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ABSTRACT

We present an approach to processing logic queries in loosely
coupled environments. We emphasize the importance of the loose
coupling technique as a practical solution to provide deductive ca-
pabilities to existing DBMSs—especially when an efficient access to
a very large database is required in the process of inferencing. We
propose the Extended Disjunctive Normal Form (EDNF) as the
basis of our approach. The EDNF is an extension of the disjunctive
normal form of relational algebra expressions so as to include
recursion. The EDNF is well suited for a loosely coupled environ-
ment, where an existing DBMS and optimization can be fully ex-
ploited. It also serves as a clear, graphical characterization of
various recursions that can occur in logic queries. We first present
the basic form of the EDNF and then use it as a building block to
process a more general class of queries. We extend valid usage of
Clark’s negation-as-failure evaluation technique to incorporate ne-
gation for most practical situations. We also propose new criteria
for safety and termination in the presence of negation. To the extent
of the authors’ knowledge, optimization in loosely coupled environ-
ments has not been seriously addressed in previous research. We
believe our technique provides significant progress in this direction.

1.0 Introduction

Recently, a number of studies [UlI85, Ban86, Ban86a, Vie86,
Boc86, Kri86, Kif86, Kif86a, L.oz85, Sac86, Agr87, Jag87a, Mac81,
Van86] have concentrated on providing inferencing capabilities to
traditional databases. These facilities are geared so that complex
views, especially those involving recursion, can be supported. The
view mechanisms in the present DBMSs support no derivation of
information besides straightforward relational operations. The work
to-date in this area has focused on PROLOG as an inference lan-
guage for DBMSs due to the "natural fit" between PROLOG and
the relational data model. Allowing a language such as PROLOG
as the query language provides the system with the power of Horn-
clause logic as well as the inherent theorem-proving capability.

' Permanent Address: Database Systems R. and D. Center, University of
Florida, E-460 CSE Bldg., Gainesville, FL. 32611.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and the
title of the publication and its date appear, and notice is given that
copying is by permission of the Very Large Data Base Endow-
ment. To copy otherwise, or to republish, requires a fee and/or spe-
cial permission from the Endowment.

Proceedings of the 13th VLDB Conference, Brighton 1987

We propose in this paper an optimization technique of providing
these capabilities to an existing DBMS in a loosely cowpled manner,
especially when an efficient access to a very large database (that
cannot fit in main memory) is required in the process of inferencing.
Although the loose coupling idea has been introduced in the litera-
ture, to the extent of the authors’ knowledge, optimization aspects
have not been seriously addressed.

1.1 Issues in Recursive Query Processing and
Previous Research

In this section we highlight the issues that have been addressed
in the previous research. An excellent survey of the work as of
mid-1985 appears in [Ban86). From an overall analysis of the pre-
vious research, we conclude that a viable and efficient strategy for
processing recursive queries in a deductive database should provide
the following characteristics:

¢  Feasibility and correctness: It should have a guaranteed termi-
nation and produce a correct result.

o  Coupling efficiency: For databases baving a large amount of
data on secondary storage, it should provide an efficient access
to the data.

®  Searching efficiency: It should have the FRD property (Focus
on Relevant Data) [Vie86, Nic86]. This property may be fur-
ther divided into FRD-A and FRD-B properties as follows:

e FRD-A: It should not process irrelevant tuples, which are
not necessary to formulate the results.

e FRD-B: It should not process the relevant tuples repeat-
edly (i.e., no duplication).

Feasibility and correctness

To determine the feasibility of a given approach, the following
issues must be carefully considered.

1. Cyclic Data: Cycles in data cause certain evaluation algorithms
to get into an infinite loop. For example, suppose we have a
relation FLIGHT that shows the origin and destination cities
of flights: the relation contains tuples <new york, chicago>,
<chicago, dallas>, and <dallas, new york>. Consider the
rules:

reach(X,Y):- flight(X,Y)

reach(X,Y):- reach(X,Z), flight(Z,Y)
If a query such as ?reach(X, new york) or ?reach(chicago, Y)
is issued against the relation FLIGHT, in some approaches, the
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evaluation algorithm gets into infinite recursion. For example,
PROLOG has this problem, and so does Counting [Ban86a].
.The approach we propose is able to deal with cycles in data and
poses no termination problem. In general, approaches classi-
fied as "bottom up" [Ban86] are capable of dealing with cycles
in data without any difficulty.

2. Negation: A number of existing approaches totally disallow
pegation since it violates the definition of Horn-clause logic.
In Section 4 we extend Clark’s negation-as-failure evaluation
technique [CLA78] to handle negation in most practical cases.
Extension of negation as failure for general first-order logic
databases is discussed in [Naq86). More scrutiny on negation
in conjunction with the closed-world assumption [Rei78] ap-
pears in [Naq86a).

3. Safety: The safety issue deals with the size of the final or
intermediate results of a query. A query is safe if the final re-
sult is finite. We also define query execution to be safe if all the
intermediate results are finite. To guarantee safety of the
query and query execution, we require rules to be "bottom-up
evaluable” [Ban86]. To handle the case of negation properly,

we extend the definition of bottom-up evaluability in Section

4, :

4. Nonlinesr recursion: A recursive rule P :- P1, P2,..., Pn is linear
if there exists one and only one Pi in the body of the rule that
is mutually recursive with P [Ban86]. A rule is nonlinear if
there is more than one Pi that is mutually recursive with P.
Further, a set of rules is linear/nonlinear if every/any rule in
that set is linear/nonlinear. The approach we propose is able
to handle both linear and nonlinear rules.

Coupling efficiency
A wide range of approaches to providing the DBMS with de-
ductive capabilities have been proposed

[ Cha85,Vie86,Boc86a,Ban86,Kif86]. In one set of approaches,
classified as tight coupling, a DBMS is extended to incorporate rule
management and inferencing, thereby integrating the database ca-
pabilities with deductive capabilities. However, such approaches
have not exploited the query optimization techniques existing in the
DBMSs.

The other set of approaches is classified as Joose coupling. In the
loose coupling philosophy, a DBMS is considered a complete, inde-
pendent system. The communication with the DBMS is supposed
10 occur at the level of a database query language (in our case SQL).
This approach has the following potential advantages:

e [t allows one to use a relational DBMS without having to re-
design (and reimplement) it.

o It allows the full power of relational query optimization to be
exploited while retaining the option of performing additional
optimization in the logic program itself.

In loose coupling, however, care must be taken to achieve effi-
cient database access. For example, in a technique that we term
naive loose coupling, requests are made to the DBMS whenever the
necessary data reside in the DBMS. However, this technique may
cause excessive database access that could lead to tuple-by-tuple
access to data in the worst case. Typically, interpretation (vs. com-
pilation) is dominant in naive coupling.
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In the type of loose coupling we propose (smart loose coupling),
compilation [UlI85, Hen84.] is preferred to interpretation. Thus, a
logic query is compiled into a small number of database queries
(with possible iterative constructs) to run on the DBMS. Since
queries are formulated at the granularity of entire relations or col-
lections of them, any tuple-by-tuple transfer of data between the
DBMS and the logic programming environment is strictly avoided.
For example, suppose we have a rule a(X,Y) :- b(X,Z), c¢(Z,Y),
where there are 1000 tuples each satisfying the predicates b and c.
Consider a query ?a(X,Y). In naive loose coupling, with a Prolog-
like depth-first search strategy, processing the query requires 1001
calls to the DBMS. In smart loose coupling, on the othe hand, we
peed only one database query, which is the join of b and c.

The technique used in PROSQL [Cha85] allows both naive and
smart loose coupling. However, in this system, the user is reponsible
for the translation between the logic program and SQL queries.
Jarke et al. [Jar84] discusse a loose coupling approach, but it is lim-
ited to a nonrecursive part of the Prolog program without negation.
The system EDUCE/DEDGIN [Boc86,Nic86, Vie86] supports both
tight and loose couplings. For the part of loose coupling, the system
treats PROLOG as a host language for general application develop-
ment and poses requests for data to INGRES DBMS whenever
necessary (i.e., when the data reside in the DBMS) while processing
with typical PROLOG interpreter. For the part of tight coupling,
the deductive component called DEDGIN [Vie86] looks at the
function-free Horn-clause subset of PROLOG assertions and cou-
ples tightly to the same DBMS by directly calling the internal access
methods.

We note that not much work has been done on coupling effi-
ciency, except in [Kri86] and [Cer86}. Krishnamurthy and Zaniolo
[Kri86] briefly discuss cost equations that can be used in loose cou-
pling. Ceri, Gottiob, and Wiederhold [Cer86] assumes that all the
query processing is done in main memory with a memory-resident
copy of data and proposes an algorithm to load the data from the
DBMS to main memory intelligently. In this approach, however, the
query processing and optimization capabilities of the DBMS are not
utilized. We believe coupling efficiency is an important issve to be
addressed. Our approach specifically deals with this
problem—especially, in a loosely coupled environment.

Searching efficiency

We have proposed two categories in the FRD property: FRD-A
and FRD-B. Many papers address searching efficiency. For exam-
ple, Sideways Capture Rules [UlI85], Magic Sets [Ban86a}, Count-
ing [Ban86a, Sac86), Filtering [Kif86,Kif86a], etc. dwell largely on
the FRD-A property. The Semi-Naive evaluation technique
[Ban85] addresses the FRD-B property in the case of linear rules.
However, the technique requires the use of relational algebra ex-
pressions to calculate differentials explicitly, and sometimes these
expressions are too complicated to obtain. A differential is an in-
cremental result from each iteration during evaluation. Our ap-
proach provides a simple efficient technique of achieving the FRD-B
property by implicitly (i.e., without using a formula) calculating the
differentials (See Section 3.2). This technique is applicable to any
set of linear rules. We do not cover the FRD-A property in this pa-
per, but we believe that it can be superimposed by adding an addi-
tional rule modification phase.

Another technique of achieving searching efficiency is based on
extended relational algebra [Aho79,Agr87,Dev86]: pushing the se-
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lection operator across the fixed point operator to the base relations
as close as possible. This technique is a heuristic optimization at the
level of a relational algebra.

1.2 Our Approach

We consider the class of logic queries that are expressed in
function-free Horn-clause Logic with extension to incorporate ne-
gation. For the safety of query computation [Ban86, Kri86], we
further restrict the rules to be "bottom-up evaluable" [Ban86) with
a modified definition to accommodate negation (see Section 4).

In a nutshell, our approach is to decompose 2 logic query com-
posed from a set of rules into units termed Extended Disjunctive
Normal Form (EDNF) components. The term EDNF is derived
from disjunctive normal form (more about this later in Section 3)
that can be applied to Boolean expressions. In the context of rela-
tional algebra, conjunctions refer to joins and disjunctions to unions.
The EDNF is an extension that allows us to deal with recursion in
addition to relational operations.

We show that the EDNF is well suited for a loosely coupled en-
vironment and discuss how it reduces the call to the DBMS, which
is a costly operation in such an environment. We show that a logic
query can be decomposed and transformed into an equivalent forest
of EDNF trees. We also present an algorithm to process the query
using the EDNF trees. Using a fixed point formalism, we show that
this transformation coupled with the processing algorithm is sound
in that it generates the correct result. We discuss interesting ramifi-
cations of the EDNF formalism including graphical characterization
of the complexity of recursion and corresponding efficient query
processing algorithms. Finally, we handle negation in most practical
situations by extending valid usage of Clark’s negation as failure.
‘We propose new criteria for safety and termination in the presence
of negation.

Currently, we are implementing an inference engine based on
the EDNF approach for an expert system shell, SQL Inference En-
gine, using an interface language derived from a version of
SYLLOG [Wal83]. The system utilizes data stored in the underlying
DBMS: SQL/DS.

The rest of the paper is organized as follows. In Section 2 we
provide the motivation to our approach and define the notation. In
Section 3 we present the concept of the EDNF and prove that the
evaluation based on the EDNF is correct. In Section 4 we extend
the EDNF to include negation and present the technique of proc-
essing logic queries by decomposing them into EDNF components.
We discuss advantages of the EDNF approach in Section S and
summarize our results in Section 6.

2.0 Motivation Behind Our Approach

2.1 Background

We start with the rule/goal graph of Ullman [Ul1I85] to describe
the data structure to represent a logic query. The rule/goal graph
represents a set of rules by creating rule nodes—one for each rule
with a specific adornment [Ban86a] for the variables and goal
nodes—one for each predicate with a specific adornment for the ar-
guments. An adomment is a string of b’s and 'f’s indicating the
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binding status of the variables in a rule or the arguments in a goal.
The symbol *b’ means that the corresponding variable or argument
is bound, i.e., instantiated, whereas the symbol ’f’ means that it is
free, i.c., uninstantiated. Thus, if a node r has k variables, there are
2* nodes marked r* where g is the adornment. For example, 1
shows an instance of rule r with the first variable bound and the
other two free. Nodes are similarly created for all possible bindings
of arguments of a predicate. To describe our scheme, we need to
modify the rule/goal graph slightly. We call the modified one the
query graph. While the rule/goal graph is composed for the entire
set of rules, we construct a query graph for a specific given query. In
addition, the query fixes a particular value (we call it the binding
walue) for a bound argument. In essence, by using the query graph,
we trim the rule/goal graph by retaining only those nodes relevant
to a specific query. The method of connecting the nodes by arcs
remains the same as in the rule/goal graph, except that we distin-
guish different binding values. Note that generating rule/goal
graphs to account for all possible values would not be practically
feasible because the number of distinct values is potentially infinite.
To illustrate the query graph, consider the following rules:

rl: a(X,Y):- b(X,Z), ¢(Z,Y)
r2: b(X,Z):- e(X,L), f(L,Z)
r3: e(X,L):- g(X,K), h(K,L)

Consider the query ?7a(X,5). It corresponds to the node @™ in
the rule/goal graph with the specific binding value of 5 for the sec-
ond argument. We label this node as a(f/X, b(5)/Y). The com-
pleted query graph is shown in Figure 1.

a(f/X, l;ES)/Y)
1(1/X, 5(5)/Y, {/Z)
b(f/X, {/Z) o(f/Z, b(5)/Y)

/fl(f f/L, f/ZH
e(f/X, f/L) f({/L,1/2)

/;p(r/:f /K, m#\h
g(t/X, £/K) (f/K, {/L)

Figure 1.  The query graph for the query 7a(X,5).

In constructing the query graph, we enumerate all variables in-
volved in that rule and show appropriate bindings. Binding infor-
mation is passed down from the query node by means of unification.
Note that the variable L in rule 2 was unified with the variable Z in
the goal node b(f/X, f/Z). In the graph the rule node (AND node)
implies the conjunction of goals connected by incoming arcs; the
goal node (OR node) implies the disjunction of (bodies) of rules
connected by incoming arcs [UII85].

Now, let us construct the query graph of a recursive query.
Consider the rules:

rl: a(X,Y) :- ¢(X,L), e(L,Y)

2: a(V,W) :- d(M,V), g(V,Z), a(Z,W)
Suppose the question ?a(X,5) is asked. Then, the query graph is as
in Figure 2.
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a(f/X, b(5)/Y) Ll F\
ri(f/X, /L, b(5)/Y) r2(/M, {/X, b(g)/Y, f/Z
/X ATy e(t/Lb)/Y) dt/MTTX) 2t/R4/2) /DY)

Figure 2. Query graph for the recursive query ?a(X,5).

In Figure 2, we draw an arc from a( ) to r2( ) because the node
a(f/*, b(5)/* ) appears repetitively with the same binding informa-
tion. Since we cannot unify the variables/arguments in an existing

" node (ie., one already constructed), we use mapping of variable

names; in this case X in node a( ) is mapped to Z in node r2( ).
When we later evaluate the query graph, we have to resolve the
mapping to establish the correct association of the mapped variable
with those in other nodes. A mapping is resolved by replacing the
variable pame in the node at the tail of the arc with the name at the
head side of the arc. (Note that in [UII85] mapping is implicit in the
rule/goal graph, and the substantiation algorithms have to keep
trddk of it.) For example, in Figure 2, a broken arc shows how the
node a( ) looks like when the mapping has been resolved. Notice
that the mapping does not necessarily indicate presence of recursion
(directed cycle) because mapping is also needed when an undirected
cycle is formed. An undirected cycle typically results when more
than one branch of the graph refers to the same goal node with the
same binding information.

2.2 Scope for Improvement

Associated with the rule/goal graph, there are substantiation
algorithms that compute the relation for each node according to
capture rules [UII85). A relation is associated with each node in the
rule/goal graph. This relation is a set of tuples that satisfy the con-
straints implied for the node by the grapb. From now on, we shall
use a node in the graph and its relation as being synonymous.

In the straightforward application of these substantiation algo-
rithms, we have to create a temporary relation for each node in the
query graph, since the query is processed by evaluating each node
according to the structure dictated by the rule/goal graph. Here,
we observe some potential for improvement:

1. Creating many temporary relations not only takes a potentially
excessive amount of storage space but causes an adverse effect
on performance in a loosely coupled environment. In partic-
ular, a join between a temporary relation in memory and 2a
DBMS relation could cause as many calls to the DBMS as the
numbers of tuples in the temporary relation. Therefore, we
need to minimize the number of temporary relations created in
evaluating a query.

2. The structure of the rule/goal graph is inherited from the
user-written rules. Thus, the execution structure (such as the
ordering of relations), and accordingly the performance, is
heavily dependent on these rules. This counters the principle
of data independence. Our aim is to eliminate this limitation
by "normalizing" the query to keep only semantic information
that is necessary to evaluate the query.

3. The rule/goal graph approach does not take advantage of ex-
isting DBMS optimization.

Example 1: Consider the rules and the query in Figure 1. In this
case, we need six temporary relations (one for each nonleaf rule or
goal node). Besides, the "basic capture rule” in [UH85] indicates
that the joins must be evaluated in the order (((g Join h) Join f) Join
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c). However, we know that we can process this query with only one
temporary relation (for the result) in main memory and that the
DBMS optimization can choose any join ordering that provides the
best performance. The normalized query is (g Join h Join f Join ¢).
It can be translated to a database query as follows:

SELECT g.l,c2
FROM g h,f,c
WHERE g.2=h.1 AND h.2=f.1 AND f.2=c.1 AND c.2=5

In the above query, projection lists and join conditions are shown
using positional identifiers for attributes.
End Example 1

3.0 The Extended Disjunctive Normal Form

In this section we define the concept of an Extended Disjunctive
Normal Form (EDNF) of a query graph. The Extended Disjunctive
Normal Form is an extension of the disjunctive normal form of re-
lational algebra expressions so as to include recursion.

The purpose of our technique is to process a query in such a way
as to avoid the shortcomings of the straightforward evaluation of the
rule/goal graph that are discussed in the last section. In Section 3.1
we present the definition of the EDNF and we discuss the algorithm
to transform the query graph into the EDNF representation. In
Section 3.2 we present an algorithm to generate the answer to the
query using the EDNF. In Section 3.3, using a fixed point
formalism, we prove that the answer obtained from the EDNF is
indeed the answer to the original query. The EDNF can be con-
structed only for those query graphs in which the query goal (de-
fined in Section 3.1) is included in any directed cycle. The
application of the EDNF to more general queries (i.e., when some
cycles do not go through the query goal) is discussed in Section 4.

3.1 Definition of the EDNF

For a given set of rules, a query graph is constructed to represent
a specific query against this set. We call the root of such a graph the
query goal. Thus, the relation corresponding to the query goal is the
answer to the query. The EDNF representation of a query graph
has the following characteristics:

1. Itis a set of two-level trees.
2.  The root of each such tree is the query goal.

3. Each tree has one or more leaf nodes that are base relations
(i.e., they are not temporary relations). A leaf node in the tree
must be a leaf node in the query graph.

4. A tree may have one or more loops on the root indicating
recursion. We call such a tree a looped tree. If a looped tree-
has a single loop, we call it a single-looped tree; otherwise, we
call it a multilooped tree. The set of EDNF trees is called an
EDNEF Forest.

5. There is only one temporary relation, which is the root (query
goal) of all the trees.

The EDNF minimizes the number of temporary relations since
it has only one temporary relation, which is essential for storing the
result of the query. It also normalizes the query into a two-level flat
structure, eliminating the arbitrary structure imposed by user-
written rules. Figure 3 shows the EDNF of the query graph in Fig-
ure 1.
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a(f/ )7(‘,b 5)/Y)

g(/X,1/K)" h(f/Kf/L) f(f/L.f/Z) c(f/2,b(5)/Y)

Figure 3. The EDNF for the nonrecursive query in

Figure

Figure 4 shows the EDNF of the recursive query graph in
Figure 2. A

( b(%t. £/Xb(5)/Y) )V
c®/XT/L)  e(f/Lb(S)/Y) d/ME/X)  g(/X.f/Z)

Figure 4. The EDNF of the recursive query in Figure 2.

The loop on the root node in Figure 4 actually stands for the
root node used as a leaf node in its own definition. The mapping in
the loop represents that the variable name X is to be replaced with
the variable name Z when resolved as defined in Section 2.1. Thus,
the second tree (in the folded form) in Figure 4 can be alternately
shown as in Figure 5. We call it the unfolded form of the looped
tree. In the unfolded form, the loops appear without mapping just
to indicate the presence of recursion. If the tree has multiple loops,
the root appears as a leaf multiple times—once for each loop.

f/X,b Y
A1/X(5)/ )0

da/ME/X /xa/zy T aR/Z.6(5)/Y)

Figure 5. The unfolded form of the looped tree in
Figure 4.

Generation of an EDNF forest

We present a description of an intuitive (top-down) procedure
for converting the query graph into the corresponding EDNF. A
formal description of the algorithm based on bottom-up construction
is in [Wha87].

1.  The query graph is traversed by following one of the alternative
branches at every OR node (a ponleaf goal node). For an
AND node (a rule node), if it has a leaf node as a child, the
child is attached to the output tree as a leaf node. Otherwise,
all branches coming up into that AND node are traversed.
When all these AND branches reach leaf nodes, one EDNF
tree has been constructed.

2. After the first visit, whenever the query goal is visited again,
we treat it as a leaf node. Since this indicates recursion, we
mark the tree as a looped tree. At some point in the path, if
multiple cycles bifurcate from an AND node, it forms a multi-
looped tree. On the other hand, if multiple cycles bifurcate
from an OR node, we obtain multiple single-looped trees rather
than one multilooped tree. This results in an interesting
graphical characterization of linear or nonlinear rules. The
presence of any multilooped tree in the EDNF indicates that the
set of rules used in the query graph is nonlinear; if there are
only nonlooped and single-looped trees, then the set of rules is
linear.

3. Whenever a leaf node is encountered, we record on the arc the
mapping accumulated (using function composition) through
the entire path from the root to the leaf unless it is the identity
mapping. Details of manipulation of the mapping are described
in [Wha87].
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For ease of understanding, the algorithm as described here
produces looped trees in the folded form. To actually process the
query, however, we need to transform the trees to the unfolded
form. The algorithm in [Wha87] directly produces the looped trees
in the unfolded form.

Example 2: Figure 6 and Figure 7 show query graphs containing
ponlinear and linear recursive rules, respectively, and their EDNFs.
For simplicity, we represent nodes simply as OR and AND. Only
the root and leaf nodes are shown with predicate names. 20Y

qgﬁ q(Z,a)
D V e fO g0
1
's\ A
}Np\ Cq z2)
20 ho/' i0 0° b0 ;o
Query Graph A EDNF of Query Graph A
Figure 6. nAo nﬂgee;ry ruﬁ?h and the EDNF involving
~ q(X q(X,10)
i ANR o( b()
1 b0 %Cq%x,lo)
)
7 AR AP
p0 k() sO $C.ax,10)
2 ~
k() s()
Query Graph B EDNEF of Query Graph B
Figure 7.

A Query Graph and the EDNF involving only
linear rl;{es

Note that in Figure 6 the bifurcation of the two cycles occurs
at an AND node (thus generating a double loop), whereas in
Figure 7 it occurs at an OR node (thus generating single loops).

End Example 2 ¢

In constructing the EDNF, some care must be taken not to lose
any binding information propagating upwards through the query
graph. These bindings may come from the rule heads. Two typncal
cases are shown below:

Case 1:
Case 2:

a(X,Y,0) [
b(X,X) m eeereeenens

Since in the EDNF, all the nonleaf nodes are eliminated, these
bindings will be lost. We solve this problem by modifying the above
rules before conversion into EDNF as follows:

Case 1: a(X,Y,Z)
Case 2: b(X.Y)

Lo reeeenneees , (Z=0)
= eeveerenne , (X=Y)

Thus, basically we introduce new variables in the heads and
move the binding information into the body of the rules. The
transformation we use is consistent with the general form of the
clause in [Cla78].2

* This is brought up again in the discussion of negation in Section 4.
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3.2 Processing Queries Using the EDNF

The EDNF is a data structure representing a query. We now
present an algorithm to process a query using this data structure.
Let us use the following notation:

NT:  the set of nonlooped trees in the EDNF
LT: the set of looped trees in the EDNF

The algorithm is described below:

Algorithm PROCESS__QUERY (NT, LT, Result)
1. Result:= ¢
2. Foreach tree t ¢ NT
Result:= Result U EVAL(t)
Endfor
3. repeat until no change in result
For each tree /' € LT,
Result:= Result U EVAL(Y)
Endfor
End PROCESS__ QUERY

The algorithm EVAL simply evaluates a nonrecursive query re-
presented by a nonlooped tree. When evaluating a looped tree, it
disregards the loops from the unfolded form of the looped tree (see
Figure 5). A nonlooped tree is evaluated as a join of all the Jeaf
nodes in the tree projecting the result for the arguments in the root
(query goal). Such a join request is submitted to the DBMS. Join
conditions are derived from the matching variables in different
nodes. If the leaf is an evaluable (arithmetic) predicate such as X
> Y, then it is treated as a condition. If all the variables in a condi-
tion come from database relations, the condition is imbedded in the
database query. If there is a safety dependency [Zan86] among
variables in the evaluable predicates, these predicates are evaluated
based on the order of the dependencies. A set of variables Y is
safety dependent on a set of variables X (X - Y) if there is a finite
number of Y values once values of X are fixed.

Example 3: In Figure 8 there is a safety dependency X = ¥ » Z.
Hence, the evaluation of the tree proceeds as follows. First,
I, , o(p,s,cond(p.2 = 5.1)) is processed by issuing a query to the
DBMS.3? Next, for each tuple in the result, we

1. evalvate Y=2*X and bind Y;

2. evalvate Z=Y+3 and bind Z;

3. check the condition Z>W to select tuples from the resuit of

join.
Note that both Z and W are bound by the time the condition is

checked.  Otherwise, q(X,Y,Z) would not be '"bottom-up
evaluable."
q(X,Y,Z2)
Z=Y+3 Y=2*X Z>W p(X,L) s(LW)
Figure 8. A general nonlooped tree.
End Example 3 ¢

It is interesting to note that the algorithm EVAL is similar to the
algorithm needed to process a domain-calculus query as in QBE

3 Here and throughout the paper, the symbol « represents the prefix join opera-
tor, and I1 the projection operator.
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[Z77]. We can therefore take advantage of optimization tech-
niques developed for this class of DBMS queries (e.g., see
[Wha85]).

A salient feature of the algorithm PROCESS__QUERY is that
nonlooped trees are evaluated and unioned "only once." The itera-
tive procedure is applied only to the looped trees. This makes a
significant improvement over what is implicitly indicated in Tarski’s
[Tar55] formalism. There, nonlooped trees would be unioned again
and again at each iteration. We believe that some of the existing
naive approaches do exhibit this drawback. A natural consequence
of the EDNF approach is to isolate the portion of the query to be
processed iteratively to a minimal possible scope.

Algorithm PROCESS__ QUERY is the basic algorithm to proc-
ess looped trees. We can construct alternative processing algorithms
suitable for processing looped trees in different situations as in the
following examples.

Example 4:

We describe an algorithm that can process the queries derived
from linear rules efficiently. These queries contain only nonlooped
and single-looped trees. This algorithm avoids duplicate processing
of relevant data, ie., it satisfies the FRD-B property. Further, it
does not require explicit calculation of differentials; instead, it ob-
tains them implicitly.

For the sake of simplicity, we describe the algorithm using a
specific example shown in Figure 4 and Figure 5. First, algorithm
PROCESS__QUERY described above evaluates the query as in
Figure 9.

1) ap: = 11, 4 o(ce,cond(c.2 = e.1))
2) repeat (incrementing i) until g; = a;_;

a;ma;_y VI, (a;_,d,8 cond(a;_y.1 = g.2Ad.2 = g.1))

Figure 9.  Iterative evaluation of the EDNF in Figure 4.

Note that a straightforward application of this procedure in-
volves some redundant computation. The result of Step 2 at iter-
ation i — 1, g,_, , is processed (i.e., joined with d and e) at iteration
i to produce a, However, this processing is duplicated at iterations
i+ k, where k =1, 2, 3, etc., because q,_, is a subset of all 2,,,’s.

Algorithm ONE-PASS described below completely avoids this
redundancy. In this example we consider a situation in which the
result (relation a) is constructed in main memory, and relations ¢ ,
e, d, and g are in the DBMS.

Algorithm ONE-PASS

1) compute(c(X,L)&e(L,5)&
check-unique-and-addnewtuple(a(X,5)))

2) compute(a(Z,5)&d(M . X)&g(X,.Z)&
check-unique-and-addnewtuple-at-the-bottom(a(X,5)))

In algorithm ONE-PASS, the predicate compute finds all variable
bindings that satisfy the goal passed as the argument. Step 1 proc-
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esses the nonlooped tree and constructs the initial value of relation
a (i.e., ap), and Step 2 processes the looped tree. Step 1 and Step 2
correspond to Step 1 and Step 2 in Figure 9, respectively. For
convenience, we described the algorithm in a Prolog-like fashion.
In actuality, however, the algorithm generates calls to the DBMS in
as big queries as possible to access the data in the DBMS. In this
example the following database queries will be composed:
I, 4 co(ce, cond(c.2 = e.1)) and
I, o(d,g, cond(d.2 = g.1Ag.2 = z)) , where z is a specific value of
Z bound by a tuple of a. The algorithm is further illustrated in Fig-
ure 10,

L] :—_ " search continues
a - -—:
a - & E JOIN I, «(d,g.cond(d.2 = g.1Ag.2 = 2))
a—a E
— (i:-tupl&s added
Figure 10.  The ONE-PASS algorithm that avoids duplicate

processing of relevant data.

Step 2 of algorithm ONE-PASS does not contain explicit iter-
ation. Instead, it makes a "single pass" through relation a, while
adding new tuples from partial results to the bottom of a at the same
time. New tuples added are checked for uniqueness before in-
sertion. (Note that set union in Figure 9 should also check for
uniqueness. This applies to any iterative evaluation techniques.)
When no more new tuples are added, the computation stops.

In effect, the algorithm adds (a,,; — 4, as a result of processing
(a; - a,_y) (i.e., joining (g, — a,_,) with o(d,g)), where i is a specific
iteration in Figure 9. That is, it obtains a differential at iteration
i+ 1 by processing only the differential obtained at iteration i.
Thus, it avoids duplicate processing of tuples in a,_; when producing
(a,,1 — a). Note that the algorithm does not require an explicit re-
lational algebra expression to calculate the differential. A related
work based on differentials has been presented in [Cai87] in the

context of programming languages.

The one-pass technique is possible for two reasons:

1. Only one relation (4 in this case) is evaluated as the result: the
EDNF representation has this property since it requires only
one temporary relation that corresponds to the query goal.

2. Only single-looped trees are considered: only linear sets of
rules provide this property.

End Example 4 ¢

Example §5:

Although the class of queries that can be represented in the
EDNEF is far larger than that of the simple transitive closure, their
EDNF representations resemble each other. A transitive closure
appears in the EDNF as one nonlooped tree and one single-looped
tree, each having one leaf. Hence, any efficient techniques to proc-

Proceedings of the 13th VLDB Conference, Brighton 1987

ess the transitive closure [Ioa86, Yu87] can be applied to the EDNF
with little modification.
End Example 5 §

Transitive closure vs. linear rules

Similarity between transitive closure and linear rules has been
demonstrated in [Jag87] for the case of a single recursive rule (with
a nonrecursive exit rule). Our scheme shows the same observation
can be made for a sef of linear rules. We simply treat a set of non-
looped trees effectively as one nonlooped tree. The leaf of the new
tree is the union (i.e., disjunction) of the sets of leaves from the
orignial trees. Similarly, we treat a set of single-looped trees as one
single-looped tree whose leaf is the union of the sets of leaves from
the original single-looped trees. Thus, the function for which the
transitive closure is defined is the union of the joins of relations
rather than a single relation. Our scheme also provides interesting
insights into nonlinear effects. Although nonlinear rules cannot be
precisely represented as a transitive closure, any nonlinear effect is
cleanly isolated in the form of multilooped trees.

3.3 Least Fixed Point Formalization of the
EDNF

Our goal in this section is to use the fixed point formalism to
show that our proposed transformation of the query graph into the
EDNF obtains the same result as that of the original query.

Theorem 1: Algorithm PROCESS__ QUERY produces the correct
result to the query.

To prove Theorem 1, we need to introduce several theorems and
lemmas regarding fixed points. Detailed proofs of these theorems
and lemmas appear in [Wha87).

Theorem 2 [Tarski):

Given:

A poset (S, <,0) is a partially ordered set with respect to a binary re-
lation <. S has a unique minimum element 0. Also, there cannot
be an infinite sequence of strictly ascending elements of S. We call
this condition the Ascending Chain Condition (ACC). .S -+ Sisa
monotone increasing function with respect to <. A fixed point of f
is defined as an element x of the domain of f such that f{x) = x .
The least fixed point of f, (LFP(f)) , is the smallest fixed point with
respect to <.

Then:

LFP(f) = f*(0) for some finite k, i.e., the LFP can be computed as
the value x at the termination of the following program:

Xx; = 0;

while f(x) > x

x: = f{x);

end;
Theorem 2 can be extended in a straightforward manner to a system
of equations. Thus, we define the fixed point of a vector of func-
tions F with the equation:

X = F(X), 1]

where X is a vector of fixed point variables <X;, X;, ... ,X,>.
Equivalently, we have

Xwf(Xy, .. X)) i=1t0n [2]
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Lemma 1: Inheritance of Ascending Chain Condition

Gjven posets (S; <,0), i=1,2, ...,n, each with the ACC. Then,
S= (XS, <, <01, 05 ... >) is also a poset with the ACC. The bi-
nary telation < is defined as:

<XpXp .. s X, > <<, Yy ..., Y, > X, <Y foralli

Lemma 2: Inheritance of Monotonicity

_Let (f: S = S) be monotone increasing; ie., if X < Y, then
£X) <.f(¥) . Then,
F:§+83F(X, ....X,) = <fitXg, ..., X)), -0
is also monotone increasing.

SolXps o XD >

Theorem 3: Given § in Lemma 1 and F in Lemma 2, LFP(F) can
be computed as follows:

X: = 7;
while F(X) > X
X: = F(X);
end;
Theorem 4 [Kildall}: Given :S in Lemma 1 and F in Lemma 2, LFP(
F) can be computed as follows:

<Xp Xy oo X, > = L0405 ...,0,>
while 3i € {1, ... ,n} 3 (X, < fi(X1. X, ..., X))

X: = (X, X%, ..., X)) [3]
end;

Theorem 4 [Kil73] basically says that LFP(F) can be computed
by iterating on individual equations. We shall refer to one step of
this iteration with any one equation as an elementary execution . In
addition, Theorem 4 allows us to choose any order of performing the
elementary executions without affecting the least fixed point.

To prove Theorem 1 we proceed as follows. We subsequently
illustrate the proof with an example.

1. First, we model the query graph as a system of equations as in
Egs. [2]. One equation is created for each node in the graph.
We call it the query graph system of equations (QGSE). Simi-
larly, we model the EDNF forest as a system of equations, but
in a slightly modified form to introduce an explicit OR node.
We call it the modified EDNF system of equations
(MEDNFSE).

2. Next, we define a macro execution of the system of equations
QGSE as the set of all elementary executions that are per-
formed according to the "partial order” defined by the query
graph in its unfolded form with the cycles broken. Note that,
from Theorem 4, we have the freedom of choosing any order
of elementary executions without affecting the result. Simi-
larly, we define a macro execution for the modified EDNF.
From the algorithm constructing the EDNF forest, we conclude
that one iteration of the macro execution on the QGSE and one
on the MEDNFSE produce the same result for the query goal
(ie., the root node), since the result of the latter is the
disjunctive normal form of the result of the former. Therefore,
both iterative macro executions converge to the same least
fixed point.

3. Finally, we show that the iterative macro execution terminates.
Since the relational algebra expressions include only selection,
projection, cartesian product or join, and union, they are

282

monotone increasing functions [Aho79]. (We disallow set dif-
ference by excluding negation involved in a cycle as discussed
in Section 4.1.) Since the "values" for the relations are limited
by the cartesian product of all values in the base relations and
those derived by evaluable predicates subject to safety condi-
tions (as in Example 3), the ascending chain condition (ACC)
is satisfied with respect to set inclusion. Thus, the iteration
must terminate.

Example 6: Consider the following rules:

rl: ¢(X,Y) :- a(X,Z), b(Z,Y)
r2: q(X,Y) :- ¢(X,2), d(Z,Y)
r3: d(Z,Y) :-e(Z,Y)

r4: d(Z,Y) :- f(Z,L), q(L,Y)

The query graph for ?q(X,Y) and the corresponding EDNF for-
est are shown in Figure 11 and Figure 12, respectively.
q(X,Y)
ri(X,Y,Z
K)
aX,Z) bZY)

. }(X,Y Z)

o(X.2) 4 %
r( /Y? R(ZY.L)

e(Z,Y) f(Z,L)

Figure 11. Query graph for 2q(X,Y).

}SX,Y)\ (X,Yk
aX,Z) bEZY)c(XZ)  e(ZY)c(XZ)

A
T
}(X.'i,()\g <
f(Z,L)
Figure 12.  The EDNF forest of the query in Figure 11.

First, we modify the EDNF forest to introduce an explicit OR
as in Figure 13 below.

X
0L o

3 (X.Y) o(X,Y r7(X,Y
a(X,Z) b(Z)Y) c(X,Z) e(ZY) c(X,{)\ ;E,L)

Figure 13. A modification of the EDNF forest in

Figure

If we apply the bottom-up capture rule and the substantiation
algorithm [UlI85] to the modified graph in Figure 13, it is easy to
show that the result remains the same as the result of
PROCESS__QUERY for the EDNF in Figure 12. Basically, in
Figure 13, the two disjuncts namely, r5 and r6, are repeatedly un-
ioned with the query goal q (which is an inefficient technique), while
in the EDNF they are unioned only once. Now, we shall prove that
the query graph in Figure 11 and the modified EDNF in Figure 13
are equivalent in that they produce the same resuit.

Using relational algebra the query graph above can be repres-
ented by the following system of equations. Without loss of gener-
ality, we choose one total order of the equations that satisfies the
partial order defined by the query graph.
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Bme

r4 = 11 4 5 (f.q,cond(f.2 = g.1))
d=U (3,11, ;r4)

12 = I} 4 5 w(c,d, cond(c.2 = d.1))

rl = II, 4 5 =(a,b, cond(a.2 = b.1))
g=U(l;r1, 11 ,r?)

[QGSE]

The modified EDNF in Figure 13 can be represented as follows:
r5 = I1; 4 , w(a,b,cond(a.2 = b.1))
16 = I1; 4, «=(c.e, cond(c.2 = e.1))
r7 = I} g 5 4 2(c,fig,cond(c.2 = f.INf2 = ¢.1))
q =V () 515, Iy o76, Ty 5r7)

[MEDNFSE]

We now define a macro execution for the QGSE as the set of
all elementary executions in the QGSE that are performed according
to the partial order defined by the query graph in its unfolded form
with the cycle broken. Similarly, we can define a macro execution
for the MEDNFSE.

As a result of a macro execution on QGSE, we obtain

'Sn,l =e
f4"_2 - H],4,2 W(f,qn__l, cond(f.2 - qn—l'l))
dy3 = U (13,1, I11 5rd,, 5)
ﬂn’4 - ﬂ].4.2 W(C,dns, oond(c.2 - dn}‘l))
rl,,,s - H1’4’2 W(ﬂ,b, cond(a.2 - b.l))
qn ™= 49ne ™ U (Hl,2r1n,5’ nlﬂn,4)
Here, the first subscript stands for the iteration number of the macro
execution, and the second the iteration number of the elementary
execution within a macro execution. By substituting r1, s and 12,
g, =V (H1,4 «(a,b), H1,4 “(C,dn,s))
= U (I1 4 (a,b), I 4 oo(c, U (e, I1; 4 o(f, gy 1))))
= U (I1; 4 wo(a,b), I1; 4 =(c,e), IT g o(c.f; gp.1))

{QGSE]

[QG-n]

where g, is the value at the n-th iteration. For simplicity, we dropped
the join conditions in the above equations. Similarly, the macro ex-
ecution on MEDNFSE produces

qn = U (HM oe(a,b), H1’4 OO(C,C), H1,6 UO(C,f, qn_])) [MEDNF-D]

Equations QG-n and MEDNF-n show that tbe results of
macro-executions on the QGSE and the MEDNFSE are identical.
In general, the resulting values of q from the QGSE and from the
MEDNFSE must be identical since, by definition, the latter is only
the disjunctive form of the former. Let us note that this property is
obtained by virtue of the definition of the macro execution as a
"partially ordered" set of elementary executions "as per the query
graph." A set of elementary executions with an arbitrary order
would not have this property.

This completes our demonstration of (proof of) equivalence be-
tween the query graph and its EDNF representation.

End Example 6 ¢
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4.0 EDNEF as a Building Block for More Com-
plex Queries

4.1 Incorporating Negation in Horn-Clause
Logic

The negation-as-failure evaluation technique [Cla78] extends
the linear resolution proof technique by treating a negated literal as
alemma. This lemma is evaluated by a "failure proof." That is, —p
is inferred if any possible proof of p fails. It has been shown in
[Cla78] that the negation-as-failure evaluation technique is a valid
inference rule in a completed database. Intuitively, a completed da-
tabase is constructed by adding the "only if"" counterpart of the rules
in the general form. In the general form, rules have no binding in the
head (i.e., the rule head has only independent free variables); the
bindings are all moved to the rule body (i.e., the right hand side).
Also, all rules having unifiable rule heads are combined into one rule
by treating the bodies of the individual rules as disjuncts in the body
of the new rule.

Clark concludes that negation as failure is valid in the completed
database if the rules are limited to those having no variables that
appear only in negated literals. In other words, negated literals must
be ground before being evaluated. For example, negation as failure
is invalid in the following rule:

(1) non-math-major(Student) :- student(Student),
core-math-course(Course), ~takes(Student, Course, Semester)

Note that the variable Semester does not appear in any positive li-
teral in the rule body.

In practice, however, we have an intuitive interpretation of the
rules that do contain free variables in negated literals. We use such
rules mainly when we want to express "relational projection” for a
negated literal. In this section, we reconcile the use of these rules
with a valid construct in Clark’s negation as failure. Also, we discuss
below safety issues and bottom-up evaluability when negation is in-
volved.

Consider rule (1). Intuitively, we interpret it as saying that a
student is not a math major if s/he never took some core math
course. Equivalently, we compose a projection of relation "takes"
on the first and second attributes and use it in negation. In other
words Semester is a don’t-care variable. In pure logic, however, the
rule does not mean what we want intuitively because the variable
Semester can take any value in the domain to make -takes(Student,
Course, Semester) true. For example, suppose John took all the core
math courses: including Calculus in Spring 86. Thus, John is a math
major. However, since takes(John, Calculus, Fall 86) is false, rule
(1) deduces that John is not a math major.

For comparison, let us consider another set of rules:

(2) non-math-major(Student) :- student(Student),
core-math-course(Course), ~takes’(Student,Course)

(3) takes’(Stud, Cour) :- takes(Stud, Cour, Semester)

Clearly, these rules provide the same intuitive meaning as that of
rule (1). Nevertheless, in this case, Clark’s negation as failure, as a
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valid inference rule, reflects our intuition correctly. In the completed
database, rule (3) is transformed to the equivalent general form as
in rule (4)®

(4) takes’(S,C) :- 3Semester, Stud, Cour ((S=Stud), (C=Cour),
takes(Stud, Cour, Semester))

Subsequently, the completion low adds the "only if" part, yielding
rule (5) :

(5) takes’(S,C) -: 3Semester, Stud, Cour ((S=Stud), (C=Cour),
takes(Stud, Cour, Semester))

Rules (2) and (5) together yield rule (6), which correctly represents
owur intuition.

(6) non-math-major(Student) :- student(Student),
core-math-course(Course), ~ ASemester, Stud, Cour((Student
=Stud), (Course=Cour), takes (Stud, Cour, Semester))

In our method, we modify any rule in the form of rule (1) to a
set of rules in the form of rules (2) and(3), so that the variables in
a negated literal not appearing in any positive literal correspond to
the attributes that are not projected; thus, conforming to our intui-
tion. This modification is essentially the same as throwing in an
existential quantifier for each variable in the negated literal not ap-
pearing in any positive literal—leading to a form of rule (6). The
form in rule (6) can now be processed using the EDNF approach.
Let us note that the modification is exactly the same as what PRO-
LOG implicitly does in the presence of a negated literal containing
free variables. In this section, we formalized this implicit modifica-
tion by reconciling with a valid construct in Clark’s negation as fail-
ure. A similar technique is used in [UlI87). Here, the rules in the
form of rule (1) are disallowed; instead, the users are required to
write rules in the form of rules (2) and (3).

Introducing negation causes many problems regarding safety as
well. Consider rule (7):

(M a(X,Y,Z) :- b(X,Y), ~c(Y,Z)

Notice that the query ?a(X,Y,Z) will produce a potentially infinite
relation even though the relations for b and ¢ are finite. In principle,
Z can assume almost any value in the (potentially infinite) domain
to make -c(Y,Z) trve. Furthermore, it is not common to have
practically meaningful rules in this form. Thus, we rule out this case
by defining the safety criteria as follows:

Definition 1: A rule is range restricted [Ban86] if every variable in the
head appears somewhere in the body.

For a rule to be bottom-up evaluable, every variable in the body
must be "secure” [Ban86), i.e., it cannot assume infinite number of
values. We modify the conditions for security of a variable as fol-
Jows :

Definition 2: A variable in the body of a rule is secure if

1. it appears in a positive literal that is not an evaluable predicate,
or

2. itis safety dependent [Zan86] (see Section 3.2) on a set of se-
cure variables.

For example in the rule,
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a(X,Y,Z) :- b(X,Y), Y=Z,

variables X and Y are secure because they appear in b(X,Y) and Z
is secure because it is safety dependent (as defined in Section 3.2)
on a secure variable Y. However, in the rule

d(X) :- e¢(X,L), - e(L,Y), Y=Z,

Z is not secure because neither Z nor Y appears in any positive li-
teral that is not an evaluable predicate.

Finally, the bottom up evaluablility is defined as in [Ban86], but
using the new definitions of the term "secure".
Definition 3: A rule is bottom-up evaluable if
1. it is range restricted, and
2. every variable in the body is secure.

Definition 4: A query is bottom-up evaluable if
1. rules used to construct the query graph are bottom-up
evaluable, and

2. negation is not part of a cycle in the query graph.

To process a query, we assume that the query is bottom-up
evaluable according to this new definition. In Definition 4, we re-
quire negation is not included in a cycle. If negation is involved in
a cycle, fixed points cannot be evaluated by an iterative procedure
because the relational algebra expressions (functions for which the
fixed point is defined) are not guaranteed to be monotone increas-
ing.

4.2 Further Enhancement of the EDNF Ap-
proach

EDNF is a building block for more complex queries. In this
section, we discuss the processing of more general queries that can-
not be represented as a simple EDNF forest. There are two reasons
why a simple EDNF is not sufficient.

Case 1: There are cycles that do not pass through the query
goal. We call this case nested recursion.

Case 2: Negation of a nonleaf node (i.e., the node is not asso-
ciated with a base relation).

Cycles not passing through the query goal
To explain Case 1, consider the query graph of Figure 14.

'S

/AND'&éx,z)
a p
AND — R,\AND
b 7 N df ~S
e
Figure 14. A query graph involving nested recursion.

Due to nested recursion, we cannot represent the query graph in
Figure 14 as one EDNF forest. In this case, we construct the query
graph treating p as if it were the query goal. Then, we have the
EDNF as in Figure 15.
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Figure 15. EDNF of Figure 14 using p as the root.

We call pg the root of the EDNF forest. The subscript F identifies
such a root. Then, treating pr as a base relation, the EDNF for q is
constructed as Figure 16.

i /%(\’(a\)pp

Figure 16.  The EDNF for q containing pr as a leaf.

Then, the evaluation of the query ?q(Y,a) proceeds as follows :
1. Fully evaluate pg using the EDNF in Figure 15.

2. Evaluate qp using the EDNF in Figure 16 treating pr as a base
relation.

In general, for a query involving an arbitrary number of
recursions placed on different nodes of the query graph, we con-

struct the EDNF graphs as follows :
1. Identify cycles that are interconnected (strongly connected
component [Mor86)).

2. Identify a set of (goal) nodes such that each cycle contains at
least one node in the set. We define such a set as a cover (or
feedback set [Gar79]) of the strongly connected component.

3. Construct an EDNF forest for each node in the cover set with
that node as the root of the EDNF. For the EDNF of a par-
ticular node, the other nodes in the cover set are treated as base
relations.

4. Construct the EDNF of the query goal (if not already in the
cover set) treating all the nodes in the cover set as base re-
lations.

Note that, for complicated query graphs with interconnected
cycles, the choice of the cover set itself is complex. The cover set
with minimum cardinality is called a minimal cover set. Our strategy
for general recursive query processing is then to choose a minimal
cover set for each strongly connected component. Each node in the
cover set is assigned as the root of a separate EDNF forest. Then,
the resulting forest of trees, where leaf nodes themselves may be
EDNF forests, is processed by obeying an EDNF forest dependency
graph, which establishes the partial order of execution of the EDNF
forests. For example, the forest dependency graph for EDNF for-
ests in Figure 14 is shown in Figure 17.

qr

%

Forest dependency graph for the query in
Figure 14.

Figure 17.

Figure 17 says that EDNF forest py should be evaluated before
qr . We have developed heuristics for identifying cover sets and are
currently investigating alternative solutions to the minimization of
cover sets.

Note that an important characteristic of our approach is that we

evaluate only the minimal number of nodes (i.e, the cover set) that
are absolutely necessary for processing the query. In contrast, in
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other methods {[Mor86}, all the nodes in the original query graph
must be evaluated.

If the cover set contains more than one wode, execution of the
strongly connected component involves the execution of each
EDNF forest in that component in turn until a fixed point is reached.
Detailed algorithms for the construction of the dependency graph
of EDNF forests and their processing in the gencral case exists, but
they are beyond the scope of this paper.

Negation of nonleaf nodes

If the query has negation on a leaf node in the query graph, an
EDNF structure can be composed for the query as in Section 3. If
it has negation on a nonleaf node, then we construct a separate
EDNF with the negated node as the root. The EDNF of the original
query is then constructed treating the negated EDNF as if it were a
leaf node. Then, the technique of decomposing a query into multiple
EDNF forests would apply. Figure 18 shows an example of the
query graph involving negation and its EDNFs. This strategy shares
the same concept as stratification [Apt85) or layering [Nag86a].
Stratification relaxes the hierarchical condition originally proposed
by Clark [Cla78] by allowing recursion not involving negation.

AT
_ /_,rl rl m np
5 TS
1 /7 ™~ q
Query graph EDNF
Figure 18.  Query graph involving negation and its EDNFs.

Controlling the number of disjuncts

One possible drawback of the EDNF transformation is the po-
tential existence of too many disjuncts (trees in the EDNF) with
overlapping information among one another. We solve this problem
by not expanding important branches of the query graph and desig-
pating them as separate EDNF forests. Thus, the EDNF of the ori-
ginal query is composed treating these branches (separate EDNF
forests) as relations. Important branches are those that may be
duplicated in many trees when expanded and that would be expen-
sive to process. By using this technique we can prevent proliferation
of trees in the EDNFs.

5.0 Advantages of the EDNF Approach

The EDNF approach to processing logic queries has the follow-
ing advantages:

1. Use of existing DBMSs:

Our primary thrust in the approach is to exploit the facilities
within existing DBMSs as much as possible. This means: 1)
No modification to the DBMS is necessary; 2) Facilities pro-
vided by the DBMS, such as authorization, cataloging, recov-
ery, etc, may be utilized; 3) Entire query optimization
techniques for relational databases with their advantages can
be harnessed.
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2. Performance:

The EDNF approach enhances performance in various
ways:

o  First, when compared with naive loose coupling, it obvi-
ously reduces the number of calls to the DBMS: it avoids

issuing a large oumber of requests for a small amount of

data by essentially batching them in large database que-
ties.

e  Second, the EDNF eliminates the arbitrary processing
structure imposed by the user-written rules through nor-
malization and keeps only the information essential to
process the query. This normalization provides the DBMS
optimizer with more fiexibility in finding the best access
plan [Kim82].

e  Third, the EDNF minimizes the need to create temporary
relations by concentrating only on the desired results and
avoiding to create unnecessary intermediate results. In
contrast, many conventional methods try to evaluate all
the intermediate results and store them in temporary re-
lations. Evaluating all these intermediate results could be
expensive as explained in Section 2.

3. Better understanding of recursive logic queries:

The EDNF serves as a clear characterization of a large
class of logic queries. We have shown that the queries can be
represented in a small number of primitive constructs (i.e., the
nonlooped tree, single-looped tree, and multilooped tree).
Further, the EDNF provides a graphical classification of que-
ries and makes it easy to visualize the complexity of recursion.
For example, any query composed from a linear system of rules
produces an EDNF forest with only nonlooped and single-
looped trees. On the other band, any query from a nonlinear
system of rules produces at least one multilooped tree. Other
types of recursions can be captured easily. For example, a
conventional simple transitive closure appears as one non-
looped tree and one single-looped tree each having one leaf.
We also have shown in Section 3.2 that any query constructed
from a linear set of rules can be viewed as a transitive closure
of a complex function.

4.  Availability of alternative processing algorithms:

Due to the characterization the EDNF provides, we can
construct a variety of algorithms for different compositions of
EDNF trees. For example, in addition to the basic algorithm
for processing any EDNF, we have illustrated an efficient al-
gorithm for processing an EDNF forest with single-looped and
nonlooped trees (derived from linear rules). This algorithm
avoids duplicate processing by implicitly calculating the differ-
entials. Thus, it satisfies the FRD-B property. Unlike the ones
previously reported, this algorithm does not require explicit re-
lational algebra expressions for the differentials. We are also
contructing algorithms for other specialized situations. The
availability of these algorithms allows an high-level optimizer
to choose the best one for a specific situation.

6.0 Summary

We have proposed an approach to processing logic queries based
on the Extended Disjunctive Normal Form (EDNF). The main
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purpose of this approach is to support deduction with existing
DBMSs in a loosely coupled manner. The class of queries consid-
ered encompasses those in function-free Horn-clause logic extended
for negation. For safe evaluation, however, we limit the scope to
bottom-up evaluable rules per our new definition.

We have presented the EDNF and its processing algorithm. We
have formally proved the correctness by showing that the evaluation
of the query based on the EDNF is identical to the results obtained
by a conventional method using the rule/goal graph.

In our opinion, virtually none of the current work on logic query
optimization available in the literature deals with negation in a
practical manner. We have proposed a technique of extending
Clark’s negation as failure to include cases that are practically im-
portant and incorporated it in our general query processing algo-
rithm. We have also defined new criteria for safety and termination
in the presence of negation. In particular, the definitions of security
of the variables and bottom-evaluability of the rules have been re-
vised for negation.

As a future research, we left the superimposition of the FRD-A
property on our approach as an open issue. We are evaluating ex-
isting techniques, particularly magic sets and counting, for a possible
incorporation into our framework.

Although many techniques have been proposed for logic query
processing, not much has been reported for application to loosely
coupled environments to exploit already existing DBMSs. We be-
lieve that our technique provides significant progress in this direc-
tion.
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