
RAPID APPLICATION PROTO’IYPING 

THE PROQUEL LANGUAGE 

Jean-Yves LINGAT 
Pierre COLIGNON 

Universitt Paris I 
THOM’6 12 Place du Pantheon, 75005 Paris, France 

33 rue de Vouillt, 75015 Paris, France 

Colette ROLLAND 

Abstract I.2 Analysis of Current Solutions 

This paper presents PROQUEL, an executable specification 
language designed for the RUBIS system, an information 
system development tool. 
PROQUEL is at the same time a specification language, data 
manipulation language, and programming language, making it 
particularly well suited for prototyping database applications. 

After a brief introduction to the RUBIS system, the 
functionality and the various advantages of the PROQUEL 
language are detailed. 

I Introduction 

I.1 Prototyping in Software Development 

Prototyping is more and more used in database application 
development. This is highly justified by the increase in size and 
complexity of applications. For instance, in our group, we deal 
with technical software between 500,000 and l,OOO,OOO lines of 
code. Such a solution has been chosen in Information System 
design methodologies (e.g. IDA [BODA83], USE [WASS82]) 
and in Expert Systems development [HAYE83]. We also made 
this choice in RUBIS. 

The RUBIS environment [LING87a] is composed of a set of 
tools for application design, specification and prototyping. The 
applications we are confronted with, are very interactive and 
resemble real-time systems. That is the reason why RUBIS 
emphasizes the dynamic aspects of the application and the 
prototyping of the the future system behavior. 

In most cases, the prototyping language is specific and thus 
distinct from the development language. Furthermore, the 
prototyping tool is included in a specific environment which 
aims to allow the designer to modify his prototype 
specification. Thus, the designer must manipulate several 
languages for prototype specification, for the prototype 
environment and for the target system environment. We think 
that such diversity impedes efficiency of the designer. For this 
reason, we have based RUBIS on a single language called 
PROQUEL. 

PROQUEL (PROgramming QUEry Language) is a language 
which integrates a specification, a data manipulation and a 
programming language. PROQUEL is fully compatible with 
SQL and proposes a set of specific statements which extends 
the query into a more powerful data manipulation request, as 
is the case for embedded languages (C/SQL, EQUEL...). 

PROQUEL is used by the designer during the application 
specification. It will be seen that this specification is highly 
modular and can be input in increments. At any time during 
specification, the designer can query and modify the 
“specification base” using PROQUEL. The experienced 
designer can build his own utilities and store them in the 
“specification base”. These utilities can be called from any text 
within or apart from the specifications. 

Prototyping the application permits the progressive refinement 
of the specification. This leads us to the evolution of the 
specification into a final solution (as in the USE methodology 
[WASS82] for instance). 

Permission to copy without fee all or put of this mskxial is 
granted Fovided that the copies uc not made or dislxi&ed for 
direct commercial advantage, the VLDB copyright mtla md 
the title of the publication and its date sppesr. snd notice is giver 
that copying is by permission of the Very Large Data Base 
Endowment. To copy othexwise, or to republish rquires a fee 
and/or special permission from the EndowmeW 

The objective of this paper is to present PROQUEL. Section 2 
is devoted to a brief introduction to the architecture and 
functionality of RUBIS in order to define the context in which 
PROQUEL is used. Section 3 introduces the principal 
constructions of the language, and section 4 presents the 
different uses of PROQUEL during application development. 
Section 5 details certain technical aspects of the PROQUEL 
implementation. 

Proceedings of the 14th VLDB Confemce 
Los Angeles, California 1988 206 



II RUBIS Architecture and Functionalities 

The architecture of the RUBIS system is presented in figure 1. 
This displays the three major aspects of the system, which are: 
1) The R-Schema (RUBIS-Schema), stored in the Metabase, 
which describes the database application. 
2) The R-Schema design interfaces - the Menu Interface and 
the Validation Module. 
3) The prototyping tools - the Application Monitor, the Event 
Processor, the Temporal Processor, and the PROQUEL 
Interpreter. 

Each of these three aspects is introduced successively. 

I PROQUEL INTERPRETER I 

I I 

I RELATIONAL D.E.M.S. 
L 

I 
I 

Figure 1: Architecture of the RUBIS system 

II.1 The R-Schema 

The R-Schema, stored in its relational form in the Metabase, is 
the focal point of interaction between the application 
developer and RUBIS. The R-Schema is a modular description 
of the conceptual schema for the database being developed. 
This schema is based on the model of the REMORA 
methodology [ROLL821 [ROLL87], and describes both static 
aspects (structure) and dynamic aspects (behavior) of the 
application. 

The static aspects are modeled using relations representing 
entities or entity associations in the real world (e.g. client, 
invoice, loan, etc.). 

The dynamic aspects are modeled using: 
-Operations which represent elementary actions on an 
application object (e.g. add a new client, modify an order, etc.), 

-Events which represent elementary state changes in the 
system at which time certain operations must be triggered (e.g. 
when an order arrives, insert the order into the database, 
reserve the requested goods, and prepare for delivery). The 
description of the conditions for the state change is defined in 
the event predicate. A distinction is made between external 
events (which represent messages received from the real 
world), internal events (which represent elementary state 
changes of a relation within the database), and temporal 
events (which represent temporal conditions under which 
certain processing is triggered). 

The temporal aspects of the application are likewise modeled, 
using the functions and temporal types of the RUBIS 
Temporal Model. 

The R-Schema is therefore a collection of relations, events and 
operations defined for an application using PROQUEL 
specifications. The content of the R-Schema can be illustrated 
using a graph (fig. 2) 

Figure 2 : Graphic Representation of the R-Schema 

Such a representation introduces the dynamic transitions of 
the application, showing their sequence and precedence. A 
dynamic transition is composed of (1) an event, (2) all the 
operations triggered by the event, (3) all the relations modified 
by these operations. This corresponds to an elementary 
database transaction, since by definition a RUBIS transition is 
atomic, and must pass the database from one coherent state to 
another. 

207 



II.2 Design Tools 

The Design Menu Interface allows the insertion, modification, 
and deletion of the different elements of the R-Schema, using 
a system of menus which guide the developer during the 
specification of the application. 

The Validation Module performs the validation of the 
R-Schema, detecting the presence of inconsistencies or of 
specifications which do not meet certain design criteria. Three 
types of rules are used: 
1) Conformance Rules which verify the correctness of the 
specification according to the model, concepts, and language 
of RUBIS, 
2) Completeness Rules which insure that there are no isolated 
or missing objects in the R-Schema, 
3) Accuracy Rules which detect probable inconsistencies in the 
R-Schema concerning the accuracy of the specifications as they 
relate to the actual application. An interactive approach allows 
the developer to decide whether or not a given situation is 
actually incorrect. 
Certain rules among these are enforced as the specifications 
are entered (i.e. by the Menu Interface), while others are 
checked either automatically or on demand at the end of each 
design session. 

II.3 Prototyping Tools 

The Application Monitor provides the end user interface. It 
automatically generates data input screens corresponding to 
each external event defined by the developer. From the 
specification text, the defined structure of the message to be 
received serves in the generation of the screen, while the 
defined predicate represents the condition of message 
acceptance. During prototype experimentation, the data input 
screens allow data test cases which can be used to test 
R-Schema behavior. 

The Temporal Processor manages all temporal aspects of the 
application which include: 
-handling attributes of type TIME (timestamps, dates, 
chronological order, calendar conversion, etc.), 
- historical processing, 
- evaluating expressions of temporal functions and types, 
- automatic recognition of temporal events (absolute dates, 
periodic events, events timed relative to other events, etc.). 

The Event Processor drives the prototype. It allows the 
automation of the R-Schema execution by sequencing and 
synchronizing dynamic cycles that includes: 
- handling external and temporal events, 
- evaluating operation triggering conditions, 
- controlling the execution of operations for which the 
triggering condition is true, 
- recognition of internal events, 
- the management of transaction aspects of the application. 

The PROQUEL Interpreter is used by each of the other 
modules, in particular by the Event Processor for the execution 
of operation, condition, and event predicate texts. 

The Relational DBMS [BOUCSl] is the foundation of the 
RUBIS system. It manages the relations in the prototype 
database, as well as in the Metabase, which contains the 
R-Schema. 

The detailed operation of the Event Processo; and Temporal 
Processor is described in [LING87b]. The following sections of 
this paper are devoted to the description of the PROQUEL 
language and its various uses in database application 
development. 

III Presentation of the PROQUEL Language 

We restrict ourselves here to an introduction of the principal 
syntactic structures of PROQUEL illustrated by several 
examples. Backus-Naur notation is used to describe certain 
grammatical structures. The language keywords are noted in 
upper case. 

III.1 The SQL Core of PROQUEL 

Each form of standard SQL [SQL861 is valid in the 
PROQUEL language. In addition, several extensions and 
facilities have been implemented, notably: 

1) The assignment of the result of a SELECT to a relation: 
SELECT projection list INTO resu/t relation 

FROM relation list WHERE criteria ; 

Three cases may arise: 
- if result relation does not exist in the database, its schema is 
deduced from the SELECT <projection list > . 
- if result relation already exists but its schema is incompatible 
with the SELECT <projection list > , its schema becomes that of 
the SELECT result and its previous contents are replaced by 
the SELECT result. 
- if result relation already exists and its schema is compatible 
with the SELECT result, the result relation keeps its previous 
schema but its previous contents are lost. The use of the 
ADDTO option in place of INTO appends the SELECT result to 
the existing contents. 

If the name of the result relation begins with ‘I#“, PROQUEL 
considers it to be a temporary relation which automatically 
disappears at the end of the current transaction. We will see in 
the next section the utility of this concept. 

2) The search for a tuple qualified by its ordinal position in the 
result of the SELECT: 

SELECT [position FROM] {FIRST) LAST} TUPLE projection list 
FROM relation list 
WHERE criteria] 
[ORDER BY attribute list]; 

For example, to find the name and address of the second to 
last subscriber in the relation: 

SUBSCRIBER (NAME, ADDRESS, SUBSCRIPTION-DATE, . ..I 

208 



the command is: 
SELECT 2ND FROM LAST TUPLE name, address 

FROM subscriber 
ORDER BY subscription-date; 

3) The statement EXISTS relation (WHERE criteria]; proves very 
useful in certain cases, and avoids the need for a SELECT 
COUNT (*) FROM (relation) ! = 0. 

4) In PROQUEL, the operands of any operation are not 
constrained to be a base relation only, but can rather be any 
expression which yields table. This makes up for the lack of 
orthogonality of SQL [DATE86]. 

III.2 Variables 

PROQUEL variables are identified by a name beginning with 
“$” ($name, $b5, etc.); a variable must be declared before it is 
used. The assignment of a value to a variable is possible only 
when the value and the variable are of compatible types; the 
syntax is that of PASCAL ($name: = “foobar”, $b5: =4*99 +$a). 

1) Predefined Types 

PROQUEL possesses the types most generally used in 
database systems INTEGER, REAL, STRING, TEXT, and 
BOOLEAN. It provides for shortcomings generally encountered 
for temporal expressions by offering: 
- type TIME, which specifies an absolute time based on the 
gregorian calendar extended to include hours, minutes, and 
seconds. Absolute time can be expressed at any level of 
abstraction, from the year (1988) down to the second 
(1988/04/18:15h22m13s), 
- type INTERVAL, which specifies a time interval (e.g. 
[1988/04-l 988/05]), 
-type DURATION, which specifies elapsed time between two 
points in time (e.g. 3hourslOminutes), 
- type PERIOD, which specifies a periodic interval with its initial 
starting point (time point) and its frequency (duration). 

2) Functions and Operators 

PRINT allows the display of variable values and character 
strings. 

e.g. PRINT “The name of client number “,$num,” is:“,$name; 

ACCEPT...PROMPT allows the input of variable data following 
a prompt message. 

e.g. ACCEPT $loan PROMPT “Enter the loan amount:“; 

Arithmetic, comparison, and boolean operators (+, -, l , /, DIV, 
MOD, <, >, <=, >=, =,!=, NOT,AND,OR). 

For character string manipulation: 
- LENGTH($c) : returns the length of the character string; 
- SEARCH($cl ,$c2) : returns the position of the first occurrence 
of string $c2 in $cl; 
- $c[i,j] : extracts the substring from character position i to 
character position j; 
- $c & $d : concatenates two strings; 

- $c BW string : returns TRUE if $c begins with string; 
- $c EW string : returns TRUE if $c ends with string; 
- $c IN string : returns TRUE if $c is in string. 
- $c CONTAINS $d : returns TRUE if $c contains $d. 

Type conversion is accomplished using a “casting” mechanism 
the syntax of which is borrowed from the C language. 

e.g. $i: = (INTEGER)“2187” t 33; 

Provided for the temporal types are the operators =, l and t , 
which are redefined for these types, along with keywords 
AFTER, FROM, UNTIL, EVERY, AT, and EACH, allowing the 
construction of temporal expressions [NOBE88]. 

3) Variable usage in the SQL forms 

Apart from their role in algorithmic programming, the 
principal interest of PROQUEL variables is their power to be 
used anywhere in a SQL query, including as relation name, 
attribute name, and result relation. The following is an 
example: 

VAR $name: STRING; VAR $res : INTEGER; 
ACCEPT $name PROMPT “Find cardinality for which relation ?:‘I; 
$res: = SELECT COUNT(*) FROM $name; 
PRINT “The result is:“,$res; 

4) The types TUPLE and RELATION 

Variables of type TUPLE allow, for example, the capture of the 
result of a SELECT...TUPLE... in a single variable, as opposed 
to embedded languages (PLl/SQL, C/QUEL,...) which 
require a unique variable for each field in the result. 

The access to the value of tuple variables is accomplished by 
using a dot notation, postfixing the name of the variable with 
the name of the desired field (as for PASCAL record fields). 
In addition, the structure of a tuple variable is determined 
dynamically from the schema of the assigned value, offering a 
great deal of flexibility. 

VAR $member: TUPLE; 
$member: = SELECT FIRST TUPLE * FROM roster 

ORDER BY age; 
PRINT “The age of the youngest member is “, $member.age; 
PRINT “The youngest member is “, $member.name; 

A relation variable contains the name of the database relation 
to which it refers. This type of variable can be used in place of 
relation name in any valid statement. Thus the following copies 
the contents of the relation EMPLOYEES into the relation 
referred to by $var-rel. 

VAR $var-rel: RELATION; 
$var-rel: = EMPLOYEES; 

Access to the name of the relation to which the relation 
variable refers is accomplished by the intermediate use of the 
unary operator NAME OF. Thus the following copies the name 
“EMPLOYEES” into the variable $var-rel itself, which now 
refers to the actual EMPLOYEES relation and no longer a copy: 

VAR $var-rel: RELATION; 
NAME OF $var-rel: = “EMPLOYEES”; 

209 



III3 Algorithmic Structures 

As in any high-level programming language, PROQUEL 
permits the traditional constructions: 

IF boolean exppr THEN statement [ELSE staiement]; 
WHILE boolean expr DO statement; 

To facilitate the manipulation of relations within the program, 
PROQUEL includes the construction: 

FOR EACH tup/e var IN re/ation [UNTIL boo/ expr] 
DO statement; 

This construction can be found in languages such as 
PASCAL/R [SCHM80], and allows the iteration of processing 
for each tuple in a given relation (base or calculated relation). 
The following example illustrates the advantage of this 
construction: 

FOR EACH $tup IN members 
DO BEGIN 

IF $tup.sex = “m” 
THEN PRINT “Mr. “,$tup.name 
ELSE IF $tup.married = 3” 

THEN PRINT “Miss “,$tup.name 
ELSE PRINT “Mrs. “,$tup.name; 

PRINT “lives at “,$tup.address; 
END; 

III.4 Dynamic Interpretation 

The PROQUEL language allows dynamic evaluation of 
program text. The built-in function EVAL(string); takes as an 
argument a character string containing statements to be 
immediately interpreted. 

For example, the automatic display of the result from a 
selection on the relation CLIENT with the selection criteria 
input on the fly can be specified as: 

VAR $crit: STRING; 
ACCEPT $crit PROMPT “Selection criteria 7:“; 
EVAL(“PRINT SELECT l FROM client WHERE “& $crit a”;“); 

At run time, EVAL interprets its argument as PROQUEL text. 
Thus variables in the EVAL argument can themselves contain 
variable names. For instance, using the current example, the 
following criteria can be entered, assuming $retirement age 
and $standard-condition are previously declared and initialized 
variables: age > $retirement-age AND $standard-condition. 

III.5 Procedure and Function 

The concepts of procedure and function (a procedure which 
returns a value) exist in PROQUBL. The syntax for procedure, 
function and parameter declaration, as well as the rules 
concerning the visibility of local variables are the same as in 
PASCAL. Parameters and function return values may be of 
TUPLE or RELATION types. As in most languages, parameters 
can be passed by value or by reference. 

During the declaration of a procedure, the PROQUEL 
interpreter verifies the syntax of the body of the procedure. 
Detected errors produce explanatory error messages. If the 
definition is valid, the PROQUEL interpreter stores in the 
Metabase various information along with the text of the 
procedure. This text is executed at each procedure call. Once 
stored, this data persists from one session to the next, 
permitting developers to build their own utility libraries. 

III.6 Transactions 

During the specification of the application, the developer 
never manipulates transactions: he just specifies the dynamic 
transitions which will be managed automatically by the Event 
Processor as transactions. However, PROQUEL provides 
statements which allow explicit processing of transactions and 
may be useful during the construction of utilities or predefined 
procedures. 

In PROQUEL the concept of transaction is independent from 
the procedure or function. The only statements which define a 
segment of code corresponding to a database transaction are 
COMMIT and ABORT. These two statements signal the end of 
the current transaction, and invoke (1) a write to disk (for a 
COMMIT) or abandonment (for an ABORT) of all current 
database work performed during the transaction, (2) the 
destruction of all temporary relations used during the 
transaction, (3) the release of all temporary locks set by the 
DBMS on the relations accessed during the transaction (in 
read or write mode), and (4) the start of a new transaction. 
These two statements are forbidden in all texts which are 
called during a dynamic transition (predicate, condition, 
operation). 

To complement the automatic lock processing within the 
transaction, PROQUEL includes the statements: 

LOCK relation FOR { SELECT 1 UPDATE ); 
RELEASE { relation 1 ALL }; 

These statements allow the management of persistent locks, 
independent of the transactional partitioning of the program. 

IV Application Development Using PROQUEL 

In this section, we present through examples the various uses 
and contributions of PROQUBL during the development of 
database. applications. 

IV.1 PROQUEL as a Specification Language 

The PROQUEL constructions previously introduced are used 
in particular for the specification of the elements of the 
R-Schema (e.g. relations, operations and events). Each 
element of the R-Schema is specified independent of the 
others, as a module which may be added at any time to the 
Metabase. The R- Schema description for an application can 
be built in increments. For example: 
-The static subschema can be first input as a collection of 
relations (using DEFINE RELATION), 

210 



- The architecture of the dynamic subschema can then be input 
by specifying the various dynamic transitions (using DEFINE 
EVENT), 
-The elements of the dynamic transitions, in particular the 
operations, can be specified independently (using DEFINE 
OPERATION). 

We illustrate this process by considering the framework for an 
automated subscription-library management system. The 
examples introduced center around the following relational 
schema: 

BOOK (BOOK#, PUBLISHER, TITLE) 
COPY (BOOK#, COPY#, ACQDATE, PRICE, CP-STATUS) 
SUBSCRIBER (SUBSC#, NAME, ADDRESS, SUBDATE, 

SUBSC-STATUS, NUMCOP) 
REQUEST (REQ#, SUBSC#, REQDATE, REQTYPE, 

BOOKX, REQ-STATUS) 
LOAN (LOAN#, LOANDATE, BOOKX, COPY#, REQ#) 
NOTICE (NTC#, NTC DATE, LOAN#, SUBSCX) 

The meaning of the attributes (when not obvious) will be given 
in the examples. 

Figure 3 associates: (1) the current loan agreement in force at 
the library, (2) the graphical representation of the 
corresponding dynamic transition, and (3) the PROQUEL 
specification. The specification is a translation into the 
PROQUEL language of the dynamic schema, which is itself a 
natural model of the loan agreement. 

The specification of the external event “loan request arrival” is 
composed of three parts: 
1) The message “LOAN REQUEST” is described in PROP. It 
consists of a request number, a book number, the subscriber 
number, and the request type (immediate, or hold). 
2) The event predicate is specified in PRED. In the example, 
the “LOAN REQUEST” message is acceptable only if both the 
requested book and the subscriber are present in the database. 
3) The TRIGGER specifies the result of the arrival of the loan 
request. Three cases are possible: 
-The request can be satisfied (~3: a copy of the book is 
available), and the subscriber is in good standing (cl: his 
subscription is up to date, he has no outstanding late notice, 
and he has less than three books currently on loan). In this 
case, a loan is created (opl), the request is accepted (op2), the 
status for the book is set to “ON LOAN” (op3), and the number 
of copies on loan for this subscriber is incremented (0~4). 
- The request cannot be satisfied (there is no available copy), 
but the subscriber is in good standing and wishes to leave his 
request on hold (US). The demand is put on hold (0~5). 
- The subscriber is not in good standing, or the request cannot 
be satisfied for an immediate request. In this case, the request 
is refused, but is still added to the database for statistical 
purposes (0~6). 

The specification of an event in PROQUEL defines the 
structure of the associated dynamic transition. The elements 
defined in the TRIGGER (conditions and operations) are 
defined separately. This allows a progressive and modular 
description of the application. In addition, the same condition 
or operation may be shared by several dynamic transitions. 

TEXT SPECIFICATION 

- A subscriber may not borrow more than three books; 
- A loan request is receivable if the subscriber is valid (his 
subscription is up to date and he has no overdue books); 
- If a request is type “hold”, the unavailability of the 
requested book causes the request to be put on hold. 

GRAPHIC SPECIFICATION 

LOAN REQUEST 

Nor 61 OR 

PROQUEL SPECIFICATION 

DEFINE EVENT evl IS request-arrival 
ON MESSAGE 
COMMENT “Arrival of a loan request” 
PROP { num-req: INTEGER; 

num-book: INTEGER; 
num subsc: INTEGER; 
typer(IMMEDIATE, HOLD); } 

PRED { 
(EXISTS book WHERE book# =CONTEXT.num-book) AND 
(EXISTS subscriber WHERE subsc# =CONTEXT.num-subsc)} 

TRIGGER { 
IF cl AND c3 THEN { opl ON loan; 

op2 ON request; 
op3 ON copy; 
op4 ON subscriber; }; 

IF cl AND NOT c3 AND c4 THEN op5 ON request; 
IF NOT cl OR (cl AND NOT c3 AND NOT c4) 

THEN op6 ON request; }; 

Figure 3: Dynamic Transition Specification 

For example, figures 4 and 5 show the specification of 
condition cl and of operation opl. 

Each specification is a module independent of the others. The 
variables declared in a module have scope within that module. 
All modules receive an implicit call parameter referenced by 
the keyword CONTEXT. This parameter designates the 
message/tuple for which the arrival/state-change generated 
the event. In the specifications of evl, opl and cl, CONTEXT 
represents the loan request message. 

211 



DEFINE CONDITION cl IS good-standing 
COMMENT “The subscription is up lo date, no pending late 

notices, and less than three books on loan” 
TEXT { 

VAR $status: STRING; 
VAR $ncopy: INTEGER; 
VAR $nolate: BOOLEAN; 
SELECT UNIQUE subsc-status, numcop INTO $status, tncopy 

FROM subscriber WHERE subsc# = CONTEXl.num-subsc; 
$nolate: = NOT EXISTS notice 

WHERE subsc# = CONTEXT.num-subsc; 
RETURN ($status=“VALID” AND $ncopy<d AND $nolate) }; 

Figure 4: Specification of a Trigger Condition 

When a distinction is necessary between the old and new value 
of the context (in the case of an internal event, for instance), 
the prefixes OLD and NEW are used. 
The context of a dynamic transition is in fact an implicit 
parameter passed to all PROQUEL texts which it contains. 
Not having to declare each passage of the context by 
parameter clearly simplifies the developer’s specifications. 

A condition corresponds to a boolean function. Its text is 
terminated by the RETURN statement, which determines the 
return value of the condition. 

DEFINE OPERATION opl IS ins-loan 
COMMENT “Create loan” 
TYPE insert IN loan 
INPUT 0 (* no explicit parameters l ) 
TEXT { VAR $copy, $max: INTEGER; 

$copy: = SELECT FIRST copyA FROM copy 
WHERE book+ = CONTEXT.num-book 

AND cp-status = “AVAILABLE”; 
$max: = SELECT UNIQUE MAX(loan#) FROM loan; 
INSERT INTO loan ($max + 1, current-date, 

CONTEXT.num-book, $copy, CONTEXT.num-req); 

1; 

Figure 5: Specification of an Operation 

Each operation has an implicit exit parameter: the two 
successive values of the tuple it modifies. If the state change 
generated by the execution of the operation generates an 
internal event, this parameter serves as the context for the 
dynamic transition of the generated event. 

Figure 4 illustrates the contribution of the combined usage of 
variables and SQL queries. In the usual application 
development environment, the developer must resort to a 
language using embedded SQL, with all the awkwardness this 
implies. 

The Metabase is incremented progressively with the arrival of 
new specifications. The relational mapping of the R-Schema is 
thus automatic. We will see in the following paragraph the 
easiness of the use of such a representation. 

IV.2 PROQUEL as (meta) Data Manipulation Language 

The specification work for a database application is long and 
iterative. The “Specification Base” is progressively elaborated. 
To help the developer with his task, it is essential to provide 
him with the means of queeng and manipulating this 
Specification Base. Such possibilities are not generally offered 
by current DBMS, except for the description of the structure 
of the relations (e.g. ORACLE or INGRES metabase). The 
recourse to a data dictionary (and thus to a new language) is 
therefore necessary. 
We feel that it is valuable for the developer to have a single 
language for both specification and manipulation of 
specifications. In the following paragraphs, we present three 
aspects of PROQUEL which illustrate (1) query of the 
Meta-schema, (2) interactive control of the R-Schema and (3) 
construction of utilities. 

1) Query of the Meta-schema 

During the specification phase, the developer can use 
PROQUEL to interactively query the Metabase. For example, 
he can locate an element of the specification which he has 
forgotten, or which is supplied by another person. 

EVENT (EVT-NAME, FULL-NAME, EVT-CATEG, 
RELATED-OBJECT...) 

OPERATION (OPE-NAME, FULL-NAME, MODIFIED OBJECT, - 
OPE-TYPE...) 

TRIGGER (EVT-NAME, OPE-NAME, COND-NAME, 
FACT-NAME...) 

OFE-TEXT (OPE-NAME, TEXT) 

IdUCTlON (EVT NAME, IND EVT) 
RESOURCES (COMP-NAMEjEL-NAME, ACCES-TYPE) 

AtTHOR (COMP NAME, DESIGNER, BIRTH DATE, 
-MST-MODIF-NAME, STATUS...) 

VALIDATION (VAL-NUM, VAL-DATE, RESULT...) 

Figure 6: Extract of the structure of the Metabase 

In RUBIS, the Meta-schema is a relational base of which 
figure 6 gives an extract. Globally, the RUBIS Metabase 
consists of three types of information to which the developer 
has access: 
- information corresponding to the relational mapping of the 
R-Schema (descriptions of the various components), 
- information derived from the R-Schema (resources accessed 
in read/write mode by each component, list of possible event 
sequences, etc.), 

212 



3) Construction of Utilities - informations relative to development progress (list of 
dynamic transitions completely specified, validation results, 
etc.). 

Some explanations: 
- EVT-CATEG gives the category of the event, that is the type of 
the operation that can generate it (DELETE, UPDATE, INSERT), 
- RELATED-OBJECT gives the name of the object of which the 
event recognizes the state-changes (a relation, CALENDAR, 
MESSAGE), 
- INDUCTION contains the event couples which may be chained. 

Using this relational representation of the R-Schema, the 
developer can formulate interactive queries such as “What are 
the events that trigger delete operations on the relation 
NOTICE ?” 

SELECT evt-name FROM trigger, operation 
WHERE modified-object = “NOTICE” 

AND ape-type = “DELETE” 
AND ape-name = ape-name; 

Figure 7: Example of Metabase query 

This query returns a relation containing the names of the 
events, and displays them in table form. If the developer would 
also like the names of the operations and their trigger 
conditions, he simply adds the attributes ape-name and 
cond name to the projection attribute list. 

In the same way, still asking questions on the Metabase, the 
designer will be able to ask questions such as: 

“Which events precede the event “newly-available” ?” or 
“Who is the developer for operation “insert-loan” ?” 

2) Interactive control of the R-Schema 

During the development of the schema, the developer often 
needs to determine the correctness of his description. He can 
of course use the Validation Module, but he can also pose 
queries which allow him to detect problems immediately. For 
example: 
- Are all components of the dynamic transition corresponding 
to the “notification 

NOT EXISTS trigger 
response” notified ? 

WHERE evt-name = “notification-response” AND 
((ape-name NOT IN SELECT ape-name FROM operation) OR 
(cond-name NOT IN SELECT cond-name FROM condition)); 

-Do any events trigger an insert operation for the NOTICE 
relation ? 

EXISTS trigger, operation 
WHERE ope type = “INSERT” 

AND modified-object = “NOTICE 
AND ape-name = ape-name; 

In certain cases, the developer may wish to construct specific 
utilities. He can make use of the concepts of procedure and 
function in PROQUEL. In this way, he can generalize queries, 
building them into a library of procedures. 
For example, the function modified-by (fig. 8) generalizes the 
query in figure 7, allowing the search of the events and the 
triggering conditions of the operations of a given type which 
modify a given relation. The function returns a relation. Once 
specified, the function is stored in the Metabase and can be 
used as a predefined utility within another PROQUEL text. 

FUNCTION modified-by ($relname, $typ: STRING): RELATION; 
BEGIN 
IF ($typ = “INSERT” OR $typ = “DELETE” OR $typ= “UPDATE”) 
THEN RETURN (SELECT evt-name,cond-name,ope-name 

FROM trigger, operation 
WHERE modified-object = $relname 

AND ape-type = $typ 
AND ape-name = ape-name ) 

ELSE PRINT “Valid types: INSERT,DELETE and UPDATE”; 
END; 

Figure 8: Example of utility 

Note that to facilitate the work of developers, a certain 
number of builtin functions have been predefined in the 
RUBIS library: 

FUNCTION triggered-by ($ope-name: STRING):RELATION; 
which returns a relation containing the names of events and 
the triggering conditions of the specified operation. 

PROCEDURE print-events ($filename: STRING); 
which reconstructs in the specified file, all the PROQUEL 
specifications of the currently specified events. 

FUNCTION complete-event ($evt-name: STRING):BOOLEAN; 
which validates the completeness of the definition of a 
dynamic transition by verifying that all objects used directly 
(conditions, operations, relations accessed by the predicate), or 
indirectly (relations accessed by the texts of the conditions and 
operations) have been previously defined. 

PROCEDURE trans-closure 
(I/AR $rel-res,$rel-init:RELATION;$attl ,$attP:STRING); 

which carries out the transitive closure of a relation on two of 
its attributes. 

IV.3 PROQUEL as an Integrated Programming Language 

To construct more elaborate texts, the developer requires 
algorithmic possibilities offered by classic programming 
languages. The integration of the functionality of classical 
programming languages and data manipulation languages 
allows PROQUEL to make up for the inability of languages 
such as SQL to handle problems such as complex calculations, 

213 



sophisticated document production, and iterative or recursive 
algorithms. We will illustrate this last aspect of PROQUEL 
with two examples. 

Example 1: Transitive closure. 

The first example presents a procedure which performs the 
transitive closure of a specified relation on two of its attributes 
(using the “semi-naive” algorithm). 

PROCEDURE trans-closure (VAR $res, $init:RELATION; 
Sattl, Satt2:STRING); 

BEGIN 
#ref: = SELECT $attl, $att2 FROM $init; (*reference relation*) 
#new: = Xref; (* contains the newly generated tuples l ) 
CLEAR ($res); 

WHILE NOT EMPTY (#new) 
DO BEGIN 

$res: = $res UNION #new; 
#new: = (SELECT #new.$attl ,#ref.$att2 FROM #new, #ref 

WHERE #new.$attP = #ref.$attl) MINUS $res; 
END; 

END; 

This example calls for several comments about: 
- Parameter passing by value or reference for variables of type 
relation. Here, $init is passed by reference to avoid a useless 
copy of the initial relation. 
-The use of RELATION and STRING variables in SQL 
statements as name of relation and name of attribute - this 
allows the coding of queries with truly variable parameters. 
-The use of the temporary relations Xref and #new which 
inherit dynamically the schema of the result relation, and 
which disappear automatically at the end of the current 
transaction - this mechanism avoids the explicit creation and 
destruction of intermediate relations, for which the schema 
must be known in advance. 

All these aspects, along with the trivialization of database calls 
in the language, the integration of types TUPLE and RELATION 
with the other data types, and the implementation of specific 
internal mechanisms, contribute in making PROQUEL a 
language which is flexible, readable, and concise for the 
implementation of database applications. 

For comparison, the figure below shows the transitive closure 
algorithm as written for the ORACLE C precompiler 
[ORAC87]. 

void transitive-closure (res, init, attl, att2) 
char *res, *init, *attl, *att2; 
{ EXEC SQL BEGIN DECLARE SECTION; 

int c; char ins1 [80], ins2 [80], dell [80]; 
EXEC SQL END DECLARE SECTION; 

EXEC SOL CREATE TABLE REF (Al NUMBER, A2 NUMBER); 
EXEC SQL CREATE TABLE NEW (Al NUMBER, A2 NUMBER); 
EXEC SQL CREATE TABLE GEN (Al NUMBER, A2 NUMBER); 
EXEC SQL CREATE TABLE RES (Al NUMBER, A2 NUMBER); 

strcpy (ins1 ,“INSERT INTO REF SELECT ‘I); 
strcat (insl, attl); strcat (insl, ” , ‘I); strcat (insl, att2); 
strcat (insl, ” FROM I’); strcat (ins.1 , init); 

/* INSERT INTO #ref SELECT $attl,$att2 FROM $init; */ 
EXEC SQL EXECUTE IMMEDIATE:insl; 
EXEC SQL INSERT INTO NEW SELECT * FROM REF; 

EXEC SQL SELECT COUNT(*) INTOc FROM NEW; 
while (c) 

{ EXEC SQL INSERT INTO RES SELECT * FROM NNV; 
EXEC SQL INSERT INTO GEN 

SELECT NEW.Al, REF.A2 FROM NEW, REF 
WHERE NEW& = REF.Al; 

EXEC SQL DELETE NEW; 
EXEC SQL INSERT INTO NEW SELECT * FROM GEN 

MINUS SELECT l FROM RES; 
EXEC SQL DELETE GEN; 
EXEC SQL SELECT COUNT(*) INTOx FROM NEW; 

I 

strcpy (dell, “DELETE I’); strcat(del1, res); /* DELETE $res */ 
EXEC SQL EXECUTE IMMEDIATE:dell; 
strcpy (ins2, “INSERT INTO “); strcat(ins2, res); 
strcat (ins2, ’ SELECT * FROM RES’); 
EXEC SQL EXEC IMMEDIATE:insP; 
EXEC SQL DROP TABLE RES; 
EXEC SQL DROP TABLE GEN; 
EXEC SQL DROP TABLE NEW; 
EXEC SQL DROP TABLE REF; 

1 

We don’t use here the CONNECT BY clause of SELECT 
statement proposed by ORACLE as an extend of SQL 
because this clause is not well suited for implementing the 
transitive closure problem: because the concision is not better 
and it generates an execution error when detecting a cycle. 
Finally, we use the same algorithm in order to facilitate the 
comparison of the two languages. 

The last example leads us to the following remarks on the 
integration of SQL in the host language. 

- We see here that lines destined for the preprocessor must be 
prefixed by EXEC SQL. 

- Variables used in the SQL statements must be declared in a 
particular fashion. Furthermore, it is impossible to use these 
variables directly as name of relation or attribute in the SQL 
queries - this is possible only in the form EXECUTE IMMEDIATE, 
the use of which is more constrained. 

- In the absence of a mechanism similar to that of temporary 
relations in PROQUEL, explicit declaration and destruction of 
intermediate relations is necessary, for which the names and 
types of the attributes must be known in advance. (This has led 
us in this example to limit the use of the procedure to 
attributes of type NUMBER to avoid obscuring the code.) 

These aspects contribute to the awkwardness of programs 
written in embedded SQL [CHRI87]. 

214 



Example 2: Part explosion problem. 

The second example illustrates the recursive aspects of 
PROQUEL. 
The use of procedures and functions allows the translation into 
PROQUEL of most recursive algorithms. To illustrate this 
aspect, we reproduce one of the examples cited in [ATKISS] 
and [GAME87], which compared the behavior of different 
database programming languages for the same problem. The 
example given is of the processing of an inventory containing: 
- base parts, described by name, price, and weight, 
- composite parts, described by name, the surcharge and 
additional weight resulting from assembly, and a list of their 
subparts. 
The schema of the corresponding relational database is: 

BASE-PARTS (NAME, PRICE, MASS) 
COMPOSITE-PARTS (NAME, ASMBLY-PRICE, ASMBLY-MASS) 
SUB-PARTS (NAME, SUBNAME, CITY) 

The following procedure corresponds to a PROQUEL version 
of one of the request types in the papers mentioned above, and 
consists of determining the total weight and price of a specified 
product. It uses a recursive algorithm which traverses the 
complex product tree to find its weight and price. 

PROCEDURE price-mass ($name:STRING; 
VAR $price, $mass:REAL); 

VAR $subprice,$submass:REAL; 
VAR $tup-comp,$sub:TUPLE; 
VAR $components:RELATION; 
BEGIN 
SELECT UNIQUE price, mass INTO $price,$mass 

FROM base-parts WHERE name = $name; 
IF $price = NULL (* it is not a base-part *) 
THEN BEGIN 

SELECT UNIQUE TUPLE * INTO $tup-camp 
FROM composite-parts WHERE name = $name; 

IF$tup-camp = NULL 
THEN PRINT “This part doesn’t exist” 
ELSE BEGIN 

$price: = $tup-comp.asmbly-price; 
$mass: = $tup-comp.asmbly-mass; 
$components: = SELECT subname, qty FROM sub-parts 

WHERE name = $name; 
FOR EACH $sub IN $components 
DO BEGIN 

price-mass ($sub.subname, $subprice, $submass); 
$price: = $price + $sub.qty l $subprice; 
$mass: = $mass t $sub.qty * $submass; 

END; 
END; 

END; 
END; 

This procedure illustrates an interesting aspect of the behavior 
of relation variables: when a result relation is assigned to a 
relation variable (e.g. $rel3: = SELECT...) before the name of a 
relation has been assigned to it (using the statement NAME OF 
$rel3: s . ...), the interpreter generates unique temporary 
relation name assigned to the variable. This is particularly 

useful to avoid side effects in recursive procedures using local 
variables of type RELATION. 
In this example, it is in fact impossible to replace the variable 
$components by a temporary relation because the contents of 
that relation would be lost at each recursive call. The use of 
the relation variable $components guarantees the generation 
of a new local temporary relation at each call. 

IV.4 PROQUEL as a Development Language 

The language provided by the RUBIS system must permit the 
rapid prototyping of applications. It is for this reason that we 
have defined PROQUBL as an interpreted language. We have 
in effect chosen to focus on the development time, rather than 
response time which is not the primary criterion for a 
prototype. 

The PROQUEL interpreter provides an interactive mode 
which executes instructions typed at the keyboard, as well as a 
batch mode which allows the execution of text files. The 
conversational interface offers the developer an environment 
favorable to the development of his application: 
-It is possible to trace certain variable and procedure calls. 
There is a step-mode of execution, to follow precisely the 
execution of the PROQUEL text. The developer can display, 
after each instruction, the values of variables which are not 
being traced systematically, and query or modify the contents 
of the database. 
-For the global development of the application, the Event 
Processor allows a verbose mode, enabling the developer to 
follow the execution of his application. At any moment, he can 
interrupt a given test run to query or modify the database 
(using the interactive PROQUEL interface), and then resume 
the execution from the point of interrupt. 

IV.5 PROQUEL as a Language for RUBIS Implementation 

Certain parts of the RUBIS system are written in PROQUEL. 
For example, the rules for the Validation Module (cf fig. 1) are 
coded in the form of PROQUEL procedures which analyze 
the Metabase. 

The ease with which PROQUEL describes the most complex 
algorithms applied to a relational database proves the capacity 
of the language to serve as specification language for any type 
of processing. It offers a desirable alternative to languages of 
the type embedded SQL (rigid and complex) or of the type 
“SQL + pseudo-code” (informal and anarchic). 
For example, most of the new algorithms introduced into the 
RUBIS system are now specified in PROQUEL before being 
implemented (as in the case of the Event Processor). 

V The PROQUEL Implementation 

The PROQUEL interpreter is written in C under UNIX. The 
specialized tools LEX and YACC are used to generate the 
lexical analyzer and parser. 

215 



V.l Principles of Interpretation 

The PROQUEL interpreter is based on a two-pass 
mechanism, which allows the duality of specification/execution 
and simplifies the implementation of the various functional 
modes presented above. 

The first pass performs the lexical analysis and parse of the 
source text. Incorrect syntax generates error messages, while 
valid statements are translated into equivalent elementary 
code which is directly executable. This code substitutes for 
example procedural statements (conditions, loops) into 
elementary test-and-jump equivalents. 

The second pass of the interpreter executes the generated 
code. The execution is performed by the Rubis Virtual 
Machine, designed to minimize the work of the interpreter. 

V.2 The Advantage of Two-Pass Interpretation 

This mechanism of two-pass interpretation allows, by focusing 
on the interaction between the recognition phase and the 
execution phase, the easy implementation of PROQUEL’s 
different modes of operation. 

1) In interactive mode, each PROQUEL statement constitutes 
a unit of execution. The statements which the user types at the 
keyboard are decoded and executed one by one. The execution 
of a statement is interrupted on error detection, and an error 
message is displayed. 

2) In text mode, the source text resides in a file. The entire text 
is analyzed and the errors are globally signaled to the user with 
appropriate error messages. When the source text is free of 
errors, the code generated by the first pass is taken over by the 
Rubis Virtual Machine and executed. In text mode the entire 
text constitutes a unit of execution. 

3) The specification of predicates, conditions, operations, and 
procedures makes use of the precompile mode. The interpreter 
performs in this case the first pass (which performs parsing) 
but does not execute the code. When the specification of an 
operation is entered into the Metabase, the interpreter passes 
from interactive or text mode into precompile mode to 
validate the operation text. If the analysis is successful, the 
generated code is admitted into the Metabase with the rest of 
the operation definition. This improves the performance of the 
RUBIS system as the lexical and syntactic analysis is 
performed once during the specification rather than at each 
invocation. 

4) The execution mode complements the precompile mode. 
The interpreter receives not PROQUEL source text, but 
generated code and this time performs only the second 
interpreter pass. This mode, therefore, supports the execution 
of operations, predicates, conditions, and procedures which 
have been previously precompiled during their specification. 

V.3 The Rubis Virtual Machine 

The Rubis Virtual Machine (RVM) is organized around a 
flexible and powerful kernel built with simple internal 
mechanisms, capable to support both present and future 
functionality of the language. 

The kernel manages in particular registers containing the most 
general system data (user name, current transaction number, 
execution context system variables, etc.), and a stack 
containing, during execution, dynamic “system data” (loop 
indices, etc.) and intermediate evaluation results (elementary 
such as booleans, numbers, strings, or complex such as arrays, 
lists, sets, tuples, relations, etc.). 

The instructions are constructed around the RVM kernel, and 
implement the functions of the PROQUEL language. The 
instruction set of the RVM is very rich and possesses a number 
of specialized functions. To preserve acceptable response 
times, we have not hesitated to code in C the most complex 
internal functions. 

PROQUEL offers a greater tolerance with a less strict type 
control during the first pass of interpretation. This is highly 
useful for the preanalysis of queries, as the use of variables as 
names of relations or attributes is usually forbidden in 
database calls under rigorous type control (this problem has 
been discussed in [ALLM76]). 

Most of the operators in the RVM are polymorphic. They 
adapt their behavior to the type of objects to which they are 
applied. PROQUEL uses this feature to allow automatic type 
conversion. This permits, for example, to use character string 
variables as names of relations. 

VI Conclusion 

We have presented the PROQUEL language, which allows the 
construction of an executable specification of an application 
and permits the use of the generated prototype in trial run 
experimentation. 

The total integration of database/specification/programming 
language aspects makes PROQUEL a language highly adapted 
for the development of database applications. PROQUEL is in 
the line of the new Fourth Generation Languages (e.g. 
INGRES OSL) and offers a viable alternative to the 
complexity of embedded languages [CHRI87]. 

An initial version of PROQUEL is running on VAX and SUN 
systems under UNIX, Current developments are leading 
towards: 

- The evolution of the language to handling more complex data 
structures (tuple arrays, heterogeneous lists, etc.), 
- The creation of interfaces allowing the use of PROQUEL in 
association with other relational DBMS, 
-The provision for the implementation of code generators 
which translate the PROQUEL specification into a target 

216 



“embedded language” (PASCAL/SQL, C/QUEL, etc.). 
RUBIS will be not only a generator of prototypes, but also a 
generator of complete applications, 
-Allowing PROQUEL to become a real “persistent” 
programming language [BUNE86] having the possibility to (1) 
retain the value and structure of a variable beyond the bounds 
of a program or procedure (such variables will be 
“meta-variables”, accessible to any PROQUEL text as is the 
case currently for database relations), and (2) maintain, in the 
same fashion as for variables, the definition of a type. The 
solution is an integration of PROQUEL data types and 
domain types of database attributes. 
- A study of the possibilities of a “PROQUEL as a Data Type”, 
inspired by the INGRES [STON84] and POSTGRES 
[STON86] solutions. 

References 

[ALLM76] ALLMAN E, STONEBRAKER M: “Embedding a 
Relational Data Sublanguage in a general purpose 
programming language” ACM SIGPLAN-SIGMOD 
Conference on Data, Salt Lake City, Utah, March 1976. 
[ATKI85] ATKINSON M.P, BUNEMAN 0.P: “Database 
Programming Languages” Technical Report 10-85, Univ. of 
Pensylvania, 1985. 
[BODA83] BODART F, HENNEBERT A.M, LEHEUREUX 
J.M, MASSON 0, PIGNEUR Y: “A System for Requirements 
Specification, Prototyping and Simulation” Proc. IFIP-TC2 
WC on System description methodologies, Kecskemet, 
Hungary, North Holland 1983. 
[BORG851 BORGIDA A.: “Features of Languages for the 
development of Information Systems at the Conceptual Level” 
IEEE Software, Vol. 2, Nxl, Jan. 1985. 
[BOUC81] BOUCHET et al.: “Databases for 
Microcomputers : the PEPIN approach” ACM 
SIGMOD/SIGSMALLS, Orlando, Florida, Oct. 1981. 
[BROD82] BRODIE M.L, SILVA E: “Active and Passive 
Component Modeling” in [CRIS 11. 
[BUNE86] BUNEMAN P, ATKINSON M: “Inheritance and 
Persistence in Database Programming Languages” ACM 
SIGMOD Conf. on Management of Data, Washington D.C, 
May 1986. 
[CHRI87] CHRISTENSEN A, ZAHLE T.U: “A Comparison 
of Self-contained and Embedded Database Languages” 13th 
Conf. on VLDB, Brighton, Sept. 1987. 
[CRIS 1) “Information Systems Design Methodologies: a 
Comparative Review” Ed. OLLE T., North Holland 1982. 
[DATE861 DATE C.J.: ” A critique of the SQL Database 
Language” in “Relational Database selected writings”, DATE 
C.J., ADDISON-WESLEY, 1986. 
[GAME87j GAMERMAN S, VELEZ F.:“Using a set of 
database applications to compare Programming Languages” 
Tech. Rep. ALTAIR nx 12 87, Oct. 1987. 
[I&AYE831 HAYES-ROTH F, WATERMAN DA, LENAT 
B: “Building Expert Systems” Addison Wesley, 1983. 
[LING87a] LINGAT J.Y, NOBECOURT P, ROLLAND C: 
“Behaviour Management in Database Applications” 13th Conf 
on VLDB, Brighton, Sept. 1987. 

[LING87b] LINGAT J.Y, NOBECOURT P, ROLLAND C: 
“RUBIS : an Extended Relational DBMS Managing Events” 
Information and Software Technology Vo1.29, Nx 9 & 10, Nov. 
& Dec. 1987. 
[NOBE NOBECOURT P, ROLLAND C, LINGAT J.Y.: 
‘Temporal Management in an Extended Relational System” 
submitted for publication. 
[ORAC87j PRO+C User’s Guide, Version 1.1, Oracorp 1987. 
[ROLL821 ROLLAND C, RICHARD C: ‘The REMORA 
Methodology for Information Systems Design and 
Management” in [CRIS 11. 
[ROLL87 ROLLAND C, BENCI G, FOUCAUT 0: 
“Conception de Systemes dInformation: La Methode 
REMORA”, Eyrolles 1987. 
[SQL 861 “Information Processing Systems - Database 
Language SQL” Draft International Standard ISO/DIS 9075, 
1986. 
[STON84] STONEBRAKER M. et al.: “QUEL as a Data 
Type” ACM SIGMOD Conf., Boston, MA, June 1984. 
[STON86] STONEBRAKER M, ROWE L: ‘The Design of 
POSTGRES” ACM SIGMOD Conf. Washington D.C, May 
1986. 
[SCHM80] SCHMIDT J.W, MALL M: “PASCAL/R Report” 
Technical Report nx66, Fachbereich Informatik, Univ. 
Hamburg, Jan 1980. 
[WASS82] WASSERMAN A: ‘The User Software 
Engineering methodology : an overview” in [CRIS 11. 

217 


