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Abstract 

Beginning to create the New Ozford English Dic- 
tionary database has resulted in the realization that data- 
bases for reference texts are unlike those for conventional 
enterprises. While the traditional approaches to database 
design and development are sound, the particular tech- 
niques used for commercial databases have been repeatedly 
found to be inappropriate for text-dominated databases, 
such as the New OED. 

In the same way that the relational model was 
developed based on experiences gained from earlier data- 
base approaches, the grammar-based model presented here 
builds on the traditional foundations of computer science, 
and particularly database theory and practice. This new 
model uses grammars as schemas and “parsed strings” as 
instances. Operators on the parsed strings are defined, 
resulting in a “p-string algebra” that can be used for data 
manipulation and view definition. 

The model is representation-independent and the 
operators are non-navigational, so that efficient implemen- 
tations may be developed for unknown future hardware 
and operating systems. Several approaches to storage 
structures and efficient processing algorithms for represen- 
tative hardware configurations have been investigated. 

1. Text is unlike other data 

Most database approaches today have arisen from 
the database processing needs of business. Even a cursory 
look at commercial database systems, introductory 
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database textbooks, and traditional database models 
quickly reveals the database community’s orientation 
towards parts, suppliers and projects. 

But not all manipulation of data is best described in 
terms of operations involving entities and their set-oriented 
relationships. Consider, for example, a bibliographic entry 
a8 follows: 

Doe, John, “Crime”, Police 6,3 (Aug. 1928) 362-9. 

Traditional data modelling is well-suited to capturing the 
relationships among author, title, and source, but in so 
doing it completely ignores the essence of the entry itself: 
its form. As a result, data processing involving the text 
itself (e.g. extracting a reference such as “[Doe28]” or deter- 
mining the number of the last page) is outside the scope of 
most database languages. 

We use the term “textdominated databases” to 
refer to collections of structured data that are predom- 
inantly composed of alphabetical characters. Examples 
include dictionaries, encyclopedias, almanacs, collections of 
news clippings, abstracts, legal documents, insurance poli- 
cies, note cards, and so on, as well as bibliographies. In 
fact, most of the ideas in this paper arise directly from our 
involvement in computerizing the Oxford English Diction- 
ary and our previous work on using grammars to define 
data structures ]Gonnet83]. The OED and each of the 
other text databases rely on highly formatted presentations 
of textual data that represent carefully composed expres- 
sions of facts, not merely an amorphous knowledge base 
[Tompa86]. 

In this paper, we present a database model for text- 

dominated database systems. In Section 2, we introduce 
“p-strings” which serve as data instances for schemas 
described in terms of grammars, and we outline the funds 
mental operators for manipulating parsed text. As is true 
in relational database environments, the operators CB~ be 
used to support database. views. A few representative 
examples of the application of p-strings are given in Section 
3, and Section 4 describes ensuing research challenges. 
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2. Schemaa, instances, and operators 

A text-dominated database is described by a schema 
expressed as a grammar. Consider, for example, a simplis- 
tic bibliographic database with grammar given in Figure 1 
(using the syntax of INR [Johnson84], where I separates 
alternatives, + represents Kleene plus, ? signals that the 
previous construct .is optional, and parentheses indicate 
grouping). Such a grammar can be used to parse and sub- 
sequently represent a collection of data similar to the sam- 
ple entry given in Section 1; thus the grammar specifies the 
precise syntax of the entries, which allows it to be used by 
a parser reading the formatted data [Kazman86]. 
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entry (‘\n’ entry) l ; 

author ‘, ’ title ‘, ’ 8ource ‘.’ ; 
surname ‘,’ ( ’ ’ initial I ’ ’ name) + ; 
char + ; 
char ‘.’ ; 
char l ; 

‘**’ romoeteit “*’ ; 
char + ; 
] ournal ’ ’ volume (‘,’ issue)? ’ ’ date 
’ ’ pages ; 
italic~chor + ; 
itallc~diglt + ; 
digit l ; 

‘(’ month ’ ’ year ‘1’ ; 

(‘Jan.’ I ‘Feb.’ I ‘nor.’ I ‘Apr.’ I ‘May 
I ‘Jun.’ I ‘Jul.’ I ‘Aug.’ I ‘Sep.’ I 
‘Oct. ’ I ‘Nov.’ I ‘Dec.‘) ; 
‘10’ digit digit ; 
start ‘-’ end ; 
digit + ; 
digit + ; 

Fig. 1: Grammar for a simplistic bibliographic database 

A valid database instance, then, contains data that 
conforms to this schema. Just as numeric data is structured 
in a business database, string data must be structured in a 
textcdominated database. Rather than taking the form of 
tables, hierarchies, or networks, however, grammar-based 
data takes the form of parsed strings, or “p-strings”. 

When stored using the schem$ described in Figure 1, 
the example from Section 1 takes the form of the parse tree 
shown in Figure 2, where the leaves are depicted on the left 
and the root on the right. 

Clearly, because the grammar is context-free, the 
p-string in Figure 2 represents a derivation tree for the 
sample entry [A.h072]. However, because p-strings 
represent database instances, they are subject to alteration 
via operations in a data manipulation language; thus a 
p-string as an abstract data type is more than just a tradi- 
tional parse tree. 

In what follows, several examples of the operators 
require sequences of statements; so before continuing with 
their descriptions, we briefly describe the programming 
language constructs we shall use. 

We have learned from relational us. other database 
approaches that users and implementors both benefit from 
non-navigational languages. Our language, based on the 
Maple symbolic manipulation language [Char85], has 
dynamic typing with simple assignment and equality 

D-char 
o-char- 
e -char’ 

S”~lUUO~ 

\ 

P-italic-char \ \\\ 

0 -digit - end 

Fig. 2: P-string for the sample entry. 
(0 represents a blank) 

comparison and uses sequential flow, conditional and 
unconditional statements and expressions, and functions 
(declared using the keyword proc). We assume that 
integers and booleans are built-in types (including, for 
example, provision for integer arithmetic). For notational 
convenience, f (2, )..., Zi-1, ,~i+~ ,..., s,> applied to a single 
argument x represents the call f (X1,...,Xi--1,X,2i+1,...,2,) 
(e.g. f (x, , z> (y> denotes f (x.y,z)). 

In the following subsections, let E be the p-string 
representing one entry in the bibliography instance as dep 
icted in Figure 2. 

340 Proceedings of the 13th VLDB Conference, Brighton 1987 



2.1. Strings and p-strings 

Data conversions between strings and p-strings are 
fundamental to all other text processing. The operator 
string returns the complete character string represented by 
the p-string passed as its argument. Conversely the opera- 
tor pursed by takes a string and a non-terminal symbol and 
creates the instance corresponding to the portion of the 
schema described by that non-terminal. Thus, for example, 
‘Jones’ parsed by surname yields 

J - char 
o -char, 

\ n - char - surname 
e - char/ 
s - char / 

and string (‘Jones’ parsed by surname) yields ‘Jones’. 
A string is itself a special case of a p-string in which the 
root is labelled string and the only subtree is the string 
value. For example, 

’ Jones ‘- string 

A third operator reparsed by takes a p-string and a 
(partial) grammar and simultaneously for each rule L := 
Rr * * * R, in this grammar replaces each occurrence of 
sub-p-string P having root labelled L by the p-string 
(string P) parsed by L. Thus the p-string is re-evaluated 
according to the new grammar rules. 

2.2. Vectors and sets 

Many operators described below must deal with col- 
lections of p-strings. By integrating the semantics of such 
collections with the rest of the p-string model, distinct 
operators need not be developed. 

A vector is itself a p-string in which the root is 
labelled vector. Similarly a set has root labelled set, 
and any p-string with this label is guaranteed to have no 
duplicate subtrees. Several functions on vectors and sets 
would be useful, and these are extended to operate on arbi- 
trary p-strings as well. For example, size returns the 
number of subtrees (e.g., the cardinality of the vector or 
set): size (‘Jones’ parsed by surname) returns the 
integer 5. To manipulate vectors, the catenate operator 
(denoted by a comma) takes two vectors and returns a sin- 
gle vector including all subtrees of the arguments. A third 
function, mapped onto (cf. SQUARE (Boyce751, Maple 
[CharSS]), takes a function f with one missing argument 
together with a p-string P and returns the p-string that 
has the identical root label as P and each subtree replaced 
by the value of the function when executed with the 
corresponding subtree of P passed in place of that argu- 
ment. For example,. if ForceTqUpper(x) is a function 
defined on p-strings for characters, returning the p-string 
with uppercase value, then ForceToUpper () mapped 
onto (‘Jones’ parsed by surname> yields the p-string 

J- char 
0 - char \ \ N - char - surname 
E-char’ 
S -char / 

2.3. Components 
Two operators on p-strings are available to extract 

the components of an instance. root P returns the non- 
terminal symbol at the root of the tree (i.e., root E returns 
entry); subtrees P returns the vector of p-strings that 
comprise the descendants of root P. A third operator with 
takes a non-terminal symbol and a vector of p-strings and 
returns a single p-string that is their composition; thus 

root ( n tith L ) E n 
subtrees ( n with L > 5 L 

In fact, because of the interpretation of vectors as 
p-strings, subtrees merely replaces the root label by the 
name vector. Conversely, with merely replaces the root 
label by the non-terminal symbol passed as an argument. 
This correspondence removes a potentially difficult design 
problem encountered with representing the Ozford English 
Dictionary: is the dictionary better treated wholly as one 
parsed string or is it a list of individual parsed entries? 
Using p-strings, the OED can be easily treated in either 
mode, depending only on the value stored in the root (dic- 
tionary vs. vector). 

2.4. Selections 

The operator in takes a non-terminal symbol and a 
p-string and returns the p-string having its root labelled by 
the non-terminal and first encountered when the argument 
parse tree is traversed by a traditional (pre-order) depth- 
first search. surname in E (or equivalently surname in 
author in E) thus returns the p-string 

D- char, 
o - char - surname 
e-char/ 

A variant of in is used to retrieve a vector of 
p-strings representing each subtree subtended by a node 
labelled by the non-terminal symbol (as encountered in a 
pre-order traversal). For the example, every name in E 
has one subtree; every char in author in E has seven 
subtrees; and every initial in E is the empty vector. 

2.5. Transformations 

A more powerful operator on p-strings is transduced 
by, which takes as arguments a p-string and (a part of) a 
grammar. Simultaneously for each rule L := Rr * . * R, 
in the grammar, each subtree P with root L in the p-string 
is replaced by L with Pr * * * P,: if Ri is a terminal sym- 
bol, Pi is the corresponding string; if Ri is a non-terminal, 
Pi is Ri in P. For any non-terminal unrepresented on the 
left side of a rule, no changes are made. For example, if G 
= ( author := name ’ ’ surname; source := 
journal ’ ’ year 3 then E transduced by G yields E’ 
as depicted in Figure 3. 
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J - char 

g f 

u 

o -italic-char 

Fig. 3: P-string for the transduced sample entry from Fig. 2 

A second transformation is used to remove unneces- 
sary detail from a p-string. suppressing takes a p-string 
and a non-terminal and returns the p-string with those 
non-terminals removed - the subtrees for nodes so labelled 
are connected directly to the parents of the nodes. Thus, 
given the p-string E’ in Figure 3, ( author in E’ > 
suppressing char yields: 

J\ 

i7>author 

D\ 0 -surname / 
e0 

The definition of suppressing is extended to suppress multi- 
ple nodes; that is, P suppressing (N1 + . . , N,) is 
equivalent to P suppressing N, * . * suppressing N, 

The third transforming operator, partitioned by (cf. 
SQL’s group by [KorthBS]), p rovides the facility to perform 
intra-p-string comparisons. Given a p-string P and a func- 
tion F applicable to each subtree of P, partitioned by 
returns a p-string that groups the subtrees of P by their 
F-values. The resulting p-string is a set of partitions, each 
of which is represented by a <F-valuep-string> pair (i.e., 
vector of size two) in which the second component has root 
label identical to that of P and all subtrees S of P for 
which F(S) evaluates to the F-value in the first com- 
ponent. For example, if P is a p-string representing a com- 
plete bibliography and Date is the function 

Date := proc(x) 
date with (every digit in year in x) 

suppressing digit 
end: 

then P partitioned by Date (> classifies the bibliographic 
entries by producing a p-string as depicted in Figure 4. 

2\ 
Sjdata 1 vector 

entry, 
entry- hihlio / 

entry / 
\ set 

6\ 

2/ dak 1 vector / 

entry, 
entry-hiblio / 

entry / 

. . . 
Fig. 4: Schematic p-string for the partitioned bibliography 

The second argument for partitioned by, in fact, 
may be a list of functions, rather than just one. In this 
case, every sub-p-string is evaluated by each function and 
grouped by matching values on all functions. As a result, 
where the F-values were stored in the above example, a 
vector of function values would instead appear in the 
resulting p-string. 

The final transformation operator is where (cf. SQL), 
which takes a p-string and a boolean function and removes 
complete subtrees for which the function returns /alse. 
Thus, P where F returns the p-string that P partitioned 
by F would pair with the value true. For example, 

Notsource : = proc (xl 
root x 0 source 
end; 

E where NotSource 0 

produces the p-string depicted in Figure 5. 

3. Illustration from the Oxford English Dictionary 
To demonstrate some of the facility of p-string data- 

bases, consider this simplification of the OED: 

- 

2 quote : renbrvlk 
qkxt A / -7 

. . . 
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Fig. 5: P-string for the transformed sample entry 
E where NotSource 

where the following non-terminals are used: 

h’w 
etym 
sen 
quote 

senbank 

headword group, used to identify an entry 
etymology, indicating the word’s evolution 
sense, a meaning of the word 
quotation, an illustrative example taken 
from a printed source, including the date 
of the quotation, the source, and the text 
itself 
sense bank, a sense together with its illus- 
trative quotations 

Such a p-string can result from the application of the fol- 
lowing grammar: 

dictionary := entry+ ; 
entry := hwgp etym? senbank* sen* ; 
senbank := sen+ quote+ ; 
quote := qdate qsource qtext; 

One application for the OED is to examine all 
Anglo-Norman influences. Which words derive from 
Anglo-Norman terms is determined primarily from the first 
language (other than Old or h4iddle English) appearing in 
the etymology. For example, the etymology 

‘a. F. aromatique (14th c.), ad. L. aromatic-us, a. Gr. ’ 
indicates a word that was adopted from French, which had 
borrowed it as + adaptation of a word from Latin, which, 
in turn, had adopted its word from Greek. Therefore a 
finer grammar for etymology, identifying names of 
languages as well as delimiters and other text, must be 
used. 

EtymG := 
( etym := lang? (text delim lang)* text ; 

lang := < ‘OF.‘, ‘AF.‘, ‘F.‘, ‘L.‘, . ..) ; 
text := (char ( italic-char)+ - lang ; 
delim := { ’ ’ , ‘. ’ , ,._ ) 

3 

where ‘OF. ‘, ‘AF.‘, ‘F. ‘, and ‘L. ’ are the OED’s abbrevi- 
ated forms for Old French, Anglo French, French, and 
Latin, respectively. 

In fact, such a grammar will have been applied by 
the publisher in preparing the dictionary, but, again for 
illustration, we will assume that the stored form of the 
etymology does not identify languages. (It is certain that 
there will be aspects of the dictionary that are not identi- 
fied adequately for specific applications.) Thus, in this 
example, the etymologies must be reparsed by the user: 

firstlang := 
proc (xl 
E := etym in x ; 
L := lang in (E reparsed by EtymG) ; 
string( L ) 
end; 

For any p-string P, firstlang finds the first 
occurrence of etym contained in P, reparses according to 
the grammar, extracts the first lang in the result, and 
returns the string subtended by that p-string. For the 
etymology 

‘a. F. aromatique (14th c.), ad. L. aromatic-us, a. Gr. . ..’ 
reparsing produces a p-string associating non-terminals 
with strings as follows: 

non-terminal 

text 
delim 
lang 
text 
delim 
lang 
text 
delim 
lang 

associated string 
‘a.’ 
I , 

‘F.’ 
’ aromatique (14th c.), ad. ’ 
I I 

‘L. ’ 
’ aromatic-us, a.’ 
, I 

‘Gr. ’ 

and firstlang therefore returns the string ‘F.‘. 

Thus we can identify those entries having etymolo- 
gies beginning with ‘Al?. ’ or ‘OF. ’ or ‘F. ’ However, a 
word marked as French is Anglo-Norman only if it entered 
English before 1500: for entries with first language ‘F.‘, 
the earliest quotation date must be examined as well. 

Assume that there is a function year which returns 
an integer representing the expected value for the year for 
any (formulaic) date appearing in the OED structure 
qdate, the date associated with a cited quotation [Gon- 
net86]. Furthermore, assuming that the function min 
returns the smallest integer occurring in a vector of 
integers, the following procedure finds the earliest quota- 
tion date in a p-string: 
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earliestquot : = 
proc (x1 
q := every qdate in x ; 
if size q > 0 

then min (year0 mapped onto q) 
else 0 
fi 

end ; 

Finally, we can identify those entries of the diction- 
ary representing Anglo-Norman influences: 

IsAN := proc (x) 
firstlang = ‘AF. ’ 

or firstlang = ‘OF. ’ 
or f irstlang(x) = ‘F. ’ 

and earliestquot(x) < 1500 
and earliestquot(x) > 0 

end ; 

AngloNorman := NewOED where IsAN() ; 

Because the complete entry is not always desired, 
interesting structural components may then be selected. 
For example, a researcher conducting exploratory analysis 
of Anglo-Norman influences, might wish to suppress (tem- 
porarily) the meanings of the English words that are 
derived from Anglo-Norman terms. A special-purpose 
grammar can be defined to identify precisely those com- 
ponents of the p-string that are of further interest: 

ExtractC : = 
C entry := hwgp etym? senbank* ; 

senbank := quote+ ; 
quote := qdats ; 

3 

ExtractG can be used to preserve only that part of the 
structure containing hwgp, etym, and qdate, after which 
the non-terminal symbols senbank and quot may be con- 
sidered to be superfluous; in this case they can be 
suppressed in the p-string: 

(AngloNorman transduced by ExtractG) 
suppressing (senbank. quot) 

hwv 
etym \ 

~~~~‘““‘\,,,.,,, 

hwp, / 
etym- entry / 

As a follow-up, it might be useful to classify the 
Anglo-Norman entries of the OED by the source language 
and decade of first use in English. To this end, we use the 
expression 
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AngloNorman partitioned by 
( firstlang , decade0 ) 

where 

decade := proc(x) 
10 * floor ( earllestquot(x)/lO ) 
end; 

to obtain the structure in Figure 6. 

‘F. ‘1 vector 
1410 ’ \ 

vector 

~~~~~ldictionary / 

entry/ 

‘OF. ‘\vector 
\ 

132u ’ \ “ector let 

entry 
\ entry- dictionary 

/ 

entry / 

. . 

Fig. 6: P-string for the partitioned AngloNorman dictionary 

4. Further research challenges 

In developing the p-string model for text-dominated 
databases, we have attempted to provide for text systems 
what the relational model provides for commercial systems. 
The operators that we described have been found to be use- 
ful in formulating solutions to the majority of queries that 
have been posed so far for the Oxford English Dictionary 
research being undertaken by several academic scholars as 
well as by dictionary editors. In addition, we have formu- 
lated partial solutions to diverse problems involving other 
text domains including transforming two incompatible 
bibliographic formats to a common one in order to merge 
their entries, converting computer permission files into elec- 
tronic mail directories, producing mailing labels from online 
name and address files, and so on. 

A phenomenon that rarely appears in computer sci- 
ence results from our work on text-dominated databases. 
Unlike much other work, research involving p-strings has 
the luxury of having many interesting problems already 
identified as a result of accomplishments in the areas of 
programming languages, language theory, and conventional 
database management. For example, it is clear that ques- 
tions of support for security, concurrency, views, and data 
distribution arise in text-dominated databases - first 
approximations to solutions can be derived from research in 
other areas, but almost certainly the differences of text 
from commercial data will require modifications to existing 
solutions; in some cases the required modifications are 
expected to be significant. Text-dominated databases 
should also be supported. by semantic models, and, at first, 
the functional data models seem appropriate. However, our 
preliminary efforts at modelling text databases have repeat- 
edly floundered because of the amorphous nature of textual 



“entities.” Similarly, a theory of p-string database systems 
will likely arise from database theory, logic, and automata 
theory. For example, is there a useful parallel to normal 
forms? How should constraints on a p-string instance be 
expressed and manipulated? 

Probably one of the richest open areas is how to 
implement the data type p-string efficiently. Several poten- 
tial representations come to mind immediately: explicit 
representation of the parse tree as a recursive data struc- 
ture encoded by pointers to siblings and subtrees - with or 
without parent pointers; implicit representation by SGML- 
like start and end tags embedded in the text string itself 
[IS085,Gonnet86]; and tables mapping non-terminal symbol 
names to records representing corresponding subtrees in 
the p-string. Although some operators are superficially 
similar to traditional database operators (cf. euery..in and 
where us. ‘select’ or ‘project’ and partitioned by us. ‘group 
by’), as a challenge, we claim that an encoding of p-strings 
using any of the conventional database models (including 
implementational as well as semantic models) would be 
inappropriate: the amount of application code to be written 
to support query and update would be comparable to the 
amount of code required using an implementation language 
such as C. 

One interesting question concerns the power of the 
language described, particularly its power relative to rela- 
tional database query languages. Using a representation of 
relations defined by the following grammar 

relation := tuple * ; 
tuple .- .- attribute + ; 
attribute : = name value ; 

Jose Blakeley has implemented select, project, Cartesian 
product, union, difference, and attribute renaming. It is 
perhaps instructive to view the simulation of Cartesian pro- 
duct, assuming for simplicity that the attribute names are 
all distinct. 

TupleXTuple := 
proc( t1, t2 > 
tuple with (subtrees tl, subtrees t2> 
end; 

TupleXRelation := 
proc ( t. R > 
TupleXTuple (t, > mapped onto R 

end; 

CartesianProduct := 
proc ( Rl, R2 ) 
TupleXRelation( ,R2) mapped onto Rl 

end; 

In a similar manner each operation of relational algebra can 
be implemented, thus showing that the p-string operators 
form a relationally complete set. Is there an alternative, 
preferable encoding of a relational database as a p-string? 
Is there a suitable non-procedural language that is able to 
express the same computational power as our p-string alge- 
bra? 
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An interesting open question in this respect is the 
effect of the type of the defining grammars used. In all the 
examples we have encountered, we have used a BNF-like 
notation for describing languages which are, in fact, regu- 
lar. What is the power of the p-string language when the 
grammars define non-regular context-free languages? What 
changes must be incorporated to accommodate context- 
sensitive or Type 0 languages? In what application areas 
would these be useful? 
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