
Towards a Real Horn Clause Language

Ravi Krishnamurthy
MCC

Austin, TX 78759
raviOmcc.com

ABSTRACT: Current database languages based on
Horn clausea and the bottom-up model of computa-
tion, such aa LDL and DataJog, are not as expreesive
as Prolog. For example, such languages do not sup-
port schema and higher-order predicates in an inte-
grated framework but rely on a separate language to
specify the schema information and on evaluable pred-
icatea for expressing higher-order information. Prolog
on the other hand while providing powerful features
does so in only a procedural settiag. Caught between
a rock and hard place we ask whether a Horn clause
language can be designed which provides most if not
all of the power of Prolog in a declarative framework.
In this paper we start with a simple logic programming
language in which the central notion is that of an ob-
ject and an expression. We build upon these simple
constructs and show that the resulting language has
the power of DataIog and a bottom-up semantics. We
then successively increase t6e expressive power of the
language to subsume LDL in the sense that we can
support sets, stratified negation, and updates to base
relations. Finally, we show that our language can sup-
port meta, schema and higher-order constructs in an
integrated, consistent and clean framework.

Permission to copy without fee alI or put of this mUcri8l is
granted provided that Uu copies UC not mule or distributed for
direct wxnmercial uhntage, the VLDB copyri%t notice ud
the title of the publication ad its date w, and notice i givea
that copying is by permission of the Very Large W Base
Endowment. To copy otherwise. or to replblish xequks a fee
and/or spfsisl permission 6vm the EndowmenL

Shamim Naqvi
MCC

Austin, TX 78759
shamimOmcc.com

1 Motivation

Let u learn how 10% frensy came-
She telling her dim&en manifold.

--IESCHYLUS, PROMETHEUS BOUND.

Prolog would have made a wonderful database lan-
guage if all its power had been provided in a declar-
ative framework. But precisely those very constructs
which one finds so useful and powerful, e.g., negation,
cut, updates etc., come only in a procedural setting.
The pure subset of Prolog is uninteresting as a real
programming language.

Many logic-oriented database languages are being
proposed, e.g., LDL 1131, Datalog, NAIL!, etc., with
declarative semantics. These, however, are not as pow-
erful 88 Prolog. In many cases they do not have cut,
meta predicates, schema definition, updates, etc. The
question ia whether a Horn clause language can be de-
signed which provides most if not all the powerful fea-
tures of Prolog in a declarative setting and which is
amenable to efficient compilation. Towards this goal,
in [9] we proposed the addition of procedurality and
updates while still retaining the declarative semantics
of pure Horn clause languages. In (61 we proposed a fe&
ture called non-deterministic choice that encompasses
the use of cut in Prolog and is shown to be even more
powerful in a certain sense.

Continuing in this vein, in this paper we move a step
closer to our goal by proposing a language in which
the definition and manipulation of meta information
and data is unified. Traditionally, a separate language
is provided for this purpose. Our proposed language
encompasses me&data and data by allowing higher-
order predicates to be defined in the language. Higher-
order languages have been met with skepticism since,
among other reasons, the unification problem is un-
decidable. Our solution ia to follow conventional wis-
dom that led to the development df languages based
on bottom-up semantics, summed up in the following
statement from 1121 “The important fact to be observed

proceedings of the 14th VLDB Conference
Los Angeles, California 1988 252

in bottom-up processing is that it has replaced full uni-
fication with matching (i.e., only one of the two terms
contains variables).” The effect of replacing unifica-
tion with matching is a gain in performance. This has
been the foremost reason for the recent burst of interest
in bottom-up processing of Horn clause queries. Us-
ing the same wisdom, we have asked ourselves whether
there exists a higher-order language in which higher-
order unification can be replaced by the matching op
eration. In this paper we present such a language and
show its use in providing the capability of expressing
and manipulating schema and higher-order informa-
tion in a database system. Our language allows queries
that can not be expressed in Prolog. Further, we show
that it is capable of defining schema information as well
as being able to use them in the program, e.g., updat-
ing all attributes of all relations that have DATE as
their data type.

As a side benefit we have also been able to provide
a standard treatment of sets. For example, languages
such as LDL [4] and LPS [5] treat relations and sets
differently. Such a duality is unnatural and as a conse-
quence not all operations defined for sets are applica-
ble to relations. By standardising the treatment of sets
and relations, we have not only simplified the expres-
sions but also allow a richer collection of set selection
expressions which also promise to help the set unifica-
tion problem [111.

Our presentation in this paper is necessarily impres-
sionistic. In particular, we have attempted to impart
in a clear and consistent manner the essential ideas of
the language. This has necessitated a consistent syntax
in which we have liberally used diiambiguating tokens.
We readily recognise that it may not be user-friendly.
We have provided sketches of formal semantics, both
declarative and operational, for parts of our language
and in some cases arguments which point how seman-
tics can be defined. A formal paper on this subject is
forthcoming.

The organisation of the paper is as follows. We start
by defining a simple subset, called Lo, of our language.
We show that Lo is equivalent to Datalog and that it
can be extended to L’ which allows stratified negation,
updates to base relations and set grouping. Moreover,
L1 treats sets and relations uniformly and allows a rich
collection of set expressions. The higher-order counter-
part of L’ is called La and we show how higher-order
information is expressed and manipulated in La. The
semantics of La use higher-order matching. Finally, we
show how La supports and manipulates schema infor-
mation.

2 Lo: A language of objects and
expressions

An easy commerce of the old and the new
-T. S. ELIOT, LITTLE QIDDINO

The conceptual structure of Lo is based on objects and
expressions on objects. An object can be classified into
one of four categories: a set of objects, a tuple of ob-
jects, a functor object or an atomic object. Examples
of atomic objects are integers, characters, etc.

A functor object is recursively defined as an object of
the following form, where f is an n-ary functor symbol:

f(object1, . * . , object,)

A tuple object is a sequence of named objects. Syn-
tactically, a tuple of objects can be viewed as

(ottrl : ob ject1, . . .) ottrk : objectk) in which, each
attrj : objecti pair refers to the objcctj that is the dtrj
attribute of the tuple. We usually refer to objecti to be
the attrj object of the tuple and when there is no con-
fusion, we informally refer to the dtrj object as dtrj.
For example (name : john, sol : 10K) is a tuple object.

A set object is a named (not necessarily homoga
neous) collection of objects. For example, p{(name :
john, 541 : lOK), . . .} is a set object named p whose
elements are tuple objects.

Corresponding to each kind of object we have an
expression of that type. An expression, evaluated on
an object, under a substitution (defined below), returns
true or false. An atomic expression (evaluated on an
atomic object) returns true only for an atomic object;
and, similarly for functor, tuple and set expressions. If
an expression evaluates to true on an object then we
say that the object satisfies the expression.

An atomic expression is an expression of the form aX
where X is either a variable (denoted by a capitol letter)
or a value (denoted by a lowercase letter or number)
and ar E {<, 5, >, 2, =, #}. For example, > C and 5 6
are atomic expressions. The subset of atomic expres-
sions ensuing from restricting Q to the symbol - shall
be called simple atomic expressions. In simple atomic
expressions we shall often omit the equality sign. The
simple atomic expression of the form = X is also a
valid tuple, functor and set expression.

A functor expression is an expression of the form
Qf(em, . . . , czpn) where sspj, j = 1,. . . , ta is an ex-
pression for the jth argument for the n-ary functor f.

A tuple expression is a conjunct of the form
.alezcpl, .aaezp2, . . . , .akezpk

where each sspj is an expression on the object associ-
ated with the oj attribute of the tuple. Note that in
general an attribute ok may not be defined for a tuPle

253

object but such an expreaaion in still syntactically valid
for the tuple object.

A set expression is defined to be
(exp)

in which exp ia an expression on an object, i.e., element,
of the set.

We also define the empty expression c which satisfies
all objects. In summary we show below the grammar
for expreMions of Lo in which words starting with an
uppercase letter denote non-terminals.

Exp -+
Ac -)
Fe -+
ExpL +
Te -)
se +
Fname +
Aname -+
Relop -*

Ae 1 Fe 1 Te 1 Se I= uariable
Rclop constant 1 Relop variable I E
QFname(ExpL) I e
Ezp, ExpL I Ezp
.AnameExp, Te I .AnameEzp (c
(Exp) I c
&ring constant
string conf3tant
>Irlll<l=l#

Constants and variables are defined, in the usual man-
ner, aa strings starting with lower and upper case let-
ters, respectively.

2.1 Evaluation of expressions

A substitution ia a non-empty finite eet of ordered pairs
Wl/% . . . , X,,/O,,} such that (t/l< i < n) Xi is a dis-
tinct variable, 04 is an object. We view a substitution
aa a mapping on variables that is the identity almost
everywhere. If u in a substitution and X a variable the
result of applying u to X is defined aa

xu=
I

0, if (X/o) E a
X, otherwise

We extend thii mapping to expressions in a man-
ner con&tent with the above definition. If Q =
Gwl,..., X,,/on} and e is an expression then

eu = [XX1 . . . XX,.e]ol . . . on
Evidently the idea behind an application of Q to
an expression e ia to replace the free occurrences of
Xl ,..., X,inebytheobjectrol,..., on.

If B and a are two substitutions and B U a is a sub-
stitution then we say that a and B are mutuay con-
sistent; otherwise they are said to be inconsistent.

A ground (i.e., free of variables) atomic expression,
say ac, evaluated on an atomic object, say o, returns
true if the comparison oat ia true. An atomic expres-
sion, ac, evaluated on an atomic object o returns true,
if there exists a substitution u such that oacu is true.
In such a case we shall say that the object o satisfies

the expression. Any object, o, satisfies the expression
= X for the substitution X/o.

A functor object o with n-ary functor symbol f eat-
i&es a functor expression Of(expl, ezp2,. . . , exp,) if
there exists a substitution u such that (Vl 5 i 5
n)cxpia ia satisfied by the object oi in the ith argu-
ment of 0.

A tuple object o = (bl : 01,. . . , bk : Ok) satiafiea a

tuple expression
.alexpl, .aqexp1,. . . , .a,,exp,, n I k

if there exists a rrubstitution u euch that (Vl 5 i I
n).avsxpi there exists bj : oi E o, (15 i < k) such that
bi = ~ri and oj satisfies expi under the substitution u.

A set object I satisfies a set expression (exp) if and
only if there exists a substitution u and an element
o E 8 such that o satisfies ezp.

Example: Below we show examples of objects and
expressions that satisfy them.

expression object substitution
=x b W/b)
.n>X,.m=Y (n : 6, m : a) (X/S, Y/a)
(.n > X, .m = Y) {(n : 6, m : a), (X/5, Y/a)

(n:5,m: b))
ww, f?(Y)) f 0% 9(a)) (X/5, Y/a)

Example: Consider a tuple object in which the amp
attribute ie a wt of tuple objects, i.e.,

(al : nl, emp: fel,es ,... } ,...)
where ei ie a tuple co&sting of name, age, l aluy
and children attributes. Name, age and salary ob-
jects are atomic whereas the children object is a set of
names of children. Below we show some expressiona on
the emp object.

. emp (. age=301
‘Ia there a 30-year old employee?”

.emp(.age>30, .name=N)
“List names of all employees older than 30.
Note that the ordering for the age and name
attributes is immaterial because we are nam-
ing the attributes.

.emp(.aalaryOE(=SOOO)) .
“Is there an employee with salary of
L(5000)?~
Thii example also exemplifies the need for the
token denoted by ‘W’ before the functor sym-
bol. Note that the use of the functor E, when
juxtaposed with the attribute name nalary
without the token, would be ambiguous with
a possible attribute name of aalaryE.

. emp(. age-30, .name=N) ,
.emp(.name=N, .aged=liO)

254

“List all 30 year old employees who have the
same name as a SO year old employee.”

. emp (. name-N, .children(joIm))
“List names of all employees with a child
named john.”

2.2 Rules and programs

Define a databwe, db to be a tuple object

whose attributes are relations, i.e., a set of taple ob-
jects.

We define a rule as an implication head 6 body in
which head is an expression of the form .p(czp) such
that p is an attribute of db (also referred to as a derived
predicate) and czp is a list of simple atomic expressions
or objects and body is a conjunct of expressions on ob-
jects er,...,e,

.GlCZPl, . . .) .e,ezpn
Without loss of generality we shall restrict each ei to
be an attribute of the database object, db. Therefore,
each CZpi is a tuple expression involving exactly one at-
tribute of the database object (i.e., a single relation).
We can thus view the body as a conjunct of expressions
on the database object using the variables Xl,. . . , Xk.
We emphasise that we are initially restricting all ex-
pressions in rules to be defined over the database ob-
ject.

We define a query to be a rule with an empty head
and denote it as ?.elezpl, . . . , .e,,exp,,.

A note on notational convenience: It is more common
to write rules without attribute names. We can al-
low this notational convenience by assuming that each
predicate has an ordering of attributes in the tuples.
For base predicates, such an ordering is declared in the
schema; for derived predicates, left-to-right ordering
in the rule definition may be assumed. As an exam-
ple consider the emp relation of the previous exam-
ple in which each tuple in emp consists of name, age,
salary and children, in that order.

.sameName(N) + .emp(N,SO, -, ,-I,
.emp(N,liO, -, -1

*sameName is a set of 30 year old employees
who have the same name as a SO year old
employee.”

?.emp(N,--,--, . children f j elm))
“List names of all the employees having a
child named john.”

A program is defined to be a triple (rdb, edb, q) where
rdb is a finite collection of rules, cdb is a finite set of
(base) relations, and q is a query.

3.3 Semantics of Lo

We start by informally explaining the notion of the
universe, U, of a program P of Lo. Initially we take Uo
to be the set of all atomic objects in P. In case there are
none then Uo is to consist of a special atomic object, say
1. Next, Ul is defined as the set of all possible tuple,
functor and set objects that can be formed from the
elements in UO. Proceeding inductively in this manner
we let U be the infinite union of all Ui.’

We now define the satisfaction of a rule. Consider a
rule of the form

.P(...)+Pl,...,Pm

Let u be a substitution and I c U. The rule is satisfied
if

whenever each pi,i E {l,...,m} is satisfied
by some object oi E I under substitution u
then .p(. . .)u is also satisfied by some object
in I, or

there is some pi which is not satisfied by any
object in I.

Note that a fact is trivially satisfied by the empty
atomic object under the identity substitution.

Given a collection of rules rdb, I s U is a model of
rdb if I satisfies all the rules in rdb. A model M of a
given collection of rules rdb is said to be minimal if no
proper subset of M exists such that it is also a model
of rdb.

1Formally, we may deflnr IJ M follows. Let Uo be the ret con-
sisting of all atomic objects. For n > 0 U, ie defined inductively
ea follows (let P(S) denote the ret of rubeeti of ret S):

Gb,#hO = un-1 u P(rJ,-1)
G mb,nd = G m,n,j-1 u {f(“l,. . . @ok) 1

fir a functor of arity of k,
Md oi E G-,n,j-l) 15 i I k)

G lr,nj = G n,n-l,j U {uk{(Ols * - * o ok) 1
0; E Gn,n-l,jn 15 i I k))

00 ce
u Sl8= uu G mi,n,i

j=O n=O

U= fiUi
i=O

End of Note

Proposition: A program Lo has a unique miniial
model. a

We define the meaning of a program to be the unique
minimal model of the program as defined above.

Define an operator T, similar to (11, as follows: Given
asetofrulesr&andasetI

Tr4-l = {(sy)~ E P I
.p(x) + .p~,. . ., .p,, is a rule in rdb,
30 satisfying .pl,. . ., .pn}

Define powers of the operator T ae followr:

T t o(I) = T(I)
Ttn(l)=T(Ttn-l(l))uTtn-l(1)

(n 2 1)

We define the least &point of the program (rdb, edb, q)
to be the set of objects TIa t w(4) where w denotes
the first ordinal number. Note that T is monotonic.

Propoeition: T,aa t w(g) exists and is equivalent to
the unique minimal model of a given program P =
(rdb, edb,>q). m

We assume that the least Sxpoint of a program giver
the meaning of the program in the sense that the an-
swer to a query 4 with respect to the least fucpoint M
of a program P ia

Wla . . .,&) I (4(-G,. . .,&)a) E M)

where u is the substitution {XJdl, . . . , Xk/dk}.

Proposition: Lo subsumes Datalog, i.e., if P is a Dat-
alog program with unique minimal model M, then M
is also a model of the Lo program P. m

3 Extending Lo to L1

No 0x10 #hall drive w from the paradirr that Cantor hu
created.

-FIILBERT

We extend Lo to L’ by generalisiig set expressions of
Lo. These general&rations give the ability to negate set
expressions, operate on or construct sets and insert or
delete elements from sets.

Sexp -) Sign Sexpl 1 4ezp 1 (Sezp)
S-p1 7 PIP, I 0 I WdM I c

. . ., ExpList} I {Expfiat,. . .}
-+ {..., EzpList, . . .}

Sign ++I+

3.1 Set Selection

Recently the problem of allowing sets in logic program-
ming languages has received attention from 14, 51. It is
a consequence of the definition of Lo that relations and
sets are treated uniformly. Thus no special provisions
have to be made to support sets. In fact, by general-
ising set expressions we can allow subsets of sets to be
selected. The need for such a selection mechanism has
been felt for some time in LDL Ill]. We shall allow
sets with unknown cardinal&y, with a known cardinal-
ity, i.e., exactly an integer ‘k”, and sets in which the
cardinality is bounded by some integer, i.e., at most
Ok”. It is this third case which allows the associativ-
ity problems to creep in and requires AC1 unification
which is semi-decidable[11).

The meaning of set selection expressions is as below:

(} denotes the empty set.

{X,Y,Z} denotes a set of cardinality 3.

{(X,Y,Z)} denotes a singleton set.

{X,Y,Z,. . .} denotes a set of cardinality 2 3.

{. . .,X,Y,Z} denotes a set of cardiiality <, 3.

{. . .,X,Y,Z . . .} denotes a set of arbitrary car-
diiality.

Note that {X, . . .} as defined above is equivalent to (X)
in LO.

Example: Consider as before the tuple object db
which has a set object family(Mother, Children) as an
attribute; the elements of family are as follows:

{(mary, (bill, jack}), (jill, {peter,paul, mary}),
baw, OH.

Here are some sample queries:

?.family{--,-Kids}
“List all sets of children”
Answer: Kids/ {biijack},

KW befw=ubaryh Kids/ 0

?.family{lmary,{=bill}}
‘Does Mary have a single child’
Answer: no.

?.family{=X,{ . ..) -Y,-2))
=Who has at most two children”
Answer: X/mar-y, Xjnancy and commutative
bindings for Y and Z

?.family{-X,(-Y,-Z,-WY))
aWho has exactly three children”
Answer: (X/jill, Y/peter, Z/Paul, W/mazy)
where we have omitted other answers due to
commutativity of the set elements.

256

?.family{=X, {=Y ,=z,. * .}}
‘Who has more than two children”
Answer: X/mar-y, X/jill with commutative
bindings for Y and Z.

Example: Constructing enumerated sets.

.p(X,Y,Z) + .book(X,<30),
.book(Y,<SO), .book(Z,<30)

“Collect sets of three books individually cost-
ing less than $30 each.”

.bookDeal{{X,Y,Z}} c .book(X,Px),
.book(Y,Py), .book(Z,Pz),
Px+Py+Pz 5 $100

We are assuming the existence of evaluable predicates
and functions such as +. Note that here we are asking
for exactly three books whose cost is at most $100. We
can use the argument { . . .,X,Y,Z} to ask for at most
three books, etc. 14).

3.2 Grouping and Negation

In this section we 6rst consider the generalisation of
set terms to allow elements to be grouped into sets of
arbitrary cardinality and then to allow negation. A
grouping rule is a rule of the form

.p(X, setfUame(Y)) +- body(X, Y)

Readers are referred to (41 for a formal description
of the semantics of grouping rules. Informally, the op-
erational semantics of such a rule are as follows. The
body of the rule is satisfied by a set of substitutions
inducing the construction of a relation, called the body
relution, and for each value 9 of the variables 58 we
collect all the Y-values ~1, . . . , y, into the set object
named eetname.

Example: Set Grouping. Group all parts by supplier.
.p(SuppZier, pwt.9(Part)) +

.b(Supplier, Port)

Next we consider the generalisation of set expres-
sions to allow negation. We propose to use stratified
negation [8] as in LDL and Datalog’ with a simple
syntactic change. Observe that in LDL a negation is
used only in conjunction with a predicate which was
defined to be a set of tuples. Recalling our philosophy,
that a predicate is a set of tuples, we conclude that
the negation is defined only in conjunction with a set.
The syntax used in LDL is to prefix the negation sym-
bol 7 to the predicate expression to get the negated
expression (i.e.,-emp(...)) whereas we use emp-,(ezP).
We illustrate the usage by the following example.

Example: Consider the following query on the emp
relation.

?.emp(.name = Nl, .saZary = Sl),
.emp~(.saZary)Sl, .name # Nl)

Find the employee with a salary much
that no other employee haa a larger
salary. “O

We emphasise that the semantics of negation in L1
are identical to that of stratified negation in LDL and
Datalog.

3.3 Semantics of L1

We define a notion of an admissible L1 program
(rdb, edb, q) a~ follows. We start by defining a pref-
erence relation between attributes in rules of rdb. If
there is a rule of the form

.p(. . *) + . . . , .q(. . .), . . .

then we say that p 2 q. If the rule is of the form

.p(. . .) + . . . , .q-(. . .), . . .

or it is a grouping rule of the form

.p(. .., (. . .)) + . . .,.q(. . .), . . .

then we say that p > q.

We shall say that a program irr admiible if there
does not exist a sequence of attributes

.Plma . . . ek-l.pkek

such that B E {>, 1) and .pl = .pk and there is some
Bj is >, (V15 j I k).

As in Datalog and LDL the admissibility require-
ment induces a partitioning on the rules of rdb and we
may write rdb as composed of the disjoint sets of rules
Lo,&, L n.

Given a program (rdb,edb, q) we define the notion
of a standard model of a program as follows. Let
Lo , . . . , L, be a partitioning of rdb U edb. Then

MO =TL, t4d)

MI = TL, tw(Mo)

IIt is inrtructive to note that the equivalent Datdog’ query
? ctnp(N1, SI), -remp(N2,S2),S2)Sl, N1 # N2.

ir unsafe.

257

We define the meaning of an admissible L’ program
to be the set M,. As in LDL and Datalog it can be
shown that M,, is a minimal model of the correspond-
ing program.

Propooition: I? subsumes Datalog’ and update-free
LDL. a

5.4 Insertion and deletion in set ex-
pressions

The final generalisation we consider of set expressions
is that to allow elements to be inserted and deleted
from set objects. LDL has the capability to insert and
delete tuples from a base relation. For example the
LDL rules

. ..++b(X.Y)

. ..+ . ..) 4X Y)

have the meaning that the substitution for X and Y
that result from the body are inserted and deleted in
the ‘+’ apd ‘-’ cases respectively. We propose a syn-
tactic change to denote the insertion (reap. deletion)
of tuple from the set object b by b+ (:X, :Y) (resp.
b-(:X, :YI). We empahsise that this being a syntac-
tic change, the semantics presented in [9] carry over
to thii case. In particular, note that the basic maxim
in update semantics in LDL was that a query provides
bindings for tuples that are to be inserted or deleted,
i.e., lkst compute the set of tuples for an update and
then do the update.3 Thi maxim and its concommi-
tant update semantics can be carried over into L’ with-
out change. For the sake of completeness, we present
below some examples of updates to base relations, so
as to make the presentation self-contained for readers
unfamiliar with the update proposal in LDL.

Example [9]:

Fire all managers who make more than their
employees.
.fireEmpO +

.emp(N,X,Sl), .mgr(N,M),

.emp(H,Y,<Sl), .emp-(N,N,Sl).
Note that the set of employees to be d$eted
is determined by the subgoals preceding
.emp-(...I.

Give every database employee a 10 percent
raise.
?.eds(X,db,S), Sl=S*l.l,

ede-(X,db,S), edsf(X,db,Sl).

8The name update maxim was wed in Query-by-Example
(WE).

Further note that the procedural constructa presented
in LDL [9] may be assumed without any syntactic
change. Also the declarative and operational semantics
defined for these procedural constructs may be used
with minor changes in L1. As none of our examples in
this paper use procedural constructs we leave this out
from our presentation.

Propoeition: L’ subsumes LDL with updates. m

4 L2: A higher-order language

Two worlds become much like ewh other
-T. S. ELIOT, LITTLE OlDDING

In L’ we restricted attribute names and functor sym-
bols to be values. In thii section we remove this restric-
tion and define a notion of higher-order quantification
over attribute names and functor symbols. The result-
ing language is rich enough to express and query meta
and schema information. Essentially we generalise L’
expressions as follows:

Fname -I constant 1 variable
Aname ---, constant 1 variable

Thus, we re-define the notions of functor and tuple
expressions A functor expression is an expression of the
form aDF(expl, . . . , ezp,) where F is either a variable
ranging over functor symbols or a functor symbol itself.
Further, expj, j = 1,. . ., n is an expression for the 3’h
argument for the n-ary functor reference F.

Similarly, a tuple expression is a conjunct of elemen-
tary expressions as defined below:

.Alexpl, .A+xp~, . . . , .AkCxpk

whereea&Ai, i=l,..., k, is either a variable for an
attribute name or an attribute name itself. Further,
each espj is au expression on the object associated with
the Aj attribute of the tuple.

A variable occurring in a functor symbol or an at-
tribute position in an expression will be referred to as a
higher-order variable. We define a higher-order exprw
sion as an expression as defined before, using the new
definition for functor and tuple expression and use the
word expression to mean possibly a higher-order ex-
pression from now on. Informally, the evaluation of an
expression is as before, except that now a substitution
must also give bindings to the variables standing for at-
tribute names and functor symbols, i.e, a substitution
is now defined to be a non-empty finite set of ordered
pak {X1/01,. . ., X,,/on} such that (‘5’1 5 i I n) Xi is
a distinct variable ranging over not only the objects in

258

the univeme (a5 defined earlier) but also over functor
and attribute names.

A rule is defined as an expression of the form

db(ew) + elez~l, . . . , e,ezp,.

where each ei in the body is now allowed to range over
the object5 in the univeme and each aspi is a higher-
order expression. The body ia viewed a5 a conjunct
of expressions on the object5 of the universe using, a5
before, the variable5 Xi, . . . , x&. Since the objects ULIU-
ally range over the database, we still omit the usage of
db in rules; for all object5 other than the database, db,
we shall be explicit in referring to that object, Qb-
serve that the head predicate is still restricted to be
a name in the database object (cf. section &a) and
not a variable and exp is a list of simple ato.& ex-
pressions or objects. Thue, all variables in $he head
are still required to be referenced in the body, A5 a
consequence, the eet of tuple5 defining the predicate
p ie still defined by the eubetitutions for th5 variables
Xl , . . .,& Needles5 to say that the de&&ion of a
program remain5 unchanged.

Declaratively, the satisfaction of a rule r with higher-
order database expreeaions by a collection of object5
I can be understood a5 the question: Doe5 there ex-
ist a higher-order substitution u such that I b r&I
Note that under this interpretation and the notion of a
higher-order substitution the declarative model of La
program5 can be defined in a manner similar to the
method employed for L’ programs.’ We leave this for
a formal and fuller presentation.

We discuss the operational model in the followbg
two eubsections by first preeenting 5ome iIluminatkg
examples to impart the essential ideas underlying the
operational semantics. First, in the next subsection,
we present the language with the restriction that the
ci’5 in the rules are still restricted to only the databwe
object in the universe (55 before), except that th5 &
lowed expression5 are higher-order expressions. We re
fer to this class of expression5 55 higher-order dat&we
expressions. In a later section we relax this restriction
and allow all objects in the universe.

4.1 Higher-order queries on +dh
database object

Consider the rule: .p(X) c .X It bear5 repetition that
the above rule is equivalent to

.p(X) + db.X

‘The main difference would be in the deAnit$enof the universe
u.

in our notation 55 was declared earlier and we have, for
notational convenience, been omitting the prefix “db”.
We shall continue to do 80 but the reader5 are reminded
to keep this in mind. The predicate p compute5 the
names of all the predicate5 (both derived 55 well as
base) in the database, db. Informally, the substitution
for X range5 over all the predicates. For each rrubsti-
tution, the corresponding tuple in p ie added. A5 the
range of X is limited to the predicate5 in the database
object, (i.e., for all other objects of the universe the
expression, .X, is false) the computation of the above
rule computes the meaning of the rule as per T t w.

Operationally, consider a rule with higher-order
variables, Xi,. . . , &, (i.e., variable5 referring to a
database attribute position). Rewrite the rule for each
possible substitution for these variables. The rewritten
rules are all rules in L’ and their meaning ie defined as
before, a5 long a5 the number of substitution5 for the
variable5 ia finite. The substitutions for the variables
have to be finite because, the database predicates have
finite attributes. In short, the extension of expressions
to higher-order is limited by the range of attribute5
in the database and thue make5 the language decid-
able. We refer to this process of associating a meaning
aa replacement eemantics. Let ua consider some more
examples.

Example: Consider the databaea consisting of three
relations: systems, ai and hi, each representing the em-
Rloyees in the respective departments. The tuplee in
all three relations contain name, tel (i.e., telephone
not), and salary.

.p(X) + .Y(.nasw-Xl
The predicate p define5 all the names of the
employee5 in systems, ai and hi relations.

.p(X,Y) +.Y(.name=X)
A query, ? . p (j ohn, Y) , corresponding to the
predicate p, compute5 john’s department.

.p(X,Z) c.X(.name-Z, .tel-l),
.Y(.name# Z, .tel=T)

The predicate p compute5 the name5 of all
employee5 (and their department name) who
share their telephone.

.p(X,Z) +.X(.name-Z, .tel-T),
.Y(.name# Z, .tel-T) , Y# X

The predicate p compute5 the names of em-
ployees (and the relation name) who share
their telephone with an employee in another
department .I

In summary, any rule involving higher-order database
expressions with variable5 ranging over attribute
names c8n be aaaociated with a meaning using the

259

above replacement semantics. The approach we have
taken for these queries parallels the approach taken in
Office-by-Example (OBE) [14] [lo], where such higher-
order queries were defined using a similar domain cal-
CUIUS but in a very limited context (e.g., OBE did not
have recu.rsion,complex objects, etc.). Interestingly,
these rules cannot be etated in this manner in Prolog.
The notion of quantifying over database predicates was
not attempted in Prolog (however, the notion of meta
predicates that are allowed in Prolog is addressed in
the next subsection).

4.2 Higher-order queries on objects in
the universe

Consider the example of the database containing the
relation family (mother, children) from section 3.1
and the rule

.p(X, Y) + .family(X, Y), Y{’ bill.. .}

defining the predicate p to contain all mothers (and
the set of her children) having a child named bill.
Note that the variable Y refers to a set that need not
be an attribute of the database. The expression states
that the variable Y is substituted for a set that has
an element bill in it. Thii expression in the body
of the rule is not a higher-order database expression
as discussed in the previous subsection. (In the se-
quel we shall refer to such expressions as higher-order
conditions). But the same operational semantics carry
over to this case because the values that can be sub-
stituted for Y are limited by the finite values for Y in
the database. Thus replacement semantics will provide
the meaning for this program also.

On the other hand consider the following example:

.member(P,X) + P(X)
This defines a member predicate, that tests
the membership of X in the set P.

Note that in the above rule, any value from the uni-
verse can be substituted for P. Therefore, the number
of substitutions is unbounded. As a result, we cannot
give replacement semantics to this rule. On the other
hand, if the query ? .member(s, jill) (where a is a
particular set object) is asked then replacement seman-
tics can be applied to this rule for this query. In short,
we observe that such queries have a meaning if proper
bindings are supplied from the head; otherwise, they
are deemed unsafe.’ Thus, we can attribute an oper-
ational meaning to a rule for a given binding for the

*Note that unrafe queries in LDL do not have operational
remantic8.

attributes of the predicate. A binding for a predicate
is the bound or unbound pattern of its attributes for
which the predicate is to be computed.

We give below more examples of such usage.

Example:

.intereection(P, Q, (X)) t P(X), Q(X).
This defines the thiid attribute of the inter-
section predicate to be the intersection of the
sets, P and Q. Note that the safety requires
that P and Q be bound.

.subset(Q,P) +.intersection(P,Q,P).
P is a subset of Q. from the definition of the
intersection predicate we can infer that the
subset predicate also requires both P and Q
to be bound.

.diff(P, 9, (X)) +
.member(P,X), .memberl(Q,X)

Set difference is defined using negation.

.r(P,-0)) + P(X).

.+,Q,W)) t Q(X).

.union(P,Q, (Y)) + .r(P,Q, {. . .,Y,. . .}).
Union is expressed through multiple rules
with the same head predicate symbol. n

Notice that the lack of such higher-order variables in
LDL (and other languages using bottom-up semantics),
requires the use of special evaluable predicates for set
operations.

The above examples show the need for character-
ising admissible rules using higher-order variables as
follows. A rule base rdb ia said to be ordered if each
rule is associated with an ordering of the conjunct6 iu
the body. An ordered rdb ia said to be covered for
higher-order variables with respect to a given query,
if the following condition is recursively true. For each
rule defining the query, all the higher-order variables
are rule-covered and the same ordered tdb ie covered
for each predicate occurring in the body (with the im-
plied binding).

Given a rule t in an ordered rdb of the form

p(. . .) 4-- exp1,. . . , esp,

and a binding b for p, the higher-order variables in
r are said to be rule-covered if for each higher-order
variable occurring in czpi in an attribute position the
same variable occurs in some expj, j = 1,. . . , i - 1 or
in a bound argument position of p.

Define p <, q if there exists a rule of the form

.p(. . .) + . . . ,q(. . .), . . .

260

and p < q if there exists a rule of the form

.p(. . .) t . . . ,q(. . . . x ,...) ,...

where X is a higher-order variable. We clay that an
ordered rdb in stratifiable with respect to higher-order
variables if there does not exist a sequence of the pred-
icate symbols of rdb

.Plh.fi. *. flk-l.Pk@k

such that 19 E {<, 5) and .pl = .pk and there is some
Bj is < (Vl 5 i 5 k;).

We dellne a set of rules rdb to be admiseible with
respect to a query q if there exists an ordering for rdb
such that the ordered rdb is covered and rdb is etrati-
fiable with respect to higher-order variables.

Informally, the admissibility condition has the fol-
lowing effect. The substitutions for every higher-order
variable X can be computed independently of the
higher-order condition that uses X.

The admissibility condition on rdb ensures that re-
placement semantics will associate only a finite num-
ber of objects with higher-order variables. Conse-
quently, replacement semantics will give an L’ program
to which the semantics of section 3 can be attributed.

Oblrerve that all the examples shown above satisfy
the admissibility condition. However, this condition is
too restrictive as the following example shows. Pump
applies an operation to members of a set [2].

Example:

.pump(X,Result.Operation,Identity) t
.partition(X,Xl,X2),X{Y...}
,.pump(Xl,Rl,Operation,Identity)
,.pump(X2,R2,Operation,Identity)
,.Operation(Rl,R2,Result).

.pump((},Reeult,Operation,Identity)
c Result - Identity.

Consider the query ‘I. pump (X, S , sum, 0) (where sum is
an evaluable predicate which adds two integers). Note
that this query gives a single binding for the higher-
order variables Operation, and Identity. Consa
quently, replacement semantics correctly provides an
L’ program even though the rules are inadmissible! ln
fact .pump will compute the result of any commutative
and associative operation with an identity. m

The above example shows that the stratification con-
dition is too restrictive. We formulate a less restrictive
strategy as follows. Consider a rule r which contains
one higher-order condition. Let the higher-order vari-
able be X. Compute, disregarding the higher-order

26

condition, the set of all substitutions for X. Note
that if this set is finite then replacement semantics
will work. The finiteness of substitutions for X can be
viewed as the traditional problem of safety in logic pro-

grams. In [7] an algorithm employing a sufficient test
has been proposed using which the finiteness property
can be checked. It is possible to extend this strategy
to rules with more than one higher-order condition but
for the sake of brevity we leave this to a fuller presen-
tation.

5 Adding a schema facility

The complete consort dancing together
-T. g. ELIOT, LITTLE CIDDINO

As mentioned before, most query languages (if not all)
provide a separate set of commands for defining the
schema of the database. Furthermore, this schema in-
formation could not be used to compose a condition
on the database. For example, list attributes (in all
predicates of the database) that have the data type
of DATE and change the values in all these attributes
from month/day/year format to day/month/year for-
mat. ln this section, we present an extension of the
language to allow such queries and updates.

We have already observed that the query to list all
the predicate names in the database(i.e., ?.X) uses the
structure of the database to pose the query. In order
to pose a query using schema information, we extend
the language to refer to the meta information of the
data. Furthermore, using the same syntax, we show
that meta information can be defined, thusly, providing
a systematic framework for schema definition.

We m-define the notion of an expression to include
meta-information as follows. The meta information
for any object is a tuple object. Examples of at-
tributes that may be defined in this tuple are type, keg,
cardinality, etc. Obviously, the list of attributes in this
tuple determine the expressive power of the language.
As the language provides the capability to define any
number of different attributes each of which is an ob-

ject of arbitrary complexity, we expect the expressive
power to be unlimited. ln the examples of this section,
we shall use only the type attribute and also assume
only the values, stn’ng, integer, set, tuple, and atom’
for this attribute.

Observe that any condition on meta information can
be expressed as a tuple expression. Thus, we define a
meta-expression, mexp to be Ctexplexp, in which the
texp, enclosed by square brackets, is a tuple expres-
sion on the meta information and exp is the expression

OAtom is one of the atomic typecl; e.g., integer, string etc.

1

on the object. Thus, we have defined meta-expression
using the notion of an expression. We m-define an ex-
pression on an object, exactly as before, but recursively
on meta-expressions.

A meta-expression in said to be satisfied on an object
if the meta-information satisfies texp and the object
satisfies exp. Needless to say that the evaluation of an
expression and the resulting substitutions are extrapo-
lated in the obvious manner. We leave unchanged the
definition8 of rules, programs, etc.

We alao allow the use of + (resp. -) prefixed to an
attribute in a tuple expression. This represents the in-
sertion (resp. deletion) of the attribute into the schema
for that tuple. Observe the difference between the fol-
lowing two cases:

?- .p(X) ?.p-(XI

In the tit case the predicate (assuming that it ia part
of edb) is to be deleted from the database, whereas in
the second case, all the tuplee are to be removed from
the relation p.

In summary, we have proposed the following changes
to the productions for EJxp and Texp:

,Exp-+ Ezpl 1 [Tczp]Ezpl
Expl --+ Aezp] Fezp 1 Tczp [Sezp
Texp ---, Sign .Aname Exp, Texp

1 Sign.AnameEzp I e

We use this language for schema definition as well aa in
posing a queries and updates. This ia exemplified in the
following two examples. Note that the proposal here
attempts to give a aampling of the capabilities of this
language as opposed to describing it completely. As
mentioned before, the compreheneivenese will depend
on the meta-information aa well as the capability of the
system to use this information.

Example: Insertion or deletion of relations, attributes
and types.

?+ . r 1. type-net] { (.name C . type=etringl ,
. age C. type=integerl I.. .}

Thb definea a predicate r in the cdb to be a set of
tuples, each of which contains two attributes, name
and age, which are defined to be of string and integer
type respectively. Similarly, deletion can be done using
the ‘-II operator.

?.r{+.ealary[.type=integer,
. def ault=O] . . . }

This adds a new attribute, salary of type integer to the
base predicate r and the default value for that attribute
to be rero.

?.r-(.ealaryl-.type=integer,
.default=O]=X, .name=N),
. i2r (X ,Y) , . r+ (. salary [+ . type=real ,

. def ault=Ol =Y , . name-N)

This changea the attribute, salary in the base predicate
r, to be of type real from type integer. Further, all the
values are also mapped through an evaluable predicate,
i2r which coerces integers to reals. m

Example: Usage of Schema Information.

.pl(Y) +.X(.Y)

.p2(Y) +.X(.Y[.type=integer])

.p3(Y) +.X(.Y[.type=integer]),
Y-Gel Yll

Observe that we are using the Prolog notation of con-
catenation in this example. An appropriate definition
of this evaluable function is assumed here. This exam-
ple ie eimilar to the predicate to lit all the predicate
names. The first rule computes all the attribute names
in the database. The second rule lists only those at-
tributes that are of type integer. Of those attributes,
p3 computes only those that start with a.

.pl(Y) +.X(.Y{ . ..) x)... },

.p2(Y) +.X(.Y[.type=aetl)

Predicate pi computes all attribute names in all the
predicates of the database that are sets and have at
least one eet with sero or more elements. In contrast,
p2 computes all attribute names in the predicates of
the database that are defined to be sets, irrespective of
any value associated with that attribute. n

Note that we have shown that any query (or update)
can be used in conjunction with a condition on the
meta information. This uniformity in the treatment
of the schema information is achieved through the use
of the higher-order predicates, as well ae the notion of
updating these higher-order predicates.

6 Conclusion

And all rhall be well
All manner of thing rhall be well

-T. S. ELIOT, LITTLE CUDDINO

Over the last few months we have been engaged in the
exercise of designing a language which has powerful
features for deductive databases; and, whose seman-
tics are declaratively specified. In this paper we have
concentrated on assimilating higher-order information
into a deductive database framework.

The central idea of this paper is that higher-order
unification can be replaced by higher-order matching

262

over a finite set of values. We have rhown that this
claim can be consistently upheld over a variety of pow-
erful features and operations.

I Acknowledgements

I
We thank Rauan A%KacJ Zor wtting IU draigbt on many
imucu and pointing IM in right dJrectionr and Pat Lincoln for
vaJuable disc~ioar. The set notation we have ured rtemr
from a propoml by Carlo Zaniolo. We bope that these tXen&
will continue to help IU became “It ain’t over tiJJ the fat Jady
- I mnm . . .

References

[1] Apt, K., Emden, M.: Contributions to the Theory
of Logic Programming, J. of the ACM, 29(g),
1982.

[2] Bancilhon, F., Briggs, T., Khoshafian, S., Val-
durier, P.: FAD, A Simple and Powerful Database
Language, Proc. VLDB, Brighton, 1987.

(31 Bancilhon, F., Maier, D., Sagiv, Y., Ullman, J.:
Magic Sets and Other Strange Ways to Implement
Logic Programs, ACM Sym. on PODS, Boston,
1986.

14) Beeri, C., Naqvi, S., Shmueli, 0. and Tsur, S.:
Sets and Negation in a Logic Database Language,
ACM Sym. on PODS, 1987.

[5] Kuper, G.: Logic Programming with Sets, ACM
Sym. on PODS, 1987.

[6] Krishnamurthy, R., Naqvi, S.: Non-Deterministic
Choice in Datalog, 3rd International Conf. on
Data and Knowledge Bases, Jerusalem, 1988.

[7] Krishnamurthy, R., Ramakrishnan, R.,’ Shmueli,
0.: A namework for Testing Safety and Effective
Computability of Extended Datalog, Proc. SIG-
MOD, Chicago, 1988.

[8] Naqvi, S.: A Logic for Negation in Database Sys-
tems, MCC T&&al Report and Proc. of work-
shop on Deductive Databases, Washington, 1986.

[S] Naqvi, S., and Krishnamurthy, R.: Database Up
dates in Logic Programming, ACM Sym. on
PODS, 1988.

[lo] Whang, K., et al.: Office-by-Example: An In-
tegrated Office System and Database Manager,
ACM ‘&arm. on Of&e Info. S., 1987.

[111 Shmueli, O., Tsur, S., Zaniolo, C.: Rewriting of
Rules Containing Set Terms in a Logic Data Lan-
guage (LDL), ACM Sym. on PODS, 1988.

[12] Sacca, D., Zaniolo, C.: Implementation of Recur-
sive Queries for a Data Language Based on Pure
Horn Logic, International Conf. on Logic Pro-
gramming, Melbourne, 1987.

1131 Tsur, S., Zaniolo, C.: LDL: A Logic Based
Database langauge, Proc. VLDB, 1986, Tokyo.

[U] Zloof, M.: Office-by-Example: A Business Lan-
guage that Unifies Data and Word Processing and
Electronic Mail, IBM Systems Journal 21(S),
1982.

263

