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Abstract 
Over the last decade many techniques for recovering a consistent 
state for a database management system after a system crash 
have been proposed. However, the problem of handling system 
crashes in database application programs, and of masking these 
crashes to users of those programs, has received little attention. 

This paper presents a log-based algorithm for recovering the 
state of database application programs after system crashes. AI- 
though the general idea of the algorithm is quite simple, the 
interaction between the program, the user, and the database 
management system has to be investigated with care. To describe 
the details of the algorithm clearly, we introduce a programming 
language with terminal input/output and database operations. 
By incrementally changing the semantic definition of the pro- 
gramming language to include operations for logging and recovery 
purposes, we demonstrate that the requirements for crash recovery 
can be met without changing the database application programs 
themselves. 

1. Introduction 
With today’s computer technology, data are frequently stored 
and accessed by a database management system (DBMS). Be- 
sides providing a uniform interface which hides the internal 
representation of the data, such a system ensures the consistency 
of the stored data by means of concurrency control and recovery 
mechanisms. For instance, after a system crash, the DBMS 
restores the database to a consistent state [BERN83]. 

Usually, end users do not access data in a database by commu- 
nicating directly with the DBMS. Instead, a database application 
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program (DBAP) interfaces the user with the DBMS. Its purpose 
is to present the user with a simplifii interface, to check the 
user’s input for syntactic and semantic correctness, to prepare 
the response of the DBMS in a user-friendly form, etc.. One 
would like to make system crashes transparent to end users, so 
that they have the illusion of a crash-free system. Should a 
system crash occur, a user should not have to log on again and 
repeat the last inputs to the DBAP, nor should the DBAP repeat 
any output to the user. 

The objective of this paper is to present a recovery algorithm 
for DBAPs that makes system crashes appear to users as delays 
in their interaction with DBAPs. The algorithm recovers the 
state of a DBAP after a crash such that users can continue their 
interactions with the DBAP without being aware of the occurrence 
of the crash. Although the general idea of our recovery algorithm 
is quite simple, we need to invest&ate the interaction between 
the program, the user, and the DBMS carefully. To describe the 
recovery algorithm in a clear and detailed form, we fii define 
a simple programmin g language for writing database application 
programs. The language in&uies terminal input/output and 
read/write operations on the database. Using the notion of 
strongest p&conditions from the area of programmmg language 
semantics [BAKK80], we fii provide a precise semantics of this 
language when no recovery support is present. We explain our 
recovery technique by showing how it affects the semantics of 
database and terminal input/output operations. 

The paper is organized as follows. In the next section we further 
motivate our approach to the database application recovery prob- 
lem and describe the assumptions on which our solution relies. 
Section 3 introduces the programming language for writing 
DBAPs. and motivates our choice of using the concept of strong- 
est postcondltions to describe the recovery algorithm formally. 
Section 4 presents the recovery algorithm by defining different 
semantics for our pro gramming language. Finally, Section 5 
defines the general properties of our recovery algorithm, and 
discusses some important implementation-related aspects. 

2. Motivation 
As the dependence on computer services grows, the design of 
fault-tolerant, highly-available systems has become increasingly 
important over the last decade. Researchers have proposed a 
variety of approaches to ensure these desirable properties for 
computer systems. Tandem Computers and other companies 
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offer systems with built-in hardware and software mechanisms 
that shield the users from different faults in hardware and soft- 
ware components [BART78, KATZ771. Rim provides an overview 
of such systems and summarizes some of the mechanisms imple- 
mented in different systems to implement high availability in 
database systems [KIM84]. 

The concept of a transaction plays an important role for the 
recovery of databases from system crashes [BERN83, GRAY86]. 
The literature proposes a wide range of recovery algorithms for 
database management systems (DBMSs), which reinstall the ef- 
fects of all those transactions that successfully finished (commit- 
ted) before the system crashed, and which remove the effects 
of the transactions that were in progress at the time the crash 
occurred [BERN83]. 

Database application programs (DBAPs) generate transactions 
on the database and perform interactions with the user (see 
Figure 1). Their recovery from system crashes and their continued 
execution is the primary focus of this paper. An intuitively 
desirable property of recovering DBAPs is to make any crashes 
transparent to users working at their terminals. Fault-tolerant 
systems provide general mechanisms to implement such recovery 
schemes. For example, Tandem’s NonStop system includes the 
concept of a process pair, the primary process and the backup 
process, together with a message-based recovery mechanism to 
implement fault-tolerance and availability of its computer systems 
lI3ORG83, BORR841. 

In [GRAY86], Gray describes five different approaches to syn- 
chronizing the primary and the backup process. Using his clas- 
sification, this paper presents an algorithm that is best charac- 
terized by the “Automatic Checkpointing” category: All messages 
to and from the process are saved by a message kernel [BORG84]. 
In case of a system crash, the backup process replays the messages 
and reaches again the state that the primary process possessed 
just before the crash. The message-logging kernel might also 
decide to save the state of the primary process, i.e. to take a 
checkpoint, which then can be used as a starting point for replay 
rather than the start state of the process. In this paper we 
primarily focus on the recovery by messages only, without con- 
sidering checkpoints. 

A message-based mechanism might be sufficient for a program 
that is recovered as a unit of work, independent of any other 
program or system component. However, since the DBAB in- 
teracts with a DBMS, we have to examine this dependency more 
carefully. Consider the following program Tt: 

V .- X& ; print(V) ; ,‘&, .- V + 1 

The program first reads the database variable xa and prints its 
value on the terminal screen before assigning a new value to the 
database variable yh. Assume that a system crash stops the 
execution of 7’1 before the program changes the value ya Smce 
the DBMS recovers independently of any DBAPs, it might pro- 
cess incoming requests in a different order than before the crash. 
Thus, before Z’r restarts, another program, say T2, might have 
changed the value of x&. Now, it is impossible for T1 to print 
the same value on the terminal as before the crash and continue 
its execution from the program state that existed just before the 
crash occurred. To the best of our knowledge, none of algorithms 
that guarantee fault tolerance, consider this important situation. 
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Figure 1: Relationship of the user, a DBAP, and the DBMS 

It is the purpose of this paper to handle such a situation appro- 
priately during the recovery of DBAPs. 

Many of the recovery algorithms proposed in the literature are 
described in terms of specific system mechanisms that provide 
the necessary support for their implementation. Instead of relying 
on system-specific details, we concentrate on the logicaldescription 
of the recovery algorithm, thus allowing its implementation on 
different computing systems. We use the formalism of strongesf 
postconditions for the implementation-independent description 
[BAKKIIO]. Our approach is similar to the approach adopted in 
[CRIS85] to prove the correctness of fault-tolerant programs in 
the presence of system crashes and hardware fault occurrences. 
Our definition can serve as a specification for the implementation 
of a recovery component as well as as a basis for formally 
proving the correctness of the algorithm. However, the latter 
aspect is beyond the scope of this paper. 

The use of strongest postwnditions for the definition of the 
recovery algorithm achieves another desirable goal. We can 
clearly separate the original program from the additional run-time 
mechanisms which are required for recovery purposes. Our def- 
initions show that we can add the recovery mechanisms without 
changing the original DBAP, thus making the presence of the 
recovery mechanism completely transparent to the program and 
its implementer. We wnfiied this desirable property of our 
work by implementing the recovery algorithm as part of the 
Highly-Available Systems project [AGHI83], as we shall discuss 
in Section 5. 

3. Basic Definitions 
In the following subsections we define a simple programming 
language 9 to write DBAPs, and explain the basic concept of 
strongest postconditions, which is then used to define the se- 
mantics of the language. 

3.1. The Programming Language 
for DBAPs 

The programmin g language consists of assignment, terminal 
input/output, and control structure statements. For simplicity 
reasons, we do not include procedure and functions calls; we do 
not see major difficulties in the addition of such features to our 
language. 

To access the contents of the database, we introduce a set of 
database variables DB which can be read or written by assignment 
statements. Reading a database variable db may either return 
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Domains for Program Variables: 

DB: Set of database variables (Stable storage) I: Terminal Input 
V: Set of program variables (Volatile storage) 0: Terminal Output 

Programming Language: 

Let dbcDB, v6V: 
9'::=v+dbldb+v Iv?lv! IifBthen9{else~1fiIwhileBdo9'l~;9 

Figure 2: Pmgmmhg Language for DBAPs 

one of the values in its respective domain or the special value 
aborted, by which the database management system signals an 
abnormal termination of the transaction to the DBAP*. These 
two operations are the only ones to access the contents of the 
database. 

The set of (main-memory) variables of a particular program are 
denoted by V (volatile storage). To read input from, and write 
output to, the user terminal we use the notation v? and v!, VE V, 
respectively. Additionally, we allow sequences of assigmnent or 
input/output statements, conditional statements, and loop state- 
ments. The complete definition of the language 9 is given in 
Figure 2. 

We allow the alternate part of the conditional statement to be 
omitted. The symbol B in the conditional and the loop statement 
denotes an arbitrary Boolean expression which evaluates (without 
producing side effects) to either true or false. The detailed 
definition of the syntax of such expressions is not important in 
our context, and thus is omitted. However, the Boolean expression 
B can only reference main-memory variables. 

Notice that we also included Z and 0 as the domains for terminal 
input and terminal output, respectively. We use capital letters 
for semantic domains (e.g. DB, V) and lower case letters for 
variables ranging over those domains (e.g. main memory variable 
v, database variable db). 

For the scope of this paper we assume the total correctness of 
DBAPs, thus excluding crashes due to software faults. Further- 
more, we assume that DBAPs are deterministic, that is, whenever 
their execution is repeated starting in the same initial state, they 
terminate in the same final state as before. 

So far, the progr amming language does not include transaction 
capabilities. In general, a transaction is embedded into a program 
by a statement pair “begin of transaction” and 
“end of transaction”. Usually, the%zatabase operations 

impli~ybegins a transaction. In many DBMSs, such as System 
R, the commit operation marks the end of a transaction [ASTR76]. 
This operation is a request to the DBMS to install the effects 
of all database operations of the transaction in the database. It 

might either succeed or fail. In the former case, the DBMS 
commits thus guaranteeing to the DBAP that the effects of all 
operations have been established in the database. In the latter 
case, the DBMS uboris thus signaling to the DBAP that for 
database-internal reasons the DBMS cannot establish the effects 
of transaction and that none of the database operations in the 
transaction has effected the database. 

To model the transaction commit operation in our programming 
language, we introduce one special database variable dbcomc DB 
which is a read-only variable. When reading variable dtxom, it’s 
value indicates to the DBAP whether the DBMS has committed 
all previous read/write operations on the database or not. Its 
value is committed if the results of all previous database operations 
are successfully established in the database, otherwise the value 
aborted is retumeds. 

To simplify our presentation we restrict any DBAP to consist of 
only one tmnsaction. That is, any execution of a DBAP performs 
a sequence of database operations (besides other operations on 
variables in volatile storage) before either reading the database 
variable dbcom, or reading any other database variable which 
returns the value aborted completes the transaction. Once either 
of these two events occurs during program execution, no addi- 
tional database operations are allowed. However, the program 
might continue to operate on main memory variables and might 
perform terminal input/output operations. This restriction on 
DBAPs does not limit the application of our approach to program 
recovery, as we discuss later; it simplifies the presentation of 
our ideas considerably. 

3.2. The Concept of Strongest 
Postconditions 

In defllg our recovery algorithm we use the concept of strongest 
postcondition from the area of programming language semantics. 
A detailed treatment of this subject, including the formal defi- 
nition of strongest postconditions and their application, can be 
found in [BARRIO]. Postconditions describe the “execution 
effects” of statements on the program state (which consists of 
the current values of program variables). 

2 The value abmted is different from any other value in any of the domains for database variabks. 

3 From the DBAP’s point of view, it is irrelevant bow tbe DBMS achieves the effects of a canmit or an abort. 
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Intuitively, the strongest postcondition is the strongest (logical) 
statement that is valid after the execution of a program statement 
s if some logical precondition P is valid before the execution of 
s [BAKKIO]. For example, let Y + 1 be a statement that assigns 
the value 1 to variable v. Let P be the precondition before 
executing the statement, and let P [v’ / v] denote the replacement 
of all free occurrences of v in P bv v’. Then the strongest 
(logical) statement after the execution-of the assignment is eifher 
PA(v= 1) if P does not contain v free, or 3 v’: P[v’/v]h(v= 1) 
if v occurs free in P. That is, after executing the assignment, P 
continues to be true except for the assertion on v whose value 
has been changed to 1 by the assignment. We therefore have 

Similarly, when writing to the terminal, we append the value 
written to the terminal to variable o that is the only variable 
which changes in P. Thus, we describe the effect of the output 
statement by the following postcondition: 

sp(P, v!) =30’: P[o’/o]ho=app(o’,v) 

We extend the definition of strongest postconditions to the three 
flow-control statements in 9. In the case of the sequence 
statement the postcondition of the first statement, 81, becomes 
the precondition for the second statement e)2: 

to introduce variable v’ that replaces v in P. 

We use this concept to describe the effects of each statement, 
the effect of a system crash, and the “side effects” which the 
execution of any statement will produce for recovery purposes. 
In the next subsection we define the semantics without recovery 
support for 9 by postconditions sp (P,s) with P being any 
precondition and s being any statement in 9. The semantics in 
the presence of recovery support for logging and recovery is 
described by postconditions denoted by SP (P,s) (see Section 
4). 

For the conditional statement with B as its condition, we derive 
the strongest postcondition by executing either the consequence 
with the precondition PAB or the alternate part with the pre- 
condition PA 1 B. We combine both possibilities in the following 
definition of the strongest postcondition: 

sp (P, if B then 21 eke 92) P 

sp(PAB, st)Vsp(PA 1B, 92) 

3.3. Semantic Definition 

In this subsection we define the semantics sp for all statements 
in 9 in the absence of recovery support. Henceforth, P denotes 
the precondition for any statement we discuss. 

When reading the value from a database variable db into a 
main-memory variable v, the precondition P only changes as far 
as any assertion about v is concerned. Thus, we derive the 
strongest postcondition from P by replacing v by v’ in P and by 
adding the assertion that v now has the value of variable db. 
The following statement defines the strongest postcondition for- 
mally: 

sp(P, v * db) ~3v’:P[v’/v]Av=db 

Similarly, when writing the value of a main-memory variable v 
into a database variable db, the strongest postcondition is derived 
from precondition P as follows: 

sp(P, db+v) E gdb’:P[db’/db]Adb=v 

To describe the input from and output to the terminal semantically, 
we introduce the two variables ie Z and OE 0. They denote a 
sequence of input values that the program reads during execution, 
and the output values generated by the program so far, respec- 
tively. For variable i, the operators M(i) and tail(i) return the 
next user input and the rest of the input, respectively. To 
variable OE 0, we can only apply the append operator app(o, v) 
which adds the value of variable v to the values of o already 
displayed on the terminal. 

When reading from the terminal into a main memory variable v, 
we assign the value of the header of i to v and discard I’s header 
at the same time. The postcondition derived from P includes 
these changes to variables v and i: 

sp (P, v?) E 3 v’,i’: Pfv’/ v,i’/ i] A i= tail (i’) A v- M(i’) 

Finally, we determine the strongest postcondition for the loop 
statement by either not executing the loop at all, which leads to 
the postcondition PA 1 B or, if B holds, by executing the body 
once and repeating the execution of the loop statement: 

sp (P, while B do a I 
(P A 1 B)Vsp (PA B, (9; while B do a) 

4. The Recovery Algorithm 
Based on the pro gramming language %’ and its semantic defmition 
for a crash-free execution without recovery support, we define 
the recovery algorithm for DBAPs in this section. We provide 
three additional semantic definitions for the programming language 
e? For completeness reasons we include the crash-free semantics 
in this section and refer to it as the fimt semantic definition. 
We also refer to any program execution using the crash-free 
semantic definition as a normal execution. 

With the second semantic definition we precisely describe the 
effects of a system crash on the execution of a DBAP, i.e. the 
state of the program after the crash. To indicate a crash during 
the execution of a statement, we use the crash operator n of 
[CRIS85]. For example, n v+ db denotes a crash occurrence 
while the value of db is read into v. If a crash occurs, the 
program “loses” the contents of main memory and the state of 
the database becomes unknown to the program. Formally, let P 
be the precondition for a statement s. If a crash occurs during 
the execution of s, then the strongest postcondition after the 
crash is P \ DB, K The “forget” operator “\” applied to P 
removes from P all (logical) assertions about main-memory and 
database variables. For example, let _ 

P I (v I 1) A (dbl = 2) A (o = (‘a’, ‘b’)) 

be a precondition which asserts that variables v and dbl have 
the values 1 and 2, respectively, and that the values a and b 
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were displayed on the screen. Then, the strongest postcondition 
after a system crash which occurs during a reading of dbt is 

sp (P, n (v + dbl)) S (0 = (‘a’, ‘b’)) 

that is, the state reduces to the values of variable o, i.e. the 
values already displayed on the terminal. 

The third semantic definition describes the semantics of programs 
which run in the presence of a logging/recovery run-time mech- 
anism. The definition always distinguishes between normal exe- 
cution and a “replay” execution, which is the re-execution of 
the program after a crash. 

Based on the third semantic definition, the fourth gives a precise 
meaning to crashes of programs which occur when logging and 
recovery functions are performed. 

In the sequel we shall number the different semantic defiitions 
for each language statement in 9 as follows: 

1. program execution without crash 

2. program execution with a crash 

3. program execution including logging and recovery 

4. program execution with a crash inchtding logging and recovery 

The next subsection introduces some system variables that are 
used for logging and recovery purposes. We then present all 
four semantic definitions for reading from and writing to the 
database, reading from and writing to the terminal, and for the 
restart statement that initialixes the program execution after a 
crash. The semantic definitions for the three control statements 
can be found in the appendix. 

4.1. System Variables for Logging 
and Recovery 

For the description of the recovery algorithm we need to intro- 

duce several main-memory variables that keep track of different 
events during recovery, and two log variables It, 12~ L. 

We define the following main-memory variables: 

. rpc V: is a main-memory variable that indicates if the program 
is being executed “normally” or if it is being “replayed” after 
a crash. During normal execution the variable has the value 
fall. After a system crash the variable is set to true to replay 
(i.e. recover) the program up to its point of crash. 

. rbre V: is called the rollback quest variable which we use 
during program recovery. Its initial value is fahe. If a value 
is read from the database during recovery which is different 
from the value read before the crash, variable rbr is set to 
true indicating that special actions have to be taken at the end 
of recovery. 

. come V: is a variable set during the restart of the program 
after a crash. Based on the values in the log, it is set to true 

if the crash occurred after the transaction was finished by 
either a transaction commit or a transaction abort. Depending 
on this value, the recovery algorithm proceeds differently. 

l dbaborrcDB: is a special, write-only database variable whose 
initial value true may be set to false only once during the 
execution of the program. This operation signals an abort of 
the transaction to the DBMS, and forces the DBMS to remove 
the effects of all operations from the database. We need this 
operation during the recovery of DBAPs.~ 

For the log-based recovery algorithm we introduce the logs 
Zl,ZzrL with operations hd(l), tail(l), app(l,r), and empry to 
return the header record of the log 1, to produce the tail of 1, 
to append a new record r to the end of 1, and to test if I is 
empty, respectively. We introduce two logs instead of only one 
for clarity reasons. Log lt only records values during normal 
execution. Since the program is deterministic we do not need 
to record any variable names. During restart, the contents of It 
is copied into 12, which then is “consumed” during the recovery. 
Notice that the two logs, though conceptually distinct, need not 
be implemented this way. We might, for example, implement 
them as two separate scans on the same log file. 

4.2. Reading from the Database 

When accessing a database variable we need to distinguish be- 
tween reading the variable dbcom which finishes the transaction, 
from reading all other database variables. In Fii 3 we show 
the four different semantics for the latter; Figure 4 shows the 
semantic descriptions for the database variable &corn. 

During a normal execution, the main-memory variable Y is as- 
signed the value of the variable a%. The precondition P is stiU 
true after the assignment statement, except for any Bssertions 
about v. We therefore “modify” P by substituting variable v’ 
for v. The strongest postcondition in case of a crash is described 
by the second item of Figure 3. The strongest postcondition 
after the crash consists of precondition P with all references to 
database or main-memory variables removed. 

The third item of Figure 3 describes the necessary changes to 
include logging and recovery for reading the database variable 
db into V. Instead of changing the semantics we prefer to modify 
the original statement to add operations for logging and recovery. 
Ct describes the case of a normal execution, i.e. the replay 
variable rp is fake. Besides assign@ the value of db to variable 
v, we also log its value. 

C2 defines the changed program for a recovery after a crash. If 
the recovery log /2 is not empty, we read the log to provide a 
value for the main-memory variable v. Furthermore, we have to 
test whether the database variable db still has the same value as 
before the crash. If not, the event is recorded by setting variable 
rbr to mre, indicating that the program cannot recover into the 
state when the crash occmred. Special actions are then necessary 
to signal this event to the program at the end of recovery. We 
perform this test only if no changes of database variables have 
been detected (i.e. rbr= fake) so far, and only if the crash 

4 Usually, this operation is also available for DBAPs. For simplicity reasons, we exclude its general use in DBAPs. 
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1. sp(P,v+db)=3v':P[v'/v]Av=db 

2. sp(P, nv-- db)=P\DB,V 

3. SP(P,v -db) rsp(]rpAP, C1)Vsp(rpAP, C,) where 

Cl 5 v+db; lI+app(lI,db); 

~2 ~if 1 empty(lz) 
v+hd(12); 12+t1(12); 
if((rbr=false)A(com=false))thenv' +db; if(v#v')thenrbr+truefifi 

else 
rp+false; 
if(rbr=true)thenv+'aborted';dbabort+true; lI+app(lI,'aborted') 
elsev+db;ll+app(li,db)fi 

fi 

Q. SP(P, nv+ db)=sp(Ph]rp, nCl)Vsp(PArp, nC2) 

Figm3:salnk&Drf”uirionrfurmRaii~anydrrtrrbac~~caoom 

occurred before the end of the transaction (i.e. corn =falre). 
During restart we initialize both variable, rbr and corn appropri- 
ately. 

If the recovery log 12 is empty, we have reached the end of 
recovery, thus setting the replay variable rp to false. If any 
difference between the current database values and the logged 
values has been detected during the recovery (i.e. rbr = true), we 
signal an abort to the program by returning the value aborted, 
set the dbaboti variable to false to force the DBMS to abort the 
transaction, and record the event on the log lt. By returning 
the abofl value to the DBAP, we use the error-reporting facility 

provided by the transaction concept, thus avoiding additional 
exception handling in case the program cannot be recovered into 
the same state as before the crash. As the DBAP cannot dis- 
tinguish the reasons for the abort, we keep the recovery mech- 
anisms transparent to the DBAP. 

The fourth item of Figure 3 defines the semantics of recoverably 
reading a database variable in the presence of a crash, by simply 
referring to the program Cl and C2 in the previous item. The 
semantic definition for a sequence of statements in case of a 
crash can be found in the appendix. For normal execution (case 
l), the semantic description for reading database variable dbcom 

1. Sp(P, v +dbcom)=~v':(db~om='committed'A(p[v'/v]Av=dbcom))V 

(dbcom='aborted'A(P[v'/v]\DB,V)Av=dbcom) 

2. sp(P,nv+dbcom)~P\DB,V 

3. SP(P,v+dbcom)~(]rpAR~)V(rpAR~) where 

Rlr3l\,v':P[1\/11, v’/v]Ali= app(l\,dbcom)Av=dbcom 

R2 = 31'2, V': P[l\/l2, v’/v]A((~empty(l~)ASI)V(empty(l~)AS2A ]rp)) where 

Sl = v=hd(1>)A12=tail(1)2) 

s2 t (1rbrAR,)V(rbrAdbcom-'aborted'Adbabort~trueAli=app(1'i,'aborted')) 

Q. SP(P, nv+dbcom)r {SP(P,v~dbcom)vP] \DB, v 

F$pre4:-Dcf~fw~~~lraiabJrdbMm 
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is different from reading all other database variables (see Figure 
4, Item 1). If the transaction commits, i.e. reading variable 
dbcom returns the value committed, the DBMS guarantees the 
DBPA that the effect of the transaction’s operations have been 
established in the database. However, if the transaction aborts, 
none of the transaction’s operations has effected the contents of 
the database. In fact, the DBAP then does not know at all what 
the contents of the database is. Therefore, assertions about any 
database variables have to be removed from the precondition. 
In case of a crash, the semantic description for reading database 
variable dbcom remains unchanged. Item 3 of Figure 4 includes 
logging and recovery for handling crashes. During normal exe- 
cution, the strongest postcondition Rt is derived from the pre- 
condition P with the additional information that variable v has 
been assigned the value of dbcom and that the value has been 
recorded on the log. 

By the definition of the strongest postcondition RI, the value of 
dbcom is guuranteed to be recorded on the log It. Combining 
the reading and recording of the committed value as one atomic 
action is important for the correctness of the algorithm. Suppose 
the transaction commits and a crash occurs before the committed 
value is recorded on the log. We then might repeat all operations 
of the transaction successfully and commit the transaction a 
second time, thus performing the operations on the database 
twice. We shall discuss the impact of this important requirement 
on the the implementation of the recovery algorithm in Section 
5. 

R2 defines the postcondition for the recovery case. If the re- 
covery log 12 is not empty, the transaction was completed before 
the crash; the recorded value for variable dbcom is read from 
the log and assigned to v. If the log 12 is empty, we test the 
variable rbr to determine if any differences between the values 
in the log and the database have occurred previously. However, 
we do not compare the value from the log with the current value 
from the database. Either the transaction was completed and 
the return value of variable dbwm was recorded or neither of 
the two events happened (see the definition of R1 of Item 3). 
In the former case, the log 12 is not empty and the value of the 
commit operation is restored. In the latter case, we proceed by 
either performing the commit operation or by aborting the trans- 
action, depending on the value of variable rbr. 

4.3. Writing to the Database 

No additional operations are included for logging and recovery 
to write the value of a main-memory variable into the database. 
The semantics for all four cases are defined in Figure 5. 

1. sp(p,db+v)13db':P[db'/db]Adb-v 

2. sp(P, ndb+v)rP\DB,V 

3. SP(P, db+v)rsp(P,db+v) 

4. SP(P, ndb+v)=P\DB,V 

ZQmeS: W*arllrdard 

If a crash occurs the state of the database becomes unknown 
and main-memory is lost. Thus, the strong& postconditions are 
derived from P by deleting all (logical) assertions for database 
and main memory variables. 

4.4. Terminal Input/Output I 

Figures 6 and 7 summar& the four different semantics for 
terminal input/output operations. We model the input from the 
terminal by reading variable i~1, which contains the list of all 
inputs the user will provide during the execution of the program. 
The header of the list, which is the next input value is assigned 
to v. At the same time, the value is removed from the input. 
Similarly, in case of a terminal output operation, the displayed 
value is appended to the the output list o. A system crash 
reduces the program state to an assertion on variables i and o, 
that is the values which have been received form the terminal 
and which have been displayed on the terminal so far, respectively. 
Any assertions about database or main memory variables are 
removed from the preconditions (see Item 2 of Figure 6 and 7). 

Item 3 of Figure 6 defines the logging and recovery semantics 
for terminal input during normal execution. Notice that reading 

1. sp(P,v?)r3v', i':P[v'/v,i'/i]Ai=tail(i')Av=hd(i') 

2. sp(P, xv?)= {3i':P[i'/i]A(i= tail(i’)Vi= i’)]\ DB,V 

3. SP(P,v?) E (lrphR1)V(rpARP) where 

RI ~31$,v', i': P[l$/li, v’/v, i’/ilA(ll= app(l>, hd(i'))Ai=tail(i')A;=hd(i')) 

R2 ~31'2,~': P[1i/12, v'/v]A((lempty(l:)Av=hd(1'2)A1 2=tail(l)2))V(empty(l'2)ARl)) 

4. SP(P, n VT)= ~SP(P,V?)VP] \DB,V 

Figm~6:Se~~~&Dej7&im1 fa TarninorZqnd 
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1. sp(P, v! ) za30': P[O'/O]AO=app(o', v) 

2. sp(P, n v! ) i go’: P[o’/o]h(o=app(o’, v)Vo=o’)] \ DB, v 

3. SP(P, v! I= (lrpARi)V(rphR~) where 

Rl ~31’1, v’, 0’: P[l’l/&, VI/V, o’/o]A(l 1 = a~p(l;, V) A 0 = aPP(O’, ~1) 

R2 131’2: P[1:/12]A((lempty(l’2)A2 2=tail(l)2))V(empty(lh)ARi)) 

4. sP(P, nv!)=jsP(P,~!)wj \DB,V 

Pigum 7: Samnfic Dcflnman for T&ml Ou@ut 

from the terminal and logging the value read is again one atomic 
action. If a crash occurs, either no input was read, or if the 
input was read then the value was recorded on the log. The 
atomicity ensures that the user does not supply the same input 
twice. 

R2 of Item 3 defines the semantics for the recovery case. If the 
log 12 is not empty, the first value of the log is assigned to 
variable v, otherwise we read a new input value and record the 
value in the log lt at the same time. However, we cannot reset 
the replay variable rp to signal the end of the recovery. We 
might be in the middle of the transaction, thus making it nec- 
essary to test variable rbr during the read of a database variable 
and possibly to abort the transaction. We can reset variable rp 
only while reading a database variable which includes the test 
of variable rbr. 

The semantics for terminal output are similar to the ones for 
terminal input. Instead of reading from input i, we now write 
to variable OE 0 which “accumulates” all output values written 
to the terminal so far. Notice that for logging and recovery, the 
operations of writing and logging the value are an atomic action 
to ensure that output values do not appear twice on the terminal. 
For terminal output, it is not necessary to record the exact value; 
it suffices to write one bit that indicates that an output on the 
terminal occurred. During the recovery, we simply suppress the 
output. 

4.5. The Restart Statement 

The restart statement initial&s the program execution for re- 
covery after a crash. It’s semantic is defmed in Figure 8. Since 
the statement is used for recovery purposes only, its semantic is 
only defined for cases 3 and 4. We set the replay variable rp 
to frue, which indicates to the recovery algorithm to replay the 
program, initialixe variable rbr to false, initialixe the recovery log 
12 with the contents of 11, check whether the transaction was 
completed before the crash or not, and provide a new database 
state PDB, i.e. new values to all database variables accessed by 
the program. The latter is necessary since P, the postcondition 
for the restart statement, does not include assertions about any 
database variables. 

5. Discussion 
In this section we discuss two hnportant aspects of the recovery 
algorithm: its properties and its implementation. In particular, 
we examine whether we can express the properties of the recov- 
ery algorithm more formally. Then, we briefly describe the 
implementation of the algorithm as part of the Highly-Available 
Systems (HAS) project at the IElM Ahnaden Research Center 
[AGHI83]. 

1. not applicable 

2. not applicable 

3. SP(P,restart) ~PA(rp=true)A(rbr=false)A(l~=l~)A(com=S~)AP~~ where 

S1 =3e~l~:(e='comznitted')V(e='aborted') 

4. SP(P, nrestart) ~PvSP(P,restart)\DB, V 

F&awe8:&mant&Dej%dfiomforfkeRe&aiS- 
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5.1. Algorithm Properties 

In the previous sections we concentrated on the definition of 
the recovery algorithm. In Section 2 we gave an intuitive de- 
scription of the algorithm’s properties. This subsection describes 
possible properties of the recovery more formally. 

Fit and foremost, the recovery algorithm should not alter the 
execution of the program. Based on our notation using strongest 
postconditions, the extended semantic definition SP which in- 
cludes logging and recovery should lead to the same final state 
as the original semantic sp when starting the program execution 
in the same initial state P. Formally, let R denote the set 
{It, 12, dbabort, rbr, rp, v’, corn) which are alI the variables used for 
the recovery. Then SP (P, a \ R = sp (P , 8) should hold for 
all programs P. 

Another important property for the recovery algorithm should 
be to mask a crash from the user at the terminal. This requirement 
implies that the user sees a crash-free execution of the program 
starting in some initial state P’. If the program starts in some 
initial state P, crashes, recovers and successfully completes, its 
execution should be equivalent to one crash-free execution start- 
ing in some state P’. Let Q I ( m 9); restart; 9 be the pro- 
gram which crashes, restarts, and then finishes successfuhy. Then 
we can describe our requirement by the following formal state- 
ment: 

SP(P,Q)\R=SP(P’,a\R 

for some P’. The initial state P’ does not have to be the same 
as the state P. However, variable ieZ, which describes the 
terminal input, must be the same for both states. 

We might strengthen our requirement by demanding that the 
recovery algorithm tolerates multiple crashes. We use the Kleene 
star l of regular expressions to express the indefinite, but finite 
number of crashes before the program fiihes in a crash-free 
execution: 

SP(P,Q)\R = SP(P’,s)\R 

with Q s ( n 2 ; ( EI (restart ; 9))’ ; restart; a for some P’. 

The strongest postcondition semantic specification given hi the 
previous section can be used to prove the correctness of our 
recovery algorithm with respect to the requirements stated above. 
However, such a proof is beyond the scope of this paper. 

5.2. Implementation 

Based on the specification of the previous section we implemented 
a recovery component for DBAPs as part of the HAS project 
at the IBM Ahnaden Research Center using the DBMS SQL/DS 
and the operating system VIM as our experimental implementation 
environment. The recovery component consists of three major 
sub-components as shown in Figure 9. The values of each 
input/output operation to and from the terminal and the database 
are intercepted by one of the recovery components to perform 

necessary operations according to the specification of the algo- 
rithm in the previous section. We implemented a special log 
component independent of VM’s file system to guarantee the 
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I u I ii; 

----- --- ----- 
I cl I 1x1 

I s I 1x1 I B I 1x1 4 

1:1 
<---->IXI<-->I A I<-->I)(I<---->I M 1 

1x1 I P I 1x1 I s I 
----- --- ----- --- ----- 

I I 
-------------_------- 
I Log Component I 
-------_---_--------- 

FIgwe 9: The User, the DBAP, the DBMS, and the Recovery 
c-t 

atomic writes of the log records. The addition of the recovery 
component is transparent to the DBAPs and to the DBMS. 

The correctness of our recovery mechanism was based on the 
assumption that we can execute the input/output operations and 
the database commit operation atomically with the corresponding 
log operations. To guarantee the atomiclty, we introduced inter- 
nal transaction identifiers, which are stored in the log and in the 
database at the besinning of each transaction. If we can retrieve 
the transaction identifier during recovery, we know that the 
DBMS committed the transaction. The disadvantage of our so- 
lution is that read-only transactions always become read-write 
transactions. 

We did not attempt to find a solution that guarantees the 
atomic&y of termhml/input output operations with the log op 
erations, since we believe that a complete solution to this problem 
does not exist. By reducing the time between any input/output 
operation and the corresponding log operation as much as pos- 
sible, we minimized the rlsk of a crash between a termhml 
input/output and a log operation. More complicated solutions, 
such as the use of PCs as intelligent termhAs, could further 
reduce the probability of losing any terminal input/output. 

The specification of the recovery algorithm restricts DBAPs to 
consist of only one transaction. We removed this restriction for 
the implementation easily. For each transaction, we simply de- 
termine lf it completed or not by “looking ahead” on the log. 
No additional changes were necessary to extend the algorithm 
to multiple transactions. 

To improve the recovery for long programs, we extended the 
recovery component by a checkpointing faili@. Periodically, the 
component saves a complete program state during normal program 
execution. In case of a crash, the log-based recovery begins with 
the state saved by the checkpointlng component, instead of 
starting execution from the initial state. of the program. The 
checkpointing component determines independently of the pro- 
gram which data to save in order to resume execution after a 
crash. However, the implementer of the DBAP had to include 
an explicit call for a checkpoint, thus making the recovery visible 
in the DBAP. 

6. Conclusion 
This paper describes a log-based recovery algorithm for database 
application programs by using the notion of strongest 
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postconditions borrowed from the field of programming language 
semantics. This formalism allows us to give a clear and detailed 
definition of the recovej algorithm without relying on any 
system-specific mechanisms. We therefore could use the high-level 
description as a specification for different implementations of 
the algorithm. Our specification also shows that we can add 
operations for program recovery transparently to the DBAP. 
The recovery algorithm presented does not require the introduction 
of new “error exits” in case we cannot recover the program into 
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APPENDIX 
The Semantic Definitions for the Control Statements 

The Sequence Statement 

I- SPV, 91; 82) = SP(SP(P ISi), 82) 
2. SP(P, lJ (9, ; 92)) = SP(P, x (s,))vsp(sp(P, Sl), x 82) 
3. SP(P, 91; e)p) I SP(SP(P, a,,, 82) 

4. SP(P, x (9,;82))E SP(P, XP1)VSP(SP(P,Si), x9*) 

The Conditional Statement 

1. sp(P, ifBthenP~elseP~)~~p(PhB,8~)Vsp(PA1B,8~) 
2. sp(P, x ifBthengielseg2)t sp(PAB, ~~~)Vsp(PhlB, ~8~) 
3. SP(P, ifBthen~Ielse9~)~SP(PhB,Si)vSP(Ph1B,9E)2) 
4. SP(P, x ifBthenSlelseB2)= SP(PAB, x~,)VSP(PA lB, ~9~) 

The Loop Statement 

1. sp(P,whileBdoP)asp(PAB,(S;whileBdo~)V(PA 1B) 
2. sp(P, xwhileBdo9)~sp(PAB, x@;whileBdoe?)V j(PA lB)j\DB,V 
3. SP(P,whileBdo~ESP(PAB,(~;whileBdo~)V(PA\B) 
4. SP(P, xwhileBdo9)=SP(PAB, 11(9;whileBdo8))V((PAlB)]\DB,V 
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