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Abstract 
In a multi-system data sharing complex, the systems have direct access 
to all data. with sharing typically at the disk level. This necessitates 
global concurrency control and coherency control of local buffers in 
each system. We propose an integrated controller for handling both 
global concurrency and coherency control. and show that this leads to 
a si@fiint performance gain. ‘Ihe multi-system performance can be 
enhanced by use of an intermediate shared semiconductor memory. 
This gives rise 10 additional read-write synchronization and disk write 
serialization problems. We show these can be handled efficienlly by 
the integmted controller, while allowing for early transaction commit. 
Significant tnnsaction speedup and reduction in lock contention 
among transaclions are obtained. The decrease in lock contention al- 
lows the multiple systems 10 sustain a higher transaction throughput. 
A queueing model is used to quantify the performance bnproyement. 
Although intermediate memory can be employed as a buffering device 
our analysis shows that substantial performance gains can be realized 
when combined with the integrated concurrency-coherency controL 

1. Introduction 
Two genenl approaches have been used in designing multi-system 
transaction processing complexes. which we will refer to here as do14 
shring and ptw?ifiming [SEKl84. YU86J. Using a data sharing ap 
proach. all systems have diict access to all data by means of an I/O 
network. bus, or switch. whereas using a partitioning approach, data- 
base function requests are sent via an inter-system network to the 
system “owning” the data. Although a detailed comparison of these 
two approaches is beyond the scope of this paper, it i ckar that in the 
case of a ccntml-site transaction processing complex data sharing has 
several strong advantages: (1) sina all systems have access 10 all data, 
the complex as a whole can be made more available; (2) commit pro- 
tocols are kss complex; (3) load balancing problems can be more eas- 
ily solved; and (4) migration from a single system is much simpler, 
since it is unnecessary to construct a mapping of parts of the global 
database to the systems in the complex. In fact. with regard fo the last 
two points, a “real-world” example is described in [CORN861 in which 
it is impossible to partition more than three ways and satisfy load bal- 
ancing constmints without restructuring databases and applications. 
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On the other hand. using data sharing two problems arise that 
do not occur when using partitioning: @aI con~mncy confrd and 
fohrnncy Conrad. Fiit consider concunency control. In a partitioned 
complex, sina each file, relation, etc., is owned by a unique system, 
all locking can be done locally within each system (if global deadlocks 
are possibk. the only remainii concurrency control problem is their 
detection. for which a variety of W.hniques are known). Using data 
sharing, though, any data block can potentially be accessed by any 
system. and so it is necessary for systems to acquire global locks. Next. 
the coherency control problem (thii term is used here in analogy with 
the problem of cache coherena in multiprocessor systems) is the fol- 
lowing. One or more levels of the memory hienrchy will be private to 
each system (in particular, the primary memory of each system will be 
private). If copies of data blocks are maintained in private memory 
buffers past the end of transactions that access them (using LRU re- 
plaament. for example). it is necessary to invalidate these private 
copies if they are modified by another system before being replaced 
(a copy of a data block is said to be m/id if it is the most up-to-date 
copy, that is, a copy of rhc block written by the mast reantly com- 
mitted transaction that modiiid tie block). Since in a partitioned 
complex all memory is private to some system, this problem does not 
occur. 

In the past. these two problems have been addressed using 
separate mechanisms. For example, in JMS multi-system data sharing 
a distributed algorithm is used to implement global locking, and inval- 
idation messages are broadcast in order to implement coherency con- 
trol [STRISZ] (in other data sharing compkxes, the need for coherency 
control is avoided simply by purging the database buffers used by each 
transaction when the transaction annpktes). Here, we investigate the 
integration of these two mechanisms within a single global 
concumn~k~n~y confmf&r. Ihe key observations that kad to 
studying inlegmted controllers are the following: (1) sina blocks are 
the unit of data transfer between private and shared memories, block 
granularity locking is the most natural choice (coarser gmnularity may 
not provide sufficient concumncy, and finer gmnularity will not. pre- 
vent one system from overwriting changes made within a block by an- 
other system); (2) if private memory buffers are maintained past the 
end of transactions that access them, block granularity buffers are also 
the most natural choice; (3) therefore, it should be possible to reduce 
the overhead associated with global control by integnting the data 
structures and algorithms for rmding and changing all global control 
information associated with data blocks. 

Two basic types of data sharing complexes will be considered. 
ln the Tit type. examples of which exist today, then are two levek in 
the memory hierarchy: (1) private primary memories for each system, 
and (2) shared secondary memory (disk storage including log disks). 
For this type of system we investigate the addition of a controller that 
not only provides concurrency control functions but also coherency 
control functions: the controller will maintain information on the valid 
copies of data blocks in all private memory buffers. The overall 
structure of such a system is shown in Fii 1.1. 
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The second type of system we consider is motivated by the 
npidiy decreasing cost of semiconductor memory. Due to this con- 
tinuing decrease, it has become cost-effective lo add an intermediate 
kvei of semimnductor memory to the traditional primary-secondary 
memory hierarchy (examples are cached-disk devices [Sh4lT85] and 
the expanded storage of the IBM 3090 system). Here, we assume that 
the inrermediite level of memory is shared by all systems in the com- 
plex, as shown in Figure 1.2. Also, we will make two more assump- 
lions regarding the use of intermediate memory. Fit. we assume that 
the management of the memory is partitioned among the systems, that 
is, each system is responsible for allocating, writing, and freeing blocks 
in disjoint regions of intermediate memory (however, each system can 
read from any intermediate memory partition). Second, it is assumed 
that even though the intermediate memory may be volatile. each 
transaction can commit as soon as all blocks modified by the trans- 
action have been written to intermediate memory (but only a&r log 
records have been written lo non-volatile memory in the case that the 
w-rites were to volatile memory). Given these two assumptions. there 
are some additional problems of global control as compared to the 
previous two-level memory hierarchy system. For example. one sys- 
tem should not be allowed to free and lhen overwrite a block in inter- 
mediate memory while it is being read by another system. Similarly, 
w-rites to secondary memory by multiple systems must be coordinated. 
For this type of system we present a design for a global controikr that. 
in addition to concurrency-coherency control functions. provides 
functions that enable the systems to cooperate in order to effectively 
make use of the shared intermediate memory. 
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ns - secondary memory 
Kcc - concurrency-coherency controller 
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Kcc - concurrency-coherency controller 

Fs 1.2. Shared Intermediate and Seam&y Memories 

Section 2 contains an overview of the system-level transaction 
processing protocols that we assume are being used for each of these 
types of systems. Designs for the integrated concumncy-cohe~ncy 
controllers for each type of system are presented in Section 3. In 
Section 4 a model lo evaluate the performance of such systems is de- 
scribed, and modellmg results are presented for (1) systems without 

intermediate memory or an integrated controller. (2) systems with an 
integrated controller but no intermediate memory, and (3) systems 
with both an intermediate memory and an integrated controller. 
Finally, Section 5 contains conclusions. 

2. Overview 
fn this section an overview is given of the system-level transaction 
processing protocols that we assume are being used in the various types 
of multi-system data sharing complexes that were described in the In- 
troduction. In all cases we assume that global concurrency control is 
implemented by block granularity loeking. We will take the details of 
the global concurrency control protocol for gmnted. with the exception 
of its interaction with coherency control. First we consider a complex 
with shared secondary memory only. and in which invalidation mes- 
sages are broadcast in order to implement coherency control 

2.1. Shard Swdty Menaty wiryI Bmadaart Inwidrrlion 
For this type of complex there must be some kind of inter-system 
communication mechanism that can be used for system-to-system and 
broadcast messages. As far as global concurrency control is con- 
cerned. there are a variety of implementation techniques: using the 
inter-system communication mechanism a distributed algorithm based 
on either partitioning or replicating the global lock table can be used, 
or aitemaliveiy a centrili controller can be wd. ‘Ihe implementation 
technique will not influence our description of the transaction proc- 
essing protocols at the level of this section (however, in order lo isolate 
the effect of integrating coherency control. in Section 4 a central con- 
troller implementation is assumed). 

Each system acquires global locks on blocks in various modes 
on behalf of the transactions running in that system in order lo main- 
tain the consistency of the shared database (fmer granularity local 
locking may be used for intn-system concurrency control). With re- 
spect to the interaction between global concurrency control and 
coherency control we make two assumptions: (I) a global share-mode 
lock must be aqtid for any transaction that. due to the semantics 
of the database operation being performed, must read the mosf up-W 
date copy of a block (or. if it is known in advance that the transaction 
will modify the block. a global exclusive-mode lock should be ac- 
quired); and (2) global exclusive-mode locks must be acquired for all 
blocks modified by any given transaction (promoting share-mode lo& 
to exclusive-mode if necessary). and all exclusive-mode locks for 
modified blocks must be held unrii the commit point of the tnnsaction. 
Before a transaction an commit, though, not only must all modified 
blocks be written to shared disk (in order lo make the most up-to-date 
copy available to the other systems in the compkx). but also any pri- 
vate copy of any such block in the buffer of any other system must be 
marked as invalid (otherwise transactions running on the othtr system 
that require the most up-to-date copy would read the obsolete copy). 
since for this type of system no global information is maintained on 
private buffer contents. a message containing a list of the modified 
blocks musf be broadcast to all other systems. Only when all disk 
writes are complete and all other systems have acknowledged the 
message can the transaction commit and the global exclusive locks be 
released. 

2.2. Shdvtxl Saoondary Menay wifh an IntqyrTtd Con- 
frolh?r 
For this type of complex we assume that a central controller is being 
used 10 implement global concurrency control. It is also assumed that 
share and exclusive mode locks must be acquired as previously de- 
scribed, and that exclusive-mode locks must be held until the modified 
blocks have been written to secondary memory. Now note the foi- 
lowing: sina a global sharr or exclusive mode lock must be acquired 
for any tran%action that requires the most upto-date copy of a block 
&fi~ the block is read by the transaction. if the antA controller had 
information on Ihe validity of all blocks in all buffers in the system, 
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then the lock request sent to the controller could be combined with a 
request to check the validity of a private copy of the block. U the lock 
is acquired but the private copy is invalid then the private copy must 
be replaced by reading the up-tedate copy from disk. Thus, by having 
the central controller keep track of buffer contents, the broadcasting 
of invalidation messages can be avoided. 

Now each system must follow protocols in which, in addition 
to concurrency control requests, requests are sent to the controller that 
allow global information on the current state of all private buffers to 
be maintained. The details of these promcols are described in Section 
3. It will be seen that coherency control reqwstS can always be com- 
bined with concurrency control requests. 

2.3: Shared Intemdlate and Saaondary Memwia 

As shown earlier in Figure 1.2. for this type of complex the existence 
of a shared intermediate level of memory is assumed. Here, we inves- 
tigate the use of this memory to speed up the commit process in 
multi-system data sharing: transactions will be allowed to commit and 
exclusive locks will be released as Soon as all modified blocks ate 
written to intermediate memory. If the memory is volatile, though, it 
is still required that exclusive locks be held until log records are written 
to non-volatile memory. However, there are several techniques that 
can be used to speed up log writes. For example, since log records can 
temporarily be written to any free diik location, Seek times and rota- 
tional delay can be minimixed (this technique is used in IMS 
[STRISZ]). Another technique is to use. a small non-volatile buffer for 
log records. lherefore. removing the requirement that a transaction 
cannot commit until all modiied bloch are written to disk Should 
greatly improve performance, as will be Seen in Section 4. 

AS described in the Introduction. it is assumed that the man- 
agement of intermediate memory is partitioned: for each system, there 
is a Separate region of intermediate memory called a partition associ- 
ated with that system, and an intemtediate memory manager running 
on the system is responsible for allocating, writing, and freeing blocks 
in the partition. However, since we allow any system to read from any 
partition, several problems arise. The most obvious problem is locating 
data blocks in intermediate memory: when a transaction requires the 
most upto-date copy of a block, as before the lock request and a check 
of the validity of a private copy can be combined. but if the private 
copy is invalid or if there were no private copy, the moSt up-to-date 
copy could be in intermediate memory. Therefore, even though the 
management of intennediite memory is partitioned, it ir necessary to 
maintain global information on intermediate memory contentS. As 
described in the next section, the integrated controller can be extended 
to keep track of this information. With this extension, when a trans- 
action requires the most up-to-date copy of a block, three requests to 
the integrated controller can be combined: (1) a lock request, (2) a 
check of the validity of a private copy, and (3) a request to give the 
location of a valid copy in intemtediite memory if there is one. 

Two additional problems have to do with the systems cooper- 
ating in their w of intermediate memory. Fit. one system cannot 
free and overwrite a block in its partition while other systems are 
reading the block. Second, when a valid block in one system’s partition 
is modiied by a transaction that commits on another system. the fact 
that the block in the fiit system’s partition is now invalid must be re- 
corded. That is, there is also a coherency control problem for inter- 
mediate memory (this is due to the partitioned management). 

There is one final problem, but first it is necessary to deScribe 
our asstmtptions regarding recovery protocols and availabiity. Since 
the examples of an intermediate level in a memory hierarchy previously 
mentioned w volatile memory today, for the Sake of exactness we 
aSstane volatile intermediate. memory (however, the basic techniques 
described here can be applied to the non-volatile intermediite memory 
case). Therefore. we assume that after modified blocks are written to 
intermediate memory and a transaction commits, the system hnme- 
diately Schedules writes of all modiiid blocks to disk, since in the 
event of a power failtne this allows a long recovery Scenario to be 

avoided. In the case that recovery is necessary, log records must be 
processed only for the transactions that were in progress at the time 
of the failure and for the transactions that had committed but for 
which disk writes were not complete. Also, we note that even if 
intermediate memory is non-volatile it may be less reliable than disk 
storage, and so it may desirable to immediately Schedule disk writes 
after a transaction commits in order to provide continued operation 
even if part or all of intermediate memory fails. Another availability 
cOncem is that since the central controller is necessary for continuous 
operation, it Should be designed so as to be highly available. In this 
regard we note that one technique that can be used is to provide a 
backup controller: if one controller fails, a recovery protocol can be 
&signed in which the information necessary to rewnstmct the global 
state of the complex is down-loaded from all the systems in the com- 
plex to the baclnrp controller. 

Given that the blocks modified by a ttansaction are first writ- 
ten to intermediate memory, that next exclusive lo& are released, and 
last that the blocks are scheduled to be written to disk. the lima1 prob- 
lem can now be described. Suppose transaction Tl modifies a block 
and issues a commit request. The system will write the block to inter- 
mediate memory, release the exclusive lock, and schedule the block to 
be written to disk. However, before the disk write is initiated, trans- 
action T2 on another system may obtain an excluGve lock on the 
block, read the copy from intermediate memory. modify it, and issue 
a commit mquest. Now the other system will write the block back to 
intermediate memory, release the exclusive lock. and also schedule the 
block to be written to disk. If the disk write of the second system is 
initiated before that of the fiit system. when the disk write of the fiit 
system fiially occuts the update of T2 will be undone. This illustrates 
the fiial problem: it is necessary to ~erialixe diik writes of the Same 
block by multiple systems So that they are in the order in which the 
updates occurred (the alternative of somehow “cancelling” previously 
Scheduled disk writes on other systems presents significant distributed 
control problems). 

In summary. for the Shared intermediate memory type of 
complex, in addition to concurrency control and private memory 
coherency wntrol, the controller must provide functions and the sys- 
tems must follow protocols that aUow blocks to be located in interme- 
diate memory, that prevent a system from overwriting a block in 
intermediate memory while it is being mad by other systenu. that in- 
validate obsolete copies of blocks in intermediate memory, and that 
serialize disk writes. 

3. Design 
In this Section we present designs for the integrated wncurrency- 
coherency controllers in the last two types of complexes described in 
the previous Section. In order to present the controller designs, it is 
convenient to consider a typical wncurrency control imp1ementation 
a~ a starting point. and then describe. extensions. For example, Figure 
3.1 Shows the hash table access structure and linked list block state 
representation in a typical concurrency control using share and excltt- 
sive lock modes: the state Shown indicates that tnmactio~ Tl and 
T2 own the block in sham mode and that tnnsaction T3 is waiting,for 
the block in exclusive mode. The queued request information shown 
in the figure refers to the information requited for the controller to 
Send a response. to the system that issued the request for transaction 
T3 when the request is eventually granted or rejected. In order to ex- 
tend this access structure to contain additional control information. 
we can simply add pointers in the hash table entry for other typcS Of 
global information associated with blocks. This method will be used 
in the descriptions below. Such extensions generalize 
straightforwardly to other kinds of access structures and state repres- 
entations that might be used in typical wncurrency controls. Opti- 
mixations designed to mimmixe overhead such as using combined 
concurrency-coherency states are possible but Somewhat implementa- 
tion dependent, and will not be described here. 
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hash(block ID)+ 

QUEUED l-l REQUEST 
INFO. 

Fgrc 3.1. Qpical Coaeurrraey Control Stmewt 

3.1. Rim& Memory Grh4mtuy Cbbvl 

lltc key idea here is that validity of blocks in the private memory 
buffer needs to be checked at the time the access Kquest for concur- 
Kncy control is made. A mechanism and protocol is developed to 
track the validity of the buffer. For the type of complex that has 
shaKd secondary memory only. the state of a block in the controller 
has two parts: (1) an access state (global concurnncy control state), 
and (2) a buffer state (global cohcKncy control state). The buffer 
state eon&s simply of a list of the IDS of systems that have a valid 
copy of the bbck in their private memory buffer. An example block 
state is shown in Figure 3.2: this state Kpnsents the case in which the 
access state is as befon in Figu~ 3.1. and the buffer state is that sys- 
tems S I, S3. and S4 have a valid copy of the block in their Kspective 
buffers. The null buffer state is the empty list. When a block’s access 
state and buffer state are both null. the hash table entry for the block 
can be Kmoved. 

buffer state 

QUEUED r-l REQUEST 
INFO. 

I I 

Fpvc 3.2. Esppk Acecss aA Buffer Stares 

In addition t0 access requests. the conttollcr accepts the fol- 
lowing buffer requests for blocb from system buffer managers: (1) 
check and add - if the buffer mamtger system ID is in the list of systems 
having the block in their buffer, respond w/id (indicating that the pri- 
vate copy is valid); othenvise add it u) the list and Kspond inn&f (ii 
dialing that if the system had a copy of the block. it is invalid. and 
Kfkcting the fact that the system will tmw Kad in a valid copy of the 
block), (2) remove - ~m~ve the system ID from this list; (3) invalidate 
- Kmove all system IDS except that of the system making the Kquest 
ftom the buffer state list. 

TIte concurrency-coherency controller also accepts combined 
Kqucsts. consisting of an access Kquest followed by one or two buffer 
requests. In such a case the combined Kquest must be processed 
atomically (i.e.. there an be no intcrleavlng of other Kquests for the 
same block). ff the access request is queued, the following buffer K- 

quests are processed only when the access request is re-processed and 
granted, and if the access Kqucst is Kjected then the following buffer 
Kquests aK not processed. 

Bach system must use the following protocols. 

1. When a transaction accesses a block that is in the local buffer, 
issue the appropriate lock request combined with a check and 
add request Then, if and when the lock request is granted. if the 
result of the check and add Kquest is ml&f use the local buffer 
copy, otherwise delete the bcal buffer copy and Kad the block 
ftom disk. 

2. When a transaction accesses a block Bl that is not in the local 
buffer, in general some other block B2 that is in the buffer must 
be selected to Kplace. fn this case issue the appropriate lock 
Kquest combined with a remove request for B2 and a check and 
add request for Bl. llten. if and when the the lock request is 
granted, Kad B 1 from diik into the buffer Kplacing B2. ff thCK 
is free buffer space that is not Occupied by any block (for ex- 
ample aster system start-up), issue only a lock and a check and 
add request. (Note that for transactions requiring the most up- 
m-date copy of a block, the copy is guannteed t0 Kmain valid 
while the transaction is accessing it due to the global share or 
exclusive mode lock that is held) 

3. When releasing an exclusive lock for a modified block that has 
been written to disk, issue an unlock request combined with an 
il’l’didate KqutSt. 

3.2. Inftwnulhte Mimoty Cond 
Next. consider the complex with both shand intennediitc and sec- 
ondary memories. In addition to controlling ConcurKncy and main- 
taining validity information on the blocks in private buffers. the 
controller will be used to maintain global control information on blocks 
in intennediite memory. 

Each block has an access state and a buffer state as p~viously 
described, and each valid copy of a block in intermediate memory also 
has a non-null intermediate memory state containing the following 
kinds of information: (1) the address of the block in intermediate 
memory; (2) a list of systems currently Kadii the block from inter- 
mediate memory; (3) whether the system owning the partition has K- 

quested that the slot the block occupies be freed (it cannot be fKcd 
while fads from other systems are in progtess); and (4) infonnation 
to serialize writes to disk 

Diiregarding the intermediate memory location part. the 
intermediite memory state can be KpKWtted as a “lock” held in var- 
ious modes by systems (we will see b&w that the state is really not 
used at all like traditional lock states, but this is a convenknt starting 
point). lllese modes OK as follows. 

W write in progress - held in this mode by the system managing 
the intermediate memory partition in which the block resides 
prior to the completion of the write to disk, and requested in 
this mode by another system that has updated the block 

D write to diik complete - converted to this mode by the system 
owning the partition after the compktion of the write to disk 

R Kad in progress - held in this mode by each system reading the 
intermediate memory copy of the block while the cad is in 
PtWKss 

u pending rekase - this is a pseudo-mode used when the system 
owning the partition makes a “release” Kquest on the inter- 
mediate memory state of the block (see below) in order to fKe 
the intermediate memory slot, but them arc Kada by other 
systems in progress 

We first summarize the protocol for using the integrated con- 
troller. BefOK a transaction can update a data block, an exclusive lock 
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request for concurrency control is issued with check requests on buffer 
status in private memory and intermediate memory. Assuming the 
private memory copy is invalid and there is a valid copy in the inter- 
mtdiitt memory (say in D mode), the address in the inttrmtdiate 
memory will be ntumed. and the mode of the block in intermediate. 
memory is changed to read-in-progress (R) mode to prevent the block 
being overwritten. After the read is completed, the controller will be 
notified and will switch back to the previous mode. At commit time, 
the system fit allocates a free slot in the intermediate memory for the 
updated block and writes the block out to that slot. Then the system 
issues an unlock access request for the exclusive lock. combined with 
an invalidate buffer request and a request to change to write-in- 
progress mode. To serialize disk writes. the change to W-mode request 
can be granted only after any ongoing disk write for the block has 
completed. To insure availability of free slots in the intermediate 
memory, each system periodically frtes up slots via release requests, 
and each release request is either granted immediately if there are no 
reads in progress to the slot or else granted as soon as all reads cur- 
rently in progress to the slot have axnpleted 

Let us consider in detail how the controller responds to each type 
of request. The response depends on tht current state of the block. 

1. A W-lock request includes tht address in inttrmediatt memory 
into which the block has already been written by the requesting 
system. The W-lock request will be queued if any write or read 
is in progress on the block, i.e. the block is in W or R mode. 
Otherwise, the request is granted. and the address part of the 
intermediate memory state of the block is updated. When a 
W-lock request is granted, if another system owns the lock in 
D-mode. the controller automatically performs an unlock on 
behalf of the D-mode owntr, effectively invalidating the copy 
of the block in the partition owned by that system. 

2. When an R-lock request is received for a block with a null 
intemtediate memory state, the request is rejected, thus indicat- 
ing that the block must be read from disk. Similarly an R-lock 
request is rejected if there is a queued release request for the 
block (ii order to avoid possible starvation of the release. re- 
quest). Otherwise, when the request is granted, the result con- 
tains the intermediate memory location of the block. When an 
R-lock request is received for a block from the system owning 
the block in D-mode, the location is returned as in the previous 
case, but the mode remains D, thus indicating to the system that 
the copy of the block in its partition is still valid. 

3. 

4. 

When a D-lock request is issued upon completion of the disk 
write, the W mode will be converted into D-mode.. Any other 
system owning tht lock in R-mode will not be affected 

When a rekase request is received from a system that is not 
currently an owner (because the intermediate memory copy in 
tht system’s partition was previously invalidated by means of a 
W-lock request from another system as described above), the 
request is granted When a release request is received for a 
block from a systtm owning the block in D-modt. ff there are 
any R-mode owners, the controller treats this as a U-convenion 
request, thus queueing the release request. 

The control algorithm can be described by using a “standard” . _ ._ 
&king-based algotithm using the mode-compatibility matrix shown in 
Figure 3.3 (certain cases such as the way modeconversion requests 
are handled will not be described in detail, but will be indicated by tht 
example at the end of this section). 

Similarly to tht previous design. the controller can accept 
combined requests consisting of intermediate memory. access. and 
buffer requests, and combmed requests must be processed atomically. 
In combined requests, in some cases an access request should be 
processed fit and in other cases an intermediate memory request 
should be fimt. This can be controlled by having the system issuing the 
combined request order the sub-requests appropriately. If the first 

request in a combined request is queued the remaining requests should 
also be queued, and if the lit request is rejected the remaining re- 
quests should be rejected, with the following exception: if an R-lock 
request is rejected. associated access and buffer requests urr processed 
as before. Also. a block’s global state is null if each of its access, 
buffer, and intermediate memory states are nulL 

Requested Mode 
W D R U 

Held 

Mode 

I: incompatible 

C: compatible 

-: doesn’t occur 
(see text) 

Fwe 3.3. lotermediate Buffer Sate Mode Coqubiky Mati 

An outtine of the protocols that must be used by tht intenne- 
diate memory managers running on each system is as follows. 

1. 

2. 

3. 

4. 

5. 

To free an intermediate memory slot, issue an intermediate 
memory release request. When the request is granted. the slot 
canbeused 

To check if a block is in intermediate memory, ixsue an R-lock 
request. If the request is granted, the result contains the kt- 
cation. 

If an R-lock request isissued for a block that was previously 
written to intermediate memory by the intermediate memory 
manager and the location returned is difftrent than that prevf- 
ously allocated, or if the request is rejected. the copy is now in- 
valid, and the intermediate memory slot is freed 

Alter allocating a slot and writing a block to intermediate 
memory, issue a W-lock request. When the request is granted, 
any write to disk of this block by another system has compkted, 
and a write to disk can be initiated by this intermediate memory 
manager, thus guaranteeing correct disk write serfalixatior~ 

After a disk write of a block completes, issue a D-conversion 
E+CSt. 

Analyzing the algorithms used by controller and the httennediite 
memory manager protocols, it can be setn that oertain combiitions 
of held and requested modes never occur, as shown in Fii 3.3. 

We conclude this section with an example illustrating some of 
the above protocols and global block states. 

Sl allocates an fntenntdiatt memory bufftr slot by issuing a 
successful intermediate memory rekase request,writts the block 
to intermediate memory, issues a successful W-lock combined 
with an access state unlock and invalidate requests (the access 
state of the block was that it was held cxclusivt by some trans- 
action on Sl), and initiates a write to disk. The block state is 
shown in Figure 3.4(a). 

. 

Prior to the completion of the disk write. transactions Tl and 
T2 on S2 and S3 respectively read the block. fit issuing sue+ 
cessful R-lock combined with add and access share lock re- 
quests, resulting in the statt shown in Fii 3.4(b). 

The read from intcmtediate memory by S3 completes. and S3 
issues an intermediate memory release request, resulting in the 
state shown in Figure 3.4(c). 

The write to disk completes, and Sl issues a D-conversion re- 
quest, resulting in the state shown in Figure 3.4(d). 
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Figure 3.4. Example Access, Bufler, and Mi States 

5. TO free the buffer slot, Sl issues an intermediate buffer release 
request, but because there is a read in progress the request is 
queued, as shown in Figure 3.4(c). 

found in the intermediate memory. kading to significant improvement 
at high contention levels. These effects are quantified in this section. 

6. The read from intermediate memory by S2 completes, S2 issues 
an intermediate memory release request, Sl’s queued release 
request is then pmcesse d. resulting in the null intermediate 
memory state as shown in Figure 3.4(f). 

4.1. l&e Mdei 

4. Performance 
This seetion outlines a model to estimate the perfomance of the inte- 
grated concurrency-coherency control schemes presented in Section 
3, and illustrates the benefits of th& technique. Qualitatively. the fol- 
lowing effects occur. Using intermediate memory with the integrated 
concurrency-eohcrency protocol of Section 3.2 permits the early re- 
lease of locks. This leads to shorter lock holding times. and lower lock 
contention. Thus, when the transaction rate is increased, either by in- 
creasing the number of coupled systems or by using more powerful 
processors, significant improvement in response time is expected. 
Further, the integrated concurrency-coherency scheme eliminates the 
increase in protocol overhead with number of systems that occurs with 
broadcast invalidation. This is particularly important as the number 
of coupled systems increases. Fmally. blocks that are frequently up- 
dated will be found in the intermediate memory, further reducing I/O 
time. In particular, updated blocks that are contended for will be 

The mode1 uses parameters derived from trxes taken from two 
large intallations running IBM’s fIvfS database management system 
[YU~~B]. The Tit was an inventory parts database traced for 15 
minutes, and the second was an on-line materials planning database 
system traced for 60 minutes. Both traces lead to similar results. The 
results presented in this paper are for the fit trace. The traces from 
the single system environment were used to derive traces for a multi- 
system environment as described in [YU87]. In a trace driven simu- 
lation of two coupled 14 MlF’!S systems with an average workload of 
20 transactions per second per system, the probability of lock conflict 
was found to be about 0.007 per lock request. This lock conflicl 
probability is projected to other system configurations by the approx- 
imate analytical model presented below. A database block reference 
trace was derived from the multi-system lock traces. The block refer- 
ence trace was used to drive a simulation of the database buffer man- 
ager under different coherency control protocols. The increase in 
database l/O caused by this phenomenon was captured. The broad- 
cast invalidation and integrated concurrency coherency protocols were 
found to have about the same increase in l/O, although buffer space 
occupied by obsolete blocks is reused earlier by the buffer invalidation 
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protocol in comparison with the integrated concurrency coherency 
protocol. Thus, the major difference of the two protocols is in over- 
head. 

In the model, transaction arrivals are modelled by a Poisson 
process. A front-end server is assumed to assign transactions tan- 
domly to the different systems. A balanced load on all systems is as- 
sumed. The average transaction response time R is expressed in terms 
of its components as follows [YU85A] : 

R = RCPU + 40 + Rcoxr (4.1) 

Each component will be described separately. 

Rc, is the total time the transaction spends at the CPU. This in- 
cludes both the CPU service and queueing times, and the time the CPU 
waits for a lock from the integrated concurrency coherency controller. 
From the trace analysis the average number of instructions that need 
to be executed per transaction was found to be 430,000. Lock re- 
quests and database I/OS are assumed to occur uniformly over this 
transaction path length, breaking the transaction into many small seg- 
ments of equal size. In addition, each lock request entails sending the 
lock request to the integrated controller, and waiting for the nponse. 
For a given transaction rate, the rate of lock and unlock requests at the 
integrated controller is known. Assuming Poisson lock request arrivals 
at the integrated controller, the average service and queueing time is 
computed [YU8SAl. ‘Ihe Poisson approximation is reasonable for a 
large number of wncurrent transactions. This time is added to the 
CPU time and the total CPU utilization is computed. Then R, is 
computed by modeling the (dyadic) CPU as and M/M/2 queue. 

In addition to the concurrency control protocol overhead, the 
coherency control protocol overhead is modelled as follows. The 
model for the broadcast invalidation coherency wntrol protocol as- 
sumes that 1K instructions of local processing is incurred by the system 
initiating the invalidate message, before incurring the overhead of 
broadcasting the message to the remaining n - 1 systems. The over- 
head O,, for sendiig a message between systems is assumed to be 3K 
instructions equally split between the sending and receiving systems. 
The broadcast overhead is assumed to be the same as the overhead for 
sending a message, O&,/2. Each of the n - I remaining systems in- 
curs an OJ2 overhead for receiving the invalidate message, a 1 K in- 
structions overhead each for processing the invalidate message, and an 
overhead of O&,/2 for sending an acknowledgement in reply. The 
model for the integrated concurrency coherency protocol assumes that 
every block referenced is locked before being accessed. The validity 
of the data block being accessed is verified by the integrated controller 
at the time that the lock request is processed. We assume a 50% extra 
overhead for lock processing in order to perform this validity check. 

R, is the amount of time spent during the transaction, waiting for 
I/O to occur. Note that for each I/O the processor is modelled to task 
switch to process another transaction, while suspendiig the executing 
ttansaction. until the completion of the I/O. Thus, 

RIO = ‘ro”lo 

where I,,, is the avenge time per l/O and n,, is the average number of 
I/OS per transaction. Sufficient I/O bandwidth is assumed to enable 
the modelling of the I/O setver as an infiite server with a load inde- 
pendent service time of 35 mS. n,, wnsists of two l5nds of I/OS: nlon 
and nlODD . nlOn is the average number of non-database I/Os per 
transaction. Typically. these are the I/Os needed to load the applica- 
tion progtam and the other constructs into the main memory from disk. 
Trace analysis yielded a value of 5 for nlOR. nlOD,, is the average number 
of I/OS that occur during the execution of the transaction. These are 
tequired to read and write data from diik resident databases into and 
from the main memory buffer. respectively. In the ttace analysis, the 
average transaction performed 11 database l/O in the single system 
environment. In the model for the coupled systems, the average num- 
ber of extra I/O’s incurred under the different coherency control pro- 

tow1 is added to 11 to arrive at a number for nIoDO. The extra I/O due 
to invalidation is modeled as proportional to the probability that 
transactions running external to a system cause the invalidation of a 
block in the buffer. Let a be the probability of an invalidation caused 
in a system’s buffer over a fiied time period due to transactions exe- 
cuting at a rate of one transaction per second. external to the system. 
Thus, the probability of buffer invalidation due to n, such independent 
streams of transactions is 1 - (1 - a)*. The increase in I/O, A,o1 is 
modelled as 

AIO(“,) = A,,,& - (1 - 4% (4.2) 

where A, is the wnstant of proportionality. The increase in I/O can 
teach a maximum value wrresponding to the increase in l/O if blocks 
used by a transaction are purged at commit time; this gives A,. and 
was found by trace driven simulation to be 4 I/OS. From trace analy- 
sis, we found that A,,(20) = 0.11. Substituting in equation (4.2). 
a = 0.001393. The model for predicting the increase in database I/O. 
described by equation (4.2) was validated for the coupling of two, 
three, and four systems, through simulation of the buffer manager, 
driven by the derived multi-systems traces, described earlier. Hence, 

%O 5 "JOPL + nlODb 

RIOPL = ~~OPL. RIODB'='~~'IODB 

RIO = &,+&ODE+ (4.3) 

R CON7 is the time spent in contention wait for a lock that is held 
by another transaction. The contention wait is estimated as. 

Rco,v, = L PCO.VT w (4.4) 

where L is the average number of lock requests per transaction derived 
from trace analysis and is found to be 15. Pmm is the probability of 
contention on a lock request, and the product L Pmm is the average 
number of contention waits per transaction. The manner in which 
Pm,,, is projected from the value measured in the trace driven simu- 
lation is described later in this section. R is the average time a trans- 
action waits, if it contends with another transaction for a lock, and is 
a function of the transaction response time. This wait time is estimated 
as (R - R,,,) /F, where F is estimated below. The reason R,,, is 
subtracted from the reponse time is because the transaction does not 
hold any locks during the time these nlOn I/OS are being carried out. 
For shorthand notation we define ii = R - R,,. Substituting this 
estimam for w in (4.4) , and using (4.4) with (4.1) and (4.3) gives, 

R = RI,,+ 
RCPV + R,ODB 

pco,vr L 
(4.5) 

1-c F 1 

The reciprocal of the denominator in (4.5) indicates the expansion in 
the response time due to lock contention wait. 

The factor F for the fraction of the response time that represents 
the expected waiting time, is estimated as follows. We neglect the 
probability of restart due to deadlocks. The mean wait time of a 
transaction that contends for lock is the mean remaining time of the 
transaction that it contends with. It is assumed that the transaction 
makes lock requests evenly over its execution. Thus, there are an equal 
number of transactions (including waiting and running transactions) 
that hold different numbers of locks. The probability of contention 
with a transaction is proportional to the number of locks that a tmnS- 
action holds. Using a wntinuous time approximation, the mean n- 
maining time, r, is 

I 
I f = Pod@ - x)rn * 

0 

where P(x) is the probability of contention with a ttansaction that has 
run for time x, and x is the transaction response time, during which the 
transaction holds locks. Using the wntinuous approximation that a 
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transaction holds a linearly increasing number of locks with time, P(x) 
equals x / fi x dr , which gives, 

s 
I x (if - x) dx 

0 x 
r= = 

si 3’ 
(4.6) 

s 
Xdx 

0 

Thus, F in equation (4.5) is estimated as 3. 

The response time for the two coupled 14 h4lPS systems at 20 
transactions per second and contention probability of 0.007 (as meas- 
ured from the trace) was derived to be 0.65 seconds, using Equation 
(4.5). It is assumed that the contention probability grows as the 
product of the transaction rate and response time. Using this assump- 
tion the lock contention observed in the trace is projected to higher 
transaction rates and more coupled systems. The assumption is con- 
sistent with the asymptotic results in IGKAYBI] [LAVl3?4]. llte re- 
sponse time is affected by the size of the processor. lbe feedback 
effect of the contention probability varying with response time is esti- 
mated using an iteration. The transaction response time is fit derived 
for the initial estimate on contention probability. Then the resulting 
response time is used to compute a new contention probability by as- 
suming that the contention probability grows as the product of the 
transaction rate and response time. The approximate model is then run 
again with the new contention mbabity. The iteration is repeated 
until convergence is obtained. &I y a few iterations are required in the 
contention range considered. Ibis approximate model for the average 
response time in the data sharing environment is validated to within 
5% of the results from simulation, described in [YU8SA]. for two 
systems coupling over a wide range of lock contention levels. 

a- 

E a- 
)r - 
z- 

E” 
a 
a- 

Fv 4.1. Pedonmnce Mvantage of Integrate4 Coaammcy- 
c~cootroi 

4.2 PBfonnance Rvjdbm 

We now examine some performance projections from thii model. 
We fiit consider the case where the intermediate memory is used only 
to store updated blocks. That is. it is assumed that blocks are held in 
intermediate memory only till the write of the block to disk is com- 
pleted. This allows for early transaction commit, and for any tram- 
actions waiting to access updated blocks to obtain these blocks directly 
from intermediate memory. A relatively small intetmcdiite memory 
should be sufficient for thii purpose. Figure 4.1 shows the projected 
response time as a function of the number of coupled systems for 

shared disk with broadcast invalidation, and for the integrated 
concurrency-coherency control scheme with and without intermediate 
memory. In this graph, the transaction rate per system is kept constant 
at 20 transactions per second per system, as the number of systems in 
the complex increases. Thus. the contention grows with the number 
of coupled systems. With the broadcast block invalidation scheme, the 
processing overhead for the broadcast and receipt of acknowledges for 
the invalidation from the other systems, also grows with number of 
systems. Both these effects combine to restrict the number of coupled 
systl ms to 10 if sharing is only at the disk level and broadcast invali- 
dation is used. For the integrated concurrency-coherency scheme, the 
overhead for the coherency control does not inctease with the number 
of systems; this results in significant improvement as the number of 
coupled systems increases. With this scheme, the limitation on the 
number of systems is due to contention rather than processing over- 
heads. Using intennediate memory with the integtated concurrency- 
coherency control scheme results in a large improvement in response 
time and number of coupled systems. Both I/O time and lock con- 
tention level are reduced by the integrated protocol. When a small 
number of systems are coupled, it is only the reduction in the 1/O time 
that aSf+cls the transaction response time. When a large number of 
systems arc coupled the combined effect of reduced I/O and con- 
tention become apparent through a large reduction in transaction re- 
sponse time. 

Figure 4.2. Effect of Buffer Hits h Intermebte Memoy 

We now consider the case where updated blocks are retained in 
the intermediate memory after the write to disk is completed. For this 
case frequently updated blocks will often be found in the intermediate 
memory. We observe that the intermediate memory can be used in a 
straighforward manner for broadcast invalidation with no early lock 
release; updated blocks are written both to the intermediate memory 
and to disk, locks are retained until the disk writes are complete, and 
the intermediate memory address of the block is broadcast along with 
the block invalidate. ‘lhe effect of this mtention of updated blocks in 
intermediate memory is modeled as read hits in Figure 4.2. llte curves 
shown with solid lines are for broadcast invalidation. and the dashed 
lines are for the integrated concurrency-coherency control scheme. 
For both cases, the reduction in reads results in a smaller transaction 
response time for a small number of coupled systems. However, the 
intermediate memory hits do not substantially enhance the number of 
coupled systems with the broadcast invalidation. because it is the 
processing overhead that is the limitation. With the integrated 
concurrency-control scheme, mad hits in the intermediate memory 
have a significant effect in enhancing the number of systems that may 
be couoled. 
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5. conclusion 
In a multi-system data sharing complex, inter-system intcrfercnce due 
to global concurrency control and coherency control of local buffers 
in each system can lead to degraded performance. We observed that 
while globally locking an item for concurrency control. a check could 
simultaneously be ma& to determine if the system requesting the lock 
had a valid copy of the block king locked. This was the basis for 
handling combined requests for concurrency and coherency in an in- 
tcgtated controller. The integrated controller maintains a list of sys- 
tems that hold a valid copy of the block, and when a system ralcascs 
an update lock with an update, all other systems are dcktcd from this 
list. This method leads to a large reduction in overhead for coherency 
control as compared to broadcast buffer invalidation 

Next we considered the usa of a shared httcmtcdiate memory to 
enhance performance. The intarmcdiate memory can be employed as 
a shared buffering device to reduce disk 10’s. Further. updated block 
that are invalidated at other system’s local buffers can now reside in 
the shared intermediate memory. Thus. blocks that are frequently up- 
dated, and therefore kad to lock contention, will t&de in intermediate 
memory, lcadiig to a reduced holding time for these contended blocks. 
Fiilly. with proper controls. the intermediate memory can be used for 
early tnnsaction commit, i.e. before disk writes an completed, by al- 
bwing release of locks after updates have ken written to the shared 
memory. Control of such an intermediate memory requires handling 
of read-write synchronization and disk write sarialiaation, which wa 
show can be done by the integrated controlkr. A qucueing model da- 
velopcd to evaluate the system pcrfomtance indiitcs that a signifkant 
tmnsa&on speedup and reduction in lock contention between ttans- 
actbns can be obtained. Even without intermediate memory, our 
analysis shows that the special case of the httegtatcd concurmncy- 
cohenncy control an improve the perfomana over broadcast inval- 
idation by tcducing the protocol overhead. With limited intcrmediata 
memory for early commit, the integrated control can significantly en- 
hana the performance. When intermediate memory is employed for 
buffering, substantial performance gains can be realized only through 
use of the intcgmted concurrcncy-cohercncy control protocol. Dta 
reduced contention and overhead imply that a larger number of sys- 
tcms can be coupled together using this integrated mntrol than without 
it. 
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