
Design and Analysis of Integrated Concurrency-Coherency Controls

Daniel M. Dii. Balakrishna R. Iyer. John T. Robinson, and Philip S. Yu

IBM Thomas J. Watson Research Center
P. 0. Box 218. Yorktown Heights. NY 10598

Abstract
In a multi-system data sharing complex, the systems have direct access
to all data. with sharing typically at the disk level. This necessitates
global concurrency control and coherency control of local buffers in
each system. We propose an integrated controller for handling both
global concurrency and coherency control. and show that this leads to
a si@fiint performance gain. ‘Ihe multi-system performance can be
enhanced by use of an intermediate shared semiconductor memory.
This gives rise 10 additional read-write synchronization and disk write
serialization problems. We show these can be handled efficienlly by
the integmted controller, while allowing for early transaction commit.
Significant tnnsaction speedup and reduction in lock contention
among transaclions are obtained. The decrease in lock contention al-
lows the multiple systems 10 sustain a higher transaction throughput.
A queueing model is used to quantify the performance bnproyement.
Although intermediate memory can be employed as a buffering device
our analysis shows that substantial performance gains can be realized
when combined with the integrated concurrency-coherency controL

1. Introduction
Two genenl approaches have been used in designing multi-system
transaction processing complexes. which we will refer to here as do14
shring and ptw?ifiming [SEKl84. YU86J. Using a data sharing ap
proach. all systems have diict access to all data by means of an I/O
network. bus, or switch. whereas using a partitioning approach, data-
base function requests are sent via an inter-system network to the
system “owning” the data. Although a detailed comparison of these
two approaches is beyond the scope of this paper, it i ckar that in the
case of a ccntml-site transaction processing complex data sharing has
several strong advantages: (1) sina all systems have access 10 all data,
the complex as a whole can be made more available; (2) commit pro-
tocols are kss complex; (3) load balancing problems can be more eas-
ily solved; and (4) migration from a single system is much simpler,
since it is unnecessary to construct a mapping of parts of the global
database to the systems in the complex. In fact. with regard fo the last
two points, a “real-world” example is described in [CORN861 in which
it is impossible to partition more than three ways and satisfy load bal-
ancing constmints without restructuring databases and applications.

Penn&ion to copy without fee all or pan of this
material is granted provided that the copies are not made
or distributed for direct commercial advantage, the
VLDB copyright notice and the tide of chc publication
and its date appear. and notice is given that copying is

by permission of the Very Large Data Base Endowment.
To copy otheawir. or to republish, requires a fee and/or
special permission from the EndowmenL

On the other hand. using data sharing two problems arise that
do not occur when using partitioning: @aI con~mncy confrd and
fohrnncy Conrad. Fiit consider concunency control. In a partitioned
complex, sina each file, relation, etc., is owned by a unique system,
all locking can be done locally within each system (if global deadlocks
are possibk. the only remainii concurrency control problem is their
detection. for which a variety of W.hniques are known). Using data
sharing, though, any data block can potentially be accessed by any
system. and so it is necessary for systems to acquire global locks. Next.
the coherency control problem (thii term is used here in analogy with
the problem of cache coherena in multiprocessor systems) is the fol-
lowing. One or more levels of the memory hienrchy will be private to
each system (in particular, the primary memory of each system will be
private). If copies of data blocks are maintained in private memory
buffers past the end of transactions that access them (using LRU re-
plaament. for example). it is necessary to invalidate these private
copies if they are modified by another system before being replaced
(a copy of a data block is said to be m/id if it is the most up-to-date
copy, that is, a copy of rhc block written by the mast reantly com-
mitted transaction that modiiid tie block). Since in a partitioned
complex all memory is private to some system, this problem does not
occur.

In the past. these two problems have been addressed using
separate mechanisms. For example, in JMS multi-system data sharing
a distributed algorithm is used to implement global locking, and inval-
idation messages are broadcast in order to implement coherency con-
trol [STRISZ] (in other data sharing compkxes, the need for coherency
control is avoided simply by purging the database buffers used by each
transaction when the transaction annpktes). Here, we investigate the
integration of these two mechanisms within a single global
concumn~k~n~y confmf&r. Ihe key observations that kad to
studying inlegmted controllers are the following: (1) sina blocks are
the unit of data transfer between private and shared memories, block
granularity locking is the most natural choice (coarser gmnularity may
not provide sufficient concumncy, and finer gmnularity will not. pre-
vent one system from overwriting changes made within a block by an-
other system); (2) if private memory buffers are maintained past the
end of transactions that access them, block granularity buffers are also
the most natural choice; (3) therefore, it should be possible to reduce
the overhead associated with global control by integnting the data
structures and algorithms for rmding and changing all global control
information associated with data blocks.

Two basic types of data sharing complexes will be considered.
ln the Tit type. examples of which exist today, then are two levek in
the memory hierarchy: (1) private primary memories for each system,
and (2) shared secondary memory (disk storage including log disks).
For this type of system we investigate the addition of a controller that
not only provides concurrency control functions but also coherency
control functions: the controller will maintain information on the valid
copies of data blocks in all private memory buffers. The overall
structure of such a system is shown in Fii 1.1.

proceedings of the 13th VLDB Conference, Brighton 1987 463

The second type of system we consider is motivated by the
npidiy decreasing cost of semiconductor memory. Due to this con-
tinuing decrease, it has become cost-effective lo add an intermediate
kvei of semimnductor memory to the traditional primary-secondary
memory hierarchy (examples are cached-disk devices [Sh4lT85] and
the expanded storage of the IBM 3090 system). Here, we assume that
the inrermediite level of memory is shared by all systems in the com-
plex, as shown in Figure 1.2. Also, we will make two more assump-
lions regarding the use of intermediate memory. Fit. we assume that
the management of the memory is partitioned among the systems, that
is, each system is responsible for allocating, writing, and freeing blocks
in disjoint regions of intermediate memory (however, each system can
read from any intermediate memory partition). Second, it is assumed
that even though the intermediate memory may be volatile. each
transaction can commit as soon as all blocks modified by the trans-
action have been written to intermediate memory (but only a&r log
records have been written lo non-volatile memory in the case that the
w-rites were to volatile memory). Given these two assumptions. there
are some additional problems of global control as compared to the
previous two-level memory hierarchy system. For example. one sys-
tem should not be allowed to free and lhen overwrite a block in inter-
mediate memory while it is being read by another system. Similarly,
w-rites to secondary memory by multiple systems must be coordinated.
For this type of system we present a design for a global controikr that.
in addition to concurrency-coherency control functions. provides
functions that enable the systems to cooperate in order to effectively
make use of the shared intermediate memory.

Pt Pt Pt . . . Pt

ILJLI.LIL

T’i’i

Pt - transaction processing system
HP - primary memory
ns - secondary memory
Kcc - concurrency-coherency controller

F-m 1.1. TAnmction Proees&g Compkx with Sared !%eoo&y
Memoy

Pt Pt Pt . . . Pt

~L~++Kcc
Hp”p “1 -** “p ”

II
Pt - transaction processing system
HP - primary memory
Hi - intermediate memory
MS - secondary memory
Kcc - concurrency-coherency controller

Fs 1.2. Shared Intermediate and Seam&y Memories

Section 2 contains an overview of the system-level transaction
processing protocols that we assume are being used for each of these
types of systems. Designs for the integrated concumncy-cohe~ncy
controllers for each type of system are presented in Section 3. In
Section 4 a model lo evaluate the performance of such systems is de-
scribed, and modellmg results are presented for (1) systems without

intermediate memory or an integrated controller. (2) systems with an
integrated controller but no intermediate memory, and (3) systems
with both an intermediate memory and an integrated controller.
Finally, Section 5 contains conclusions.

2. Overview
fn this section an overview is given of the system-level transaction
processing protocols that we assume are being used in the various types
of multi-system data sharing complexes that were described in the In-
troduction. In all cases we assume that global concurrency control is
implemented by block granularity loeking. We will take the details of
the global concurrency control protocol for gmnted. with the exception
of its interaction with coherency control. First we consider a complex
with shared secondary memory only. and in which invalidation mes-
sages are broadcast in order to implement coherency control

2.1. Shard Swdty Menaty wiryI Bmadaart Inwidrrlion
For this type of complex there must be some kind of inter-system
communication mechanism that can be used for system-to-system and
broadcast messages. As far as global concurrency control is con-
cerned. there are a variety of implementation techniques: using the
inter-system communication mechanism a distributed algorithm based
on either partitioning or replicating the global lock table can be used,
or aitemaliveiy a centrili controller can be wd. ‘Ihe implementation
technique will not influence our description of the transaction proc-
essing protocols at the level of this section (however, in order lo isolate
the effect of integrating coherency control. in Section 4 a central con-
troller implementation is assumed).

Each system acquires global locks on blocks in various modes
on behalf of the transactions running in that system in order lo main-
tain the consistency of the shared database (fmer granularity local
locking may be used for intn-system concurrency control). With re-
spect to the interaction between global concurrency control and
coherency control we make two assumptions: (I) a global share-mode
lock must be aqtid for any transaction that. due to the semantics
of the database operation being performed, must read the mosf up-W
date copy of a block (or. if it is known in advance that the transaction
will modify the block. a global exclusive-mode lock should be ac-
quired); and (2) global exclusive-mode locks must be acquired for all
blocks modified by any given transaction (promoting share-mode lo&
to exclusive-mode if necessary). and all exclusive-mode locks for
modified blocks must be held unrii the commit point of the tnnsaction.
Before a transaction an commit, though, not only must all modified
blocks be written to shared disk (in order lo make the most up-to-date
copy available to the other systems in the compkx). but also any pri-
vate copy of any such block in the buffer of any other system must be
marked as invalid (otherwise transactions running on the othtr system
that require the most up-to-date copy would read the obsolete copy).
since for this type of system no global information is maintained on
private buffer contents. a message containing a list of the modified
blocks musf be broadcast to all other systems. Only when all disk
writes are complete and all other systems have acknowledged the
message can the transaction commit and the global exclusive locks be
released.

2.2. Shdvtxl Saoondary Menay wifh an IntqyrTtd Con-
frolh?r
For this type of complex we assume that a central controller is being
used 10 implement global concurrency control. It is also assumed that
share and exclusive mode locks must be acquired as previously de-
scribed, and that exclusive-mode locks must be held until the modified
blocks have been written to secondary memory. Now note the foi-
lowing: sina a global sharr or exclusive mode lock must be acquired
for any tran%action that requires the most upto-date copy of a block
&fi~ the block is read by the transaction. if the antA controller had
information on Ihe validity of all blocks in all buffers in the system,

464 Proceedings of the 13th VLDB Conference, Brighton 1987

then the lock request sent to the controller could be combined with a
request to check the validity of a private copy of the block. U the lock
is acquired but the private copy is invalid then the private copy must
be replaced by reading the up-tedate copy from disk. Thus, by having
the central controller keep track of buffer contents, the broadcasting
of invalidation messages can be avoided.

Now each system must follow protocols in which, in addition
to concurrency control requests, requests are sent to the controller that
allow global information on the current state of all private buffers to
be maintained. The details of these promcols are described in Section
3. It will be seen that coherency control reqwstS can always be com-
bined with concurrency control requests.

2.3: Shared Intemdlate and Saaondary Memwia

As shown earlier in Figure 1.2. for this type of complex the existence
of a shared intermediate level of memory is assumed. Here, we inves-
tigate the use of this memory to speed up the commit process in
multi-system data sharing: transactions will be allowed to commit and
exclusive locks will be released as Soon as all modified blocks ate
written to intermediate memory. If the memory is volatile, though, it
is still required that exclusive locks be held until log records are written
to non-volatile memory. However, there are several techniques that
can be used to speed up log writes. For example, since log records can
temporarily be written to any free diik location, Seek times and rota-
tional delay can be minimixed (this technique is used in IMS
[STRISZ]). Another technique is to use. a small non-volatile buffer for
log records. lherefore. removing the requirement that a transaction
cannot commit until all modiied bloch are written to disk Should
greatly improve performance, as will be Seen in Section 4.

AS described in the Introduction. it is assumed that the man-
agement of intermediate memory is partitioned: for each system, there
is a Separate region of intermediate memory called a partition associ-
ated with that system, and an intemtediate memory manager running
on the system is responsible for allocating, writing, and freeing blocks
in the partition. However, since we allow any system to read from any
partition, several problems arise. The most obvious problem is locating
data blocks in intermediate memory: when a transaction requires the
most upto-date copy of a block, as before the lock request and a check
of the validity of a private copy can be combined. but if the private
copy is invalid or if there were no private copy, the moSt up-to-date
copy could be in intermediate memory. Therefore, even though the
management of intennediite memory is partitioned, it ir necessary to
maintain global information on intermediate memory contentS. As
described in the next section, the integrated controller can be extended
to keep track of this information. With this extension, when a trans-
action requires the most up-to-date copy of a block, three requests to
the integrated controller can be combined: (1) a lock request, (2) a
check of the validity of a private copy, and (3) a request to give the
location of a valid copy in intemtediite memory if there is one.

Two additional problems have to do with the systems cooper-
ating in their w of intermediate memory. Fit. one system cannot
free and overwrite a block in its partition while other systems are
reading the block. Second, when a valid block in one system’s partition
is modiied by a transaction that commits on another system. the fact
that the block in the fiit system’s partition is now invalid must be re-
corded. That is, there is also a coherency control problem for inter-
mediate memory (this is due to the partitioned management).

There is one final problem, but first it is necessary to deScribe
our asstmtptions regarding recovery protocols and availabiity. Since
the examples of an intermediate level in a memory hierarchy previously
mentioned w volatile memory today, for the Sake of exactness we
aSstane volatile intermediate. memory (however, the basic techniques
described here can be applied to the non-volatile intermediite memory
case). Therefore. we assume that after modified blocks are written to
intermediate memory and a transaction commits, the system hnme-
diately Schedules writes of all modiiid blocks to disk, since in the
event of a power failtne this allows a long recovery Scenario to be

avoided. In the case that recovery is necessary, log records must be
processed only for the transactions that were in progress at the time
of the failure and for the transactions that had committed but for
which disk writes were not complete. Also, we note that even if
intermediate memory is non-volatile it may be less reliable than disk
storage, and so it may desirable to immediately Schedule disk writes
after a transaction commits in order to provide continued operation
even if part or all of intermediate memory fails. Another availability
cOncem is that since the central controller is necessary for continuous
operation, it Should be designed so as to be highly available. In this
regard we note that one technique that can be used is to provide a
backup controller: if one controller fails, a recovery protocol can be
&signed in which the information necessary to rewnstmct the global
state of the complex is down-loaded from all the systems in the com-
plex to the baclnrp controller.

Given that the blocks modified by a ttansaction are first writ-
ten to intermediate memory, that next exclusive lo& are released, and
last that the blocks are scheduled to be written to disk. the lima1 prob-
lem can now be described. Suppose transaction Tl modifies a block
and issues a commit request. The system will write the block to inter-
mediate memory, release the exclusive lock, and schedule the block to
be written to disk. However, before the disk write is initiated, trans-
action T2 on another system may obtain an excluGve lock on the
block, read the copy from intermediate memory. modify it, and issue
a commit mquest. Now the other system will write the block back to
intermediate memory, release the exclusive lock. and also schedule the
block to be written to disk. If the disk write of the second system is
initiated before that of the fiit system. when the disk write of the fiit
system fiially occuts the update of T2 will be undone. This illustrates
the fiial problem: it is necessary to ~erialixe diik writes of the Same
block by multiple systems So that they are in the order in which the
updates occurred (the alternative of somehow “cancelling” previously
Scheduled disk writes on other systems presents significant distributed
control problems).

In summary. for the Shared intermediate memory type of
complex, in addition to concurrency control and private memory
coherency wntrol, the controller must provide functions and the sys-
tems must follow protocols that aUow blocks to be located in interme-
diate memory, that prevent a system from overwriting a block in
intermediate memory while it is being mad by other systenu. that in-
validate obsolete copies of blocks in intermediate memory, and that
serialize disk writes.

3. Design
In this Section we present designs for the integrated wncurrency-
coherency controllers in the last two types of complexes described in
the previous Section. In order to present the controller designs, it is
convenient to consider a typical wncurrency control imp1ementation
a~ a starting point. and then describe. extensions. For example, Figure
3.1 Shows the hash table access structure and linked list block state
representation in a typical concurrency control using share and excltt-
sive lock modes: the state Shown indicates that tnmactio~ Tl and
T2 own the block in sham mode and that tnnsaction T3 is waiting,for
the block in exclusive mode. The queued request information shown
in the figure refers to the information requited for the controller to
Send a response. to the system that issued the request for transaction
T3 when the request is eventually granted or rejected. In order to ex-
tend this access structure to contain additional control information.
we can simply add pointers in the hash table entry for other typcS Of
global information associated with blocks. This method will be used
in the descriptions below. Such extensions generalize
straightforwardly to other kinds of access structures and state repres-
entations that might be used in typical wncurrency controls. Opti-
mixations designed to mimmixe overhead such as using combined
concurrency-coherency states are possible but Somewhat implementa-
tion dependent, and will not be described here.

Proceedings of the 13th VLDB Conference, Brighton 1987 465

hash(block ID)+

QUEUED l-l REQUEST
INFO.

Fgrc 3.1. Qpical Coaeurrraey Control Stmewt

3.1. Rim& Memory Grh4mtuy Cbbvl

lltc key idea here is that validity of blocks in the private memory
buffer needs to be checked at the time the access Kquest for concur-
Kncy control is made. A mechanism and protocol is developed to
track the validity of the buffer. For the type of complex that has
shaKd secondary memory only. the state of a block in the controller
has two parts: (1) an access state (global concurnncy control state),
and (2) a buffer state (global cohcKncy control state). The buffer
state eon&s simply of a list of the IDS of systems that have a valid
copy of the bbck in their private memory buffer. An example block
state is shown in Figure 3.2: this state Kpnsents the case in which the
access state is as befon in Figu~ 3.1. and the buffer state is that sys-
tems S I, S3. and S4 have a valid copy of the block in their Kspective
buffers. The null buffer state is the empty list. When a block’s access
state and buffer state are both null. the hash table entry for the block
can be Kmoved.

buffer state

QUEUED r-l REQUEST
INFO.

I I

Fpvc 3.2. Esppk Acecss aA Buffer Stares

In addition t0 access requests. the conttollcr accepts the fol-
lowing buffer requests for blocb from system buffer managers: (1)
check and add - if the buffer mamtger system ID is in the list of systems
having the block in their buffer, respond w/id (indicating that the pri-
vate copy is valid); othenvise add it u) the list and Kspond inn&f (ii
dialing that if the system had a copy of the block. it is invalid. and
Kfkcting the fact that the system will tmw Kad in a valid copy of the
block), (2) remove - ~m~ve the system ID from this list; (3) invalidate
- Kmove all system IDS except that of the system making the Kquest
ftom the buffer state list.

TIte concurrency-coherency controller also accepts combined
Kqucsts. consisting of an access Kquest followed by one or two buffer
requests. In such a case the combined Kquest must be processed
atomically (i.e.. there an be no intcrleavlng of other Kquests for the
same block). ff the access request is queued, the following buffer K-

quests are processed only when the access request is re-processed and
granted, and if the access Kqucst is Kjected then the following buffer
Kquests aK not processed.

Bach system must use the following protocols.

1. When a transaction accesses a block that is in the local buffer,
issue the appropriate lock request combined with a check and
add request Then, if and when the lock request is granted. if the
result of the check and add Kquest is ml&f use the local buffer
copy, otherwise delete the bcal buffer copy and Kad the block
ftom disk.

2. When a transaction accesses a block Bl that is not in the local
buffer, in general some other block B2 that is in the buffer must
be selected to Kplace. fn this case issue the appropriate lock
Kquest combined with a remove request for B2 and a check and
add request for Bl. llten. if and when the the lock request is
granted, Kad B 1 from diik into the buffer Kplacing B2. ff thCK
is free buffer space that is not Occupied by any block (for ex-
ample aster system start-up), issue only a lock and a check and
add request. (Note that for transactions requiring the most up-
m-date copy of a block, the copy is guannteed t0 Kmain valid
while the transaction is accessing it due to the global share or
exclusive mode lock that is held)

3. When releasing an exclusive lock for a modified block that has
been written to disk, issue an unlock request combined with an
il’l’didate KqutSt.

3.2. Inftwnulhte Mimoty Cond
Next. consider the complex with both shand intennediitc and sec-
ondary memories. In addition to controlling ConcurKncy and main-
taining validity information on the blocks in private buffers. the
controller will be used to maintain global control information on blocks
in intennediite memory.

Each block has an access state and a buffer state as p~viously
described, and each valid copy of a block in intermediate memory also
has a non-null intermediate memory state containing the following
kinds of information: (1) the address of the block in intermediate
memory; (2) a list of systems currently Kadii the block from inter-
mediate memory; (3) whether the system owning the partition has K-

quested that the slot the block occupies be freed (it cannot be fKcd
while fads from other systems are in progtess); and (4) infonnation
to serialize writes to disk

Diiregarding the intermediate memory location part. the
intermediite memory state can be KpKWtted as a “lock” held in var-
ious modes by systems (we will see b&w that the state is really not
used at all like traditional lock states, but this is a convenknt starting
point). lllese modes OK as follows.

W write in progress - held in this mode by the system managing
the intermediate memory partition in which the block resides
prior to the completion of the write to disk, and requested in
this mode by another system that has updated the block

D write to diik complete - converted to this mode by the system
owning the partition after the compktion of the write to disk

R Kad in progress - held in this mode by each system reading the
intermediate memory copy of the block while the cad is in
PtWKss

u pending rekase - this is a pseudo-mode used when the system
owning the partition makes a “release” Kquest on the inter-
mediate memory state of the block (see below) in order to fKe
the intermediate memory slot, but them arc Kada by other
systems in progress

We first summarize the protocol for using the integrated con-
troller. BefOK a transaction can update a data block, an exclusive lock

466 Proceedings of the 13th VLDB Conference, Brighton 1987

request for concurrency control is issued with check requests on buffer
status in private memory and intermediate memory. Assuming the
private memory copy is invalid and there is a valid copy in the inter-
mtdiitt memory (say in D mode), the address in the inttrmtdiate
memory will be ntumed. and the mode of the block in intermediate.
memory is changed to read-in-progress (R) mode to prevent the block
being overwritten. After the read is completed, the controller will be
notified and will switch back to the previous mode. At commit time,
the system fit allocates a free slot in the intermediate memory for the
updated block and writes the block out to that slot. Then the system
issues an unlock access request for the exclusive lock. combined with
an invalidate buffer request and a request to change to write-in-
progress mode. To serialize disk writes. the change to W-mode request
can be granted only after any ongoing disk write for the block has
completed. To insure availability of free slots in the intermediate
memory, each system periodically frtes up slots via release requests,
and each release request is either granted immediately if there are no
reads in progress to the slot or else granted as soon as all reads cur-
rently in progress to the slot have axnpleted

Let us consider in detail how the controller responds to each type
of request. The response depends on tht current state of the block.

1. A W-lock request includes tht address in inttrmediatt memory
into which the block has already been written by the requesting
system. The W-lock request will be queued if any write or read
is in progress on the block, i.e. the block is in W or R mode.
Otherwise, the request is granted. and the address part of the
intermediate memory state of the block is updated. When a
W-lock request is granted, if another system owns the lock in
D-mode. the controller automatically performs an unlock on
behalf of the D-mode owntr, effectively invalidating the copy
of the block in the partition owned by that system.

2. When an R-lock request is received for a block with a null
intemtediate memory state, the request is rejected, thus indicat-
ing that the block must be read from disk. Similarly an R-lock
request is rejected if there is a queued release request for the
block (ii order to avoid possible starvation of the release. re-
quest). Otherwise, when the request is granted, the result con-
tains the intermediate memory location of the block. When an
R-lock request is received for a block from the system owning
the block in D-mode, the location is returned as in the previous
case, but the mode remains D, thus indicating to the system that
the copy of the block in its partition is still valid.

3.

4.

When a D-lock request is issued upon completion of the disk
write, the W mode will be converted into D-mode.. Any other
system owning tht lock in R-mode will not be affected

When a rekase request is received from a system that is not
currently an owner (because the intermediate memory copy in
tht system’s partition was previously invalidated by means of a
W-lock request from another system as described above), the
request is granted When a release request is received for a
block from a systtm owning the block in D-modt. ff there are
any R-mode owners, the controller treats this as a U-convenion
request, thus queueing the release request.

The control algorithm can be described by using a “standard” . _ ._
&king-based algotithm using the mode-compatibility matrix shown in
Figure 3.3 (certain cases such as the way modeconversion requests
are handled will not be described in detail, but will be indicated by tht
example at the end of this section).

Similarly to tht previous design. the controller can accept
combined requests consisting of intermediate memory. access. and
buffer requests, and combmed requests must be processed atomically.
In combined requests, in some cases an access request should be
processed fit and in other cases an intermediate memory request
should be fimt. This can be controlled by having the system issuing the
combined request order the sub-requests appropriately. If the first

request in a combined request is queued the remaining requests should
also be queued, and if the lit request is rejected the remaining re-
quests should be rejected, with the following exception: if an R-lock
request is rejected. associated access and buffer requests urr processed
as before. Also. a block’s global state is null if each of its access,
buffer, and intermediate memory states are nulL

Requested Mode
W D R U

Held

Mode

I: incompatible

C: compatible

-: doesn’t occur
(see text)

Fwe 3.3. lotermediate Buffer Sate Mode Coqubiky Mati

An outtine of the protocols that must be used by tht intenne-
diate memory managers running on each system is as follows.

1.

2.

3.

4.

5.

To free an intermediate memory slot, issue an intermediate
memory release request. When the request is granted. the slot
canbeused

To check if a block is in intermediate memory, ixsue an R-lock
request. If the request is granted, the result contains the kt-
cation.

If an R-lock request isissued for a block that was previously
written to intermediate memory by the intermediate memory
manager and the location returned is difftrent than that prevf-
ously allocated, or if the request is rejected. the copy is now in-
valid, and the intermediate memory slot is freed

Alter allocating a slot and writing a block to intermediate
memory, issue a W-lock request. When the request is granted,
any write to disk of this block by another system has compkted,
and a write to disk can be initiated by this intermediate memory
manager, thus guaranteeing correct disk write serfalixatior~

After a disk write of a block completes, issue a D-conversion
E+CSt.

Analyzing the algorithms used by controller and the httennediite
memory manager protocols, it can be setn that oertain combiitions
of held and requested modes never occur, as shown in Fii 3.3.

We conclude this section with an example illustrating some of
the above protocols and global block states.

Sl allocates an fntenntdiatt memory bufftr slot by issuing a
successful intermediate memory rekase request,writts the block
to intermediate memory, issues a successful W-lock combined
with an access state unlock and invalidate requests (the access
state of the block was that it was held cxclusivt by some trans-
action on Sl), and initiates a write to disk. The block state is
shown in Figure 3.4(a).

.

Prior to the completion of the disk write. transactions Tl and
T2 on S2 and S3 respectively read the block. fit issuing sue+
cessful R-lock combined with add and access share lock re-
quests, resulting in the statt shown in Fii 3.4(b).

The read from intcmtediate memory by S3 completes. and S3
issues an intermediate memory release request, resulting in the
state shown in Figure 3.4(c).

The write to disk completes, and Sl issues a D-conversion re-
quest, resulting in the state shown in Figure 3.4(d).

Proceedings of the 13th VLDB Conference, Brighton 1987 467

fli state

buffer state

access state

Mi state

access state

Hi state

buffer state

access state

buffer state

access state

Hi state

-I buffer state

Hi state

buffer state

access state

Figure 3.4. Example Access, Bufler, and Mi States

5. TO free the buffer slot, Sl issues an intermediate buffer release
request, but because there is a read in progress the request is
queued, as shown in Figure 3.4(c).

found in the intermediate memory. kading to significant improvement
at high contention levels. These effects are quantified in this section.

6. The read from intermediate memory by S2 completes, S2 issues
an intermediate memory release request, Sl’s queued release
request is then pmcesse d. resulting in the null intermediate
memory state as shown in Figure 3.4(f).

4.1. l&e Mdei

4. Performance
This seetion outlines a model to estimate the perfomance of the inte-
grated concurrency-coherency control schemes presented in Section
3, and illustrates the benefits of th& technique. Qualitatively. the fol-
lowing effects occur. Using intermediate memory with the integrated
concurrency-eohcrency protocol of Section 3.2 permits the early re-
lease of locks. This leads to shorter lock holding times. and lower lock
contention. Thus, when the transaction rate is increased, either by in-
creasing the number of coupled systems or by using more powerful
processors, significant improvement in response time is expected.
Further, the integrated concurrency-coherency scheme eliminates the
increase in protocol overhead with number of systems that occurs with
broadcast invalidation. This is particularly important as the number
of coupled systems increases. Fmally. blocks that are frequently up-
dated will be found in the intermediate memory, further reducing I/O
time. In particular, updated blocks that are contended for will be

The mode1 uses parameters derived from trxes taken from two
large intallations running IBM’s fIvfS database management system
[YU~~B]. The Tit was an inventory parts database traced for 15
minutes, and the second was an on-line materials planning database
system traced for 60 minutes. Both traces lead to similar results. The
results presented in this paper are for the fit trace. The traces from
the single system environment were used to derive traces for a multi-
system environment as described in [YU87]. In a trace driven simu-
lation of two coupled 14 MlF’!S systems with an average workload of
20 transactions per second per system, the probability of lock conflict
was found to be about 0.007 per lock request. This lock conflicl
probability is projected to other system configurations by the approx-
imate analytical model presented below. A database block reference
trace was derived from the multi-system lock traces. The block refer-
ence trace was used to drive a simulation of the database buffer man-
ager under different coherency control protocols. The increase in
database l/O caused by this phenomenon was captured. The broad-
cast invalidation and integrated concurrency coherency protocols were
found to have about the same increase in l/O, although buffer space
occupied by obsolete blocks is reused earlier by the buffer invalidation

468 Proceedings of the 13th VLDB Conference, Brighton 1987

protocol in comparison with the integrated concurrency coherency
protocol. Thus, the major difference of the two protocols is in over-
head.

In the model, transaction arrivals are modelled by a Poisson
process. A front-end server is assumed to assign transactions tan-
domly to the different systems. A balanced load on all systems is as-
sumed. The average transaction response time R is expressed in terms
of its components as follows [YU85A] :

R = RCPU + 40 + Rcoxr (4.1)

Each component will be described separately.

Rc, is the total time the transaction spends at the CPU. This in-
cludes both the CPU service and queueing times, and the time the CPU
waits for a lock from the integrated concurrency coherency controller.
From the trace analysis the average number of instructions that need
to be executed per transaction was found to be 430,000. Lock re-
quests and database I/OS are assumed to occur uniformly over this
transaction path length, breaking the transaction into many small seg-
ments of equal size. In addition, each lock request entails sending the
lock request to the integrated controller, and waiting for the nponse.
For a given transaction rate, the rate of lock and unlock requests at the
integrated controller is known. Assuming Poisson lock request arrivals
at the integrated controller, the average service and queueing time is
computed [YU8SAl. ‘Ihe Poisson approximation is reasonable for a
large number of wncurrent transactions. This time is added to the
CPU time and the total CPU utilization is computed. Then R, is
computed by modeling the (dyadic) CPU as and M/M/2 queue.

In addition to the concurrency control protocol overhead, the
coherency control protocol overhead is modelled as follows. The
model for the broadcast invalidation coherency wntrol protocol as-
sumes that 1K instructions of local processing is incurred by the system
initiating the invalidate message, before incurring the overhead of
broadcasting the message to the remaining n - 1 systems. The over-
head O,, for sendiig a message between systems is assumed to be 3K
instructions equally split between the sending and receiving systems.
The broadcast overhead is assumed to be the same as the overhead for
sending a message, O&,/2. Each of the n - I remaining systems in-
curs an OJ2 overhead for receiving the invalidate message, a 1 K in-
structions overhead each for processing the invalidate message, and an
overhead of O&,/2 for sending an acknowledgement in reply. The
model for the integrated concurrency coherency protocol assumes that
every block referenced is locked before being accessed. The validity
of the data block being accessed is verified by the integrated controller
at the time that the lock request is processed. We assume a 50% extra
overhead for lock processing in order to perform this validity check.

R, is the amount of time spent during the transaction, waiting for
I/O to occur. Note that for each I/O the processor is modelled to task
switch to process another transaction, while suspendiig the executing
ttansaction. until the completion of the I/O. Thus,

RIO = ‘ro”lo

where I,,, is the avenge time per l/O and n,, is the average number of
I/OS per transaction. Sufficient I/O bandwidth is assumed to enable
the modelling of the I/O setver as an infiite server with a load inde-
pendent service time of 35 mS. n,, wnsists of two l5nds of I/OS: nlon
and nlODD . nlOn is the average number of non-database I/Os per
transaction. Typically. these are the I/Os needed to load the applica-
tion progtam and the other constructs into the main memory from disk.
Trace analysis yielded a value of 5 for nlOR. nlOD,, is the average number
of I/OS that occur during the execution of the transaction. These are
tequired to read and write data from diik resident databases into and
from the main memory buffer. respectively. In the ttace analysis, the
average transaction performed 11 database l/O in the single system
environment. In the model for the coupled systems, the average num-
ber of extra I/O’s incurred under the different coherency control pro-

tow1 is added to 11 to arrive at a number for nIoDO. The extra I/O due
to invalidation is modeled as proportional to the probability that
transactions running external to a system cause the invalidation of a
block in the buffer. Let a be the probability of an invalidation caused
in a system’s buffer over a fiied time period due to transactions exe-
cuting at a rate of one transaction per second. external to the system.
Thus, the probability of buffer invalidation due to n, such independent
streams of transactions is 1 - (1 - a)*. The increase in I/O, A,o1 is
modelled as

AIO(“,) = A,,,& - (1 - 4% (4.2)

where A, is the wnstant of proportionality. The increase in I/O can
teach a maximum value wrresponding to the increase in l/O if blocks
used by a transaction are purged at commit time; this gives A,. and
was found by trace driven simulation to be 4 I/OS. From trace analy-
sis, we found that A,,(20) = 0.11. Substituting in equation (4.2).
a = 0.001393. The model for predicting the increase in database I/O.
described by equation (4.2) was validated for the coupling of two,
three, and four systems, through simulation of the buffer manager,
driven by the derived multi-systems traces, described earlier. Hence,

%O 5 "JOPL + nlODb

RIOPL = ~~OPL. RIODB'='~~'IODB

RIO = &,+&ODE+ (4.3)

R CON7 is the time spent in contention wait for a lock that is held
by another transaction. The contention wait is estimated as.

Rco,v, = L PCO.VT w (4.4)

where L is the average number of lock requests per transaction derived
from trace analysis and is found to be 15. Pmm is the probability of
contention on a lock request, and the product L Pmm is the average
number of contention waits per transaction. The manner in which
Pm,,, is projected from the value measured in the trace driven simu-
lation is described later in this section. R is the average time a trans-
action waits, if it contends with another transaction for a lock, and is
a function of the transaction response time. This wait time is estimated
as (R - R,,,) /F, where F is estimated below. The reason R,,, is
subtracted from the reponse time is because the transaction does not
hold any locks during the time these nlOn I/OS are being carried out.
For shorthand notation we define ii = R - R,,. Substituting this
estimam for w in (4.4) , and using (4.4) with (4.1) and (4.3) gives,

R = RI,,+
RCPV + R,ODB

pco,vr L
(4.5)

1-c F 1

The reciprocal of the denominator in (4.5) indicates the expansion in
the response time due to lock contention wait.

The factor F for the fraction of the response time that represents
the expected waiting time, is estimated as follows. We neglect the
probability of restart due to deadlocks. The mean wait time of a
transaction that contends for lock is the mean remaining time of the
transaction that it contends with. It is assumed that the transaction
makes lock requests evenly over its execution. Thus, there are an equal
number of transactions (including waiting and running transactions)
that hold different numbers of locks. The probability of contention
with a transaction is proportional to the number of locks that a tmnS-
action holds. Using a wntinuous time approximation, the mean n-
maining time, r, is

I
I f = Pod@ - x)rn *

0

where P(x) is the probability of contention with a ttansaction that has
run for time x, and x is the transaction response time, during which the
transaction holds locks. Using the wntinuous approximation that a

Proceedings of the 13th VLDB Conference, Brighton 1987 469

transaction holds a linearly increasing number of locks with time, P(x)
equals x / fi x dr , which gives,

s
I x (if - x) dx

0 x
r= =

si 3’
(4.6)

s
Xdx

0

Thus, F in equation (4.5) is estimated as 3.

The response time for the two coupled 14 h4lPS systems at 20
transactions per second and contention probability of 0.007 (as meas-
ured from the trace) was derived to be 0.65 seconds, using Equation
(4.5). It is assumed that the contention probability grows as the
product of the transaction rate and response time. Using this assump-
tion the lock contention observed in the trace is projected to higher
transaction rates and more coupled systems. The assumption is con-
sistent with the asymptotic results in IGKAYBI] [LAVl3?4]. llte re-
sponse time is affected by the size of the processor. lbe feedback
effect of the contention probability varying with response time is esti-
mated using an iteration. The transaction response time is fit derived
for the initial estimate on contention probability. Then the resulting
response time is used to compute a new contention probability by as-
suming that the contention probability grows as the product of the
transaction rate and response time. The approximate model is then run
again with the new contention mbabity. The iteration is repeated
until convergence is obtained. &I y a few iterations are required in the
contention range considered. Ibis approximate model for the average
response time in the data sharing environment is validated to within
5% of the results from simulation, described in [YU8SA]. for two
systems coupling over a wide range of lock contention levels.

a-

E a-
)r -
z-

E”
a
a-

Fv 4.1. Pedonmnce Mvantage of Integrate4 Coaammcy-
c~cootroi

4.2 PBfonnance Rvjdbm

We now examine some performance projections from thii model.
We fiit consider the case where the intermediate memory is used only
to store updated blocks. That is. it is assumed that blocks are held in
intermediate memory only till the write of the block to disk is com-
pleted. This allows for early transaction commit, and for any tram-
actions waiting to access updated blocks to obtain these blocks directly
from intermediate memory. A relatively small intetmcdiite memory
should be sufficient for thii purpose. Figure 4.1 shows the projected
response time as a function of the number of coupled systems for

shared disk with broadcast invalidation, and for the integrated
concurrency-coherency control scheme with and without intermediate
memory. In this graph, the transaction rate per system is kept constant
at 20 transactions per second per system, as the number of systems in
the complex increases. Thus. the contention grows with the number
of coupled systems. With the broadcast block invalidation scheme, the
processing overhead for the broadcast and receipt of acknowledges for
the invalidation from the other systems, also grows with number of
systems. Both these effects combine to restrict the number of coupled
systl ms to 10 if sharing is only at the disk level and broadcast invali-
dation is used. For the integrated concurrency-coherency scheme, the
overhead for the coherency control does not inctease with the number
of systems; this results in significant improvement as the number of
coupled systems increases. With this scheme, the limitation on the
number of systems is due to contention rather than processing over-
heads. Using intennediate memory with the integtated concurrency-
coherency control scheme results in a large improvement in response
time and number of coupled systems. Both I/O time and lock con-
tention level are reduced by the integrated protocol. When a small
number of systems are coupled, it is only the reduction in the 1/O time
that aSf+cls the transaction response time. When a large number of
systems arc coupled the combined effect of reduced I/O and con-
tention become apparent through a large reduction in transaction re-
sponse time.

Figure 4.2. Effect of Buffer Hits h Intermebte Memoy

We now consider the case where updated blocks are retained in
the intermediate memory after the write to disk is completed. For this
case frequently updated blocks will often be found in the intermediate
memory. We observe that the intermediate memory can be used in a
straighforward manner for broadcast invalidation with no early lock
release; updated blocks are written both to the intermediate memory
and to disk, locks are retained until the disk writes are complete, and
the intermediate memory address of the block is broadcast along with
the block invalidate. ‘lhe effect of this mtention of updated blocks in
intermediate memory is modeled as read hits in Figure 4.2. llte curves
shown with solid lines are for broadcast invalidation. and the dashed
lines are for the integrated concurrency-coherency control scheme.
For both cases, the reduction in reads results in a smaller transaction
response time for a small number of coupled systems. However, the
intermediate memory hits do not substantially enhance the number of
coupled systems with the broadcast invalidation. because it is the
processing overhead that is the limitation. With the integrated
concurrency-control scheme, mad hits in the intermediate memory
have a significant effect in enhancing the number of systems that may
be couoled.

470 Proceedings of the 13th VLDB Conference, Brighton 1987

5. conclusion
In a multi-system data sharing complex, inter-system intcrfercnce due
to global concurrency control and coherency control of local buffers
in each system can lead to degraded performance. We observed that
while globally locking an item for concurrency control. a check could
simultaneously be ma& to determine if the system requesting the lock
had a valid copy of the block king locked. This was the basis for
handling combined requests for concurrency and coherency in an in-
tcgtated controller. The integrated controller maintains a list of sys-
tems that hold a valid copy of the block, and when a system ralcascs
an update lock with an update, all other systems are dcktcd from this
list. This method leads to a large reduction in overhead for coherency
control as compared to broadcast buffer invalidation

Next we considered the usa of a shared httcmtcdiate memory to
enhance performance. The intarmcdiate memory can be employed as
a shared buffering device to reduce disk 10’s. Further. updated block
that are invalidated at other system’s local buffers can now reside in
the shared intermediate memory. Thus. blocks that are frequently up-
dated, and therefore kad to lock contention, will t&de in intermediate
memory, lcadiig to a reduced holding time for these contended blocks.
Fiilly. with proper controls. the intermediate memory can be used for
early tnnsaction commit, i.e. before disk writes an completed, by al-
bwing release of locks after updates have ken written to the shared
memory. Control of such an intermediate memory requires handling
of read-write synchronization and disk write sarialiaation, which wa
show can be done by the integrated controlkr. A qucueing model da-
velopcd to evaluate the system pcrfomtance indiitcs that a signifkant
tmnsa&on speedup and reduction in lock contention between ttans-
actbns can be obtained. Even without intermediate memory, our
analysis shows that the special case of the httegtatcd concurmncy-
cohenncy control an improve the perfomana over broadcast inval-
idation by tcducing the protocol overhead. With limited intcrmediata
memory for early commit, the integrated control can significantly en-
hana the performance. When intermediate memory is employed for
buffering, substantial performance gains can be realized only through
use of the intcgmted concurrcncy-cohercncy control protocol. Dta
reduced contention and overhead imply that a larger number of sys-
tcms can be coupled together using this integrated mntrol than without
it.

References
[COR N86)

[GRAYSI]

[LA vE84J

[SEKI84]

[SMJ7851

[STR182]

lw85-41

Iwe-J

lww

mwl

Cornell. D.W.. Dias. D.M.. and Yu. P.S., “On Multi-
system Coupling lltmugh Function Request Ship
ping”, LEEE Trans. on Software Engrg.. 12.10 (Get.
1986) 10061017.
Gray. J.. Hornan, P.. Obermarck. R. and Korth. H..
“A Straw Man Analysis of Probability of Waiting and
Deadlock”. IBM Research Report RJ 3066. San Jose.
Califomia (1981).
Lavcnbarg. S. “A Siile Analysis of Exclusive and
Shared Lock Contention in a Database System”, Prr-
formona Emluation Revkw 12.3 (Proc. 1984 ACM
SIGMEJRJCS Confercnce). 143-148.
Sekino, A, Moritani. K.. Masai, T.. Tasaki. T.. Goto.
K.. “The DCS - A New Approach to Multisystem
Data-Sharing,” Proc. National Computer Confemncc
1984. Las Vegas, NV (July 1984).
Smith, A.J., “Disk Cache Miss Ratio Analysis and
Design Considetations”. ACM Trans. on Computer
Systems, 33 (1985). 161-203.
Strickland, J. P.. Uhrowcaik, P. P.. and Watta. V. L,
“JhWVS: An Evolving System”, IBM Sjwms Jour-
nal 21.4 (1982).490-510.
Yy P.S.. Dias. D.M.. Robiin, J.T.. fyer, B.R. and
Cornell. D.. “Modelling of Centralized Concurrancy
Control in a Multi-system Enviromnent”. prrlovmMa
Ewhdon Reicw 13. 2 @UC. 1985 ACM
SIGMETRfCS Conference). 183-191.
Yu, P.S., Dii, D.M.. Robin, J.T.. Jyer. B.R. and
Cornell, D., “Distributed Conmncy Control Anal-
ysis for Data Sharing”. Pnx. 16th Cbnpuw Meawe .
nenr Gmup Confemce. Dallas, TK (Dec. 1985).
13-20.
Yu, P.S., Cornell. D.W.. Dias. D.M.. and Thomasian.
A. “On Coupling Partitioned Database Systems”.
Proc 6th fntcmational Symposium on Dktriiuted
Computing Boston, MA (May 1986). 148-157.
Yu, P.S., Dii. D.M.. Robinson, J.T., lycr. BJL and
Cornell, D.W.. “Cht Coupling Multi-Systems Through
Data Sharing”. Proceedings of the IEEE, May 1987.

proceedings of the 13th VLDB Conference, Brighton 1987 471

