Design and Analysis of Integrated Concurrency-Coherency Controls

Daniel M. Dias, Balakrishna R. lyer, John T. Robinson, and Philip S. Yu

IBM Thomas J. Watson Research Center
P. O. Box 218, Yorktown Heights, NY 10598

Abstract

In a multi-system data sharing complex, the systems have direct access
to all data, with sharing typically at the disk level. This necessitates
global concurrency control and coherency control of local buffers in
each system. We propose an integrated controller for handling both
global concurrency and coherency control, and show that this leads to
a significant performance gain. The multi-system performance can be
enhanced by use of an intermediate shared semiconductor memory.
This gives rise to additional read-write synchronization and disk write
serialization problems. We show these can be handled efficiently by
the integrated controller, while allowing for early transaction comumit.
Significant transaction speedup and reduction in lock contention
among transactions are obtained. The decrease in lock contention al-
lows the multiple systems 10 sustain a higher transaction throughput.
A queueing model is used to quantify the performance improvement.
Although intermediate memory can be employed as a buffering device
our analysis shows that substantial performance gains can be realized
when combined with the integrated concurrency-coherency control

1. Introduction

Two general approaches have been used in designing multi-system
transaction processing complexes, which we will refer to here as data
sharing and partitioning {SEKI84, YU86). Using a data sharing ap-
proach, all systems have direct access to all data by means of an 1I/0
network, bus, or switch, whereas using a partitioning approach, data-
base function requests are sent via an inter-system network to the
system "owning” the data. Although a detailed comparison of these
two approaches is beyond the scope of this paper, it is clear that in the
case of a central-site transaction processing complex data sharing has
several strong advantages: (1) since all systems have access to all data,
the complex as a whole can be made more available; (2) commit pro-
tocols are less complex; (3) load balancing problems can be more eas-
ily solved; and (4) migration from a single system is much simpler,
since it is unnecessary to construct a mapping of parts of the global
database to the systems in the complex. In fact, with regard to the last
two points, a "real-world" example is described in [CORN86] in which
it is impossible to partition more than threc ways and satisfy load bal-
ancing constraints without restructuring databases and applications.

Permission to copy without fee all or part of this
material is granted provided that the copies are not made
or distributed for direct commercial advantage, the
VLDB copyright notice and the title of the publication
and its date appear, and notice is given that copying is
by permission of the Very Large Data Base Endowment.
To copy otherwise, or 10 republish, requires a fee and/or
special permission from the Endowment.

Proceedings of the 13th VLDB Conference, Brighton 1987

On the other hand, using data sharing two problems arise that
do not occur when using partitioning: global concurrency control and
coherency control. First consider concurrency control. In a partitioned
complex, since each file, relation, etc., is owned by a unique system,
al] locking can be done locally within each system (if global deadlocks
are possible, the only remaining concurrency control problem is their
detection, for which a variety of technigues are known). Using data
sharing, though, any data block can potentially be accessed by any
system, and so it is necessary for systems to acquire global locks. Next,
the coherency control problem (this term is used here in analogy with
the problem of cache coherence in multiprocessor systems) is the fol-
lowing. One or more levels of the memory hicrarchy will be private to
¢ach system (in particular, the primary memory of each system will be
private). If copics of data blocks are maintained in private memory
buffers past the end of transactions that access them (using LRU re-
placement, for example), it is necessary to invalidate these private
copies if they are modified by another system before being replaced
(a copy of a data block is said to be valid if it is the most up-to-date
copy, that is, a copy of the block written by the most recently com-
mitted transaction that modified the block). Since in a partitioned
complex all memory is private to some system, this problem does not
oceur.

In the past, these two problems have been addressed using
separate mechanisms, For example, in IMS multi-system data sharing
a distributed algorithm is used to implement global locking, and inval-
idation messages are broadcast in order to implement coherency con-
trol [STRI82] (in other data sharing complexes, the necd for coherency
control is avoided simply by purging the database buffers used by each
transaction when the transaction completes). Here, we investigate the
integration of these two mechanisms within a single global
concurrency-coherency controller. The key observations that lead to
studying integrated controllers are the following: (1) since blocks are
the unit of data transfer between private and shared memories, block
granularity locking is the most natural choice (coarser granularity may
not provide sufficient concurrency, and finer granularity will not pre-
vent onc system from overwriting changes made within a block by an-
other system); (2) if private memory buffers are maintained past the
end of transactions that access them, block granularity buffers are also
the most natural choice; (3) therefore, it should be possible to reduce
the overhead associated with global contro} by integrating the data
structures and algorithms for finding and changing all global control
information associated with data blocks.

Two basic types of data sharing complexes will be considered.
In the first type, examples of which exist today, there are two levels in
the memory hierarchy: (1) private primary memories for each system,
and (2) shared secondary memory (disk storage including log disks).
For this type of system we investigate the addition of a controller that
not only provides concurrency control functions but also coherency
control functions: the controller will maintain information on the valid
copies of data blocks in all private memory buffers. The overall
structure of such a system is shown in Figure 1.1.

463

The second type of system we consider is motivated by the
rapidly decreasing cost of semiconductor memory. Due to this con-
tinuing decrease, it has become cost-effective to add an intermediate
level of semiconductor memory to the traditional primary-secondary
memory hierarchy (examples are cached-disk devices [SMIT85] and
the expanded storage of the IBM 3090 system). Here, we assume that
the intermediate level of memory is shared by all systems in the com-
plex, as shown in Figure 1.2. Also, we will make two more assump-
tions regarding the use of intermediate memory. First, we assume that
the management of the memory is partitioned among the systems, that
is, each system is responsible for allocating, writing, and frecing blocks
in disjoint regions of intermediate memory (however, cach system can
read from any intermediate memory partition). Second, it is assumed
that even though the intermediate memory may be volatile, each
transaction can commit as soon as all blocks modified by the trans-
action have been written to intermediate memory (but only after log
records have been written to non-volatile memory in the case that the
writes were to volatile memory). Given these two assumptions, there
are some additional problems of global control as compared to the
previous two-level memory hicrarchy system. For example, one sys-
tem should not be allowed to free and then overwrite a block in inter-
mediate memory while it is being read by another system. Similarly,
writes to secondary memory by multiple systems must be coordinated.
For this type of system we present a design for a global controller that,
in addition to concurrency-coherency control functions, provides
functions that enable the systems to cooperate in order to effectively
make use of the shared intermediate memory.

Pt Pt Pt ... Pt
7 I |
Mp Mp Mp ... Mp

I

Pt - transaction processing system

Mp - primary memory

Ms - secondary memory

Kce - concurrency-coherency controller

Figwre 1.1. Transaction Processing Complex with Shared Secondary
Memory

]L]L]L;'_Lcc
II_II_JJ___L_..

Pt - transaction processing system

Mp - primary memory

Mi - intermediate memory

Ms - secondary memory

Kcc - concurrency-coherency controller

Fig. 1.2. Shared Intermediate and Secondary Memories

Section 2 contains an overview of the system-level transaction
processing protocols that we assume are being used for each of these
types of systems. Designs for the integrated concurrency-coherency
controllers for each type of system are presented in Section 3. In
Section 4 a model 1o evaluate the performance of such systems is de-
scribed, and modelling results are presented for (1) systems without

464

intermediate memory or an integrated controller, (2) systems with an
integrated controller but no intermediate memory, and (3) sysiems
with both an intermediate memory and an integrated controller.
Finally, Section 5 contains conclusions.

2. Overview

In this section an overview is given of the system-level transaction
processing protocols that we assume are being used in the various types
of multi-system data sharing complexes that were described in the In-
troduction. In all cases we assume that global concurrency control is
implemented by block granularity locking. We will take the details of
the global concurrency control protocol for granted, with the exception
of its interaction with coherency control. First we consider a complex
with shared secondary memory only, and in which invalidation mes-
sages are broadcast in order to implement coherency control.

2.1. Shared Secondary Memory with Broadcast Invalidation

For this type of complex there must be some kind of inter-system
conmununication mechanism that can be used for system-to-system and
broadcast messages. As far as global concurrency control is con-
cerned, there are a variety of implementation techniques: using the
inter-system communication mechanism a distributed algorithm based
on cither partitioning or replicating the giobal lock table can be used,
or alternatively a central controller can be used. The implementation
technique will not influence our description of the transaction proc-
essing protocols at the level of this section (however, in order to isolate
the effect of integrating coherency control, in Section 4 a central con-
troller implementation is assumed).

Each system acquires global locks on blocks in various modes
on behalf of the transactions running in that system in order to main-
tain the consistency of the shared database (finer granularity local
Jocking may be used for intra-system concurrency control). With re-
spect to the interaction between global concurrency control and
coherency control we make two assumptions: (1) a global share-mode
lock must be acquired for any transaction that, due to the semantics
of the database operation being performed, must read the most up-to-
date copy of a block (or, if it is known in advance that the transaction
will modify the block, a global exclusive-mode lock should be ac-
quired); and (2) global exclusive-mode locks must be acquired for all
blocks modified by any given transaction (promoting share-mode locks
to exclusive-mode if necessary), and all exclusive-mode locks for
modified blocks must be held until the commit point of the transaction.
Before a transaction can commit, though, not only must all modified
blocks be written to shared disk (in order to make the most up-to-date
copy available 10 the other systems in the complex), but also any pri-
vate copy of any such block in the buffer of any other system must be
marked as invalid (otherwise transactions running on the other system
that require the most up-to-date copy wouid read the obsolete copy).
Since for this type of system no global information is maintained on
private buffer contents, a message containing a list of the modified
blocks must be broadcast to all other systems. Only when all disk
writes are complete and all other systems have acknowledged the
message can the transaction commit and the global exclusive locks be
released.

2.2. Shared Secondary Memory with an Integrated Con-
troller

For this type of complex we assume that a central controller is being
used to implement global concurrency control. It is also assumed that
share and exclusive mode locks must be acquired as previously de-
scribed, and that exclusive-mode Jocks must be held until the modified
blocks have been written to secondary memory. Now note the fol-
lowing: since a global share or exclusive mode lock must be acquired
for any transaction that requires the most up-to-date copy of a block
before the block is read by the transaction, if the central controller had
information on the validity of all blocks in all buffers in the system,

Proceedings of the 13th VLDB Conference, Brighton 1987

then the lock request sent to the controller could be combined with a
request to check the validity of a private copy of the block. If the lock
is acquired but the private copy is invalid then the private copy must
be replaced by reading the up-to-date copy from disk. Thus, by having
the central controller keep track of buffer contents, the broadcasting
of invalidation messages can be avoided.

Now each system must follow protocols in which, in addition
1o concurrency control requests, requests are sent to the controller that
allow global information on the current state of all private buffers to
be maintained. The details of these protocols are described in Section
3. It will be seen that coherency control requests can always be com-
bined with concurrency control requests.

2.3. Shared Intermediate and Secondary Memories

As shown carlier in Figure 1.2, for this type of complex the existence
of a shared intermediate level of memory is assumed. Here, we inves-
tigate the use of this memory to speed up the commit process in
multi-system data sharing: transactions will be allowed to commit and
exclusive locks will be released as soon as all modified blocks are
written to intermediate memory. If the memory is volatile, though, it
is still required that exclusive locks be held until log records are written
to non-volatile memory. However, there are several techniques that
can be used to speed up log writes. For example, since log records can
temporarily be written to any {ree disk location, seck times and rota-
tional delay can be minimized (this technique is used in IMS
[STRI82]). Another technique is to use a small non-volatile buffer for
log records. Therefore, removing the requirement that a transaction
cannot commit until all modified blocks are written to disk should
greatly improve performance, as will be seen in Section 4.

As described in the Introduction, it is assumed that the man-
agement of intermediate memory is partitioned: for each system, there
is a separate region of intermediate memory called a partition associ-
ated with that system, and an intermediate memory manager running
on the system is responsible for allocating, writing, and freeing blocks
in the partition. However, since we allow any system to read from any
partition, several problems arise. The most obvious problem is locating
data blocks in intermediate memory: when a transaction requires the
most up-to-date copy of a block, as before the lock request and a check
of the validity of a private copy can be combined, but if the private
copy is invalid or if there were no private copy, the most up-to-date
copy could be in intermediate memory. Therefore, even though the
management of intermediate memory is partitioned, it is necessary to
maintain globa] information on intermediate memory contents. As
described in the next section, the integrated controller can be extended
to keep track of this information. With this extension, when a trans-
action requires the most up-to-date copy of a block, three requests 1o
the integrated controller can be combined: (1) a lock request, (2) a
check of the validity of a private copy, and (3) a request to give the
location of a valid copy in intermediate memory if there is one.

Two additional problems have to do with the systems cooper-
ating in their use of intermediate memory. First, one system cannot
free and overwrite a block in its partition while other systems are
reading the block. Second, when a valid block in one system’s partition
is modified by a transaction that commits on another system, the fact
that the block in the first system’s partition is now invalid must be re-
corded. That is, there is also a coherency control problem for inter-
mediate memory (this is due to the partitioned management).

There is one final problem, but first it is necessary to describe
our assumptions regarding recovery protocols and availability. Since
the examples of an intermediate level in a memory hicrarchy previously
mentioned use volatile memory today, for the sake of exactness we
assume volatile intermediate memory (however, the basic techniques
described here can be applied to the non-volatile intermediate memory
case). Therefore, we assume that after modified blocks are written 1o
intermediate memory and a transaction commits, the system imme-
diately schedules writes of all modified blocks to disk, since in the
event of a power failure this allows a long recovery scenario to be

Proceedings of the 13th VLDB Conference, Brighton 1987

avoided. In the case that recovery is necessary, log records must be
processed only for the transactions that were in progress at the time
of the failure and for the transactions that had committed but for
which disk writes were not complete. Also, we note that even if
intermediate memory is non-volatile it may be less reliable than disk
storage, and so it may desirable to immediately schedule disk writes
after a transaction commits in order to provide continued operation
even if part or all of intermediate memory fails. Another availability
concern is that since the central controller is necessary for continuous
operation, it should be designed so as to be highly available. In this
regard we note that one technique that can be used is to provide a
backup controller: if one controller fails, a recovery protocol can be
designed in which the information necessary to reconstruct the global
state of the complex is down-loaded from all the systems in the com-
plex to the backup controller.

Given that the blocks modified by a transaction are first writ-
ten to intermediate memory, that next exclusive locks are released, and
last that the blocks are scheduled to be written to disk, the final prob-
lem can now be described. Suppose transaction T1 modifies a block
and issues a commit request. The system will write the block to inter-
mediate memory, release the exclusive lock, and schedule the block to
be written to disk. However, before the disk write is initiated, trans-
action T2 on another system may obtain an exclusive lock on the
block, read the copy from intermediate memory, modify it, and issue
a commit request. Now the other system will write the block back to
intermediate memory, release the exclusive lock, and also schediile the
block to be written to disk. If the disk write of the second system is
initiated before that of the first system, when the disk write of the first
system finally occurs the update of T2 will be undone. This illustrates
the final problem: it is necessary to serialize disk writes of the same
block by multiple systems so that they are in the order in which the
updates occurred (the alternative of somehow "cancelling” previously
scheduled disk writes on other systems presents significant distributed
control problems).

In summary, for the shared intermediate memory type of
complex, in addition to concurrency control and private memory
coherency control, the controller must provide functions and the sys-
tems must follow protocols that allow blocks to be located in interme-
diate memory, that prevent a system from overwriting a block in
intermediate memory while it is being read by other systems, that in-
validate obsolete copies of blocks in intermediate memory, and that
serialize disk writes.

3. Design

In this section we present designs for the integrated concurrency-
coherency controllers in the last two types of complexes described in
the previous section. In order to present the controller designs, it is
convenient 10 consider a typical concurrency control implementation
as a starting point, and then describe extensions. For example, Figure
3.1 shows the hash table access structure and linked list block state
representation in a typical concurrency control using share and exclu-
sive lock modes: the state shown indicates that transactions T1 and
T2 own the block in share mode and that transaction T3 is waiting for
the block in exclusive mode. The guecued request information shown
in the figure refers to the information required for the controller to
send a response to the system that issued the request for transaction
T3 when the request is eventually granted or rejected. In order 10 ex-
tend this access structure 1o contain additional control information,
we can simply add pointers in the hash table entry for other types of
global information associated with blocks. This method will be used
in the descriptions below. Such extensions generalize
straightforwardly to other kinds of access structures and state repres-
entations that might be used in typical concurrency controls. Opti-
mizations designed to minimize overhcad such as using combined
concurrency-cohicrency states are possible but somewhat implementa-
tion dependent, and will not be described here.

465

hash(block 1D)-»|block 1D —»|T1|She|T2]s]s|T3]x

J

QUEUED
REQUEST
INFO.

Figure 3.1. Typical Concurrency Control Structure

3.1. Private Memory Coherency Control

The key idea here is that validity of blocks in the private memory
buffer needs to be checked at the time the access request for concur-
rency control is made. A mechanism and protocol is developed to
track the validity of the buffer. For the type of complex that has
shared secondary memory only, the state of a block in the controller
has two parts: (1) an access state (global concurrency control state),
and (2) a buffer state (global coherency control state). The buffer
state consists simply of a list of the IDs of systems that have a valid
copy of the block in their private memory buffer. An example block
state is shown in Figure 3.2: this state represents the case in which the
access state is as before in Figure 3.1, and the buffer state is that sys-
tems S1, S3, and S4 have a valid copy of the block in their respective
buffers. The null buffer state is the empty list. When a block’s access
state and buffer state are both null, the hash table entry for the block
can be removed.

buffer state

- Sll—»E—v S4
block ID—‘ .

I access state
Ti|SP»|T2|S}]T3)X
QUEUED

REQUEST
INFO.

Figure 3.2. Example Access and Buffer States

In addition to access requests, the controller accepts the fol-
lowing buffer requests for blocks from system buffer managers: (1)
check and add - if the buffer manager system ID is in the list of systems
having the block in their buffer, respond walid (indicating that the pri-
vate copy is valid); otherwise add it to the list and respond invalid (in-
dicating that if the system had a copy of the block, it is invalid, and
reflecting the fact that the system will now read in a valid copy of the
block), (2) remove - remove the system ID from this list; (3) invalidate
- remove all system IDs except that of the system making the request
from the buffer state list.

The concurrency-coherency controller also accepts combined
requests, consisting of an access request followed by one or two buffer
requests. In such a case the combined request must be processed
atomically (i.e., there can be no interleaving of other requests for the
same block). If the access request is queued, the following buffer re-

466

quests are processed only when the access request is re-processed and
granted, and if the access request is rejected then the following buffer
requests are not processed.

Each system must use the following protocols.

1. When a transaction accesses a block that is in the local buffer,
issue the appropriate lock request combined with a check and
add request. Then, if and when the lock request is granted, if the
result of the check and add request is valid use the local buffer
copy, otherwise delete the local buffer copy and read the block
from disk.

2. When a transaction accesses 8 block Bl that is not in the local
buffer, in general some other block B2 that is in the buffer must
be selected to replace. In this case issue the appropriate lock
request combined with a remove request for B2 and a check and
add request for B1. Then, if and when the the lock request is
granted, read B1 from disk into the buffer replacing B2. If there
is free buffer space that is not occupied by any block (for ex-
ample afier sysiem start-up), issue only a lock and a check and
add request. (Note that for transactions requiring the most up-
to-date copy of a block, the copy is guaranteed to remain valid
while the transaction is accessing it due to the global share or
exclusive mode lock that is held.)

3. When releasing an exclusive lock for a modified block that has
been written to disk, issue an unlock request combined with an
invalidate request.

3.2. Intermediate Memory Control

Next, consider the complex with both shared intermediate and sec-
ondary memories. In addition to controlling concurrency and main-
taining validity information on the blocks in private buffers, the
controller will be used to maintain global control information on blocks
in intermediate memory.

Each block has an access state and a buffer state as previously
described, and each valid copy of a block in intermediate memory also
has a non-null intermediate memory state containing the following
kinds of information: (1) the address of the block in intermediate
memory; (2) a list of systems currently reading the block from inter-
mediate memory; (3) whether the system owning the partition has re-
quested that the slot the block occupies be freed (it cannot be freed
while reads from other systems are in progress); and (4) information
to serialize writes to disk.

Disregarding the intermediate memory location part, the
intermediate memory state can be represented as a "lock" held in var-
jous modes by systems (we will see below that the state is really not
used at all like traditional lock states, but this is a convenient starting
point). These modes are as follows.

;4 write in progress - held in this mode by the system managing
the intermediate memory partition in which the block resides
prior to the completion of the write to disk, and requested in
this mode by another system that has updated the block

D write to disk complete - converted to this mode by the system
owning the partition after the completion of the write to disk

R read in progress - held in this mode by each system reading the
intermediate memory copy of the block while the read is in
progress

U pending release - this is a pseudo-mode used when the system
owning the partition makes a "release” request on the inter-
mediate memory state of the block (see below) in order to free
the intermediate memory slot, but there are reads by other
systems in progress

We first summarize the protocol for using the integrated con-
troller. Before a transaction can update a data block, an exclusive lock

Proceedings of the 13th VLDB Conference, Brighton 1987

request for concurrency control is issued with check requests on buffer
status in private memory and iniermediate memory. Assuming the
private memory copy is invalid and there is a valid copy in the inter-
mediate memory (say in D mode), the address in the intermediate
memory will be returned, and the mode of the block in intermediate
memory is changed 1o read-in-progress (R) mode to prevent the block
being overwritten. After the read is completed, the controller will be
notified and will switch back to the previous mode. At commit time,
the system first allocates a free siot in the intermediate memory for the
updated block and writes the block out to that slot. Then the system
issues an unlock access request for the exclusive lock, combined with
an invalidate buffer request and a request to change to write-in-
progress mode. To serialize disk wriles, the change to W-mode request
can be granted only after any ongoing disk write for the block has
completed. To insure availability of free slots in the intermediate
memory, each system periodically frees up slots via release requests,
and each release request is cither granted immediately if there are no
reads in progress to the slot or else granted as soon as all reads cur-
rently in progress to the slot have completed.

Let us consider in detail how the controller responds to each type
of request. The response depends on the current state of the block.

1. A W-lock request includes the address in intermediate memory
into which the block has already been written by the requesting
system. The W-lock request will be queued if any write or read
is in progress on the block, i.e. the block is in W or R mode.
Otherwise, the request is granted, and the address part of the
intermediate memory state of the block is updated. When a
W-lock request is granted, if another system owns the lock in
D-mode, the controller automatically performs an unlock on
behalfl of the D-mode owner, effectively invalidating the copy
of the block in the partition owned by that system.

2. When an R-lock request is received for a block with a null
intermediate memory state, the request is rejected, thus indicat-
ing that the block must be read from disk. Similarly an R-lock
request is rejected if there is a queued release request for the
block (in order to avoid possible starvation of the release re-
quest). Otherwise, when the request is granted, the result con-
tains the intermediate memory location of the block. When an
R-lock request is received for a block from the system owning
the block in D-mode, the location is returned as in the previous
case, but the mode remains D, thus indicating to the system that
the copy of the block in its partition is still valid.

3. When a D-lock request is issued upon completion of the disk
write, the W mode will be converted into D-mode. Any other
system owning the lock in R-mode will not be affected.

4. When a release request is received from a system that is not
currently an owner (because the intermediate memory copy in
the system’s partition was previously invalidated by means of a
W-lock request from another system as described above), the
request is granted. When a release request is received for a
block from a system owning the block in D-mode, if there are
any R-mode owners, the controller treats this as a U-conversion
request, thus queucing the release request.

The control algorithm can be described by using a "standard"
locking-based algorithm using the mode-compatibility matrix shown in
Figure 3.3 (certain cases such as the way mode-conversion requests
are handied will not be described in detail, but will be indicated by the
example at the end of this section).

Similarly to the previous design, the controller can accept
combined requests consisting of intermediate memory, access, and
buffer requests, and combined requests must be processed atomically.
In combined requests, in some cases an access request should be
processed first and in other cases an intermediate memory request
should be first. This can be controlled by having the system issuing the
combined request order the sub-requests appropriately. If the first

Proceedings of the 13th VLDB Conference, Brighton 1987

request in a combined request is queued the remaining requests should
also be queued, and if the first request is rejected the remaining re-
quests should be rejected, with the following exception: if an R-lock
request is rejected, associated access and buffer requests are processed
as before. Also, a block’s global state is null if each of its access,
buffer, and intermediate memory states are null.

Requested Mode
W D U

Wit]-}JC}- I: incompatible
Held Dj C | -] C | - C: compatible
Mode R|] I JC] C} I ~: doesn't occur

(see text)
ug c | - | -

Figure 3.3. Intermediate Buffer State Mode Compatibility Matrix

An outline of the protocols that must be used by the interme-
diate memory managers running on each system is as follows.

1. To free an intermediate memory slot, issue an intermediate
memory release request. When the request is granted, the slot
can be used.

2. To check if a block is in intermediate memory, issue an R-lock
request. If the request is granted, the result contains the lo-
cation.

3. If an R-lock request is-issued for a block that was previously
writien to intermediate memory by the intermediate memory
manager and the location returned is different than that previ-
ously allocated, or if the request is rejected, the copy is now in-
valid, and the intermediate memory slot is freed.

4. After allocating a slot and writing a block to intermediate
memory, issue a W-lock request. When the request is granted,
any write to disk of this block by another system has completed,
and a write to disk can be initiated by this intermediate memory
manager, thus guaranteeing correct disk write serialization.

5. After a disk write of a block completes, issue a D-conversion
request.

Analyzing the algorithms used by controller and the intermediate
memory manager protocols, it can be seen that certain combinations
of held and requested modes never occur, as shown in Figure 3.3.

We conclude this section with an example illustrating some of
the above protocols and global block states.

1. 81 allocates an intermediate memory buffer slot by issuing a
successful intermediate memory release request, writes the block
to intermediate memory, issues a successful W-lock combined
with an access state unlock and invalidate requests (the access
state of the block was that it was held exclusive by some trans-
action on S1), and initiates a write to disk. The block state is
shown in Figure 3.4(a).

2. Prior to the completion of the disk write, transactions T1 and
T2 on S2 and S3 respectively read the block, first issuing suc-
cessful R-lock combined with add and access share lock re-
quests, resulting in the state shown in Figure 3.4(b).

3. The read from intermediate memory by S3 completes, and S3
issues an intermediate memory release request, resulting in the
state shown in Figure 3.4(c).

4. The write to disk completes, and S1 issues a D-conversion re-
quest, resulting in the state shown in Figure 3.4(d).

467

Hi state

Mi addrpp|S1|W
_r buffer state
-
block lD——’E

access state
(a) L(null)

Mi state

buffer state

stock 10— [iTpo [[]

access state

(c) » Ti|sh|T2]s

-rﬂi addrpp St IWh]S2|R

Mi state
Mi addrip|S2|Rp|SI|U
_r buffer state

block ID:-——->E—> g—»@

access state

8

{e) L |T1]|St|T2]S

Mi state

buffer state

block ID:—>E—>_S-;—>E
—_-l-’access s:te
(b) Tt|sp|T12|s
Mi state
Mi addrp»]S1|DM|S2|R
_r buffer state
block ID:—bE]—VE—»E

access state
(d) I—»ns»rzs
Mi state

(null)
-r buffer state

block ID—-—-——-»E}-»E—»

access state
(f) Lns T2]S

-rﬂi addrp»|S1{Wi|S2|Ri»|S3|R

Figure 3.4. Example Access, Buffer, and Mi States

5. To frec the buffer slot, S1 issues an intermediate buffer release
request, but because there is a read in progress the request is
qucued, as shown in Figure 3.4(¢).

6. The read from intermediate memory by S2 completes, S2 issues
an intermediate memory release request, S1°s queued release
request is then processed, resulting in the null intermediate
memory state as shown in Figure 3.4(f).

4. Performance

This section outlines a model to estimate the perfomance of the inte-
grated concurrency-coherency control schemes presented in Section
3, and illustrates the benefits of this technique. Qualitatively, the fol-
lowing effects occur. Using intermediate memory with the integrated
concurrency-coherency protocol of Section 3.2 permits the early re-
lease of locks. This leads to shorter lock holding times, and lower lock
contention. Thus, when the transaction rate is increased, either by in-
creasing the number of coupled systems or by using more powerful
processors, significant improvement in response time is expected.
Further, the integrated concurrency-coherency scheme climinates the
increase in protocol overhead with aumber of systems that occurs with
broadcast invalidation. This is particularly important as the number
of coupled systems increases. Finally, blocks that are frequently up-
dated will be found in the intermediate memory, further reducing 1/0
time. In particular, updated blocks that are contended for will be

468

found in the intermediate memory, leading to significant improvement
at high contention levels. These effects are quantified in this section.

4.1. The Model

The model uses parameters derived from traces taken from two
large intallations running IBM's IMS database management system
[YU85B]. The first was an inventory parts database traced for 15
minutes, and the second was an on-line materials planning database
system traced for 60 minutes. Both traces lead to similar resuits. The
results presented in this paper are for the first trace. The traces from
the single system environment were used to derive traces for a multi-
system environment as described in [YU87]. In a trace driven simu-
lation of two coupled 14 MIPS systems with an average workload of
20 transactions per second per system, the probability of lock conflict
was found to be about 0.007 per lock request. This lock conflict
probability is projected to other system configurations by the approx-
imate analytical model presented below. A database block reference
trace was derived from the multi-system lock traces. The block refer-
ence trace was used to drive a simulation of the database buffer man-
ager under different coherency control protocols. The increase in
database 1/0 caused by this phenomenon was captured. The broad-
cast invalidation and integrated concurrency coherency protocols were
found to have about the same increase in 1/0, although buffer space
occupied by obsolete blocks is reused earlier by the buffer invalidation

Proceedings of the 13th VLDB Conference, Brighton 1987

protocol in comparison with the integrated concurrency coherency
protocol. Thus, the major difference of the two protocols is in over-
head.

In the model, transaction arrivals are modelled by a Poisson
process. A front-end server is assumed to assign transactions ran-
domly to the different systems. A balanced load on all systems is as-
sumed. The average transaction response time R is expressed in terms
of its components as follows [YU85A] :

R = Rcpy + Ryo + Reonr (4.1)

Each component will be described separately.

Repy is the total time the transaction spends at the CPU. This in-
cludes both the CPU service and queueing times, and the time the CPU
waits for a lock from the integrated concurrency coherency controller.
From the trace analysis the average number of instructions that need
1o be executed per transaction was found to be 430,000. Lock re-
quests and database 1/Os are assumed to occur uniformly over this
transaction path length, breaking the transaction into many small seg-
ments of equal size. In addition, each lock request entails sending the
lock request to the integrated controller, and waiting for the reponse.
For a given transaction rate, the rate of lock and unlock requests at the
integrated controller is known. Assuming Poisson lock request arrivals
at the integrated controller, the average service and queueing time is
computed [YU8SA). The Poisson approximation is reasonable for a
large number of concurrent transactions. This time is added to the
CPU time and the total CPU utilization is computed. Then Rep, is
computed by modeling the (dyadic) CPU as and M/M/2 queue.

In addition to the concurrency control protocol overhead, the
coherency contro]l protocol overhead is modelled as follows. The
mode} for the broadcast invalidation coherency control protocol as-
symes that 1K instructions of local processing is incurred by the system
initiating the invalidate message, before incurring the overhead of
broadcasting the message to the remaining n — 1 systems. The over-
head O, for sending a message between systems is assumed to be 3K
instructions equally split between the sending and receiving systems.
The broadcast overhead is assumed to be the same as the overhead for
sending a message, O_,./2. Each of the n — 1 remaining systems in-
curs an 0,,./2 overhead for receiving the invalidate message, a IK in-
structions overhead each for processing the invalidate message, and an
overhead of O, /2 for sending an acknowledgement in reply. The
model for the integrated concurrency coherency protocol assumes that
every block referenced is locked before being accessed. The validity
of the data block being accessed is verified by the integrated controller
at the time that the lock request is processed. We assume a S0% extra
overhead for lock processing in order to perform this validity check.

R, is the amount of time spent during the transaction, waiting for
1/0 to occur. Note that for each 1/0 the processor is modelled to task
switch to process another transaction, while suspending the executing
transaction, until the completion of the 1/0. Thus,

R0 = 1omo

where 1, is the average time per 1/0 and n,, is the average number of
1/0s per transaction. Sufficient 1/0 bandwidth is assumed to enable
the modelling of the 1/0 server as an infinite server with a load inde-
pendent service time of 35 mS. n,, consists of two kinds of I/0s: nom,
and npp - Mon is the average number of non-database 1/0s per
transaction. Typically, these are the 1/0s needed to load the applica-
tion program and the other constructs into the main memory from disk.
Trace analysis yielded a value of 5 for n,op, . Myopp is the average number
of 1/0s that occur during the execution of the transaction. These are
required to read and write data from disk resident databases into and
from the main memory buffer, respectively. In the trace analysis, the
average transaction performed 11 database 1/0 in the single system
environment. In the model for the coupled systems, the average num-
ber of extra 1/0’s incurred under the different coherency control pro~

Proceedings of the 13th VLDB Conference, Brighton 1987

tocol is added to 11 to arrive at a number for n,,5,. The extra 1/0 due
to invalidation is modeled as proportional to the probability that
transactions running external to a system cause the invalidation of a
block in the buffer. Let a be the probability of an invalidation caused
in a system’s buffer over a fixed time period due to transactions exe-
cuting at a rate of one transaction per second, external to the system.
Thus, the probability of buffer invalidation due 10 n, such independent
streams of transactions is 1 — (1 — ¢)~. The increase in 1/0, 4,,, is
modelled as

B1o() = Byax(1 = (1 = a)), 4.2)

where A,._, is the constant of proportionality. The increase in 1/0 can
reach a maximum value corresponding to the increase in 1/0 if blocks
used by a transaction are purged at commit time; this gives A, and
was found by trace driven simulation 10 be 4 1/Os. From trace analy-
sis, we found that A,5(20) = 0.11. Substituting in equation (4.2),
a = 0.001393. The mode! for predicting the increase in database 1/0,
described by equation (4.2) was validated for the coupling of two,
three, and four systems, through simulation of the buffer manager,
driven by the derived multi-systems traces, described earlier. Hence,

Rjo = Mopr + MoDB

Riopr = ororrs Riops = Y10M10D8

R0 = Riopg + Riops- (43)

Reony is the time spent in contention wait for a lock that is held
by another transaction. The contention wait is estimated as,

Reoxt = L Pcony W 4.4)

where L is the average number of lock requests per transaction derived
from trace analysis and is found 10 be 15. Peo,y is the probability of
contention on a lock request, and the product L Pcony is the average
number of contention waits per transaction. The manner in which
Peony is projecied from the value measured in the trace driven simu-
lation is described later in this section. # is the average time a trans-
action waits, if it contends with another transaction for a lock, and is
a function of the transaction response time. This wait time is estimated
as (R = R,on) / F, where F is estimated below. The reason Rjop is
subtracted from the reponse time is because the transaction does not
hold any locks during the time these n,,,, 1/Os are being carried out.
For shorthand notation we define R = R — R,on. Substituting this
estimate for W in (4.4) , and using (4.4) with (4.1) and (4.3) gives,

Repu + Ryopp @.5)
Peony L)
F

The reciprocal of the denominator in (4.5) indicates the expansion in
the response time due to lock contention wait.

R = Ryppr +
1 - ¢(

The factor F for the fraction of the response time that represents
the expecled waiting time, is estimated as follows. We neglect the
probability of restart due to deadlocks. The mean wait time of a
transaction that contends for lock is the mean remaining time of the
transaction that it contends with. It is assumed that the transaction
makes lock requests evenly over its execution. Thus, there are an equal
number of transactions (including waiting and running transactions)
that hold different numbers of locks. The probability of contention
with a transaction is proportional to the number of locks that a trans-
action holds. Using a continuous time approximation, the mean re-
maining time, 1, is

R _
r = fop(x)(k - x)dx,

where P(x) is the probability of contention with a transaction that has
run for time X, and R is the transaction response time, during which the
transaction holds locks. Using the continuous approximation that a

469

transaction holds a lincarly increasing number of locks with time, P(x)
equals x / [¥x dx, which gives,

foix. (R - x) dx

r = =

R
fxdx
0

Thus, F in equation (4.5) is estimated as 3.

(4.6)

w' S|

The response time for the two coupled 14 MIPS systems at 20
transactions per second and contention probability of 0.007 (as meas-
ured from the trace) was derived to be 0.65 seconds, using Equation
(4.5). It is assumed that the coniention probability grows as the
product of the transaction rate and response time. Using this assump-
tion the lock contention observed in the trace is projected to higher
transaction rates and more coupled sysiems. The assumption is con-
sistent with the asymptotic results in {[GRAY81) [LAVES4). The re-
sponse time is affected by the size of the processor. The feedback
effect of the contention probability varying with response time is esti-
mated using an iteration. The transaction response time is first derived
for the initial estimate on contention probability. Then the resulting
response time is used to compute a new contention probability by as-
suming that the contention probability grows as the product of the
transaction rate and response time. The approximate model is then run

again with the new contention &:lobability. The iteration is repeated
until convergence is obtained. y a few iterations are required in the

contention range considered. This approximate model for the average
response lime in the data sharing environment is validated to within
5% of the results from simulation, described in [YU85A], for two
systems coupling over a wide range of lock contention levels.

1.8
T

MEAN RESPONSE TWE (SEC)
12
T

Figure 4.1. Performance Advantage of Integrated Concurrency-
Coberency Control

4.2 Performance Projections

We now examine some performance projections from this model.
We first consider the case where the intermediate memory is used only
to store updated blocks. That is, it is assumed that blocks are held in
intermediate memory only till the write of the block to disk is com-
pleted. This allows for early transaction commit, and for any trans-
actions waiting to access updated blocks to obtain these blocks directly
from intermediate memory. A relatively small intermediate memory
should be sufficient for this purpose. Figure 4.1 shows the projected
response time as a function of the number of coupled systems for

470

shared disk with broadcast invalidation, and for the integrated
concurrency-coherency control scheme with and without intermediate
memory. In this graph, the transaction rate per system is kept constant
at 20 transactions per second per system, as the number of systems in
the complex increases. Thus, the contention grows with the number
of coupled systems. With the broadcast block invalidation scheme, the
processing overhead for the broadcast and receipt of acknowiedges for
the invalidation from the other systems, also grows with number of
systems. Both these effects combine to restrict the number of coupled
syst. ms to 10 if sharing is only at the disk level and broadcast invali-
dation is used. For the integrated concurrency-coherency scheme, the
overhead for the coherency control does not increase with the number
of systems; this results in significant improvement as the number of
coupled systems increases. With this scheme, the limitation on the
number of systems is due to contention rather than processing over-
heads. Using intermediate memory with the integrated concurrency-
coherency control scheme results in a large improvement in response
time and number of coupled systems. Both 1/0 time and lock con-
tention level are reduced by the integrated protocol. When a small
number of systems are coupled, it is only the reduction in the 1/0 time
that affecis the transaction response time. When a large number of
systems are coupled the combined effect of reduced 1/0 and con-
tention become apparent through a large reduction in transaction re-

1.2

MEAN RESPONSE TIME (SEC)

0.4

Figure 4.2. Effect of Buffer Hits in Intenmediate Memory

We now consider the case where updated blocks are retained in
the intermediate memory after the write to disk is completed. For this
case frequently updated blocks will often be found in the intermediate
memory. We observe that the intermediate memory can be used in a
straighforward manner for broadcast invalidation with no carly lock
release; updated blocks are written both to the intermediate memory
and to disk, locks are retained until the disk writes are complete, and
the intermediate memory address of the block is broadcast along with
the block invalidate. The effect of this retention of updated blocks in
intermediate memory is modeled as read hits in Figure 4.2. The curves
shown with solid lines are for broadcast invalidation, and the dashed
lines are for the integraled concurrency-coherency control scheme.
For both cases, the reduction in reads results in a smaller transaction
response time for a small number of coupled systems. However, the
intermediate memory hits do not substantially enhance the number of
coupled systems with the broadcast invalidation, because it is the
processing overhead that is the limitation. With the integrated
concurrency-control scheme, read hits in the intermediat¢ memory
have a significant effect in enhancing the number of systems that may
be coupled.

Proceedings of the 13th VLDB Conference, Brighton 1987

5. Conclusion

In a multi-system data sharing complex, inter-system interference due
to global concurrency control and coherency control of local buffers
in each system can lead to degraded performance. We observed that
while globally locking an item for concurrency control, a check could
simultaneously be made to determine if the system requesting the lock
had a valid copy of the block being locked. This was the basis for
handling combined requests for concurrency and coherency in an in-
tegrated controller. The integrated controller maintains a list of sys-
tems that hold a valid copy of the block, and when a system releases
an update lock with an update, all other systems are deleted from this
list. This method leads to a large reduction in overhead for coherency
control as compared to broadcast buffer invalidation.

Next we considered the use of a shared intermediate memory to
enhance performance. The intermediate memory can be employed as
a shared buffering device to reduce disk 10’s. Further, updated blocks
that are invalidated at other system’s local buffers can now reside in
the shared intermediate memory. Thus, blocks that are frequently up-
dated, and therefore lead to lock contention, will reside in intermediate
memory, leading to a reduced holding time for these contended blocks.
Finally, with proper controls, the intermediate memory can be used for
early transaction commit, i.c. before disk writes are completed, by al-
lowing release of locks after updates have been written to the shared
memory. Control of such an intermediate memory requires handling
of read-write synchronization and disk write serialization, which we
show can be done by the integrated controller. A queueing model de-
veloped to evaluate the system performance indicates that a significant
transaction speedup and reduction in lock contention between trans-
actions can be obtained. Even without intermediate memory, our
analysis shows that the special case of the integrated concurrency-
coherency control can improve the performance over broadcast inval-
idation by reducing the protocol overhead. With limited intermediate
memory for early commit, the integrated control can significantly en-
hance the performance. When intermediate memory is employed for
buffering, substantial performance gains can be realized only through
use of the integrated concurrency-coherency control protocol. The
reduced contention and overhead imply that a larger number of sys-
tems can be coupled together using this integrated control than without
it.

Proceedings of the 13th VLDB Conference, Brighton 1987

References

[CORNS6]

[GRAY81]

[LAVES4]

[SEKI184]

[SMIT85]

[STRI82]

[YU85A]

[YUssB}

[Yuse}

LY

Cornell, D.W., Dias, D.M,, and Yy, P.S., "On Multi-
system Coupling Through Function Request Ship-
ping", IEEE Trans. on Software Engrg., 12,10 (Oct.
1986) 1006-1017.

Gray, J., Homan, P., Obermarck, R. and Korth, H.,
" A Straw Man Analysis of Probability of Waiting and
Deadlock", IBM Research Report RJ 3066, San Jose,
California (1981).

Lavenberg, S., "A Simple Analysis of Exclusive and
Shared Lock Contention in a Database System", Per-
Jormance Evaluation Review 12,3 (Proc. 1984 ACM
SIGMETRICS Conference), 143-148.

Sekino, A., Moritani, K., Masai, T., Tasaki, T., Goto,
K., "The DCS - A New Approach to Multisystem
Data-Sharing,” Proc. National Computer Conference
1984, Las Vegas, NV (July 1984).

Smith, A.J., "Disk Cache Miss Ratio Analysis and
Design Considerations”, ACM Trans. on Computer
Systems, 3,3 (1985), 161-203.

Strickland, J. P., Uhrowczik, P. P., and Watts, V. L.,
"IMS/VS: An Evolving System", JBM Systems Jour-
nal 21, 4 (1982),490-510.

Yu, P.S., Dias, D.M., Robinson, J.T., Iyer, BR. and
Cornell, D., "Modelling of Centralized Concurrency
Control in a Multi-system Environment", Performance
Evaluation Review 13, 2 (Proc. 1985 ACM
SIGMETRICS Conference), 183-191.

Yu, P.S., Dias, D.M., Robinson, J.T., Iyer, BR. and
Comnell, D., "Distributed Concurrency Control Anal-
ysis for Data Sharing", Proc. 16th Computer Measure- *
ment Group Conference, Dallas, TX (Dec. 1985),
13-20.

Yu, P.S., Comell, D.W., Dias, D.M., and Thomasian,
A., "On Coupling Partitioned Database Systems",
Proc. 6th International Symposium on Distributed
Computing, Boston, MA (May 1986), 148-157.

Yu, P.S., Dias, D.M., Robinson, J.T., Iyer, BR. and
Comnell, D.W., "On Coupling Multi-Systems Through
Data Sharing", Proceedings of the IEEE, May 1987.

471

