
Masking System Crashes in Database Application Programs

Johann Christoph Freytag, Flaviu Cristian, Bo Kaehlerl
IBM Almaden Research Center

650 Harry Road, San Jose, CA 95120-6099

Abstract
Over the last decade many techniques for recovering a consistent
state for a database management system after a system crash
have been proposed. However, the problem of handling system
crashes in database application programs, and of masking these
crashes to users of those programs, has received little attention.

This paper presents a log-based algorithm for recovering the
state of database application programs after system crashes. AI-
though the general idea of the algorithm is quite simple, the
interaction between the program, the user, and the database
management system has to be investigated with care. To describe
the details of the algorithm clearly, we introduce a programming
language with terminal input/output and database operations.
By incrementally changing the semantic definition of the pro-
gramming language to include operations for logging and recovery
purposes, we demonstrate that the requirements for crash recovery
can be met without changing the database application programs
themselves.

1. Introduction
With today’s computer technology, data are frequently stored
and accessed by a database management system (DBMS). Be-
sides providing a uniform interface which hides the internal
representation of the data, such a system ensures the consistency
of the stored data by means of concurrency control and recovery
mechanisms. For instance, after a system crash, the DBMS
restores the database to a consistent state [BERN83].

Usually, end users do not access data in a database by commu-
nicating directly with the DBMS. Instead, a database application

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and the
title of the publication and its date appear, and notice is given that
copying is by permission of the Very Large Data Base Endow-
ment, To copy otherwise, or to republish, requires a fee and/or spe-
cial permission from the Endowment.

program (DBAP) interfaces the user with the DBMS. Its purpose
is to present the user with a simplifii interface, to check the
user’s input for syntactic and semantic correctness, to prepare
the response of the DBMS in a user-friendly form, etc.. One
would like to make system crashes transparent to end users, so
that they have the illusion of a crash-free system. Should a
system crash occur, a user should not have to log on again and
repeat the last inputs to the DBAP, nor should the DBAP repeat
any output to the user.

The objective of this paper is to present a recovery algorithm
for DBAPs that makes system crashes appear to users as delays
in their interaction with DBAPs. The algorithm recovers the
state of a DBAP after a crash such that users can continue their
interactions with the DBAP without being aware of the occurrence
of the crash. Although the general idea of our recovery algorithm
is quite simple, we need to invest&ate the interaction between
the program, the user, and the DBMS carefully. To describe the
recovery algorithm in a clear and detailed form, we fii define
a simple programmin g language for writing database application
programs. The language in&uies terminal input/output and
read/write operations on the database. Using the notion of
strongest p&conditions from the area of programmmg language
semantics [BAKK80], we fii provide a precise semantics of this
language when no recovery support is present. We explain our
recovery technique by showing how it affects the semantics of
database and terminal input/output operations.

The paper is organized as follows. In the next section we further
motivate our approach to the database application recovery prob-
lem and describe the assumptions on which our solution relies.
Section 3 introduces the programming language for writing
DBAPs. and motivates our choice of using the concept of strong-
est postcondltions to describe the recovery algorithm formally.
Section 4 presents the recovery algorithm by defining different
semantics for our pro gramming language. Finally, Section 5
defines the general properties of our recovery algorithm, and
discusses some important implementation-related aspects.

2. Motivation
As the dependence on computer services grows, the design of
fault-tolerant, highly-available systems has become increasingly
important over the last decade. Researchers have proposed a
variety of approaches to ensure these desirable properties for
computer systems. Tandem Computers and other companies

1 Author’s current address: Runit, Strindveien 2, N-7034 Tmndheh, Norway

proC&hgs of t,he 13th VLDB Conference, Brighton 1987 407

offer systems with built-in hardware and software mechanisms
that shield the users from different faults in hardware and soft-
ware components [BART78, KATZ771. Rim provides an overview
of such systems and summarizes some of the mechanisms imple-
mented in different systems to implement high availability in
database systems [KIM84].

The concept of a transaction plays an important role for the
recovery of databases from system crashes [BERN83, GRAY86].
The literature proposes a wide range of recovery algorithms for
database management systems (DBMSs), which reinstall the ef-
fects of all those transactions that successfully finished (commit-
ted) before the system crashed, and which remove the effects
of the transactions that were in progress at the time the crash
occurred [BERN83].

Database application programs (DBAPs) generate transactions
on the database and perform interactions with the user (see
Figure 1). Their recovery from system crashes and their continued
execution is the primary focus of this paper. An intuitively
desirable property of recovering DBAPs is to make any crashes
transparent to users working at their terminals. Fault-tolerant
systems provide general mechanisms to implement such recovery
schemes. For example, Tandem’s NonStop system includes the
concept of a process pair, the primary process and the backup
process, together with a message-based recovery mechanism to
implement fault-tolerance and availability of its computer systems
lI3ORG83, BORR841.

In [GRAY86], Gray describes five different approaches to syn-
chronizing the primary and the backup process. Using his clas-
sification, this paper presents an algorithm that is best charac-
terized by the “Automatic Checkpointing” category: All messages
to and from the process are saved by a message kernel [BORG84].
In case of a system crash, the backup process replays the messages
and reaches again the state that the primary process possessed
just before the crash. The message-logging kernel might also
decide to save the state of the primary process, i.e. to take a
checkpoint, which then can be used as a starting point for replay
rather than the start state of the process. In this paper we
primarily focus on the recovery by messages only, without con-
sidering checkpoints.

A message-based mechanism might be sufficient for a program
that is recovered as a unit of work, independent of any other
program or system component. However, since the DBAB in-
teracts with a DBMS, we have to examine this dependency more
carefully. Consider the following program Tt:

V .- X& ; print(V) ; ,‘&, .- V + 1

The program first reads the database variable xa and prints its
value on the terminal screen before assigning a new value to the
database variable yh. Assume that a system crash stops the
execution of 7’1 before the program changes the value ya Smce
the DBMS recovers independently of any DBAPs, it might pro-
cess incoming requests in a different order than before the crash.
Thus, before Z’r restarts, another program, say T2, might have
changed the value of x&. Now, it is impossible for T1 to print
the same value on the terminal as before the crash and continue
its execution from the program state that existed just before the
crash occurred. To the best of our knowledge, none of algorithms
that guarantee fault tolerance, consider this important situation.

----- ----- -----
1:; 1:; I D I

I B I

1;; +---‘I i I
<---->I M 1

I s I
I I I I I I
----- ----- -----

Figure 1: Relationship of the user, a DBAP, and the DBMS

It is the purpose of this paper to handle such a situation appro-
priately during the recovery of DBAPs.

Many of the recovery algorithms proposed in the literature are
described in terms of specific system mechanisms that provide
the necessary support for their implementation. Instead of relying
on system-specific details, we concentrate on the logicaldescription
of the recovery algorithm, thus allowing its implementation on
different computing systems. We use the formalism of strongesf
postconditions for the implementation-independent description
[BAKKIIO]. Our approach is similar to the approach adopted in
[CRIS85] to prove the correctness of fault-tolerant programs in
the presence of system crashes and hardware fault occurrences.
Our definition can serve as a specification for the implementation
of a recovery component as well as as a basis for formally
proving the correctness of the algorithm. However, the latter
aspect is beyond the scope of this paper.

The use of strongest postwnditions for the definition of the
recovery algorithm achieves another desirable goal. We can
clearly separate the original program from the additional run-time
mechanisms which are required for recovery purposes. Our def-
initions show that we can add the recovery mechanisms without
changing the original DBAP, thus making the presence of the
recovery mechanism completely transparent to the program and
its implementer. We wnfiied this desirable property of our
work by implementing the recovery algorithm as part of the
Highly-Available Systems project [AGHI83], as we shall discuss
in Section 5.

3. Basic Definitions
In the following subsections we define a simple programming
language 9 to write DBAPs, and explain the basic concept of
strongest postconditions, which is then used to define the se-
mantics of the language.

3.1. The Programming Language
for DBAPs

The programmin g language consists of assignment, terminal
input/output, and control structure statements. For simplicity
reasons, we do not include procedure and functions calls; we do
not see major difficulties in the addition of such features to our
language.

To access the contents of the database, we introduce a set of
database variables DB which can be read or written by assignment
statements. Reading a database variable db may either return

408
Proceedings of the 13th VLDB Conference, Brighton 1987

Domains for Program Variables:

DB: Set of database variables (Stable storage) I: Terminal Input
V: Set of program variables (Volatile storage) 0: Terminal Output

Programming Language:

Let dbcDB, v6V:
9'::=v+dbldb+v Iv?lv! IifBthen9{else~1fiIwhileBdo9'l~;9

Figure 2: Pmgmmhg Language for DBAPs

one of the values in its respective domain or the special value
aborted, by which the database management system signals an
abnormal termination of the transaction to the DBAP*. These
two operations are the only ones to access the contents of the
database.

The set of (main-memory) variables of a particular program are
denoted by V (volatile storage). To read input from, and write
output to, the user terminal we use the notation v? and v!, VE V,
respectively. Additionally, we allow sequences of assigmnent or
input/output statements, conditional statements, and loop state-
ments. The complete definition of the language 9 is given in
Figure 2.

We allow the alternate part of the conditional statement to be
omitted. The symbol B in the conditional and the loop statement
denotes an arbitrary Boolean expression which evaluates (without
producing side effects) to either true or false. The detailed
definition of the syntax of such expressions is not important in
our context, and thus is omitted. However, the Boolean expression
B can only reference main-memory variables.

Notice that we also included Z and 0 as the domains for terminal
input and terminal output, respectively. We use capital letters
for semantic domains (e.g. DB, V) and lower case letters for
variables ranging over those domains (e.g. main memory variable
v, database variable db).

For the scope of this paper we assume the total correctness of
DBAPs, thus excluding crashes due to software faults. Further-
more, we assume that DBAPs are deterministic, that is, whenever
their execution is repeated starting in the same initial state, they
terminate in the same final state as before.

So far, the progr amming language does not include transaction
capabilities. In general, a transaction is embedded into a program
by a statement pair “begin of transaction” and
“end of transaction”. Usually, the%zatabase operations

impli~ybegins a transaction. In many DBMSs, such as System
R, the commit operation marks the end of a transaction [ASTR76].
This operation is a request to the DBMS to install the effects
of all database operations of the transaction in the database. It

might either succeed or fail. In the former case, the DBMS
commits thus guaranteeing to the DBAP that the effects of all
operations have been established in the database. In the latter
case, the DBMS uboris thus signaling to the DBAP that for
database-internal reasons the DBMS cannot establish the effects
of transaction and that none of the database operations in the
transaction has effected the database.

To model the transaction commit operation in our programming
language, we introduce one special database variable dbcomc DB
which is a read-only variable. When reading variable dtxom, it’s
value indicates to the DBAP whether the DBMS has committed
all previous read/write operations on the database or not. Its
value is committed if the results of all previous database operations
are successfully established in the database, otherwise the value
aborted is retumeds.

To simplify our presentation we restrict any DBAP to consist of
only one tmnsaction. That is, any execution of a DBAP performs
a sequence of database operations (besides other operations on
variables in volatile storage) before either reading the database
variable dbcom, or reading any other database variable which
returns the value aborted completes the transaction. Once either
of these two events occurs during program execution, no addi-
tional database operations are allowed. However, the program
might continue to operate on main memory variables and might
perform terminal input/output operations. This restriction on
DBAPs does not limit the application of our approach to program
recovery, as we discuss later; it simplifies the presentation of
our ideas considerably.

3.2. The Concept of Strongest
Postconditions

In defllg our recovery algorithm we use the concept of strongest
postcondition from the area of programming language semantics.
A detailed treatment of this subject, including the formal defi-
nition of strongest postconditions and their application, can be
found in [BARRIO]. Postconditions describe the “execution
effects” of statements on the program state (which consists of
the current values of program variables).

2 The value abmted is different from any other value in any of the domains for database variabks.

3 From the DBAP’s point of view, it is irrelevant bow tbe DBMS achieves the effects of a canmit or an abort.

pmcadings of the 13th VLDB Conference, Brighton 1987 409

Intuitively, the strongest postcondition is the strongest (logical)
statement that is valid after the execution of a program statement
s if some logical precondition P is valid before the execution of
s [BAKKIO]. For example, let Y + 1 be a statement that assigns
the value 1 to variable v. Let P be the precondition before
executing the statement, and let P [v’ / v] denote the replacement
of all free occurrences of v in P bv v’. Then the strongest
(logical) statement after the execution-of the assignment is eifher
PA(v= 1) if P does not contain v free, or 3 v’: P[v’/v]h(v= 1)
if v occurs free in P. That is, after executing the assignment, P
continues to be true except for the assertion on v whose value
has been changed to 1 by the assignment. We therefore have

Similarly, when writing to the terminal, we append the value
written to the terminal to variable o that is the only variable
which changes in P. Thus, we describe the effect of the output
statement by the following postcondition:

sp(P, v!) =30’: P[o’/o]ho=app(o’,v)

We extend the definition of strongest postconditions to the three
flow-control statements in 9. In the case of the sequence
statement the postcondition of the first statement, 81, becomes
the precondition for the second statement e)2:

to introduce variable v’ that replaces v in P.

We use this concept to describe the effects of each statement,
the effect of a system crash, and the “side effects” which the
execution of any statement will produce for recovery purposes.
In the next subsection we define the semantics without recovery
support for 9 by postconditions sp (P,s) with P being any
precondition and s being any statement in 9. The semantics in
the presence of recovery support for logging and recovery is
described by postconditions denoted by SP (P,s) (see Section
4).

For the conditional statement with B as its condition, we derive
the strongest postcondition by executing either the consequence
with the precondition PAB or the alternate part with the pre-
condition PA 1 B. We combine both possibilities in the following
definition of the strongest postcondition:

sp (P, if B then 21 eke 92) P

sp(PAB, st)Vsp(PA 1B, 92)

3.3. Semantic Definition

In this subsection we define the semantics sp for all statements
in 9 in the absence of recovery support. Henceforth, P denotes
the precondition for any statement we discuss.

When reading the value from a database variable db into a
main-memory variable v, the precondition P only changes as far
as any assertion about v is concerned. Thus, we derive the
strongest postcondition from P by replacing v by v’ in P and by
adding the assertion that v now has the value of variable db.
The following statement defines the strongest postcondition for-
mally:

sp(P, v * db) ~3v’:P[v’/v]Av=db

Similarly, when writing the value of a main-memory variable v
into a database variable db, the strongest postcondition is derived
from precondition P as follows:

sp(P, db+v) E gdb’:P[db’/db]Adb=v

To describe the input from and output to the terminal semantically,
we introduce the two variables ie Z and OE 0. They denote a
sequence of input values that the program reads during execution,
and the output values generated by the program so far, respec-
tively. For variable i, the operators M(i) and tail(i) return the
next user input and the rest of the input, respectively. To
variable OE 0, we can only apply the append operator app(o, v)
which adds the value of variable v to the values of o already
displayed on the terminal.

When reading from the terminal into a main memory variable v,
we assign the value of the header of i to v and discard I’s header
at the same time. The postcondition derived from P includes
these changes to variables v and i:

sp (P, v?) E 3 v’,i’: Pfv’/ v,i’/ i] A i= tail (i’) A v- M(i’)

Finally, we determine the strongest postcondition for the loop
statement by either not executing the loop at all, which leads to
the postcondition PA 1 B or, if B holds, by executing the body
once and repeating the execution of the loop statement:

sp (P, while B do a I
(P A 1 B)Vsp (PA B, (9; while B do a)

4. The Recovery Algorithm
Based on the pro gramming language %’ and its semantic defmition
for a crash-free execution without recovery support, we define
the recovery algorithm for DBAPs in this section. We provide
three additional semantic definitions for the programming language
e? For completeness reasons we include the crash-free semantics
in this section and refer to it as the fimt semantic definition.
We also refer to any program execution using the crash-free
semantic definition as a normal execution.

With the second semantic definition we precisely describe the
effects of a system crash on the execution of a DBAP, i.e. the
state of the program after the crash. To indicate a crash during
the execution of a statement, we use the crash operator n of
[CRIS85]. For example, n v+ db denotes a crash occurrence
while the value of db is read into v. If a crash occurs, the
program “loses” the contents of main memory and the state of
the database becomes unknown to the program. Formally, let P
be the precondition for a statement s. If a crash occurs during
the execution of s, then the strongest postcondition after the
crash is P \ DB, K The “forget” operator “\” applied to P
removes from P all (logical) assertions about main-memory and
database variables. For example, let _

P I (v I 1) A (dbl = 2) A (o = (‘a’, ‘b’))

be a precondition which asserts that variables v and dbl have
the values 1 and 2, respectively, and that the values a and b

Proceedings of the 13th VLDB Conference, Brighton 1987

were displayed on the screen. Then, the strongest postcondition
after a system crash which occurs during a reading of dbt is

sp (P, n (v + dbl)) S (0 = (‘a’, ‘b’))

that is, the state reduces to the values of variable o, i.e. the
values already displayed on the terminal.

The third semantic definition describes the semantics of programs
which run in the presence of a logging/recovery run-time mech-
anism. The definition always distinguishes between normal exe-
cution and a “replay” execution, which is the re-execution of
the program after a crash.

Based on the third semantic definition, the fourth gives a precise
meaning to crashes of programs which occur when logging and
recovery functions are performed.

In the sequel we shall number the different semantic defiitions
for each language statement in 9 as follows:

1. program execution without crash

2. program execution with a crash

3. program execution including logging and recovery

4. program execution with a crash inchtding logging and recovery

The next subsection introduces some system variables that are
used for logging and recovery purposes. We then present all
four semantic definitions for reading from and writing to the
database, reading from and writing to the terminal, and for the
restart statement that initialixes the program execution after a
crash. The semantic definitions for the three control statements
can be found in the appendix.

4.1. System Variables for Logging
and Recovery

For the description of the recovery algorithm we need to intro-

duce several main-memory variables that keep track of different
events during recovery, and two log variables It, 12~ L.

We define the following main-memory variables:

. rpc V: is a main-memory variable that indicates if the program
is being executed “normally” or if it is being “replayed” after
a crash. During normal execution the variable has the value
fall. After a system crash the variable is set to true to replay
(i.e. recover) the program up to its point of crash.

. rbre V: is called the rollback quest variable which we use
during program recovery. Its initial value is fahe. If a value
is read from the database during recovery which is different
from the value read before the crash, variable rbr is set to
true indicating that special actions have to be taken at the end
of recovery.

. come V: is a variable set during the restart of the program
after a crash. Based on the values in the log, it is set to true

if the crash occurred after the transaction was finished by
either a transaction commit or a transaction abort. Depending
on this value, the recovery algorithm proceeds differently.

l dbaborrcDB: is a special, write-only database variable whose
initial value true may be set to false only once during the
execution of the program. This operation signals an abort of
the transaction to the DBMS, and forces the DBMS to remove
the effects of all operations from the database. We need this
operation during the recovery of DBAPs.~

For the log-based recovery algorithm we introduce the logs
Zl,ZzrL with operations hd(l), tail(l), app(l,r), and empry to
return the header record of the log 1, to produce the tail of 1,
to append a new record r to the end of 1, and to test if I is
empty, respectively. We introduce two logs instead of only one
for clarity reasons. Log lt only records values during normal
execution. Since the program is deterministic we do not need
to record any variable names. During restart, the contents of It
is copied into 12, which then is “consumed” during the recovery.
Notice that the two logs, though conceptually distinct, need not
be implemented this way. We might, for example, implement
them as two separate scans on the same log file.

4.2. Reading from the Database

When accessing a database variable we need to distinguish be-
tween reading the variable dbcom which finishes the transaction,
from reading all other database variables. In Fii 3 we show
the four different semantics for the latter; Figure 4 shows the
semantic descriptions for the database variable &corn.

During a normal execution, the main-memory variable Y is as-
signed the value of the variable a%. The precondition P is stiU
true after the assignment statement, except for any Bssertions
about v. We therefore “modify” P by substituting variable v’
for v. The strongest postcondition in case of a crash is described
by the second item of Figure 3. The strongest postcondition
after the crash consists of precondition P with all references to
database or main-memory variables removed.

The third item of Figure 3 describes the necessary changes to
include logging and recovery for reading the database variable
db into V. Instead of changing the semantics we prefer to modify
the original statement to add operations for logging and recovery.
Ct describes the case of a normal execution, i.e. the replay
variable rp is fake. Besides assign@ the value of db to variable
v, we also log its value.

C2 defines the changed program for a recovery after a crash. If
the recovery log /2 is not empty, we read the log to provide a
value for the main-memory variable v. Furthermore, we have to
test whether the database variable db still has the same value as
before the crash. If not, the event is recorded by setting variable
rbr to mre, indicating that the program cannot recover into the
state when the crash occmred. Special actions are then necessary
to signal this event to the program at the end of recovery. We
perform this test only if no changes of database variables have
been detected (i.e. rbr= fake) so far, and only if the crash

4 Usually, this operation is also available for DBAPs. For simplicity reasons, we exclude its general use in DBAPs.

Proceedings of the 13th VLDB Conference, Brighton 1987 411

1. sp(P,v+db)=3v':P[v'/v]Av=db

2. sp(P, nv-- db)=P\DB,V

3. SP(P,v -db) rsp(]rpAP, C1)Vsp(rpAP, C,) where

Cl 5 v+db; lI+app(lI,db);

~2 ~if 1 empty(lz)
v+hd(12); 12+t1(12);
if((rbr=false)A(com=false))thenv' +db; if(v#v')thenrbr+truefifi

else
rp+false;
if(rbr=true)thenv+'aborted';dbabort+true; lI+app(lI,'aborted')
elsev+db;ll+app(li,db)fi

fi

Q. SP(P, nv+ db)=sp(Ph]rp, nCl)Vsp(PArp, nC2)

Figm3:salnk&Drf”uirionrfurmRaii~anydrrtrrbac~~caoom

occurred before the end of the transaction (i.e. corn =falre).
During restart we initialize both variable, rbr and corn appropri-
ately.

If the recovery log 12 is empty, we have reached the end of
recovery, thus setting the replay variable rp to false. If any
difference between the current database values and the logged
values has been detected during the recovery (i.e. rbr = true), we
signal an abort to the program by returning the value aborted,
set the dbaboti variable to false to force the DBMS to abort the
transaction, and record the event on the log lt. By returning
the abofl value to the DBAP, we use the error-reporting facility

provided by the transaction concept, thus avoiding additional
exception handling in case the program cannot be recovered into
the same state as before the crash. As the DBAP cannot dis-
tinguish the reasons for the abort, we keep the recovery mech-
anisms transparent to the DBAP.

The fourth item of Figure 3 defines the semantics of recoverably
reading a database variable in the presence of a crash, by simply
referring to the program Cl and C2 in the previous item. The
semantic definition for a sequence of statements in case of a
crash can be found in the appendix. For normal execution (case
l), the semantic description for reading database variable dbcom

1. Sp(P, v +dbcom)=~v':(db~om='committed'A(p[v'/v]Av=dbcom))V

(dbcom='aborted'A(P[v'/v]\DB,V)Av=dbcom)

2. sp(P,nv+dbcom)~P\DB,V

3. SP(P,v+dbcom)~(]rpAR~)V(rpAR~) where

Rlr3l\,v':P[1\/11, v’/v]Ali= app(l\,dbcom)Av=dbcom

R2 = 31'2, V': P[l\/l2, v’/v]A((~empty(l~)ASI)V(empty(l~)AS2A]rp)) where

Sl = v=hd(1>)A12=tail(1)2)

s2 t (1rbrAR,)V(rbrAdbcom-'aborted'Adbabort~trueAli=app(1'i,'aborted'))

Q. SP(P, nv+dbcom)r {SP(P,v~dbcom)vP] \DB, v

F$pre4:-Dcf~fw~~~lraiabJrdbMm

412 Proceedings of the 13th VLDB Conference, Brighton 1987

is different from reading all other database variables (see Figure
4, Item 1). If the transaction commits, i.e. reading variable
dbcom returns the value committed, the DBMS guarantees the
DBPA that the effect of the transaction’s operations have been
established in the database. However, if the transaction aborts,
none of the transaction’s operations has effected the contents of
the database. In fact, the DBAP then does not know at all what
the contents of the database is. Therefore, assertions about any
database variables have to be removed from the precondition.
In case of a crash, the semantic description for reading database
variable dbcom remains unchanged. Item 3 of Figure 4 includes
logging and recovery for handling crashes. During normal exe-
cution, the strongest postcondition Rt is derived from the pre-
condition P with the additional information that variable v has
been assigned the value of dbcom and that the value has been
recorded on the log.

By the definition of the strongest postcondition RI, the value of
dbcom is guuranteed to be recorded on the log It. Combining
the reading and recording of the committed value as one atomic
action is important for the correctness of the algorithm. Suppose
the transaction commits and a crash occurs before the committed
value is recorded on the log. We then might repeat all operations
of the transaction successfully and commit the transaction a
second time, thus performing the operations on the database
twice. We shall discuss the impact of this important requirement
on the the implementation of the recovery algorithm in Section
5.

R2 defines the postcondition for the recovery case. If the re-
covery log 12 is not empty, the transaction was completed before
the crash; the recorded value for variable dbcom is read from
the log and assigned to v. If the log 12 is empty, we test the
variable rbr to determine if any differences between the values
in the log and the database have occurred previously. However,
we do not compare the value from the log with the current value
from the database. Either the transaction was completed and
the return value of variable dbwm was recorded or neither of
the two events happened (see the definition of R1 of Item 3).
In the former case, the log 12 is not empty and the value of the
commit operation is restored. In the latter case, we proceed by
either performing the commit operation or by aborting the trans-
action, depending on the value of variable rbr.

4.3. Writing to the Database

No additional operations are included for logging and recovery
to write the value of a main-memory variable into the database.
The semantics for all four cases are defined in Figure 5.

1. sp(p,db+v)13db':P[db'/db]Adb-v

2. sp(P, ndb+v)rP\DB,V

3. SP(P, db+v)rsp(P,db+v)

4. SP(P, ndb+v)=P\DB,V

ZQmeS: W*arllrdard

If a crash occurs the state of the database becomes unknown
and main-memory is lost. Thus, the strong& postconditions are
derived from P by deleting all (logical) assertions for database
and main memory variables.

4.4. Terminal Input/Output I

Figures 6 and 7 summar& the four different semantics for
terminal input/output operations. We model the input from the
terminal by reading variable i~1, which contains the list of all
inputs the user will provide during the execution of the program.
The header of the list, which is the next input value is assigned
to v. At the same time, the value is removed from the input.
Similarly, in case of a terminal output operation, the displayed
value is appended to the the output list o. A system crash
reduces the program state to an assertion on variables i and o,
that is the values which have been received form the terminal
and which have been displayed on the terminal so far, respectively.
Any assertions about database or main memory variables are
removed from the preconditions (see Item 2 of Figure 6 and 7).

Item 3 of Figure 6 defines the logging and recovery semantics
for terminal input during normal execution. Notice that reading

1. sp(P,v?)r3v', i':P[v'/v,i'/i]Ai=tail(i')Av=hd(i')

2. sp(P, xv?)= {3i':P[i'/i]A(i= tail(i’)Vi= i’)]\ DB,V

3. SP(P,v?) E (lrphR1)V(rpARP) where

RI ~31$,v', i': P[l$/li, v’/v, i’/ilA(ll= app(l>, hd(i'))Ai=tail(i')A;=hd(i'))

R2 ~31'2,~': P[1i/12, v'/v]A((lempty(l:)Av=hd(1'2)A1 2=tail(l)2))V(empty(l'2)ARl))

4. SP(P, n VT)= ~SP(P,V?)VP] \DB,V

Figm~6:Se~~~&Dej7&im1 fa TarninorZqnd

Proceedings of the 13th VLDB Conference, Brighton 1987 413

1. sp(P, v!) za30': P[O'/O]AO=app(o', v)

2. sp(P, n v!) i go’: P[o’/o]h(o=app(o’, v)Vo=o’)] \ DB, v

3. SP(P, v! I= (lrpARi)V(rphR~) where

Rl ~31’1, v’, 0’: P[l’l/&, VI/V, o’/o]A(l 1 = a~p(l;, V) A 0 = aPP(O’, ~1)

R2 131’2: P[1:/12]A((lempty(l’2)A2 2=tail(l)2))V(empty(lh)ARi))

4. sP(P, nv!)=jsP(P,~!)wj \DB,V

Pigum 7: Samnfic Dcflnman for T&ml Ou@ut

from the terminal and logging the value read is again one atomic
action. If a crash occurs, either no input was read, or if the
input was read then the value was recorded on the log. The
atomicity ensures that the user does not supply the same input
twice.

R2 of Item 3 defines the semantics for the recovery case. If the
log 12 is not empty, the first value of the log is assigned to
variable v, otherwise we read a new input value and record the
value in the log lt at the same time. However, we cannot reset
the replay variable rp to signal the end of the recovery. We
might be in the middle of the transaction, thus making it nec-
essary to test variable rbr during the read of a database variable
and possibly to abort the transaction. We can reset variable rp
only while reading a database variable which includes the test
of variable rbr.

The semantics for terminal output are similar to the ones for
terminal input. Instead of reading from input i, we now write
to variable OE 0 which “accumulates” all output values written
to the terminal so far. Notice that for logging and recovery, the
operations of writing and logging the value are an atomic action
to ensure that output values do not appear twice on the terminal.
For terminal output, it is not necessary to record the exact value;
it suffices to write one bit that indicates that an output on the
terminal occurred. During the recovery, we simply suppress the
output.

4.5. The Restart Statement

The restart statement initial&s the program execution for re-
covery after a crash. It’s semantic is defmed in Figure 8. Since
the statement is used for recovery purposes only, its semantic is
only defined for cases 3 and 4. We set the replay variable rp
to frue, which indicates to the recovery algorithm to replay the
program, initialixe variable rbr to false, initialixe the recovery log
12 with the contents of 11, check whether the transaction was
completed before the crash or not, and provide a new database
state PDB, i.e. new values to all database variables accessed by
the program. The latter is necessary since P, the postcondition
for the restart statement, does not include assertions about any
database variables.

5. Discussion
In this section we discuss two hnportant aspects of the recovery
algorithm: its properties and its implementation. In particular,
we examine whether we can express the properties of the recov-
ery algorithm more formally. Then, we briefly describe the
implementation of the algorithm as part of the Highly-Available
Systems (HAS) project at the IElM Ahnaden Research Center
[AGHI83].

1. not applicable

2. not applicable

3. SP(P,restart) ~PA(rp=true)A(rbr=false)A(l~=l~)A(com=S~)AP~~ where

S1 =3e~l~:(e='comznitted')V(e='aborted')

4. SP(P, nrestart) ~PvSP(P,restart)\DB, V

F&awe8:&mant&Dej%dfiomforfkeRe&aiS-

Proceedings of the 13th VLDB Conference, Brighton 1987

5.1. Algorithm Properties

In the previous sections we concentrated on the definition of
the recovery algorithm. In Section 2 we gave an intuitive de-
scription of the algorithm’s properties. This subsection describes
possible properties of the recovery more formally.

Fit and foremost, the recovery algorithm should not alter the
execution of the program. Based on our notation using strongest
postconditions, the extended semantic definition SP which in-
cludes logging and recovery should lead to the same final state
as the original semantic sp when starting the program execution
in the same initial state P. Formally, let R denote the set
{It, 12, dbabort, rbr, rp, v’, corn) which are alI the variables used for
the recovery. Then SP (P, a \ R = sp (P , 8) should hold for
all programs P.

Another important property for the recovery algorithm should
be to mask a crash from the user at the terminal. This requirement
implies that the user sees a crash-free execution of the program
starting in some initial state P’. If the program starts in some
initial state P, crashes, recovers and successfully completes, its
execution should be equivalent to one crash-free execution start-
ing in some state P’. Let Q I (m 9); restart; 9 be the pro-
gram which crashes, restarts, and then finishes successfuhy. Then
we can describe our requirement by the following formal state-
ment:

SP(P,Q)\R=SP(P’,a\R

for some P’. The initial state P’ does not have to be the same
as the state P. However, variable ieZ, which describes the
terminal input, must be the same for both states.

We might strengthen our requirement by demanding that the
recovery algorithm tolerates multiple crashes. We use the Kleene
star l of regular expressions to express the indefinite, but finite
number of crashes before the program fiihes in a crash-free
execution:

SP(P,Q)\R = SP(P’,s)\R

with Q s (n 2 ; (EI (restart ; 9))’ ; restart; a for some P’.

The strongest postcondition semantic specification given hi the
previous section can be used to prove the correctness of our
recovery algorithm with respect to the requirements stated above.
However, such a proof is beyond the scope of this paper.

5.2. Implementation

Based on the specification of the previous section we implemented
a recovery component for DBAPs as part of the HAS project
at the IBM Ahnaden Research Center using the DBMS SQL/DS
and the operating system VIM as our experimental implementation
environment. The recovery component consists of three major
sub-components as shown in Figure 9. The values of each
input/output operation to and from the terminal and the database
are intercepted by one of the recovery components to perform

necessary operations according to the specification of the algo-
rithm in the previous section. We implemented a special log
component independent of VM’s file system to guarantee the

Proceedings of the 13th VLDB Conference, Brighton 1987

I u I ii;

----- --- -----
I cl I 1x1

I s I 1x1 I B I 1x1 4

1:1
<---->IXI<-->I A I<-->I)(I<---->I M 1

1x1 I P I 1x1 I s I
----- --- ----- --- -----

I I
-------------_-------
I Log Component I
-------_---_---------

FIgwe 9: The User, the DBAP, the DBMS, and the Recovery
c-t

atomic writes of the log records. The addition of the recovery
component is transparent to the DBAPs and to the DBMS.

The correctness of our recovery mechanism was based on the
assumption that we can execute the input/output operations and
the database commit operation atomically with the corresponding
log operations. To guarantee the atomiclty, we introduced inter-
nal transaction identifiers, which are stored in the log and in the
database at the besinning of each transaction. If we can retrieve
the transaction identifier during recovery, we know that the
DBMS committed the transaction. The disadvantage of our so-
lution is that read-only transactions always become read-write
transactions.

We did not attempt to find a solution that guarantees the
atomic&y of termhml/input output operations with the log op
erations, since we believe that a complete solution to this problem
does not exist. By reducing the time between any input/output
operation and the corresponding log operation as much as pos-
sible, we minimized the rlsk of a crash between a termhml
input/output and a log operation. More complicated solutions,
such as the use of PCs as intelligent termhAs, could further
reduce the probability of losing any terminal input/output.

The specification of the recovery algorithm restricts DBAPs to
consist of only one transaction. We removed this restriction for
the implementation easily. For each transaction, we simply de-
termine lf it completed or not by “looking ahead” on the log.
No additional changes were necessary to extend the algorithm
to multiple transactions.

To improve the recovery for long programs, we extended the
recovery component by a checkpointing faili@. Periodically, the
component saves a complete program state during normal program
execution. In case of a crash, the log-based recovery begins with
the state saved by the checkpointlng component, instead of
starting execution from the initial state. of the program. The
checkpointing component determines independently of the pro-
gram which data to save in order to resume execution after a
crash. However, the implementer of the DBAP had to include
an explicit call for a checkpoint, thus making the recovery visible
in the DBAP.

6. Conclusion
This paper describes a log-based recovery algorithm for database
application programs by using the notion of strongest

415

postconditions borrowed from the field of programming language
semantics. This formalism allows us to give a clear and detailed
definition of the recovej algorithm without relying on any
system-specific mechanisms. We therefore could use the high-level
description as a specification for different implementations of
the algorithm. Our specification also shows that we can add
operations for program recovery transparently to the DBAP.
The recovery algorithm presented does not require the introduction
of new “error exits” in case we cannot recover the program into

Bibliography
[AGHI83] Aghili, H. et al., A Pmto@pe for a High& Awikable

Database S)skm, IBM Research Report RJ 3755,
San Jose (January 1983).

[ASTR76] Astmhan, M. et al., SYSTEM R: RelationalApproach
lo Database Management, ACM Transactions of Da-
tabase Systems 1,t (June 1976) pp. 97-137.

[BAKKIO] de Balker, J., Matbema~ical Theoy of Program Cor-
rectness, Prentice-Hall International Series in Com-
puter Science (1980).

[BART78] Bartlett, J., A Nonstop Operating &s&m, Proceedings
of the International Conference on System Sciences,
Honolulu, Hawaii (January 1978).

[BERN831 Bernstein, P.A., Goodman, N., Hadzikos, V., Re-
covery Algorithms for Database Systems, Proceedings
of IFIP (1983) pp. 799-807.

[BORG831 Borg, A., Baumbach, J., Glazer,S., A Message S'tem
Supporting Fault Tolerance, Proceedings of the Ninth

the state just before the crash occurred. The algorithm simply
uses the already existing error exit provided by the database
operations commit and read.

Additionally, we discussed more formally the properties of the
recovery algorithms for DBAPs, and shortly outlined the imple-
mentation of the algorithm as part of the HAS project at the
IBM Ahnaden Research Center.

[BORR84]

[CRIS85]

[GRAY861

[KATZ77]

[KIM841

ACM Symposium of Operating System Principles,
Bretton Woods, N.H. (OS System Review 17,5)
(October 1983) pp. 90-99.
Borr, A., Robustness to Crash in a DWibuted Da-
tabase: A non Shared-Memory Multi-Processor Ap-
proach, Proceedings of the 10th VLDB, Singapore
(August 1984) pp. 445453.
Cristian, F.. A Rigorour Approach to Fault-Tolemnt
Progmmming, IEEE Transactions on Software En-
gineering SE-11, No. 1 (1985) pp. 23-31.
Gray, J., why do Computers stop and What can be
done about it?, Fifth ACM/IEEE Symposium on
Reliability in Distributed Software and Database
Systems, Los Angeles (January 1986) pp. 3-12.
Katzman, J.A., System Architecture for Nonstop
Computing, Proceedings of the CompCon, IEEE
Computer Society (February 1977) pp. 77-80.
Kim, W., Highb Awilable Systems for Data Base
ApplicaHons, ACM Computing Surveys 16,l (March
1984) pp. 97-137.

APPENDIX
The Semantic Definitions for the Control Statements

The Sequence Statement

I- SPV, 91; 82) = SP(SP(P ISi), 82)
2. SP(P, lJ (9, ; 92)) = SP(P, x (s,))vsp(sp(P, Sl), x 82)
3. SP(P, 91; e)p) I SP(SP(P, a,,, 82)

4. SP(P, x (9,;82))E SP(P, XP1)VSP(SP(P,Si), x9*)

The Conditional Statement

1. sp(P, ifBthenP~elseP~)~~p(PhB,8~)Vsp(PA1B,8~)
2. sp(P, x ifBthengielseg2)t sp(PAB, ~~~)Vsp(PhlB, ~8~)
3. SP(P, ifBthen~Ielse9~)~SP(PhB,Si)vSP(Ph1B,9E)2)
4. SP(P, x ifBthenSlelseB2)= SP(PAB, x~,)VSP(PA lB, ~9~)

The Loop Statement

1. sp(P,whileBdoP)asp(PAB,(S;whileBdo~)V(PA 1B)
2. sp(P, xwhileBdo9)~sp(PAB, x@;whileBdoe?)V j(PA lB)j\DB,V
3. SP(P,whileBdo~ESP(PAB,(~;whileBdo~)V(PA\B)
4. SP(P, xwhileBdo9)=SP(PAB, 11(9;whileBdo8))V((PAlB)]\DB,V

416 Proceedings of the 13th VLDB Conference, Brighton 1987

