
Mind Your Grammar:
a New Approach to Modelling Text

Gaston H. Gonnet
Frank Wm. Tompa

Data Structuring Group
Department of Computer Science

University of Waterloo
Waterloo, Ontario, Canada

N2L 3G1

Abstract

Beginning to create the New Ozford English Dic-
tionary database has resulted in the realization that data-
bases for reference texts are unlike those for conventional
enterprises. While the traditional approaches to database
design and development are sound, the particular tech-
niques used for commercial databases have been repeatedly
found to be inappropriate for text-dominated databases,
such as the New OED.

In the same way that the relational model was
developed based on experiences gained from earlier data-
base approaches, the grammar-based model presented here
builds on the traditional foundations of computer science,
and particularly database theory and practice. This new
model uses grammars as schemas and “parsed strings” as
instances. Operators on the parsed strings are defined,
resulting in a “p-string algebra” that can be used for data
manipulation and view definition.

The model is representation-independent and the
operators are non-navigational, so that efficient implemen-
tations may be developed for unknown future hardware
and operating systems. Several approaches to storage
structures and efficient processing algorithms for represen-
tative hardware configurations have been investigated.

1. Text is unlike other data

Most database approaches today have arisen from
the database processing needs of business. Even a cursory
look at commercial database systems, introductory

Permission to copy without fee all or part of this
material is granted provided that the copies are not made
or distributed for direct commercial advantage, the
VLDB copyright notice and the title of the publication
and its date appear. and notice is given that copying is
by-permission of the Very Large Data Base Endowment.
To copy otherwise, or to republish. requires a fee and/or
special permission from the Endowment.

Proceedings of the 13th VLDB Conference, Brighton 1987

database textbooks, and traditional database models
quickly reveals the database community’s orientation
towards parts, suppliers and projects.

But not all manipulation of data is best described in
terms of operations involving entities and their set-oriented
relationships. Consider, for example, a bibliographic entry
a8 follows:

Doe, John, “Crime”, Police 6,3 (Aug. 1928) 362-9.

Traditional data modelling is well-suited to capturing the
relationships among author, title, and source, but in so
doing it completely ignores the essence of the entry itself:
its form. As a result, data processing involving the text
itself (e.g. extracting a reference such as “[Doe28]” or deter-
mining the number of the last page) is outside the scope of
most database languages.

We use the term “textdominated databases” to
refer to collections of structured data that are predom-
inantly composed of alphabetical characters. Examples
include dictionaries, encyclopedias, almanacs, collections of
news clippings, abstracts, legal documents, insurance poli-
cies, note cards, and so on, as well as bibliographies. In
fact, most of the ideas in this paper arise directly from our
involvement in computerizing the Oxford English Diction-
ary and our previous work on using grammars to define
data structures]Gonnet83]. The OED and each of the
other text databases rely on highly formatted presentations
of textual data that represent carefully composed expres-
sions of facts, not merely an amorphous knowledge base
[Tompa86].

In this paper, we present a database model for text-

dominated database systems. In Section 2, we introduce
“p-strings” which serve as data instances for schemas
described in terms of grammars, and we outline the funds
mental operators for manipulating parsed text. As is true
in relational database environments, the operators CB~ be
used to support database. views. A few representative
examples of the application of p-strings are given in Section
3, and Section 4 describes ensuing research challenges.

339

2. Schemaa, instances, and operators

A text-dominated database is described by a schema
expressed as a grammar. Consider, for example, a simplis-
tic bibliographic database with grammar given in Figure 1
(using the syntax of INR [Johnson84], where I separates
alternatives, + represents Kleene plus, ? signals that the
previous construct .is optional, and parentheses indicate
grouping). Such a grammar can be used to parse and sub-
sequently represent a collection of data similar to the sam-
ple entry given in Section 1; thus the grammar specifies the
precise syntax of the entries, which allows it to be used by
a parser reading the formatted data [Kazman86].

bib110
ontry
author
‘Urnam.
Initial
na8.
title
ro8atext
source

1 ournol

volume
lEStI*

dote
8OIltA

,.ar

PW.E
*tart

end

:=
:=
:=
.- .-
:=
.- .-
:=
:=
.- .-

:=
.- .-
.- .-
.- .-
:=

:=
:=
:=
.- .-

entry (‘\n’ entry) l ;

author ‘, ’ title ‘, ’ 8ource ‘.’ ;
surname ‘,’ (’ ’ initial I ’ ’ name) + ;
char + ;
char ‘.’ ;
char l ;

‘**’ romoeteit “*’ ;
char + ;
] ournal ’ ’ volume (‘,’ issue)? ’ ’ date
’ ’ pages ;
italic~chor + ;
itallc~diglt + ;
digit l ;

‘(’ month ’ ’ year ‘1’ ;

(‘Jan.’ I ‘Feb.’ I ‘nor.’ I ‘Apr.’ I ‘May
I ‘Jun.’ I ‘Jul.’ I ‘Aug.’ I ‘Sep.’ I
‘Oct. ’ I ‘Nov.’ I ‘Dec.‘) ;
‘10’ digit digit ;
start ‘-’ end ;
digit + ;
digit + ;

Fig. 1: Grammar for a simplistic bibliographic database

A valid database instance, then, contains data that
conforms to this schema. Just as numeric data is structured
in a business database, string data must be structured in a
textcdominated database. Rather than taking the form of
tables, hierarchies, or networks, however, grammar-based
data takes the form of parsed strings, or “p-strings”.

When stored using the schem$ described in Figure 1,
the example from Section 1 takes the form of the parse tree
shown in Figure 2, where the leaves are depicted on the left
and the root on the right.

Clearly, because the grammar is context-free, the
p-string in Figure 2 represents a derivation tree for the
sample entry [A.h072]. However, because p-strings
represent database instances, they are subject to alteration
via operations in a data manipulation language; thus a
p-string as an abstract data type is more than just a tradi-
tional parse tree.

In what follows, several examples of the operators
require sequences of statements; so before continuing with
their descriptions, we briefly describe the programming
language constructs we shall use.

We have learned from relational us. other database
approaches that users and implementors both benefit from
non-navigational languages. Our language, based on the
Maple symbolic manipulation language [Char85], has
dynamic typing with simple assignment and equality

D-char
o-char-
e -char’

S”~lUUO~

\

P-italic-char \ \\\

0 -digit - end

Fig. 2: P-string for the sample entry.
(0 represents a blank)

comparison and uses sequential flow, conditional and
unconditional statements and expressions, and functions
(declared using the keyword proc). We assume that
integers and booleans are built-in types (including, for
example, provision for integer arithmetic). For notational
convenience, f (2,)..., Zi-1, ,~i+~ ,..., s,> applied to a single
argument x represents the call f (X1,...,Xi--1,X,2i+1,...,2,)
(e.g. f (x, , z> (y> denotes f (x.y,z)).

In the following subsections, let E be the p-string
representing one entry in the bibliography instance as dep
icted in Figure 2.

340 Proceedings of the 13th VLDB Conference, Brighton 1987

2.1. Strings and p-strings

Data conversions between strings and p-strings are
fundamental to all other text processing. The operator
string returns the complete character string represented by
the p-string passed as its argument. Conversely the opera-
tor pursed by takes a string and a non-terminal symbol and
creates the instance corresponding to the portion of the
schema described by that non-terminal. Thus, for example,
‘Jones’ parsed by surname yields

J - char
o -char,

\ n - char - surname
e - char/
s - char /

and string (‘Jones’ parsed by surname) yields ‘Jones’.
A string is itself a special case of a p-string in which the
root is labelled string and the only subtree is the string
value. For example,

’ Jones ‘- string

A third operator reparsed by takes a p-string and a
(partial) grammar and simultaneously for each rule L :=
Rr * * * R, in this grammar replaces each occurrence of
sub-p-string P having root labelled L by the p-string
(string P) parsed by L. Thus the p-string is re-evaluated
according to the new grammar rules.

2.2. Vectors and sets

Many operators described below must deal with col-
lections of p-strings. By integrating the semantics of such
collections with the rest of the p-string model, distinct
operators need not be developed.

A vector is itself a p-string in which the root is
labelled vector. Similarly a set has root labelled set,
and any p-string with this label is guaranteed to have no
duplicate subtrees. Several functions on vectors and sets
would be useful, and these are extended to operate on arbi-
trary p-strings as well. For example, size returns the
number of subtrees (e.g., the cardinality of the vector or
set): size (‘Jones’ parsed by surname) returns the
integer 5. To manipulate vectors, the catenate operator
(denoted by a comma) takes two vectors and returns a sin-
gle vector including all subtrees of the arguments. A third
function, mapped onto (cf. SQUARE (Boyce751, Maple
[CharSS]), takes a function f with one missing argument
together with a p-string P and returns the p-string that
has the identical root label as P and each subtree replaced
by the value of the function when executed with the
corresponding subtree of P passed in place of that argu-
ment. For example,. if ForceTqUpper(x) is a function
defined on p-strings for characters, returning the p-string
with uppercase value, then ForceToUpper () mapped
onto (‘Jones’ parsed by surname> yields the p-string

J- char
0 - char \ \ N - char - surname
E-char’
S -char /

2.3. Components
Two operators on p-strings are available to extract

the components of an instance. root P returns the non-
terminal symbol at the root of the tree (i.e., root E returns
entry); subtrees P returns the vector of p-strings that
comprise the descendants of root P. A third operator with
takes a non-terminal symbol and a vector of p-strings and
returns a single p-string that is their composition; thus

root (n tith L) E n
subtrees (n with L > 5 L

In fact, because of the interpretation of vectors as
p-strings, subtrees merely replaces the root label by the
name vector. Conversely, with merely replaces the root
label by the non-terminal symbol passed as an argument.
This correspondence removes a potentially difficult design
problem encountered with representing the Ozford English
Dictionary: is the dictionary better treated wholly as one
parsed string or is it a list of individual parsed entries?
Using p-strings, the OED can be easily treated in either
mode, depending only on the value stored in the root (dic-
tionary vs. vector).

2.4. Selections

The operator in takes a non-terminal symbol and a
p-string and returns the p-string having its root labelled by
the non-terminal and first encountered when the argument
parse tree is traversed by a traditional (pre-order) depth-
first search. surname in E (or equivalently surname in
author in E) thus returns the p-string

D- char,
o - char - surname
e-char/

A variant of in is used to retrieve a vector of
p-strings representing each subtree subtended by a node
labelled by the non-terminal symbol (as encountered in a
pre-order traversal). For the example, every name in E
has one subtree; every char in author in E has seven
subtrees; and every initial in E is the empty vector.

2.5. Transformations

A more powerful operator on p-strings is transduced
by, which takes as arguments a p-string and (a part of) a
grammar. Simultaneously for each rule L := Rr * . * R,
in the grammar, each subtree P with root L in the p-string
is replaced by L with Pr * * * P,: if Ri is a terminal sym-
bol, Pi is the corresponding string; if Ri is a non-terminal,
Pi is Ri in P. For any non-terminal unrepresented on the
left side of a rule, no changes are made. For example, if G
= (author := name ’ ’ surname; source :=
journal ’ ’ year 3 then E transduced by G yields E’
as depicted in Figure 3.

Proceedings of the 13th VLDB Conference, Brighton 1987 341

J - char

g f

u

o -italic-char

Fig. 3: P-string for the transduced sample entry from Fig. 2

A second transformation is used to remove unneces-
sary detail from a p-string. suppressing takes a p-string
and a non-terminal and returns the p-string with those
non-terminals removed - the subtrees for nodes so labelled
are connected directly to the parents of the nodes. Thus,
given the p-string E’ in Figure 3, (author in E’ >
suppressing char yields:

J\

i7>author

D\ 0 -surname /
e0

The definition of suppressing is extended to suppress multi-
ple nodes; that is, P suppressing (N1 + . . , N,) is
equivalent to P suppressing N, * . * suppressing N,

The third transforming operator, partitioned by (cf.
SQL’s group by [KorthBS]), p rovides the facility to perform
intra-p-string comparisons. Given a p-string P and a func-
tion F applicable to each subtree of P, partitioned by
returns a p-string that groups the subtrees of P by their
F-values. The resulting p-string is a set of partitions, each
of which is represented by a <F-valuep-string> pair (i.e.,
vector of size two) in which the second component has root
label identical to that of P and all subtrees S of P for
which F(S) evaluates to the F-value in the first com-
ponent. For example, if P is a p-string representing a com-
plete bibliography and Date is the function

Date := proc(x)
date with (every digit in year in x)

suppressing digit
end:

then P partitioned by Date (> classifies the bibliographic
entries by producing a p-string as depicted in Figure 4.

2\
Sjdata 1 vector

entry,
entry- hihlio /

entry /
\ set

6\

2/ dak 1 vector /

entry,
entry-hiblio /

entry /

. . .
Fig. 4: Schematic p-string for the partitioned bibliography

The second argument for partitioned by, in fact,
may be a list of functions, rather than just one. In this
case, every sub-p-string is evaluated by each function and
grouped by matching values on all functions. As a result,
where the F-values were stored in the above example, a
vector of function values would instead appear in the
resulting p-string.

The final transformation operator is where (cf. SQL),
which takes a p-string and a boolean function and removes
complete subtrees for which the function returns /alse.
Thus, P where F returns the p-string that P partitioned
by F would pair with the value true. For example,

Notsource : = proc (xl
root x 0 source
end;

E where NotSource 0

produces the p-string depicted in Figure 5.

3. Illustration from the Oxford English Dictionary
To demonstrate some of the facility of p-string data-

bases, consider this simplification of the OED:

-

2 quote : renbrvlk
qkxt A / -7

. . .

342 Fkxedings of the 13th VLDB Conference, Brighton 1987

Fig. 5: P-string for the transformed sample entry
E where NotSource

where the following non-terminals are used:

h’w
etym
sen
quote

senbank

headword group, used to identify an entry
etymology, indicating the word’s evolution
sense, a meaning of the word
quotation, an illustrative example taken
from a printed source, including the date
of the quotation, the source, and the text
itself
sense bank, a sense together with its illus-
trative quotations

Such a p-string can result from the application of the fol-
lowing grammar:

dictionary := entry+ ;
entry := hwgp etym? senbank* sen* ;
senbank := sen+ quote+ ;
quote := qdate qsource qtext;

One application for the OED is to examine all
Anglo-Norman influences. Which words derive from
Anglo-Norman terms is determined primarily from the first
language (other than Old or h4iddle English) appearing in
the etymology. For example, the etymology

‘a. F. aromatique (14th c.), ad. L. aromatic-us, a. Gr. ’
indicates a word that was adopted from French, which had
borrowed it as + adaptation of a word from Latin, which,
in turn, had adopted its word from Greek. Therefore a
finer grammar for etymology, identifying names of
languages as well as delimiters and other text, must be
used.

EtymG :=
(etym := lang? (text delim lang)* text ;

lang := < ‘OF.‘, ‘AF.‘, ‘F.‘, ‘L.‘, . ..) ;
text := (char (italic-char)+ - lang ;
delim := { ’ ’ , ‘. ’ , ,._)

3

where ‘OF. ‘, ‘AF.‘, ‘F. ‘, and ‘L. ’ are the OED’s abbrevi-
ated forms for Old French, Anglo French, French, and
Latin, respectively.

In fact, such a grammar will have been applied by
the publisher in preparing the dictionary, but, again for
illustration, we will assume that the stored form of the
etymology does not identify languages. (It is certain that
there will be aspects of the dictionary that are not identi-
fied adequately for specific applications.) Thus, in this
example, the etymologies must be reparsed by the user:

firstlang :=
proc (xl
E := etym in x ;
L := lang in (E reparsed by EtymG) ;
string(L)
end;

For any p-string P, firstlang finds the first
occurrence of etym contained in P, reparses according to
the grammar, extracts the first lang in the result, and
returns the string subtended by that p-string. For the
etymology

‘a. F. aromatique (14th c.), ad. L. aromatic-us, a. Gr. . ..’
reparsing produces a p-string associating non-terminals
with strings as follows:

non-terminal

text
delim
lang
text
delim
lang
text
delim
lang

associated string
‘a.’
I ,

‘F.’
’ aromatique (14th c.), ad. ’
I I

‘L. ’
’ aromatic-us, a.’
, I

‘Gr. ’

and firstlang therefore returns the string ‘F.‘.

Thus we can identify those entries having etymolo-
gies beginning with ‘Al?. ’ or ‘OF. ’ or ‘F. ’ However, a
word marked as French is Anglo-Norman only if it entered
English before 1500: for entries with first language ‘F.‘,
the earliest quotation date must be examined as well.

Assume that there is a function year which returns
an integer representing the expected value for the year for
any (formulaic) date appearing in the OED structure
qdate, the date associated with a cited quotation [Gon-
net86]. Furthermore, assuming that the function min
returns the smallest integer occurring in a vector of
integers, the following procedure finds the earliest quota-
tion date in a p-string:

Proceedings of the 13th VLDB Conference, Brighton 1987 343

earliestquot : =
proc (x1
q := every qdate in x ;
if size q > 0

then min (year0 mapped onto q)
else 0
fi

end ;

Finally, we can identify those entries of the diction-
ary representing Anglo-Norman influences:

IsAN := proc (x)
firstlang = ‘AF. ’

or firstlang = ‘OF. ’
or f irstlang(x) = ‘F. ’

and earliestquot(x) < 1500
and earliestquot(x) > 0

end ;

AngloNorman := NewOED where IsAN() ;

Because the complete entry is not always desired,
interesting structural components may then be selected.
For example, a researcher conducting exploratory analysis
of Anglo-Norman influences, might wish to suppress (tem-
porarily) the meanings of the English words that are
derived from Anglo-Norman terms. A special-purpose
grammar can be defined to identify precisely those com-
ponents of the p-string that are of further interest:

ExtractC : =
C entry := hwgp etym? senbank* ;

senbank := quote+ ;
quote := qdats ;

3

ExtractG can be used to preserve only that part of the
structure containing hwgp, etym, and qdate, after which
the non-terminal symbols senbank and quot may be con-
sidered to be superfluous; in this case they can be
suppressed in the p-string:

(AngloNorman transduced by ExtractG)
suppressing (senbank. quot)

hwv
etym \

~~~~‘““‘\,,,.,,, 

hwp, / 
etym- entry / 

As a follow-up, it might be useful to classify the 
Anglo-Norman entries of the OED by the source language 
and decade of first use in English. To this end, we use the 
expression 

344 ------- Y ~ro~eedines of the 13th VLDB Conference, Brighton 1987 

AngloNorman partitioned by 
( firstlang , decade0 ) 

where 

decade := proc(x) 
10 * floor ( earllestquot(x)/lO ) 
end; 

to obtain the structure in Figure 6. 

‘F. ‘1 vector 
1410 ’ \ 

vector 

~~~~~ldictionary / 

entry/

‘OF. ‘\vector
\

132u ’ \ “ector let

entry
\ entry- dictionary

/

entry /

. .

Fig. 6: P-string for the partitioned AngloNorman dictionary

4. Further research challenges

In developing the p-string model for text-dominated
databases, we have attempted to provide for text systems
what the relational model provides for commercial systems.
The operators that we described have been found to be use-
ful in formulating solutions to the majority of queries that
have been posed so far for the Oxford English Dictionary
research being undertaken by several academic scholars as
well as by dictionary editors. In addition, we have formu-
lated partial solutions to diverse problems involving other
text domains including transforming two incompatible
bibliographic formats to a common one in order to merge
their entries, converting computer permission files into elec-
tronic mail directories, producing mailing labels from online
name and address files, and so on.

A phenomenon that rarely appears in computer sci-
ence results from our work on text-dominated databases.
Unlike much other work, research involving p-strings has
the luxury of having many interesting problems already
identified as a result of accomplishments in the areas of
programming languages, language theory, and conventional
database management. For example, it is clear that ques-
tions of support for security, concurrency, views, and data
distribution arise in text-dominated databases - first
approximations to solutions can be derived from research in
other areas, but almost certainly the differences of text
from commercial data will require modifications to existing
solutions; in some cases the required modifications are
expected to be significant. Text-dominated databases
should also be supported. by semantic models, and, at first,
the functional data models seem appropriate. However, our
preliminary efforts at modelling text databases have repeat-
edly floundered because of the amorphous nature of textual

“entities.” Similarly, a theory of p-string database systems
will likely arise from database theory, logic, and automata
theory. For example, is there a useful parallel to normal
forms? How should constraints on a p-string instance be
expressed and manipulated?

Probably one of the richest open areas is how to
implement the data type p-string efficiently. Several poten-
tial representations come to mind immediately: explicit
representation of the parse tree as a recursive data struc-
ture encoded by pointers to siblings and subtrees - with or
without parent pointers; implicit representation by SGML-
like start and end tags embedded in the text string itself
[IS085,Gonnet86]; and tables mapping non-terminal symbol
names to records representing corresponding subtrees in
the p-string. Although some operators are superficially
similar to traditional database operators (cf. euery..in and
where us. ‘select’ or ‘project’ and partitioned by us. ‘group
by’), as a challenge, we claim that an encoding of p-strings
using any of the conventional database models (including
implementational as well as semantic models) would be
inappropriate: the amount of application code to be written
to support query and update would be comparable to the
amount of code required using an implementation language
such as C.

One interesting question concerns the power of the
language described, particularly its power relative to rela-
tional database query languages. Using a representation of
relations defined by the following grammar

relation := tuple * ;
tuple .- .- attribute + ;
attribute : = name value ;

Jose Blakeley has implemented select, project, Cartesian
product, union, difference, and attribute renaming. It is
perhaps instructive to view the simulation of Cartesian pro-
duct, assuming for simplicity that the attribute names are
all distinct.

TupleXTuple :=
proc(t1, t2 >
tuple with (subtrees tl, subtrees t2>
end;

TupleXRelation :=
proc (t. R >
TupleXTuple (t, > mapped onto R

end;

CartesianProduct :=
proc (Rl, R2)
TupleXRelation(,R2) mapped onto Rl

end;

In a similar manner each operation of relational algebra can
be implemented, thus showing that the p-string operators
form a relationally complete set. Is there an alternative,
preferable encoding of a relational database as a p-string?
Is there a suitable non-procedural language that is able to
express the same computational power as our p-string alge-
bra?

proceedings Of the 13th VLDB Conference, Brighton 1987

An interesting open question in this respect is the
effect of the type of the defining grammars used. In all the
examples we have encountered, we have used a BNF-like
notation for describing languages which are, in fact, regu-
lar. What is the power of the p-string language when the
grammars define non-regular context-free languages? What
changes must be incorporated to accommodate context-
sensitive or Type 0 languages? In what application areas
would these be useful?

Acknowledgements

We wish to acknowledge the contributions of many
of our colleagues with whom we discussed these ideas; par-
ticularly deserving of mention are Jose Blakeley, Howard
Johnson, Ian Munro, and Sylvia Osborn. The search for
Anglo-Norman terms in the OED is part of a research pro
ject being carried out by Delbert Russell. We also ack-
nowledge the financial support of the University of Water-
loo and the Natural Sciences and Engineering Research
Council of Canada via the University-Industry Program
Grant CRD-862.

Referencea

[Ah0721

[Boyce751

]Char85]

[Gonnet83]

[Gonnet86]

[ISO85]

[Johnson861

[Kazman86]

Aho, A.V. and Ullman, J.D. me Theory of
Parsing Zkanslation and Compiling; vol. 1
@ 2 Prentice-Hall, 1972/73.

Boyce, R.F., Chamberlin, D.D., King, W.F.
and Hammer, M.M. “Specifying queries as
relational expressions: the SQUARE data
sublanguage”, Comm ACM, 18, 11 (1975),
621-628.

Char, B.W., Geddes, K.O., Gonnet, G.H.
and Watt, S.M. Maple User’s Guide,
Watcom Publications, 1985.

Gonnet, G.H. and Tompa, F.W. “A Con-
structive approach to the design of algo-
rithms and their data structures”, Comm.
ACM 26, 11 (Nov 1983), 912-920.

Gonnet, G.H. “GOEDEL - an interactive
text extraction language”, unpublished
documentation, University of Waterloo,
1986.

IS0 (International Organization for Stan-
dardization) DIS8879, “Information pro-
cessing - text and office systems - Stan-
dard Generalized Markup Language
(SGML)” (1985).
Johnson, J.H. “INR: a program for comput-
ing finite automata”, unpublished
manuscript, University of Waterloo, June
1986.

Kazman, R.N. “Structuring the text of the
Oxford English Dictionary through finite
state transductions”, Tech. Report CS-86
20, Computer Science, University of Water-
loo, (June 1986).

345

[Korth86]

ITompa86]

Korth, H.F. and Silberschatz, A. Database
System Concepts, McGraw-Hill, 1986.

Tompa, F.W. “Database design for a dic-
tionary of the future”, unpublished
manuscript, University of Waterloo, May
1986.

346 proceedings of the 13th VLDB Conference, Brighton 1987

