te
EDNFwiththenegatednodeastherooL TheEDNFoftbeorigirA
queryisthencoostructed~the~EDNFsrYitnen8
l~afnode.Then,thct~~bniqueofdecomposipgaqucryintomuhiph
EDNFforestswouldapply. Figure 18sbowsmexampkof~
query graph involving negation and its EDNFk This strategy ahams
the same concept as stratifii [ApuM] or layering [Naq86al
Stratifiition relaxes the hierarchical condition or@a@’ lnopa=l
by Clark [Cla781 by allowing retxdonmtimrdvingne~

Query graph

Figure 18. Query graph involving negation and its EDNFS.

cbdmwngtkNadaof&~

OneposibkdrawbackoftbeEDNFtransformationisthepo-
tcntiai existence of too many disjunctc (trees in the EDNF) with
overkxpping information among one another. We soivc this pdlem
by not expanding important branches of the query graph d desig-
natingthemasseparateEDNFforeats.ll~theEDNFoftbeori-
glnd query is composed treat@ the bmnches (separate EDNF
forests) -&3 reMoIls. Important bratMWs are tllo8e that may be
duplicated in many trees when expaaded and that would be expen-
sive to process. By using this technique we can pnvcnt probferation
OftlWSitlthEDNFS.

5.0 AdvantagesoftheEDNF~

The EDNF approach to process@ logic queries has the follow-
ing advantages:

1. Use of existing DBMS:

Gurprimarythrustmtheapproachistoexpbitthefacihtiea
within existing DBMSS as much as possibk. This mearu: 1)
No modification to the DBMS is w 2) Faciliries pro-
vided by the DBMS, such as autborizath, cntpioging, ECOV-

ery, etc., may be utilized; 3) Entire quary optimization
technique3 for relational databases with their advantages can
be-

Proceedings of the 13th VLDB Conference, Brighton 1987 285

2. Performance:

The EDNF approach enhances performance in various
ways:
l First, when compared with naive loose coupling, it obvi-

OU@ duces the number of calls to the DBMS: it avoids
issuing a large number of requests for a small amount of
data by esaemially batching them in large database que-
ries.

. Second, the EDNF eliminates the arbitrary processing
structum imposed by the user-written rules through nor-
fualixation and keeps only the information essential to
pmcess the query. This normalization provides the DBMS
optimizer with more flexibility in fig the best access
w [Kimal.

0 ThlKLtbeEDNF minimizes the need to create temporary
nlations by concentrating only on the desired results and
avoiding to create unnecessary intermediate results. In
contrast, many conventional methods try to evaluate all
the betmediate results and store them in temporary re-
lations. Evaluating all these intermediate results could be
expensive z3 explained in Section 2.

3. Better understandiu8 of recursive logic queries:

The EDNF serves as a clear characterization of a large
class of logic queries. We have shown that the queries can be
represented in a smafl number of primitive constructs (i.e., the
nonlooped tree, single-looped tree, and multilooped tree).
Further, the EDNF provides a graphical classification of que-
ries and makes it easy to viritulire the complexity of recursion.
For example, any query composed from a linear system of rules
produces an EDNF forest with only nonlooped and single-
looped trees. On the other band, any query from a nonlinear
system of rules produces at least one multilooped tree. Other
types of recursions can be captured easily. For example, a
conventional simple transitive closure appears as one Mm-
looped tree and one single-looped tree each having one leaf.
We also have shown in Section 3.2 that any query constructed
from a linear set of rules can be viewed as a transitive closure
of a complex function.

4. Availability of alternative processing algorithms:

Due to the characterization the EDNF provides, we can
construct a variety of algorithms for different compositions of
EDNF tries. For example, in addition to the basic algorithm
for processing any EDNF, we have illustrated an efficient al-
gorithm for processing an EDNF forest with single-looped and
nonlooped trees (derived from linear rules). This algorithm
avoids duplicate processing by implicitly calculating the differ-
entials. Thus, it satisfies the FRD-B property. Unlike the ones
previously repotted, this algorithm does not require explicit re-
lational algebra expressions for the differentials. We are also
contructmg algorithms for other specialized situations. lbe
availability of these algorithms allows an high-level optimizer
to choose the best one for a specific situation.

6.0 Summary

We have proposed an approach to processing logic queries based
on the Extended Disjunctive Normal Form (EDNF). The main

purpose of this approach is to support deduction with existing
DBMSs in a loosely coupled manner. The class of queries consid-
ered encompasses those in function-free Horn-clause logic extended
for negation. For safe evaluation, however, we limit the scope to
bottom-up evahtable rules per our new definition.

We have presented the EDNF and its processing algorithm. We
have formally proved the correctness by showing that the evaluation
of the query based on the EDNF is identical to the results obtained
by a conventional method using the rule/goal graph.

In our opinion, virtually none of the current work on logic query
optimization available in the literature deals with negation in a
practical manner. We have proposed a technique of extending
Clark’s tiegution us fuihire to include cases that are practically im-
portant and incorporated it in our general query processing algo-
rithm. We have also defined new criteria for safety and termination
in the presence of negation. In particular, the definitions of security
of the variables and bottom-evahtability of the rules have been m-
vised for negation.

As a future research, we left the superimposition of the FRD-A
property on our approach as an open issue. We are evaluating ex-
isting techniques, particularly magic sets and counting, for a possible
incorporation into our framework

Although many techniques have been proposed for logic query
processing, not much has been reported for application to loosely
coupled environments to exploit already existing DBMSs. We be-
lieve that our technique provides significant progress in this direc-
tion.

Admowledgement

We would like to thank Stephen Brady for clarifying concepts in
theory and predicate calculus. Brady deserves the credit for initiat-
ing the SIENA project, of which tbe SQL Inference Engine is a part
Andy Kaplan and Tetsuya Furukawa contributed by implementing
part of SQL Inference Engine. We acknowledge Bob Paige for giv-
ing us formal statements and proofs of the theorems and lemmas
regarding fixed points in Section 3. Jeff Jaffe contributed some
crucial comments. Discussions with Michael Kifer, Laurent Vieille
and Jean-Marie Nicolas were useful. Finally, we are very grateful
to Amna Navathe for tbe assistance in manuscript preparation.

REFERENCES

[Agr87] Agrawal R.K., “ALPHA : An Extension of Relational
Algebra to Express a Class of Recursive Queries,” 77&f
Intl. Conf. on Dutu Engineering, L.os Angeles, CA, Feb.
1987.

[Ah0791 Abo, A. and Ullmm, J., “Universality of Data Retrieval
Languages,” in Proc. 6th Sjmposim on principks of
Progmnming Languages, pp. 110-l 17, Jan. 1979.

[Apt851 Apt, K.R., Blair, H. and Walker A., “Towards a Theory
of Declarative Knowledge,” unpublished manuscript,
1985.

[Ban851 Bancilhon, F., “Naive Evaluation of Recursively Defined
Relations,” in On Knowledge Base Munagement

286 Proceedings of the 13th VLDB Conference, Brighton 1987

[Ban861

Systems-Zntegrating Database and AZ Systems, (eds. M.
Brodie and J. Mylopoubs), Springer Verlag, 1985.
Ban&on, F. and Ramakrishnan, R., “An Amateur’s In-
troduction to Recursive Query Processing Strategies,” in
Proc. Zntl. Conf. on Management of Data. pp. 16-52,
1986.

[Ban86a] Bancilhon, F. et al., “Magic Sets and Other Strange Ways
to Implement Logic Programs,” Proc. ACM Sump. P&-
cipks of Database Systems, 1986.

[Boc86] Bocca, I., “EDUCE-A Marriage of Convenience : Probg
and a Relational DBMS,” in Proc. l’hird Symposium on
Logic Programming, Salt Lake City, Utah, 1986.

[Boc86a] Bocca, I. et al., “Some Steps Towards a DBMS Based
KBMS,” Information Processing, 1986.

[Cai87]

[Cer861

[ChasSl

[Cla781

Pw861

[Gar793

[Hen841

D-861

[Jag871

[Jar841

[Kif86]

[Kif86a]

[Ki1731

b821

[Kli861

Cai, 3. and Paige, R., “Binding Performance at Language
De&n Time.” in Proc. ACM Svm~. on Pticioks of Z+o-
grm-ming Z..&uages, pp. 85-97: i987. 1 -
Ceri, S., Gottlob, G., and Wiederhold, G., “Interfacing
Relational Databases and Prolog Efficiently,” Proc. Fiti
Expert Database Systems Conference. Charleston, SC, pp.
141-153, April 1986.
Chang, C.L. and Walker, A., “PROSQL : A PROLOG
Programming Interface with SQL/DS,” in Proc. &ueff
Da&&se S’tems Workshop, Charleston, SC, 1985.
Clark, K., “Negation as Failure” in Logic and Databases,
(eds. H. Gallaire, J. Minker, and J.Nicolas), Plenum Press,
1978.
Devanbu, P. and Agrawal, R., “~OViU~ Selections into
Fixpoint Queries,” Working Paper, A.T. and T. Bell Lab-
oratories, 1986.
Garey, M. and Johnson, D., Computer and Intractability,
Freeman, 1979.
Henchen, LJ. and Naqvi, S.A., “On Compiling Queries
in Recursive Fit-Order Databases,” Journal of the
ACM, Vol. 31, No. 1, pp.47-85, Jan. 1984.
Ioam&iis, Y.E. and Wong, E., “On the Computation of
the Transitive Closure of Relational ODerato~s.” Tnelfrh
Zntl. Conf. V&y Large Data Ba& Kyot& Jap&,
pp.403-411, Aug. 1986.
Jagadish, H.V. and Agrawal, R., “Computing Linear
Recursion as Transitive Closure,” in Z+oc. Zntl. Conf. on
Management of Data, San Francisco, (to appear), May
1987.
Jarke, M., Clifford, J., and Vassiliou. Y., “An Optimizing
Prolog Front-End to a Relational Query System,” in Proc.
Zntl. Conf. on Management of Data, pp.2%-306, 1984.
Kifer, M. and L&n&ii, E.L., “A Framework for an Ef-
fiint Implementation of Deductive Databases,” in Proc.
6th Adv. DB Symposium, Tokyo, Japan, 1986.
Kifer, M. and L&n&ii, E.L., “Filtering Data Flow in
Deductive Databases,” in Z+oc. Znt. Conf. on Database
Zl’hwy, Rome, Italy, Sept. 1986.
Kildall, G., “A Unified Approach to Global Program Op-
timization,” in Pruc. ACM S’p. on Principles of Pro-
gramming Languages, Oct. 1973.
Kim, W., “On Optimiziq a SQLLlike Nested Query,”
ACM Trans. Database Syst. Vol. 7. No. 3, pp. 443-469,
Sept. 1982.
Krislmamurthy, R. and Zaniolo, C., “Safety and Opti-
mization of Horn Clause Queries,” in Proc. Foundation
of Deduct& Databases and Logic Pr~ommin~ (ed. J.
knker), 1986.

[Lo2851

[Mck81]

Lminskii, E. L., “Evaluating Queries in Deductive Data-
bases by Generating,” in Proc. 9th Zntl. Joint Con$ on
ArtificiaI Intelligence, Los Angeles, 1985.
McKay, D. and Shapiro, S., “Using Active Conaection
Graphs for Reasoning with Recursive Rules,” in Proc.
Sewnth Zntl. Joint Conf. on Artificial Intel].., Vancouver,
B.C., Aug. 1981.

[Mor861

/

Morris, K., Ullman, J., and +I GeIder, A., “Design
Overview of the NAIL System,” Proc. 3rd ZntI. ConjI on
Logic Prog., London, July, 1986.

[Naq86] Naqvi, S., “Negation as Failure for First-Order Queries,”
in Proc. ACM Symp. on PODS, Cambridge, Mass., pp.
114-122, Mar. 1986.

[Naq86a] Naqvi, S., “A Logic for Negation in Database Systems,”
iu Proc. Foundation of Zkductiw Databaxs and L&c
Programming, (ed. i Minker), Washington, D.&
pp.378-387, Aug. 1986.

[Nil2861
[Rei78]

~soc861

[SciSS]

[Tar853

[Vu851

[U’NVI
[Van86]

[Vii861

[Wal85]

[WhaSSl

IWha871

CR1871

[-ml

[ZIo77]

Nicolas, J.M., Personal Communication, November 1986.
Reiter, R., “On Closed World Databases,” in Logic und
Databases (eds. H. Gallaire and J. Minker), Plenum Press,
1978.
Sacca, D. and Zaniolo, C., “The Generalized Counting
Method for Recursive Logic Queries,” in hoc. Znt. Conf.
on Database Theory, Rome, Italy, Sept 1986.
Sciire, E!. and Warren D.S., “Towards an Integrated
Database-Prolog System,” in Proc. Expert Database Sys-
tems Workshop Charleston. SC, pp.293-305,198s.
Tarski, A., “A Lattice Theoretical Fixpoint Theorem and
Its Applications,” Pa@ Joumal of Mathematics, VoL 5,
pp.285-309, 1985.
Ullman, J., “Implementation of Logical Query Languages
for Databases,” ACM Trans. Database Syst., Vol. 10. No.
3, pp. 289-321, Sept. 1985.
Ullow, J., Unpublished manuscript, 1987.
Van Gelder, A., “A Message Pas&g Framework for
Logical Query Evaluation,” in Proc. Zntl. Conf. on Man-
agement of Data, Washington, D.C., pp. 155-165, May
1986.
Viiille, L, “Recursive Axioms in Deductive Databases :
The Query/S&query Approach,” in Proc. Ftit Z2xpert
Database @stems Conference, Charleston, SC, pp.
179-193, Apr. 1986.
Walker, A., “SYLLOG : An Approach to PROLOG for
Non Programmers,” Logic Bogramming and its Applica-
tions, (e&. M. Van Caneghem and D.H.D. Warren),
Ablex, Norwood, NJ, 1985.
whang, K.-Y., “Query Optimization in Office-by-
Example,” IBM Research Report RC 11571, Dec. 1985.
Whang, K.-Y. and Navathe, S., An &tin&d Di@mctiw
Normal Form Approach for Processing Recurs& Logic
Querks in Loosely Coupled Environments, IBM Res. Rep.
RC12567, Mar. 1987.
Yu, C.T. and Zhang, W., “Efficient Recursive Query
Processing Using Wavefront Methods,” ?‘?u+d Zntl. Conf.
on Data Engtitig, Los Angeles, CA, Feb. 1987.
Zaniolo, C., “Safety and Compilation of Non-Recur&e
Horn Clauses,” in Roe. Flit Expert Database Systems
Conference, Charleston, SC, pp. 167-178, Apr. 1986.
Zloof, MM., “Query-by-Example: A Database Lan-
guage,” IBM Systems J., Vol. 16, No. 4, pp. 324-343,
1977.

Proceedings of the 13th VLDB Conference, Brighton 1987 287

