
IMPLEMENTING QUERIES AND UPDATES

ON UNIVERSAL SCHEME INTERFACES

---e-------e--
C. LECLUSE and N. SPYRATOS

Universitt de Paris Sud

91405 Orsay cedex

PRANCE

ABSTRACT: Using partition semantics
[S84,LS87], we show that to every relational
universe U and set of functional
dependencies F, there corresponds a unique
database scheme (called the canonical
scheme) such that every query on the
universe can be answered uniquely by a
relational expression on the canonical
scheme, and every update of the universal
relation can be translated uniquely into a
transaction on the canonical scheme. Our
results render the relational model logically
independent with respect to both queries
and updates thus subsuming previous
approaches to the problem [MRSSW87].

1. INTRODUCTION

As noted by Maier,Vardi and Ullman
[MUV84], the relational data model has
gone far toward physical data
independence, but has not achieved the
goal of logical data independence. That is,
users of relational systems are relieved of
specifying access paths within the
structure of a single relation, but they still
must navigate between relations. Users and
application programs are protected from
changes in the physical implementation of
relations, but not from changes in the
logical structure of a database, such as
decomposition made for normalization or
efficiency reasons.

Universal scheme interfaces are an
attempt to achieve logical data
independence. In a universal scheme
interface, all the semantics of the database
is loaded onto the attributes. Queries are
phrased in terms of attributes alone and
the user does not need to know which

62

attributes are in which relations. That is,
in a universal scheme interface, a database
is presented as a semantic whole, accessible
through its attributes alone.

The idea that data can, at least in
principle, be thought of as residing in a
single relation is an intuitively appealing
one. In fact, even in the normalization
process, the implicit assumption is that it
makes sense to talk about attributes
disembodied from any particular relation
scheme and, therefore, with a meaning of
their own. However, what this meaning
should be was not clear, and this gave rise
to much controversy. The breakthrough
was Mendelzon’s ” w e a k ” or
“representative” instance view of
universal relations [M84] exploited by
Sagiv [S83] in a real system. As with
dependencies, there are in fact many
sound ways one can view the universal
relation; Maier, Rozenshtein and Warren
[MRW86] is a key paper integrating these
differing viewpoints. They also survey a
large number of systems that are,
implicitely or explicitely, based on a
universal scheme interface.

*The weak instance view of universal
relations seems to provide the right
framework for querying universal scheme
interfaces. However, there does not seem to
be the flexibility to update over arbitrary

Permission to copy without fee all 0I put Of thiS llUtkd ic

granted provided that the copies are not ma& or dkhiWed fOr
direct commercial advmltage. the VLDBeopyright ~~ ad
the title of the publication and its date appear, and notice ir @a
that copying is by permission of the Very bge Data Bose
Endowment. To copy othcxwise, or to republish nquirer l fee
and/or special permission from the Endowment

Ptoceedings of the 14th VLDB Conference
LOS Angeles, California 1988

schemes that there is to query over
arbitrary schemes. Proposals to remedy
this defficiency (such as introducing
“missing value” nulls) have led to
increased complexity without really
solving the update problem.

In this paper, we propose a novel
approach for processing queries ti
updates in a universal scheme interface,
based on the set-theoretic semantics of the
partition model
approach, the
universal scheme
parts as follows:

DESIGN PHASE :

[S84,CKS86]. In our
implementation of a

interface is done in two

Given universe U and set of functional
dependencies F, we first associate U and F
with a (uniquely defined) database scheme,
called the canonical scheme of U and F.
Then, we associate every nonempty subset
Q of U with three (uniquely defined)
objects: a relational expression, an
insertion transaction and a deletion
transaction on the canonical scheme.

RUN TIME :
The data is stored A query or update,
expressed in terms of a set of attributes Q, is
processed as follows:

- The relational expression
associated, during the design phase, with Q
is evaluated on the current database.
. . . insertlok The insertion transaction
associated, during the design phase, with Q
is evoked and executed on the current
database.

deletion: The deletion transaction
associated, during the design phase, with Q
is evoked and executed on the current
database.

Therefore, our approach of implementing
a universal scheme interface can be seen
as adding an upper layer on a traditional
DBMS. This upper layer is currently being
developped in our laboratory.

The paper is organized as follows. In
Section 2, we recall the basic definitions
from the partition model [LS87] which

provides the underlying semantics of our
approach. In Section 3, we define partition
semantics for queries and updates in a
universal scheme interface; we show that,
in terms of queries, our semantics is
equivalent to weak instance semantics. In
Section 4, we show how partition semantics
can lead to unambiguous semantics for
universal scheme interfaces for both
queries and updates. Section 5 contains
some conclusions and suggestions for
further work.

2. PARTITION SEMANTICS.

2.1 Informal overview.

Consider the following database
containing only two tuples:

AGE-

Young Unempl. Unempl. Female

The tuple Young Unemployed can be
seen as a string of two uninterpreted
symbols, Young and Unemployed. Now,
think of a possible world, and let Sz be the
set of all individuals in that world.
Moreover, let I(Yo ung) be the set of all
individuals of a that are young, and call
I(Young) the interpretation of Young.
Similarly, let I(UnempZoyed) be the set of
all individuals of fi that are unemployed
and call I(U n e m p 2 o y e d)
the interpretation of Unemployed. Clearly,
the intersection I(Young)nI(UnempZoyed)
is the set of all individuals of f2 that are
both young and unemployed. It is precisely
this intersection that we define to be the
interpretation of the tuple
Young Unemployed. In other words, the
interpretation of a tuple is the intersection
of the interpretations of its constituent
symbols.

This kind of set-theoretic semantics
of tuples allows for a very intuitive notion
of truth. A tuple t is called f rue in
interpretation I iff I(t) is nonempty. Thus,
for example, the (atomic) tuple Young is
true iff I(Yo ung) is nonempty, that is iff
there is an individual in Sz which is young
(at least one such individual). Similarly,

63

the tuple Unemployed is true in I iff there
is an individual in n which is unemployed.
Finally, the tuple Young Unemployed is
true in I iff there is an individual in Q
which is both young and unemployed.

The set-theoretic semantics just
introduced allow for a very natural notion
of inference through set-containment. To
see this, consider the following question:

Assuming that Young Unemployed is true
in I and that Unemployed Female is true in
I, can we infer that Young Unemployed
Female is true in I ?

If we recall the definition of truth given
earlier, then we can reformulate this
question as follows:

Assuming that I(Young) A I(Unemployed)
is not empty and that I(Unemployed) n
I(Femule) is not empty, can we infer that
I(Youn‘g) n I(Unemployed) n I(Female) is
not empty ?

Clearly the answer depends on the
interpretation I. However, if we impose
constraints on the interpretation I, for
instance, if we require that

I(UnempZoyed) E I(Young) (1)

meaning that all unemployed individuals
are young, or that

I(Unemployed) c I(Femule) (2)

meaning that all unemployed individuals
are female, then the answer is yes.

As we shall see shortly, constraints
such as (1) and (2) provide the right
interpretation for functional
dependencies. It is important to note that
the tuple appearing in a database, such as
young Unemployed and Unemployed
Female are assumed to be true. Using
constraints such as (1) and (2) above, we
may discover that other tuples that do not
appear in the database, such as Y o I(ng
Unemployed Female are also true. Given a
database D, we shall be interested in the set
T(D) of all tuples that are implied by D. We
shall look at this set as the information
content of D and we shall call two database
equivalent if they have the same

information content. What we shall be
querying and updating is the information
T(D) and not particular representation of
this information.

2.2 The Model.

We shall consider, separately the
syntax and the semantics of our model. The
syntactic part is essentially the relational
model. The semantic part is a formalization
of the concepts explained above.

2.2.1 Syntax

We begin with a finite, nonempty set
U={AI ,. . .,An). The set U is called the
univ e TV e and the Ai’s are called the
attributes. Each attribute Ai is associated
with a countably infinite set of symbols (or
values) called the domain of Ai and denoted
by dom(Ai). We assume that U n dom(Ai) is
empty for all i, and that dom(Ai) n dom(Aj)
= 0 for i # j. A relation scheme over U is a
nonempty subset of U; we call sch(U) the
set of all realtion schemes over U and we
denote a relation scheme by the
juxtaposition of its attributes (in any
order). A tupl e t over a relation scheme R
is a function defined on R such that t(Ai) is
in dom(Ai), for all Ai in R. We denote by
dam(R) the set of all tuples over R. Clearly,
dam(R) is the Cartesian product of the
domains of all the attributes in R. If t is a
tuple over R=AI...An, and if t(Aj)=aj,
j=l,...,n, then we denote the tuple t by
aI . . . an. A relation over R is a set of tuples
over R.

Definition 2.1 A database over U is a
pair (6,F) such that

(1) 6 is a function assigning to every
relation scheme R over U a finite relation
over R, and

(2) F is a set of ordered pairs (X,Y)
such that X and Y are subsets of U.
Every pair (X,Y) is called a functional
dependency and is denoted by X+Y +

Example 2.1 Consider a universe of
three attributes, say U={A,B,C), and let
dom(A)=(aI,a2 ,...), dom(B)=(bl,b2 ,...), and
dom(C)=(cI,c2,...).

64

Define a function 6 on relation schemes
over U as follows:

WW = talbl, a2bij
WW = tblcl, blc2)
6(R) = 0 for all other schemes R.

Let F be the set (A-+B,BC+A}.+

I: ai + U,31 a;! -3 u.41
bI -+ (1,2,3,4) bL + (5.6)
Cl + (31 c2 + (11
x + 0, for every x different than

al,bl,bwlm.

I(alb1) = I(aI) n I(bI) = (1.3)
I(a2bI) = I(a1) n I(bI) = (2,4)
I(blcl) = WI) n I(cl) = (31
Ublca) = WI) n I(~21 = (11
I(alblcl) = I(alhIWnWi) = (3)
I(alblc2) = I(al)nI(bI)nI(c2) = (1)

FIGURE 2.1 An interpretation I of U

Given a database D=(g,F), we call scheme of
D, denoted by sch(D), the set of all relation
schemes that are assigned non-empty
relations under 6. That is, sch(D) = (R E
sch(U) I S(R) +: 0). Thus, the database
scheme in Example 2.1 consists of the
relation schemes AB and BC.

2.2.2 Semantics.

We assume that the “real world”
consists of a countably infinite set of
objects, and we identify these objects with
the positive integers. Let o be the set of all
positive integers, and let 20 = (z / z E o) be
the set of all subsets of w. The set 20 is the
semantic domain in which tuples and
dependencies will receive their
interpretations.

Throughout our discussions, we
consider fixed the universe of attributes U
= (AI,A2,...An), and the associated domains
d o m (A i). For notational convenience, we
denote by SYMBOLS the union of all
attribute domains and by TUPLES the union
of all domains. That is:

SYMBOLS = uAEU dam(A),

TUPLES = uREsch(U) dam(R).

Clearly, SYMBOLS is a subset of TUPLES.

Definition 2.2 An interpretation of U
is a function I from SYMBOLS into 20 such
that

VA E U, Va,a’ E dam(A), (a # a’ 3 I(a)
n I(a’) = 0) l

Thus the basic property of an
interpretation is that different symbols of
the same domain are assigned disjoint sets
of integers. In Figure 2.1, we see a function
I satisfying this property. The intuitive
motivation behind this definition is that an
attribute value, say a, is an (atomic)
property, and I(a) is a set of objects having
property a under I. Furthermore, an object
cannot have two different properties a, a’
of the same “type”; hence I(a) n I(a’) = 0.
Given an interpretation I, we can extend it
from SYMBOLS to TUPLES as follows:

VR E sch(U), VaIa2..;an E dam(R),
I(aIa2...an) = I(a1) n . . . n Ran)

In Figure 2.1 above, we see some examples
of computations of tuple interpretations.
The intuitive motivation for this extension
is that a tuple, say ab, is the conjunction of
the (atomic) properties a and b.
Accordingly, I(ab) is the set of objects
having both properties a . and b, and
therefore, I(ab) = I(a) n I(b). Our definition
of an interpretation suggests intuitive
notions of thrutb and refinement for
tuples, as follows:

Definition 2.3 Let I be an
interpretation and let s,t be any tuples in
TUPLES. We say that tuple t is true in I iff
I(t)+@, and we say that tuple s refines tuple
t in I iff I(s) c I(t). l

65

That is, t is true in I if there is at least one
individual having property t, and s refines
t in I if every individual having property s
(under I) also has property t. Note that
every tuple t refines all its subtuples (for
example, ab refines both a and b). We now
define when an interpretation I is called a
model of a database D.

Definition 2.4 Let D = (6 ,F) be a
database over U. An interpretation I of U is
called a model of D if

(1) t/R E sch(U), Vt E 6(R), I(t) + 0.

(2) VX+Y E F, Vx E dam(X), Vy E dam(Y),
I(x) n I(Y) f 0 * I(x) c I(y) l

Condition (1) of this definition says that
every tuple appearing in the database must
be tnie. Condition (2) says that every
functional dependency must be interpreted
as a function. Let us note that X-, Y is still
interpreted as a function even if we
replace condition (2) by the stronger
condition

(2’) Vx E dam(X), 3y E dam(Y), I(x)
E I(Y).

The difference between (2) and (2’) is that
condition (2) interprets X+ Y as a partial
function whereas condition (2’) interprets
X+ Y as a total function. In this paper, we
adopt the (more general) condition (2) in
our definition of a model. We shall come
back to this remark when discussing chase
and weak chase in the following section.

Having defined the concept of model,
vie can now define the concept of
consistency. A database D is called
consistent iff D posseses at least one model;
and otherwise D is called inconsistent. For
example, the database D = (6,F) of Example
2.1 is consistent as the interpretation
shown in Figure 2.1 is a model of D. On the
other hand, the following database is
inconsistent, as no interpretation I can
verify the tuples ab and ab’, and the
dependency B+A, all at the same time.

a b
a’ b

b c B+A
A+C

Definition 2.5 Let D=(6,F) be a database
over universe U. Let s and t be any tuples
in TUPLES. We say that D implies t, denoted
by D I= t, iff m(t)+0 for every model m of D.
We say that D implies sit, denoted by D I= t
4 s , i f
m(t) c m(s), for every model m of D. +

Clearly, D implies all tuples appearing in D.
This follows immediately from the
definition of a model. On the other hand,
the database D of Figure 2.1 does not imply
the tuples a2bIcI and a2bIc2, as they are
false in the model I shown in the figure.

Given a model m of D, we denote by T(m)
the set of all tuples in TUPLES which are
true in m. Let us denote by mod(D) the set
of all models of D, and let us define

TO) = nm E mod(D) T(m)-

T(D) is clearly the set of all tuples implied
by D. In the following section, we use the
set T(D) in order to define semantics for
queries and updates in a universal scheme
interface.

3. QUERIES AND UPDATES.

Our semantics for queries
corresponds to the weak instance
semantics, but our semantics for updates is
new.

3.1 Queries.

We define queries as in a universal scheme
interface. That is, a query is a set of
attributes, plus a selection condition.
However, in order to arrive at the formal
definition of a query and its answer, we
need some preliminary definitions and
notations.

Given a universe U and a relation scheme Q
over U, we call elementary condition over
Q any expression of the form X=x, where X
is a subset of Q and x a tuple over X.

66

Definition 3.1 We call elementary query
over U, any expression of the form Q/X=x,
such that Q is a relation scheme and X=x is
an elementary condition over Q. Given a
universe U, an elementary query Q/X=x,
and a database D over U, the answer of
Q/X=x with respect to D, denoted by
a(Q/X=x,D), is defined as follows:

a(Q/X=x,D) = {t E dam(Q) / D I= t, D I= t < x)

l

In other words, a(Q/X=x,D) is the set of all
tuples over Q implied by D and refining x
in D.

Example 3.1 Consider the universe
U={A,B,C,D), and a database D = ((ab,bc,cd),
{ B+D, C+D)). Let m be any model of D. As
cd is in D, we have m(c) E; m(d) because of
the dependency C+ D. Hence, we have
m(bcd) = m(b)nm(c)nm(d) = m(b)nm(c) =
m(bc). As bc is in D, it follows that
m(bcd)#O and, thus, m(bd)&t . So D implies
bd. Using ab, bd and the dependency B+ D,
we can show in the same way that D implies
ad. So the answer to the query AD in the
database D is (ad). Notice that, without the
dependencies B+ D & C+D, the answer to
the query AD would be empty! l

Clearly, in order to answer elementary
queries, we must solve the following
inference problems: Given a database D and
tuples t and x,

(1) Decide whether D I= t,

(2) Decide whether D I= t < x.

A procedure for solving these problems is
given in [LS87].

Elementary conditions can be combined
using logical connectives in order to form
more complex conditions. We call selection
condition over Q, any combination of

elementary conditions over Q, using logical
connectives.

Definition 3.2 We call query over U, any
expression of the form Q/s such that Q is a
relation scheme and s is a selection
condition. The answer to a query over U is
defined recursively, based on the answers
to elementary queries, as follows:

a(Ql--SD) = a(Q,D) -- u(Q/s,D),
a(Qls~s’,D) = a(Q/s,D) n a(Q/s’,D),
u(Q/svs’,D) = a(Q/s,D) u u(Q/s’,D).

+

3.2 Updates.

We consider the problem of
inserting and deleting a single tuple t in a
database D=@,F). (In [LS87], we show that
inserting or deleting a set of tuples is
equivalent to inserting or deleting the
tuples, one at a time). We assume that the
set F is fixed, that is, we update 6 and not F
(ie, we update tuples and not
dependencies). We denote by BASES(F), the
set of all databases over a set F of
functional dependencies. Given two
databases D and D’ in BASES(F), we say that
D and D’ are equivalent, denoted by D = D’,
iff T(D) = T(D’). This definition is motivated
by the fact that the information carried by
a database D is the set T(D), namely the set
of all tuples implied by D. We are interested
mainly in the information T(D), and not in
the representation of this information by
different (but equivalent) databases. The
set of all equivalence classes of BASES(F) is
denoted by BASES(F)/= and the class of a
database D is denoted by D. We shall take
the set T(D) to be the representative of the
class D. We say that a class D is smaller
than a class D’, denoted by D c D’, iff T(D) E
T(D’). What we are updating is the
information T(D), rather than the database
D. In other words, we are updating
equivalence classes and not specific
databases. As we update equivalence
classes, we define insertion to be a
function from the Cartesian product
BASES(F)/= x TUPLES into BASES(F)/=. This

67

function takes as arguments an
equivalence class D and a tuple t, and
returns an equivalence class D’ . The
conditions that the equivalence class D’
must satisfy are stated formally in the
following definition.

Definition 3.3 Let U be a universe and
let F be a fixed set of functional
dependencies over U. Define insertion of a
tuple to be a function INS, from BASES(F)/=
x TUPLES into BASES(F)/= , such that, for
every tuple t and every database D:

(1) INS(D ,t) is the smallest class D’
verifying conditions (2) and (3) below:

(2) D <D’, and
(3) D’ I= t.

l

Note that if D ’ exists then it
Indeed, D ’ is the equivalence
corresponds to

is unique.
class that

n lT(D”) / T(D) E T(D”) , t E T(D”) 1

Thus INS is a well defined function.
However, as insertion of tuples may create
inconsistency with respect to F, it is clear
that INS is only a partial function.

A word of explanation is in order here,
concerning the requirement that INS(D ,t)
be minimal. First, observe that if INS(D ,t)
exists then there may be many different
equivalence classes D’ satisfying the
conditions (2) and (3) above. Thus, in order
for INS(D ,t) to be a function, we must
designate a unique class D ’ as the result of
insertion. The reason why we ask for a
minimal class D’ , satisfying (2) and (3), is
because we want to exclude undesirable
insertions of tuples (“side effects”). For
example, if D=((ab),0) and we want to
insert the tuple a’b’, then any of the
following non-equivalent databases
satisfies conditions (2) and (3) above:

D’ = ((ab,a’b’),O), D” = ((ab,a’b’,a”b”],0), . . .

Of the above databases, condition (1)
designates the minimal class D’ as the
result of the insertion. We define deletion

of a tuple from an equivalence class in a
similar manner.

Definition 3.4 Let U be a universe and let
F be a set of functional dependencies over
U. Define deletion of a tuple to be a
function DEL from BASES(F)/= x TUPLES
into BASES(F)/= , such that, for every class
D and every tuple t,

(1) DEL(D ,t) is the largest class D’
verifying conditions (2) and (3) below:

(2) D’ < D
(3) D’ I# s, for all s such that: D I= &

+

It is shown in [LS87] that DEL(D,t) is always
defined. that is, DEL is a total function. The
reason why DEL(D ,t) is required to be a
maxiamal class is similar (or, rather,
symmetric) to the reason why INS(D ,t) is
required to be a minimal class. The
following proposition describes a basic
property of deletion, namely, when
deleting a tuple t, we must also delete all its
refinements (i.e., all its supertuples).

Proposition 3.1 If D is a database and t is
any tuple, then we have:
T(DEL@,t)) = T(D) - [s / s E T(D), D I= s I t].
Proof see [LS87]

Example 3.2 Let U = {A,B,C,D} be a
universe, let F = (B+ D, C+ D) be a set of
functional dependencies, and let D = (ab ,
bc). We have T(D) = (ab, bc, a, b, c].

* . lDsertrop . We consider the insertion of
the tuple cd in D. A representative of the
class INS(D ,cd) is the database D’ = (ab, bc,
cd}, so our semantics for insertion
corresponds to the intuitive notion of
adding a tuple to a database. Moreover, we
have T(D) = (abd, bed, ab, bc, bd, cd, ad, a, b,
c, d).

* . Deletion, We consider the deletion of the
tuple ad from the database D’ above. D’ I=
abd s ad because abd is a super-tuple of ad.
Moreover, D’ I= ab 5 abd because of the
dependency B+ D. We deduce from

68

Proposition 3.1 above that the result of the
deletion is the class D” such that T(D”) =
T(D)- (ab,abd, ad) = (bed, bc, bd, cd, a, b, c,
dl. A possible representative of this result
is the databaseD” = (bc, cd, a). +

It should be clear from definitions 3.3 and
3.4 that, in order to process insertion and
deletion of tuples, all we need is a
procedure for solving the following
inference problems: Given a database D and
tuples t and x,

(1) Decide whether D I= t,
(2) Decide whether D I= tl;x

In other words, we have to solve precisely
the Sume inference problems as in the
case of queries ! This is the reason why our
decision procedure [LS87] strictly subsumes
chase and weak chase, as we shall now
explain.

3.3 Partition Semantics and
Weak Instances.

Weak instances were first introduced
means for discussing global

iitisfzction of a set of dependencies [M84]
and has since been used in inferring
missing information in a database state,
discussing equivalence of database states,
and defining Window Functions [MRW86].
Its semantics is captured by the well
known chase procedure. The so-called
weak-instance model seems to provide the
right framework for querying universal
scheme interfaces. However, there does not
seem to be the flexibility to update over
arbitrary schemes that there is to query
over arbitrary schemes. In this paragraph,
we compare the weak instance model, with
our model. In the following, we denote by
WChase a chase procedure in which a non
distinguished variable can only be
replaced by a distinguished variable and
not by another non distinguished variable
(this is what [MRW86] called ‘null
preserving chase’). We denote by p(D) the
tableau built from the database D by
padding out the tuples of D with non
distinguished variables. Finally, we denote
by x&R(X) the set of all tuples in nR(X)

containing no nulls (usually, rc &R (X) is
called restricted projection of X on R).

Theorem 3.1 Let D=@,F) be a database and
let t be a tuple over a relation scheme R:

(1) D is consistent iff WChaseF(p(D))
satisfies F.

(2) D implies t iff t is in
ht(Wchaw(p(D))). l

N.B. The
have the
Section
“satisfies”
model.

Proof see

terms “consistent” and “implies”
sense of our model, described in
2 above, whereas the term
has the sense of the relational

[LS87].

This theorem establishes the equivalence
between our semantics and those of weak
chase. However, our semantics is richer in
two important ways. More precisely,
functional dependencies can be
interpreted in two ways in our model (as
partial or total functions), and we can
express both queries and updates over
arbitrary schemes.

4. SYNTACTIC PROCESSING OF QUERIES
AND UPDATES

In the previous section, we have
seen that the same decision procedure (one
that determines whether D I= t and whether
D I= t<x) is sufficient for processing both
queries and updates, in a universal scheme
interface. Thus, all we have to do is to
implement such a procedure, in order to
obtain a universal scheme interface. And,
in fact, such a procedure is given in [LS87]
and it has been implemented in C on a SUN
worstation [M87]. However, this approach
to implementing a universal scheme
interface is, essentially, building a system
from scratch.

In this paper, we propose a more
pragmatic approach to the problem.
Namely, rather than implementing a
universal scheme interface from scratch,
we propose to take advantage of existing

69

DBMS technology. The method that we
propose for implementing a universal
scheme interface can be decomposed into
two parts, as follows:

DESIGN PHASE :
Given universe U and set of functional
dependencies F, we first associate U and F
with a (uniquely defined) database scheme,
called the canonical scheme of U and F.
Then, we associate every nonempty subset
Q of U with three (uniquely defined)
objects: a relational expression, an
insertion transaction and a deletion
transaction on the canonical scheme.

RUN TIME :
The data is stored according to the
canonical scheme. User queries and
updates are expressed in terms of attributes
alone, and the user does not have to know
which attributes are in which relations of
the canonical scheme. A query or update,
expressed in terms of a set of attributes Q, is
processed as follows:

4luxs The relational expression
associated, during the design phase, with Q
is evaluated on the current database.

. mertlon, The insertion transaction
associated, during the design phase, with Q
is evoked and executed on the current
database.

deletion: The deletion transaction
associated, during the design phase, with Q
is evoked and executed on the current
database.

Therefore, our approach of implementing
a universal scheme interface can be seen
as adding an upper layer on a traditional
DBMS. This upper layer is currently being
developped in our laboratory.

’ 4.1 Computing answers through
relational expressions

Throughout our discussions, we
consider fixed a universe U and a set of
functional dependencies F. A relational
expression over U is any well formed
expression whose operators are relational

algebra operators and whose operands are
relation schemes over U. Given a database D
and a relational expression e over a
universe U, we can evaluate e over D by
substituting database relations for the
schemes in e and performing the
operations. We denote the result of the
evaluation by eval(e,D). Unfortunately, the
evaluation of a relational expression does
not always yield true tuples. To see this,
consider the database D=((ab,bc},o) and the
expression e=AB BC. We have
eval(e,D)=(abc) although D does m imply
abc! This example motivates the following
definition:

Definition 4.1 Let F be a set of functional
dependencies over a universe U. A
relational expression e over U is called
sound with respect to F iff every tuple in
eval(e,D) is implied by D, for all D in
BASES(F). l

As we have stated earlier, we are
interested in answering queries by
evaluating relational expressions. So,
suppose that we want to answer a query
Q/X=x over a database D in BASES(F).
Moreover, suppose a family A of relation
schemes over U whose union UA contains Q,
and whose join A is a sound relational
expression with respect to F. Then the
expression aXzx(rc Q(A)), when evaluated
over D, produces tuples over Q that are
implied by D and satisfy the condition X=x.
It follows that these tuples are in the
answer of Q/X=x. Motivated by this
discussion, let us define a family A of
relational schemes to be a context of Q iff
Q s WA and 1c X(A) is a sound relational
expression. We denote by con(Q) the set of
all contexts of Q. Let eval(A,D) denote the
result of the evaluation of the expression
oXzx(1c Q (A)) over database D. It follows
from our previous discussion that

u AE con(Q) evaN4D) s dQIX=x,D)

We shall show shortly (Theorem 4.5 below)
that the inclusion also holds in the opposite

70

direction, assuming that the database is
complete. A database D=(6,F) is called
complete iff for all Q in sch(D), a(Q,D) =
s(Q). That is, D is complete if for every Q in
the schema of D, the answer to Q is
precisely the relation stored under Q. So, in
order to compute the answer a(Q/X=x,D), we
must generate all contexts of Q during the
design phase, and maintain a complete
database during runtime.

We shall see how we maintain a complete
database in Section 4.4 but first, let us see
how we can generate contexts. The
following theorem helps identifying
contexts.

Theorem 4.1 Let R and S be relation
schemes over U. If Rn S+ R is in F+, or
R n S + S is in F+, then the expression R S
is sound with respect to F. l

NIL F+ denotes the closure of F under
Armstrong axioms.

Proof see [LSSS]

In view of this theorem, define relation
schemes R and S to be neighbors (with
respect to F) iff RnS+R is in F+, or RnS+S is
in F+ . Consider, for example, the following
universe U and set of functional
dependencies F that we shall use as our
running example:

U={MACPl , F = {B+D, C+D}

Then, the relation schemes AB and BD are
neighbors, as B+BD is in F+. Similarly, the
relation schemes ABC and BCD are
neighbors, as BC+ BCD is in F+. Using the
concept of neighbors, we can generate. all
contexts of a given relation scheme, as
described in the following theorem.

Theorem 4.2 Let Q be a relation scheme,
then

(1) (Q) is a context of Q.

(2) If A is a context of QuP, then A is a
context of Q

(3) If A is a context of Q, A’ is a context of
P, Q and P are neigbours,

then A uA’ is a context of QuP.

(4) Nothing else is a context of Q.

Proof see [LS88]

In our running example, if we let Q=AD and
apply Theorem 4.1, we find

con(AD) = ({AB,BD), (ACCD},
{ABCJ3CD) , IN% BC, CD), (AD], . . . }

(Recall that con(Q) denotes the set of all
contexts of Q).

4.2 The canonical scheme

We have seen so far how we could
compute the answer of a query Q using the
set of all contexts of Q. In this section,
given a universe U and a set of functional
dependencies F, we define a database
scheme that we call canonical scheme and
denote by can(U,F). This database scheme
will be used to consider only “useful”
contexts, as we shall see later.

In order to arrive at the definition of
the canonical database scheme, we need
some additional definitions and notations.
First, define a family A of relational
schemes to be complete iff
V X E A, V Y E X, Y E A. For instance, in our
running example, the family (AB,BC,A,B,C}
is complete. Second, Define a context A of Q
to be a trivial context of Q if there is P such
that Q t P and P E A. Now, define a family r
to be redundant iff there is X in r, and
non-trivial context A of X such that ACT. For
example, in our running example, the
family
P = (ABD,AB,BD) is redundant, because
(AB,BD) is a non-trivial context of ABD.
Intuitively, as relations over ABD can be
decomposed losslessly, over AB and BD, the
scheme ABD is not needed. An example of

71

irredundant family is the following: (AB,
BC, B).

It is not difficult to see that the
union of two complete and irredundant
families is also complete and irredundant.
It follows that the union of all complete
and irredundant families is also complete
and irredundant. In fact, this union is the
greatest (with respect to set inclusion)
complete and irredundant family over U
and F. We call this family the canonical
scheme over U and F and we denote it by
can(U,F). For example, in our running
example, the canonical scheme is
(ABC, AB, AC, AD, BC, BD, CD, A, B, C, D).

Theorem 4.3 Let U be a universe and F a
set of functional dependencies. For every
database D in BASES(F), there is a database
D’ over the canonical scheme which is
equivalent to D. +

Proof see [LSSS]

Finally, we need the notion of reduction of
a relation scheme. Let X be a relation
scheme. The reduction of X, denoted by
red(X) is the family of all relation schemes
Y such that:

(1) Ysx

(2) Y+X is in F+.

(3) There is no Y’sY such that Y’+X
is in F+.

For instance, in our running example, we
have red(A) = (A}, red(BC) = (BC), red(BD) =
(B), red(ABD) = (AB).

The reductions of relation schemes have an
interesting property, namely, they all
belong to the canonical scheme, as stated
in the following theorem.

Theorem 4.4 For every relation scheme
X, we have

(1) red(X) s can(U,F).
(2) X E can(U,F) ti X E red(X) +

Proof see [LS881

We are now ready to define the
implementation of queries, insertions, and
deletions in a universal scheme interface.

4.3 Queries

Let U be a universe, let F be a set of
functional dependencies, and let can(F,U)
be the associated canonical scheme. Given
a query q=(Q/X=x), we are looking for a
relational expression eq such that a(Q,D) =
eval(e ,D), for all D in BASES(F). We have
the fo lowing 9 theorem:

Theorem 4.5: Let q=(Q/X=x) be an
elementary query over U.

Let eq= u 0x=x @Q (A)>
A E con(Q)
A s can(W)

Then for every complete database D over
the canonical scheme, we have:

a(q,D) = eval(eq,D). l

Proof see [LS881

For instance, in our running example,
consider the query q=(BC/B=b). We compute
first the set of all contexts of BC and the
canonical scheme associated to U and F :

con(BC) = ((BC], (BD, CD], (ABC], (BCD])

can(W) = (ABC, AB, AC, AD, BC, BD, CD, A, B,
C, D).
It follows that the relational expression
associated to q is

eq = [C&b nBC’(BD CD)] u
[aS=b DBC (ABC)] u [oB=b(BC)] .

Several systems have been proposed,
based on universal scheme interfaces, such
as SYSTEM/U [KFGU84], or PIQUE
[MRSSW87], allowing the user to query a
relational database, without any knowledge
of its logical structure. The PIQUE

72

language, in particular, provides a very
convenient way for querying universal
scheme interfaces. However, two major
problems still remain with such systems,
First of all, none of them allows the user to
update over arbitrary schemes. Second,
these systems lack a precise semantics for
data, at the tuple level. As a consequence,
the system must still make a choice
between different possible access paths. In
PIQUE, this problem is delegated to the so-
called “Object Based Generator” which is in
charge to provide a relational expression
for representing a relation scheme. This
Object Based Generator does not take
semantic information into account, such as
functional dependencies. In conclusion,
existing systems do not go far enough
toward logical data independence which is
the final goal of universal scheme
interfaces. We believe that only a semantic
approach, such as ours, can reach this
goal.

4.4 Updates

Let us call canonical transaction any
mapping T that takes as arguments a
complete database D over the canonical
scheme and a tuple t, and returns a
complete database T(D,t) over the
canonical scheme. Such a mapping must be
viewed as a sequence of queries, insertions
and deletions cn relation schemes of the
canonical scheme. It is important to note
that the tuple t can be any,
does not have to be over a
of the canonical scheme.

tuple. That is, t
relation scheme

Let D be a database on the canonical
scheme, and let t be a tuple to be inserted
in D. We are looking for a canonical
transaction TINS such that: TINS (D,t) is in
the class INS(D ,t). We have the following
theorem:

Theorem 4.6 Let D=@,F) be a database
over the canonical scheme. Let t be a tuple
over relation scheme Q (NB. Q is not

necessarily in the canonical scheme). If
INS (D ,t) is defined, then the following
canonical transaction TINS(D,t) leads to a
complete database in INS(D ,t).

For all X in can(U,F) such that X s Q
insert llX(t) in 6(X).

While 6 is modified do
For all X in can(U,F)
6(X) = 6(X) u a(X,D) +

For instance, in our running example,
suppose that we want to insert the tuple
abd. Moreover, suppose that the “current”
database D is empty so that INS(D ,abd) is
defined. The corresponding canonical
transaction is the following:

TINs(D,abd) : insert the tuples a, b, ad, a, b
and d in the corresponding relations.

.
Peletlons

Let D be a database on the canonical
scheme, and let t be a tuple to be deleted
from D. We are looking for a canonical
transaction TDEL such that: TDEL (D,t) is in
the class DEL(D ,t). We have the following
theorem:

Theorem 4.7 Let D be a database over the
canonical scheme. Let t be a tuple over
relation scheme Q (NB. Q is not necessarily
in the canonical scheme). DEL(D ,t) is
always defined and the following
transaction TDEL (D,t) leads to a complete
database in DEL(D ,t).

For all X such that QrX,
For all s in a(X/Q=t,D),

For all Y in red(X),
delete IIy(s) from S(Y), and
For all 2 such that ZEY and Z;tY

insert IIz(s) in S(Z) l

Proof (sketch)
Using the semantics defined in

Section 3, we must remove from the
database all tuples t’ such that D

73

implies t’s t. All tuples in
a(X/Q=t,D),for a superset X of Q, satisfy
this condition. We could show that if s
is a tuple over X, and if Y is a relation
scheme in red(X), then m(s)=m(Hy(s))
for all models m of D. So, looking at
Theorem 4.3, it is necessary and
sufficient to remove all tuples H y (s)
from the corresponding relations in
order to delete s. Now, every (strict)
subtuple of Hy (s) is inserted, in order
to capture the semantics of Section 3
(the maximality condition). Notice
that all subsets Z of Y are in can(U,F),
because Y is in can(U,F), from
Theorem 4.3.

For instance, in our running example,
suppose that we want to delete ad, from the
database D (containing tuples ab, bc, and
cd). Following Theorem 4.6, the
corresponding transaction is TDEL(D,adk
for X=ADB, we have a(ADB/AD=ad,D) =
{adb), and red(ADB) = (AB}, so we delete ab
from 8(AB), and insert a and b in the
corresponding relations;
for X=ADC, we have a(ADC/AD=ad,D) = 0;
for X=ADBC, we have o(ADBC/AD=ad,D) = 0.
We thus obtain a complete database
containing the tuples a,b,bc, and cd. We
can compare this result with the example
3.2 of Section 3.

5. CONCLUSIONS

We have used partition semantics in
order to implement queries and updates on
a universal scheme interface, through
relational expressions and transactions on
a traditional DBMS. Implementations of
queries, based on the weak instance model,
have been proposed in the past. However,
proposals for the implementation of
updates have only led to increased
complexity without really soving the
problem. We believe that it is in the
implementation of updates that our method
offers a simple solution.

Maier, Ullman and Vardi have
schown [MUV84] that the effect of the

representative instance, and therefore the
partition semantics, cannot be simulated in
the general case by first order expressions.
In this paper, we have shown that it is
possible for complete databases over
canonical schemes. We have also shown
that every database is equivalent with
respect to queries to such a database. We
have thus obtained a solution to the
general case as follows: given U and F, we
produce the canonical schema
corresponding to U and F, and we simulate
the effect of partition semantics by
relational expressions over complete
databases on that canonical schema.

The approach described in this
paper is currently being implemented in
the form of an upper layer for traditional
DBMS’s.

BIBLIOGRAPHY

[CKS863 Cosmadakis S., Kanellakis P.C.,
Spyratos N., Partition Semantics for
Relations, ACM PODS, March 1985.

[KFGU84] Korth H.F., Kuper G., Feigenbaum
J., VanGelger A., Ullman J.D., System U: A
Database System Based on the Universal
Relation Assumption. ACM TODS, 9:3,
September 1984.

[LS87] LCcluse C., Spyratos N. Updating
Weak Instances Using Partition Semantics,
Rapport de Recherche LRI, No 364, July
1987.

[LSSS] LCcluse C., Spyratos N.
Implementing Queries and Updates in
Universal Schemes Interfaces, INRIA
Resaerch Report No 805, March 88

[M84] Mendelzon, AO. Database states and
their tableaux, ACM TODS 9:2 ~264-282, 1984.

[M87] Mancuso F., Implementation d’un
modble de donntes ensembliste. Rapport de
stage de DEA, UniversitC de Paris Sud, Orsay,
Septembre 1987.

[MRW86] Maier D., Rozenshtein D., Warren
DS., Window functions, in Advances in

74

Computer Research 3, ~213-246, JAI Press,
London.

[MRSSW87] Maier D., Rozenshtein D.,
Salveter S., Stein J., Warren D., Pique: A
Relationnal Query Language Without
Relations, in Information Systems, Vol 12,
No 3, 1987.

[MUV84] Maier D., Ullman J.D., Vardi M.Y.,
On the Foundations of the Universal
Relation Model, ACM TODS, Vol 9:2, 1984.

[S84] Spyratos N., The partition model - a
deductive database model. INRIA Research
Report 1984, ACM TODS, March 1987.

[S83] Sagiv Y., A Characterisation of
Globally Consistent Databases and their
Correct Acess Path. ACM TODS 8:2, ~266-286,
1983.

75

