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ABSTRACT: Using partition semantics 
[S84,LS87], we show that to every relational 
universe U and set of functional 
dependencies F, there corresponds a unique 
database scheme (called the canonical 
scheme) such that every query on the 
universe can be answered uniquely by a 
relational expression on the canonical 
scheme, and every update of the universal 
relation can be translated uniquely into a 
transaction on the canonical scheme. Our 
results render the relational model logically 
independent with respect to both queries 
and updates thus subsuming previous 
approaches to the problem [MRSSW87]. 

1. INTRODUCTION 

As noted by Maier,Vardi and Ullman 
[MUV84], the relational data model has 
gone far toward physical data 
independence, but has not achieved the 
goal of logical data independence. That is, 
users of relational systems are relieved of 
specifying access paths within the 
structure of a single relation, but they still 
must navigate between relations. Users and 
application programs are protected from 
changes in the physical implementation of 
relations, but not from changes in the 
logical structure of a database, such as 
decomposition made for normalization or 
efficiency reasons. 

Universal scheme interfaces are an 
attempt to achieve logical data 
independence. In a universal scheme 
interface, all the semantics of the database 
is loaded onto the attributes. Queries are 
phrased in terms of attributes alone and 
the user does not need to know which 

62 

attributes are in which relations. That is, 
in a universal scheme interface, a database 
is presented as a semantic whole, accessible 
through its attributes alone. 

The idea that data can, at least in 
principle, be thought of as residing in a 
single relation is an intuitively appealing 
one. In fact, even in the normalization 
process, the implicit assumption is that it 
makes sense to talk about attributes 
disembodied from any particular relation 
scheme and, therefore, with a meaning of 
their own. However, what this meaning 
should be was not clear, and this gave rise 
to much controversy. The breakthrough 
was Mendelzon’s ” w e a k ” or 
“representative” instance view of 
universal relations [M84] exploited by 
Sagiv [S83] in a real system. As with 
dependencies, there are in fact many 
sound ways one can view the universal 
relation; Maier, Rozenshtein and Warren 
[MRW86] is a key paper integrating these 
differing viewpoints. They also survey a 
large number of systems that are, 
implicitely or explicitely, based on a 
universal scheme interface. 

*The weak instance view of universal 
relations seems to provide the right 
framework for querying universal scheme 
interfaces. However, there does not seem to 
be the flexibility to update over arbitrary 
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schemes that there is to query over 
arbitrary schemes. Proposals to remedy 
this defficiency (such as introducing 
“missing value” nulls) have led to 
increased complexity without really 
solving the update problem. 

In this paper, we propose a novel 
approach for processing queries ti 
updates in a universal scheme interface, 
based on the set-theoretic semantics of the 
partition model 
approach, the 
universal scheme 
parts as follows: 

DESIGN PHASE : 

[S84,CKS86]. In our 
implementation of a 

interface is done in two 

Given universe U and set of functional 
dependencies F, we first associate U and F 
with a (uniquely defined) database scheme, 
called the canonical scheme of U and F. 
Then, we associate every nonempty subset 
Q of U with three (uniquely defined) 
objects: a relational expression, an 
insertion transaction and a deletion 
transaction on the canonical scheme. 

RUN TIME : 
The data is stored A query or update, 
expressed in terms of a set of attributes Q, is 
processed as follows: 

- The relational expression 
associated, during the design phase, with Q 
is evaluated on the current database. 
. . . insertlok The insertion transaction 
associated, during the design phase, with Q 
is evoked and executed on the current 
database. 

deletion: The deletion transaction 
associated, during the design phase, with Q 
is evoked and executed on the current 
database. 

Therefore, our approach of implementing 
a universal scheme interface can be seen 
as adding an upper layer on a traditional 
DBMS. This upper layer is currently being 
developped in our laboratory. 

The paper is organized as follows. In 
Section 2, we recall the basic definitions 
from the partition model [LS87] which 

provides the underlying semantics of our 
approach. In Section 3, we define partition 
semantics for queries and updates in a 
universal scheme interface; we show that, 
in terms of queries, our semantics is 
equivalent to weak instance semantics. In 
Section 4, we show how partition semantics 
can lead to unambiguous semantics for 
universal scheme interfaces for both 
queries and updates. Section 5 contains 
some conclusions and suggestions for 
further work. 

2. PARTITION SEMANTICS. 

2.1 Informal overview. 

Consider the following database 
containing only two tuples: 

AGE- 

Young Unempl. Unempl. Female 

The tuple Young Unemployed can be 
seen as a string of two uninterpreted 
symbols, Young and Unemployed. Now, 
think of a possible world, and let Sz be the 
set of all individuals in that world. 
Moreover, let I(Yo ung) be the set of all 
individuals of a that are young, and call 
I(Young) the interpretation of Young. 
Similarly, let I(UnempZoyed) be the set of 
all individuals of fi that are unemployed 
and call I(U n e m p 2 o y e d) 
the interpretation of Unemployed. Clearly, 
the intersection I(Young)nI(UnempZoyed) 
is the set of all individuals of f2 that are 
both young and unemployed. It is precisely 
this intersection that we define to be the 
interpretation of the tuple 
Young Unemployed. In other words, the 
interpretation of a tuple is the intersection 
of the interpretations of its constituent 
symbols. 

This kind of set-theoretic semantics 
of tuples allows for a very intuitive notion 
of truth. A tuple t is called f rue in 
interpretation I iff I(t) is nonempty. Thus, 
for example, the (atomic) tuple Young is 
true iff I(Yo ung) is nonempty, that is iff 
there is an individual in Sz which is young 
(at least one such individual). Similarly, 
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the tuple Unemployed is true in I iff there 
is an individual in n which is unemployed. 
Finally, the tuple Young Unemployed is 
true in I iff there is an individual in Q 
which is both young and unemployed. 

The set-theoretic semantics just 
introduced allow for a very natural notion 
of inference through set-containment. To 
see this, consider the following question: 

Assuming that Young Unemployed is true 
in I and that Unemployed Female is true in 
I, can we infer that Young Unemployed 
Female is true in I ? 

If we recall the definition of truth given 
earlier, then we can reformulate this 
question as follows: 

Assuming that I(Young) A I(Unemployed) 
is not empty and that I(Unemployed) n 
I(Femule) is not empty, can we infer that 
I(Youn‘g) n I(Unemployed) n I(Female) is 
not empty ? 

Clearly the answer depends on the 
interpretation I. However, if we impose 
constraints on the interpretation I, for 
instance, if we require that 

I(UnempZoyed) E I(Young) (1) 

meaning that all unemployed individuals 
are young, or that 

I(Unemployed) c I(Femule) (2) 

meaning that all unemployed individuals 
are female, then the answer is yes. 

As we shall see shortly, constraints 
such as (1) and (2) provide the right 
interpretation for functional 
dependencies. It is important to note that 
the tuple appearing in a database, such as 
young Unemployed and Unemployed 
Female are assumed to be true. Using 
constraints such as (1) and (2) above, we 
may discover that other tuples that do not 
appear in the database, such as Y o I( ng 
Unemployed Female are also true. Given a 
database D, we shall be interested in the set 
T(D) of all tuples that are implied by D. We 
shall look at this set as the information 
content of D and we shall call two database 
equivalent if they have the same 

information content. What we shall be 
querying and updating is the information 
T(D) and not particular representation of 
this information. 

2.2 The Model. 

We shall consider, separately the 
syntax and the semantics of our model. The 
syntactic part is essentially the relational 
model. The semantic part is a formalization 
of the concepts explained above. 

2.2.1 Syntax 

We begin with a finite, nonempty set 
U={AI ,. . .,An ). The set U is called the 
univ e TV e and the Ai’s are called the 
attributes. Each attribute Ai is associated 
with a countably infinite set of symbols (or 
values) called the domain of Ai and denoted 
by dom(Ai). We assume that U n dom(Ai) is 
empty for all i, and that dom(Ai) n dom(Aj) 
= 0 for i # j. A relation scheme over U is a 
nonempty subset of U; we call sch(U) the 
set of all realtion schemes over U and we 
denote a relation scheme by the 
juxtaposition of its attributes (in any 
order). A tupl e t over a relation scheme R 
is a function defined on R such that t(Ai) is 
in dom(Ai), for all Ai in R. We denote by 
dam(R) the set of all tuples over R. Clearly, 
dam(R) is the Cartesian product of the 
domains of all the attributes in R. If t is a 
tuple over R=AI...An, and if t(Aj)=aj, 
j=l,...,n, then we denote the tuple t by 
aI . . . an. A relation over R is a set of tuples 
over R. 

Definition 2.1 A database over U is a 
pair (6,F) such that 

(1) 6 is a function assigning to every 
relation scheme R over U a finite relation 
over R, and 

(2) F is a set of ordered pairs (X,Y) 
such that X and Y are subsets of U. 
Every pair (X,Y) is called a functional 
dependency and is denoted by X+Y + 

Example 2.1 Consider a universe of 
three attributes, say U={A,B,C), and let 
dom(A)=(aI,a2 ,... ), dom(B)=(bl,b2 ,... ), and 
dom(C)=(cI,c2,...). 
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Define a function 6 on relation schemes 
over U as follows: 

WW = talbl, a2bij 
WW = tblcl, blc2) 
6(R) = 0 for all other schemes R. 

Let F be the set (A-+B,BC+A}.+ 

I: ai + U,31 a;! -3 u.41 
bI -+ (1,2,3,4) bL + (5.6) 
Cl + (31 c2 + (11 
x + 0, for every x different than 

al,bl,bwlm. 

I(alb1) = I(aI) n I(bI) = (1.3) 
I(a2bI) = I(a1) n I(bI) = (2,4) 
I(blcl) = WI) n I(cl) = (31 
Ublca) = WI) n I(~21 = (11 
I(alblcl) = I(alhIWnWi) = (3) 
I(alblc2) = I(al)nI(bI)nI(c2) = (1) 

FIGURE 2.1 An interpretation I of U 

Given a database D=(g,F), we call scheme of 
D, denoted by sch(D), the set of all relation 
schemes that are assigned non-empty 
relations under 6. That is, sch(D) = (R E 
sch(U) I S(R) +: 0 ). Thus, the database 
scheme in Example 2.1 consists of the 
relation schemes AB and BC. 

2.2.2 Semantics. 

We assume that the “real world” 
consists of a countably infinite set of 
objects, and we identify these objects with 
the positive integers. Let o be the set of all 
positive integers, and let 20 = ( z / z E o) be 
the set of all subsets of w. The set 20 is the 
semantic domain in which tuples and 
dependencies will receive their 
interpretations. 

Throughout our discussions, we 
consider fixed the universe of attributes U 
= (AI,A2,...An), and the associated domains 
d o m ( A i). For notational convenience, we 
denote by SYMBOLS the union of all 
attribute domains and by TUPLES the union 
of all domains. That is: 

SYMBOLS = uAEU dam(A), 

TUPLES = uREsch(U) dam(R). 

Clearly, SYMBOLS is a subset of TUPLES. 

Definition 2.2 An interpretation of U 
is a function I from SYMBOLS into 20 such 
that 

VA E U, Va,a’ E dam(A), (a # a’ 3 I(a) 
n I(a’) = 0 ) l 

Thus the basic property of an 
interpretation is that different symbols of 
the same domain are assigned disjoint sets 
of integers. In Figure 2.1, we see a function 
I satisfying this property. The intuitive 
motivation behind this definition is that an 
attribute value, say a, is an (atomic) 
property, and I(a) is a set of objects having 
property a under I. Furthermore, an object 
cannot have two different properties a, a’ 
of the same “type”; hence I(a) n I(a’) = 0. 
Given an interpretation I, we can extend it 
from SYMBOLS to TUPLES as follows: 

VR E sch(U), VaIa2..;an E dam(R), 
I(aIa2...an) = I(a1) n . . . n Ran) 

In Figure 2.1 above, we see some examples 
of computations of tuple interpretations. 
The intuitive motivation for this extension 
is that a tuple, say ab, is the conjunction of 
the (atomic) properties a and b. 
Accordingly, I(ab) is the set of objects 
having both properties a . and b, and 
therefore, I(ab) = I(a) n I(b). Our definition 
of an interpretation suggests intuitive 
notions of thrutb and refinement for 
tuples, as follows: 

Definition 2.3 Let I be an 
interpretation and let s,t be any tuples in 
TUPLES. We say that tuple t is true in I iff 
I(t)+@, and we say that tuple s refines tuple 
t in I iff I(s) c I(t). l 
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That is, t is true in I if there is at least one 
individual having property t, and s refines 
t in I if every individual having property s 
(under I) also has property t. Note that 
every tuple t refines all its subtuples (for 
example, ab refines both a and b). We now 
define when an interpretation I is called a 
model of a database D. 

Definition 2.4 Let D = (6 ,F) be a 
database over U. An interpretation I of U is 
called a model of D if 

(1) t/R E sch(U), Vt E 6(R), I(t) + 0. 

(2) VX+Y E F, Vx E dam(X), Vy E dam(Y), 
I(x) n I(Y) f 0 * I(x) c I(y) l 

Condition (1) of this definition says that 
every tuple appearing in the database must 
be tnie. Condition (2) says that every 
functional dependency must be interpreted 
as a function. Let us note that X-, Y is still 
interpreted as a function even if we 
replace condition (2) by the stronger 
condition 

(2’) Vx E dam(X), 3y E dam(Y), I(x) 
E I(Y). 

The difference between (2) and (2’) is that 
condition (2) interprets X+ Y as a partial 
function whereas condition (2’) interprets 
X+ Y as a total function. In this paper, we 
adopt the (more general) condition (2) in 
our definition of a model. We shall come 
back to this remark when discussing chase 
and weak chase in the following section. 

Having defined the concept of model, 
vie can now define the concept of 
consistency. A database D is called 
consistent iff D posseses at least one model; 
and otherwise D is called inconsistent. For 
example, the database D = (6,F) of Example 
2.1 is consistent as the interpretation 
shown in Figure 2.1 is a model of D. On the 
other hand, the following database is 
inconsistent, as no interpretation I can 
verify the tuples ab and ab’, and the 
dependency B+A, all at the same time. 

a b 
a’ b 

b c B+A 
A+C 

Definition 2.5 Let D=(6,F) be a database 
over universe U. Let s and t be any tuples 
in TUPLES. We say that D implies t, denoted 
by D I= t, iff m(t)+0 for every model m of D. 
We say that D implies sit, denoted by D I= t 
4 s , i f 
m(t) c m(s), for every model m of D. + 

Clearly, D implies all tuples appearing in D. 
This follows immediately from the 
definition of a model. On the other hand, 
the database D of Figure 2.1 does not imply 
the tuples a2bIcI and a2bIc2, as they are 
false in the model I shown in the figure. 

Given a model m of D, we denote by T(m) 
the set of all tuples in TUPLES which are 
true in m. Let us denote by mod(D) the set 
of all models of D, and let us define 

TO) = nm E mod(D) T(m)- 

T(D) is clearly the set of all tuples implied 
by D. In the following section, we use the 
set T(D) in order to define semantics for 
queries and updates in a universal scheme 
interface. 

3. QUERIES AND UPDATES. 

Our semantics for queries 
corresponds to the weak instance 
semantics, but our semantics for updates is 
new. 

3.1 Queries. 

We define queries as in a universal scheme 
interface. That is, a query is a set of 
attributes, plus a selection condition. 
However, in order to arrive at the formal 
definition of a query and its answer, we 
need some preliminary definitions and 
notations. 

Given a universe U and a relation scheme Q 
over U, we call elementary condition over 
Q any expression of the form X=x, where X 
is a subset of Q and x a tuple over X. 
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Definition 3.1 We call elementary query 
over U, any expression of the form Q/X=x, 
such that Q is a relation scheme and X=x is 
an elementary condition over Q. Given a 
universe U, an elementary query Q/X=x, 
and a database D over U, the answer of 
Q/X=x with respect to D, denoted by 
a(Q/X=x,D), is defined as follows: 

a(Q/X=x,D) = {t E dam(Q) / D I= t, D I= t < x ) 

l 

In other words, a(Q/X=x,D) is the set of all 
tuples over Q implied by D and refining x 
in D. 

Example 3.1 Consider the universe 
U={A,B,C,D), and a database D = ((ab,bc,cd), 
{ B+D, C+D)). Let m be any model of D. As 
cd is in D, we have m(c) E; m(d) because of 
the dependency C+ D. Hence, we have 
m(bcd) = m(b)nm(c)nm(d) = m(b)nm(c) = 
m(bc). As bc is in D, it follows that 
m(bcd)#O and, thus, m(bd)&t . So D implies 
bd. Using ab, bd and the dependency B+ D, 
we can show in the same way that D implies 
ad. So the answer to the query AD in the 
database D is (ad). Notice that, without the 
dependencies B+ D & C+D, the answer to 
the query AD would be empty! l 

Clearly, in order to answer elementary 
queries, we must solve the following 
inference problems: Given a database D and 
tuples t and x, 

(1) Decide whether D I= t, 

(2) Decide whether D I= t < x. 

A procedure for solving these problems is 
given in [LS87]. 

Elementary conditions can be combined 
using logical connectives in order to form 
more complex conditions. We call selection 
condition over Q, any combination of 

elementary conditions over Q, using logical 
connectives. 

Definition 3.2 We call query over U, any 
expression of the form Q/s such that Q is a 
relation scheme and s is a selection 
condition. The answer to a query over U is 
defined recursively, based on the answers 
to elementary queries, as follows: 

a(Ql--SD) = a(Q,D) -- u(Q/s,D), 
a(Qls~s’,D) = a(Q/s,D) n a(Q/s’,D), 
u(Q/svs’,D) = a(Q/s,D) u u(Q/s’,D). 

+ 

3.2 Updates. 

We consider the problem of 
inserting and deleting a single tuple t in a 
database D=@,F). (In [LS87], we show that 
inserting or deleting a set of tuples is 
equivalent to inserting or deleting the 
tuples, one at a time). We assume that the 
set F is fixed, that is, we update 6 and not F 
(ie, we update tuples and not 
dependencies). We denote by BASES(F), the 
set of all databases over a set F of 
functional dependencies. Given two 
databases D and D’ in BASES(F), we say that 
D and D’ are equivalent, denoted by D = D’, 
iff T(D) = T(D’). This definition is motivated 
by the fact that the information carried by 
a database D is the set T(D), namely the set 
of all tuples implied by D. We are interested 
mainly in the information T(D), and not in 
the representation of this information by 
different (but equivalent) databases. The 
set of all equivalence classes of BASES(F) is 
denoted by BASES(F)/= and the class of a 
database D is denoted by D. We shall take 
the set T(D) to be the representative of the 
class D. We say that a class D is smaller 
than a class D’, denoted by D c D’, iff T(D) E 
T(D’). What we are updating is the 
information T(D), rather than the database 
D. In other words, we are updating 
equivalence classes and not specific 
databases. As we update equivalence 
classes, we define insertion to be a 
function from the Cartesian product 
BASES(F)/= x TUPLES into BASES(F)/=. This 
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function takes as arguments an 
equivalence class D and a tuple t, and 
returns an equivalence class D’ . The 
conditions that the equivalence class D’ 
must satisfy are stated formally in the 
following definition. 

Definition 3.3 Let U be a universe and 
let F be a fixed set of functional 
dependencies over U. Define insertion of a 
tuple to be a function INS, from BASES(F)/= 
x TUPLES into BASES(F)/= , such that, for 
every tuple t and every database D: 

(1) INS(D ,t) is the smallest class D’ 
verifying conditions (2) and (3) below: 

(2) D <D’, and 
(3) D’ I= t. 

l 

Note that if D ’ exists then it 
Indeed, D ’ is the equivalence 
corresponds to 

is unique. 
class that 

n lT(D”) / T(D) E T(D”) , t E T(D”) 1 

Thus INS is a well defined function. 
However, as insertion of tuples may create 
inconsistency with respect to F, it is clear 
that INS is only a partial function. 

A word of explanation is in order here, 
concerning the requirement that INS(D ,t) 
be minimal. First, observe that if INS(D ,t) 
exists then there may be many different 
equivalence classes D’ satisfying the 
conditions (2) and (3) above. Thus, in order 
for INS(D ,t) to be a function, we must 
designate a unique class D ’ as the result of 
insertion. The reason why we ask for a 
minimal class D’ , satisfying (2) and (3), is 
because we want to exclude undesirable 
insertions of tuples (“side effects”). For 
example, if D=(( ab),0) and we want to 
insert the tuple a’b’, then any of the 
following non-equivalent databases 
satisfies conditions (2) and (3) above: 

D’ = (( ab,a’b’),O), D” = ((ab,a’b’,a”b”],0), . . . 

Of the above databases, condition (1) 
designates the minimal class D’ as the 
result of the insertion. We define deletion 

of a tuple from an equivalence class in a 
similar manner. 

Definition 3.4 Let U be a universe and let 
F be a set of functional dependencies over 
U. Define deletion of a tuple to be a 
function DEL from BASES(F)/= x TUPLES 
into BASES(F)/= , such that, for every class 
D and every tuple t, 

(1) DEL(D ,t) is the largest class D’ 
verifying conditions (2) and (3) below: 

(2) D’ < D 
(3) D’ I# s, for all s such that: D I= & 

+ 

It is shown in [LS87] that DEL(D,t) is always 
defined. that is, DEL is a total function. The 
reason why DEL(D ,t) is required to be a 
maxiamal class is similar (or, rather, 
symmetric) to the reason why INS(D ,t) is 
required to be a minimal class. The 
following proposition describes a basic 
property of deletion, namely, when 
deleting a tuple t, we must also delete all its 
refinements (i.e., all its supertuples). 

Proposition 3.1 If D is a database and t is 
any tuple, then we have: 
T(DEL@,t)) = T(D) - [s / s E T(D), D I= s I t]. 
Proof see [LS87] 

Example 3.2 Let U = {A,B,C,D} be a 
universe, let F = (B+ D, C+ D) be a set of 
functional dependencies, and let D = (ab , 
bc). We have T(D) = (ab, bc, a, b, c]. 

* . lDsertrop . We consider the insertion of 
the tuple cd in D. A representative of the 
class INS(D ,cd) is the database D’ = (ab, bc, 
cd}, so our semantics for insertion 
corresponds to the intuitive notion of 
adding a tuple to a database. Moreover, we 
have T(D) = (abd, bed, ab, bc, bd, cd, ad, a, b, 
c, d). 

* . Deletion, We consider the deletion of the 
tuple ad from the database D’ above. D’ I= 
abd s ad because abd is a super-tuple of ad. 
Moreover, D’ I= ab 5 abd because of the 
dependency B+ D. We deduce from 
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Proposition 3.1 above that the result of the 
deletion is the class D” such that T(D”) = 
T(D)- (ab,abd, ad) = (bed, bc, bd, cd, a, b, c, 
dl. A possible representative of this result 
is the databaseD” = (bc, cd, a). + 

It should be clear from definitions 3.3 and 
3.4 that, in order to process insertion and 
deletion of tuples, all we need is a 
procedure for solving the following 
inference problems: Given a database D and 
tuples t and x, 

(1) Decide whether D I= t, 
(2) Decide whether D I= tl;x 

In other words, we have to solve precisely 
the Sume inference problems as in the 
case of queries ! This is the reason why our 
decision procedure [LS87] strictly subsumes 
chase and weak chase, as we shall now 
explain. 

3.3 Partition Semantics and 
Weak Instances. 

Weak instances were first introduced 
means for discussing global 

iitisfzction of a set of dependencies [M84] 
and has since been used in inferring 
missing information in a database state, 
discussing equivalence of database states, 
and defining Window Functions [MRW86]. 
Its semantics is captured by the well 
known chase procedure. The so-called 
weak-instance model seems to provide the 
right framework for querying universal 
scheme interfaces. However, there does not 
seem to be the flexibility to update over 
arbitrary schemes that there is to query 
over arbitrary schemes. In this paragraph, 
we compare the weak instance model, with 
our model. In the following, we denote by 
WChase a chase procedure in which a non 
distinguished variable can only be 
replaced by a distinguished variable and 
not by another non distinguished variable 
(this is what [MRW86] called ‘null 
preserving chase’). We denote by p(D) the 
tableau built from the database D by 
padding out the tuples of D with non 
distinguished variables. Finally, we denote 
by x&R(X) the set of all tuples in nR(X) 

containing no nulls (usually, rc &R (X) is 
called restricted projection of X on R). 

Theorem 3.1 Let D=@,F) be a database and 
let t be a tuple over a relation scheme R: 

(1) D is consistent iff WChaseF(p(D)) 
satisfies F. 

(2) D implies t iff t is in 
ht(Wchaw(p(D))). l 

N.B. The 
have the 
Section 
“satisfies” 
model. 

Proof see 

terms “consistent” and “implies” 
sense of our model, described in 
2 above, whereas the term 
has the sense of the relational 

[LS87]. 

This theorem establishes the equivalence 
between our semantics and those of weak 
chase. However, our semantics is richer in 
two important ways. More precisely, 
functional dependencies can be 
interpreted in two ways in our model (as 
partial or total functions), and we can 
express both queries and updates over 
arbitrary schemes. 

4. SYNTACTIC PROCESSING OF QUERIES 
AND UPDATES 

In the previous section, we have 
seen that the same decision procedure (one 
that determines whether D I= t and whether 
D I= t<x) is sufficient for processing both 
queries and updates, in a universal scheme 
interface. Thus, all we have to do is to 
implement such a procedure, in order to 
obtain a universal scheme interface. And, 
in fact, such a procedure is given in [LS87] 
and it has been implemented in C on a SUN 
worstation [M87]. However, this approach 
to implementing a universal scheme 
interface is, essentially, building a system 
from scratch. 

In this paper, we propose a more 
pragmatic approach to the problem. 
Namely, rather than implementing a 
universal scheme interface from scratch, 
we propose to take advantage of existing 
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DBMS technology. The method that we 
propose for implementing a universal 
scheme interface can be decomposed into 
two parts, as follows: 

DESIGN PHASE : 
Given universe U and set of functional 
dependencies F, we first associate U and F 
with a (uniquely defined) database scheme, 
called the canonical scheme of U and F. 
Then, we associate every nonempty subset 
Q of U with three (uniquely defined) 
objects: a relational expression, an 
insertion transaction and a deletion 
transaction on the canonical scheme. 

RUN TIME : 
The data is stored according to the 
canonical scheme. User queries and 
updates are expressed in terms of attributes 
alone, and the user does not have to know 
which attributes are in which relations of 
the canonical scheme. A query or update, 
expressed in terms of a set of attributes Q, is 
processed as follows: 

4luxs The relational expression 
associated, during the design phase, with Q 
is evaluated on the current database. 

. mertlon, The insertion transaction 
associated, during the design phase, with Q 
is evoked and executed on the current 
database. 

deletion: The deletion transaction 
associated, during the design phase, with Q 
is evoked and executed on the current 
database. 

Therefore, our approach of implementing 
a universal scheme interface can be seen 
as adding an upper layer on a traditional 
DBMS. This upper layer is currently being 
developped in our laboratory. 

’ 4.1 Computing answers through 
relational expressions 

Throughout our discussions, we 
consider fixed a universe U and a set of 
functional dependencies F. A relational 
expression over U is any well formed 
expression whose operators are relational 

algebra operators and whose operands are 
relation schemes over U. Given a database D 
and a relational expression e over a 
universe U, we can evaluate e over D by 
substituting database relations for the 
schemes in e and performing the 
operations. We denote the result of the 
evaluation by eval(e,D). Unfortunately, the 
evaluation of a relational expression does 
not always yield true tuples. To see this, 
consider the database D=( (ab,bc},o) and the 
expression e=AB BC. We have 
eval(e,D)=(abc) although D does m imply 
abc! This example motivates the following 
definition: 

Definition 4.1 Let F be a set of functional 
dependencies over a universe U. A 
relational expression e over U is called 
sound with respect to F iff every tuple in 
eval(e,D) is implied by D, for all D in 
BASES(F). l 

As we have stated earlier, we are 
interested in answering queries by 
evaluating relational expressions. So, 
suppose that we want to answer a query 
Q/X=x over a database D in BASES(F). 
Moreover, suppose a family A of relation 
schemes over U whose union UA contains Q, 
and whose join A is a sound relational 
expression with respect to F. Then the 
expression aXzx( rc Q( A)), when evaluated 
over D, produces tuples over Q that are 
implied by D and satisfy the condition X=x. 
It follows that these tuples are in the 
answer of Q/X=x. Motivated by this 
discussion, let us define a family A of 
relational schemes to be a context of Q iff 
Q s WA and 1c X( A) is a sound relational 
expression. We denote by con(Q) the set of 
all contexts of Q. Let eval(A,D) denote the 
result of the evaluation of the expression 
oXzx( 1c Q ( A)) over database D. It follows 
from our previous discussion that 

u AE con(Q) evaN4D) s dQIX=x,D) 

We shall show shortly (Theorem 4.5 below) 
that the inclusion also holds in the opposite 
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direction, assuming that the database is 
complete. A database D=(6,F) is called 
complete iff for all Q in sch(D), a(Q,D) = 
s(Q). That is, D is complete if for every Q in 
the schema of D, the answer to Q is 
precisely the relation stored under Q. So, in 
order to compute the answer a(Q/X=x,D), we 
must generate all contexts of Q during the 
design phase, and maintain a complete 
database during runtime. 

We shall see how we maintain a complete 
database in Section 4.4 but first, let us see 
how we can generate contexts. The 
following theorem helps identifying 
contexts. 

Theorem 4.1 Let R and S be relation 
schemes over U. If Rn S+ R is in F+, or 
R n S + S is in F+, then the expression R S 
is sound with respect to F. l 

NIL F+ denotes the closure of F under 
Armstrong axioms. 

Proof see [LSSS] 

In view of this theorem, define relation 
schemes R and S to be neighbors (with 
respect to F) iff RnS+R is in F+, or RnS+S is 
in F+ . Consider, for example, the following 
universe U and set of functional 
dependencies F that we shall use as our 
running example: 

U={MACPl , F = {B+D, C+D} 

Then, the relation schemes AB and BD are 
neighbors, as B+BD is in F+. Similarly, the 
relation schemes ABC and BCD are 
neighbors, as BC+ BCD is in F+. Using the 
concept of neighbors, we can generate. all 
contexts of a given relation scheme, as 
described in the following theorem. 

Theorem 4.2 Let Q be a relation scheme, 
then 

(1) (Q) is a context of Q. 

(2) If A is a context of QuP, then A is a 
context of Q 

(3) If A is a context of Q, A’ is a context of 
P, Q and P are neigbours, 

then A uA’ is a context of QuP. 

(4) Nothing else is a context of Q. 

Proof see [LS88] 

In our running example, if we let Q=AD and 
apply Theorem 4.1, we find 

con(AD) = ( {AB,BD), (ACCD}, 
{ABCJ3CD) , IN% BC, CD), (AD], . . . } 

(Recall that con(Q) denotes the set of all 
contexts of Q). 

4.2 The canonical scheme 

We have seen so far how we could 
compute the answer of a query Q using the 
set of all contexts of Q. In this section, 
given a universe U and a set of functional 
dependencies F, we define a database 
scheme that we call canonical scheme and 
denote by can(U,F). This database scheme 
will be used to consider only “useful” 
contexts, as we shall see later. 

In order to arrive at the definition of 
the canonical database scheme, we need 
some additional definitions and notations. 
First, define a family A of relational 
schemes to be complete iff 
V X E A, V Y E X, Y E A. For instance, in our 
running example, the family (AB,BC,A,B,C} 
is complete. Second, Define a context A of Q 
to be a trivial context of Q if there is P such 
that Q t P and P E A. Now, define a family r 
to be redundant iff there is X in r, and 
non-trivial context A of X such that ACT. For 
example, in our running example, the 
family 
P = ( ABD,AB,BD ) is redundant, because 
(AB,BD) is a non-trivial context of ABD. 
Intuitively, as relations over ABD can be 
decomposed losslessly, over AB and BD, the 
scheme ABD is not needed. An example of 
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irredundant family is the following: (AB, 
BC, B). 

It is not difficult to see that the 
union of two complete and irredundant 
families is also complete and irredundant. 
It follows that the union of all complete 
and irredundant families is also complete 
and irredundant. In fact, this union is the 
greatest (with respect to set inclusion) 
complete and irredundant family over U 
and F. We call this family the canonical 
scheme over U and F and we denote it by 
can(U,F). For example, in our running 
example, the canonical scheme is 
(ABC, AB, AC, AD, BC, BD, CD, A, B, C, D). 

Theorem 4.3 Let U be a universe and F a 
set of functional dependencies. For every 
database D in BASES(F), there is a database 
D’ over the canonical scheme which is 
equivalent to D. + 

Proof see [LSSS] 

Finally, we need the notion of reduction of 
a relation scheme. Let X be a relation 
scheme. The reduction of X, denoted by 
red(X) is the family of all relation schemes 
Y such that: 

(1) Ysx 

(2) Y+X is in F+. 

(3) There is no Y’sY such that Y’+X 
is in F+. 

For instance, in our running example, we 
have red(A) = (A}, red(BC) = (BC), red(BD) = 
(B), red(ABD) = (AB). 

The reductions of relation schemes have an 
interesting property, namely, they all 
belong to the canonical scheme, as stated 
in the following theorem. 

Theorem 4.4 For every relation scheme 
X, we have 

(1) red(X) s can(U,F). 
(2) X E can(U,F) ti X E red(X) + 

Proof see [LS881 

We are now ready to define the 
implementation of queries, insertions, and 
deletions in a universal scheme interface. 

4.3 Queries 

Let U be a universe, let F be a set of 
functional dependencies, and let can(F,U) 
be the associated canonical scheme. Given 
a query q=(Q/X=x), we are looking for a 
relational expression eq such that a(Q,D) = 
eval(e ,D), for all D in BASES(F). We have 
the fo lowing 9 theorem: 

Theorem 4.5: Let q=(Q/X=x) be an 
elementary query over U. 

Let eq= u 0x=x @Q ( A)> 
A E con(Q) 
A s can(W) 

Then for every complete database D over 
the canonical scheme, we have: 

a(q,D) = eval(eq,D). l 

Proof see [LS881 

For instance, in our running example, 
consider the query q=(BC/B=b). We compute 
first the set of all contexts of BC and the 
canonical scheme associated to U and F : 

con(BC) = ( (BC], (BD, CD], (ABC], (BCD]) 

can(W) = (ABC, AB, AC, AD, BC, BD, CD, A, B, 
C, D). 
It follows that the relational expression 
associated to q is 

eq = [C&b nBC’( BD CD)] u 
[aS=b DBC (ABC)] u [oB=b(BC)] . 

Several systems have been proposed, 
based on universal scheme interfaces, such 
as SYSTEM/U [KFGU84], or PIQUE 
[MRSSW87], allowing the user to query a 
relational database, without any knowledge 
of its logical structure. The PIQUE 

72 



language, in particular, provides a very 
convenient way for querying universal 
scheme interfaces. However, two major 
problems still remain with such systems, 
First of all, none of them allows the user to 
update over arbitrary schemes. Second, 
these systems lack a precise semantics for 
data, at the tuple level. As a consequence, 
the system must still make a choice 
between different possible access paths. In 
PIQUE, this problem is delegated to the so- 
called “Object Based Generator” which is in 
charge to provide a relational expression 
for representing a relation scheme. This 
Object Based Generator does not take 
semantic information into account, such as 
functional dependencies. In conclusion, 
existing systems do not go far enough 
toward logical data independence which is 
the final goal of universal scheme 
interfaces. We believe that only a semantic 
approach, such as ours, can reach this 
goal. 

4.4 Updates 

Let us call canonical transaction any 
mapping T that takes as arguments a 
complete database D over the canonical 
scheme and a tuple t, and returns a 
complete database T(D,t) over the 
canonical scheme. Such a mapping must be 
viewed as a sequence of queries, insertions 
and deletions cn relation schemes of the 
canonical scheme. It is important to note 
that the tuple t can be any, 
does not have to be over a 
of the canonical scheme. 

tuple. That is, t 
relation scheme 

Let D be a database on the canonical 
scheme, and let t be a tuple to be inserted 
in D. We are looking for a canonical 
transaction TINS such that: TINS (D,t) is in 
the class INS(D ,t). We have the following 
theorem: 

Theorem 4.6 Let D=@,F) be a database 
over the canonical scheme. Let t be a tuple 
over relation scheme Q (NB. Q is not 

necessarily in the canonical scheme). If 
INS (D ,t) is defined, then the following 
canonical transaction TINS(D,t) leads to a 
complete database in INS(D ,t). 

For all X in can(U,F) such that X s Q 
insert llX(t) in 6(X). 

While 6 is modified do 
For all X in can(U,F) 
6(X) = 6(X) u a(X,D) + 

For instance, in our running example, 
suppose that we want to insert the tuple 
abd. Moreover, suppose that the “current” 
database D is empty so that INS(D ,abd) is 
defined. The corresponding canonical 
transaction is the following: 

TINs(D,abd) : insert the tuples a, b, ad, a, b 
and d in the corresponding relations. 

. 
Peletlons 

Let D be a database on the canonical 
scheme, and let t be a tuple to be deleted 
from D. We are looking for a canonical 
transaction TDEL such that: TDEL (D,t) is in 
the class DEL(D ,t). We have the following 
theorem: 

Theorem 4.7 Let D be a database over the 
canonical scheme. Let t be a tuple over 
relation scheme Q (NB. Q is not necessarily 
in the canonical scheme). DEL(D ,t) is 
always defined and the following 
transaction TDEL (D,t) leads to a complete 
database in DEL(D ,t). 

For all X such that QrX, 
For all s in a(X/Q=t,D), 

For all Y in red(X), 
delete IIy(s) from S(Y), and 
For all 2 such that ZEY and Z;tY 

insert IIz(s) in S(Z) l 

Proof (sketch) 
Using the semantics defined in 

Section 3, we must remove from the 
database all tuples t’ such that D 
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implies t’s t. All tuples in 
a(X/Q=t,D),for a superset X of Q, satisfy 
this condition. We could show that if s 
is a tuple over X, and if Y is a relation 
scheme in red(X), then m(s)=m(Hy(s)) 
for all models m of D. So, looking at 
Theorem 4.3, it is necessary and 
sufficient to remove all tuples H y (s) 
from the corresponding relations in 
order to delete s. Now, every (strict) 
subtuple of Hy (s) is inserted, in order 
to capture the semantics of Section 3 
(the maximality condition). Notice 
that all subsets Z of Y are in can(U,F), 
because Y is in can(U,F), from 
Theorem 4.3. 

For instance, in our running example, 
suppose that we want to delete ad, from the 
database D (containing tuples ab, bc, and 
cd). Following Theorem 4.6, the 
corresponding transaction is TDEL(D,adk 
for X=ADB, we have a(ADB/AD=ad,D) = 
{adb), and red(ADB) = (AB}, so we delete ab 
from 8(AB), and insert a and b in the 
corresponding relations; 
for X=ADC, we have a(ADC/AD=ad,D) = 0; 
for X=ADBC, we have o(ADBC/AD=ad,D) = 0. 
We thus obtain a complete database 
containing the tuples a,b,bc, and cd. We 
can compare this result with the example 
3.2 of Section 3. 

5. CONCLUSIONS 

We have used partition semantics in 
order to implement queries and updates on 
a universal scheme interface, through 
relational expressions and transactions on 
a traditional DBMS. Implementations of 
queries, based on the weak instance model, 
have been proposed in the past. However, 
proposals for the implementation of 
updates have only led to increased 
complexity without really soving the 
problem. We believe that it is in the 
implementation of updates that our method 
offers a simple solution. 

Maier, Ullman and Vardi have 
schown [MUV84] that the effect of the 

representative instance, and therefore the 
partition semantics, cannot be simulated in 
the general case by first order expressions. 
In this paper, we have shown that it is 
possible for complete databases over 
canonical schemes. We have also shown 
that every database is equivalent with 
respect to queries to such a database. We 
have thus obtained a solution to the 
general case as follows: given U and F, we 
produce the canonical schema 
corresponding to U and F, and we simulate 
the effect of partition semantics by 
relational expressions over complete 
databases on that canonical schema. 

The approach described in this 
paper is currently being implemented in 
the form of an upper layer for traditional 
DBMS’s. 
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