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ABSTRACT: Current database languages based on 
Horn clausea and the bottom-up model of computa- 
tion, such aa LDL and DataJog, are not as expreesive 
as Prolog. For example, such languages do not sup- 
port schema and higher-order predicates in an inte- 
grated framework but rely on a separate language to 
specify the schema information and on evaluable pred- 
icatea for expressing higher-order information. Prolog 
on the other hand while providing powerful features 
does so in only a procedural settiag. Caught between 
a rock and hard place we ask whether a Horn clause 
language can be designed which provides most if not 
all of the power of Prolog in a declarative framework. 
In this paper we start with a simple logic programming 
language in which the central notion is that of an ob- 
ject and an expression. We build upon these simple 
constructs and show that the resulting language has 
the power of DataIog and a bottom-up semantics. We 
then successively increase t6e expressive power of the 
language to subsume LDL in the sense that we can 
support sets, stratified negation, and updates to base 
relations. Finally, we show that our language can sup- 
port meta, schema and higher-order constructs in an 
integrated, consistent and clean framework. 
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1 Motivation 

Let u learn how 10% frensy came- 
She telling her dim&en manifold. 

--IESCHYLUS, PROMETHEUS BOUND. 

Prolog would have made a wonderful database lan- 
guage if all its power had been provided in a declar- 
ative framework. But precisely those very constructs 
which one finds so useful and powerful, e.g., negation, 
cut, updates etc., come only in a procedural setting. 
The pure subset of Prolog is uninteresting as a real 
programming language. 

Many logic-oriented database languages are being 
proposed, e.g., LDL 1131, Datalog, NAIL!, etc., with 
declarative semantics. These, however, are not as pow- 
erful 88 Prolog. In many cases they do not have cut, 
meta predicates, schema definition, updates, etc. The 
question ia whether a Horn clause language can be de- 
signed which provides most if not all the powerful fea- 
tures of Prolog in a declarative setting and which is 
amenable to efficient compilation. Towards this goal, 
in [9] we proposed the addition of procedurality and 
updates while still retaining the declarative semantics 
of pure Horn clause languages. In (61 we proposed a fe& 
ture called non-deterministic choice that encompasses 
the use of cut in Prolog and is shown to be even more 
powerful in a certain sense. 

Continuing in this vein, in this paper we move a step 
closer to our goal by proposing a language in which 
the definition and manipulation of meta information 
and data is unified. Traditionally, a separate language 
is provided for this purpose. Our proposed language 
encompasses me&data and data by allowing higher- 
order predicates to be defined in the language. Higher- 
order languages have been met with skepticism since, 
among other reasons, the unification problem is un- 
decidable. Our solution ia to follow conventional wis- 
dom that led to the development df languages based 
on bottom-up semantics, summed up in the following 
statement from 1121 “The important fact to be observed 
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in bottom-up processing is that it has replaced full uni- 
fication with matching (i.e., only one of the two terms 
contains variables).” The effect of replacing unifica- 
tion with matching is a gain in performance. This has 
been the foremost reason for the recent burst of interest 
in bottom-up processing of Horn clause queries. Us- 
ing the same wisdom, we have asked ourselves whether 
there exists a higher-order language in which higher- 
order unification can be replaced by the matching op 
eration. In this paper we present such a language and 
show its use in providing the capability of expressing 
and manipulating schema and higher-order informa- 
tion in a database system. Our language allows queries 
that can not be expressed in Prolog. Further, we show 
that it is capable of defining schema information as well 
as being able to use them in the program, e.g., updat- 
ing all attributes of all relations that have DATE as 
their data type. 

As a side benefit we have also been able to provide 
a standard treatment of sets. For example, languages 
such as LDL [4] and LPS [5] treat relations and sets 
differently. Such a duality is unnatural and as a conse- 
quence not all operations defined for sets are applica- 
ble to relations. By standardising the treatment of sets 
and relations, we have not only simplified the expres- 
sions but also allow a richer collection of set selection 
expressions which also promise to help the set unifica- 
tion problem [ 111. 

Our presentation in this paper is necessarily impres- 
sionistic. In particular, we have attempted to impart 
in a clear and consistent manner the essential ideas of 
the language. This has necessitated a consistent syntax 
in which we have liberally used diiambiguating tokens. 
We readily recognise that it may not be user-friendly. 
We have provided sketches of formal semantics, both 
declarative and operational, for parts of our language 
and in some cases arguments which point how seman- 
tics can be defined. A formal paper on this subject is 
forthcoming. 

The organisation of the paper is as follows. We start 
by defining a simple subset, called Lo, of our language. 
We show that Lo is equivalent to Datalog and that it 
can be extended to L’ which allows stratified negation, 
updates to base relations and set grouping. Moreover, 
L1 treats sets and relations uniformly and allows a rich 
collection of set expressions. The higher-order counter- 
part of L’ is called La and we show how higher-order 
information is expressed and manipulated in La. The 
semantics of La use higher-order matching. Finally, we 
show how La supports and manipulates schema infor- 
mation. 

2 Lo: A language of objects and 
expressions 

An easy commerce of the old and the new 
-T. S. ELIOT, LITTLE QIDDINO 

The conceptual structure of Lo is based on objects and 
expressions on objects. An object can be classified into 
one of four categories: a set of objects, a tuple of ob- 
jects, a functor object or an atomic object. Examples 
of atomic objects are integers, characters, etc. 

A functor object is recursively defined as an object of 
the following form, where f is an n-ary functor symbol: 

f(object1, . * . , object,) 

A tuple object is a sequence of named objects. Syn- 
tactically, a tuple of objects can be viewed as 

(ottrl : ob ject1, . . . ) ottrk : objectk) in which, each 
attrj : objecti pair refers to the objcctj that is the dtrj 
attribute of the tuple. We usually refer to objecti to be 
the attrj object of the tuple and when there is no con- 
fusion, we informally refer to the dtrj object as dtrj. 
For example (name : john, sol : 10K) is a tuple object. 

A set object is a named (not necessarily homoga 
neous) collection of objects. For example, p{(name : 
john, 541 : lOK), . . .} is a set object named p whose 
elements are tuple objects. 

Corresponding to each kind of object we have an 
expression of that type. An expression, evaluated on 
an object, under a substitution (defined below), returns 
true or false. An atomic expression (evaluated on an 
atomic object) returns true only for an atomic object; 
and, similarly for functor, tuple and set expressions. If 
an expression evaluates to true on an object then we 
say that the object satisfies the expression. 

An atomic expression is an expression of the form aX 
where X is either a variable (denoted by a capitol letter) 
or a value (denoted by a lowercase letter or number) 
and ar E {<, 5, >, 2, =, #}. For example, > C and 5 6 
are atomic expressions. The subset of atomic expres- 
sions ensuing from restricting Q to the symbol - shall 
be called simple atomic expressions. In simple atomic 
expressions we shall often omit the equality sign. The 
simple atomic expression of the form = X is also a 
valid tuple, functor and set expression. 

A functor expression is an expression of the form 
Qf(em, . . . , czpn) where sspj, j = 1,. . . , ta is an ex- 
pression for the jth argument for the n-ary functor f. 

A tuple expression is a conjunct of the form 
.alezcpl, .aaezp2, . . . , .akezpk 

where each sspj is an expression on the object associ- 
ated with the oj attribute of the tuple. Note that in 
general an attribute ok may not be defined for a tuPle 
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object but such an expreaaion in still syntactically valid 
for the tuple object. 

A set expression is defined to be 
(exp) 

in which exp ia an expression on an object, i.e., element, 
of the set. 

We also define the empty expression c which satisfies 
all objects. In summary we show below the grammar 
for expreMions of Lo in which words starting with an 
uppercase letter denote non-terminals. 

Exp -+ 
Ac -) 
Fe -+ 
ExpL + 
Te -) 
se + 
Fname + 
Aname -+ 
Relop -* 

Ae 1 Fe 1 Te 1 Se I= uariable 
Rclop constant 1 Relop variable I E 
QFname(ExpL) I e 
Ezp, ExpL I Ezp 
.AnameExp, Te I .AnameEzp ( c 
(Exp) I c 
&ring constant 
string conf3tant 
>Irlll<l=l# 

Constants and variables are defined, in the usual man- 
ner, aa strings starting with lower and upper case let- 
ters, respectively. 

2.1 Evaluation of expressions 

A substitution ia a non-empty finite eet of ordered pairs 
Wl/% . . . , X,,/O,,} such that (t/l< i < n) Xi is a dis- 
tinct variable, 04 is an object. We view a substitution 
aa a mapping on variables that is the identity almost 
everywhere. If u in a substitution and X a variable the 
result of applying u to X is defined aa 

xu= 
I 

0, if (X/o) E a 
X, otherwise 

We extend thii mapping to expressions in a man- 
ner con&tent with the above definition. If Q = 
Gwl,..., X,,/on} and e is an expression then 

eu = [XX1 . . . XX,.e]ol . . . on 
Evidently the idea behind an application of Q to 
an expression e ia to replace the free occurrences of 
Xl ,..., X,inebytheobjectrol,..., on. 

If B and a are two substitutions and B U a is a sub- 
stitution then we say that a and B are mutuay con- 
sistent; otherwise they are said to be inconsistent. 

A ground (i.e., free of variables) atomic expression, 
say ac, evaluated on an atomic object, say o, returns 
true if the comparison oat ia true. An atomic expres- 
sion, ac, evaluated on an atomic object o returns true, 
if there exists a substitution u such that oacu is true. 
In such a case we shall say that the object o satisfies 

the expression. Any object, o, satisfies the expression 
= X for the substitution X/o. 

A functor object o with n-ary functor symbol f eat- 
i&es a functor expression Of(expl, ezp2,. . . , exp,) if 
there exists a substitution u such that (Vl 5 i 5 
n)cxpia ia satisfied by the object oi in the ith argu- 
ment of 0. 

A tuple object o = (bl : 01,. . . , bk : Ok) satiafiea a 

tuple expression 
.alexpl, .aqexp1,. . . , .a,,exp,, n I k 

if there exists a rrubstitution u euch that (Vl 5 i I 
n).avsxpi there exists bj : oi E o, (15 i < k) such that 
bi = ~ri and oj satisfies expi under the substitution u. 

A set object I satisfies a set expression (exp) if and 
only if there exists a substitution u and an element 
o E 8 such that o satisfies ezp. 

Example: Below we show examples of objects and 
expressions that satisfy them. 

expression object substitution 
=x b W/b) 
.n>X,.m=Y (n : 6, m : a) (X/S, Y/a) 
(.n > X, .m = Y) {(n : 6, m : a), (X/5, Y/a) 

(n:5,m: b)) 
ww, f?(Y)) f 0% 9(a)) (X/5, Y/a) 

Example: Consider a tuple object in which the amp 
attribute ie a wt of tuple objects, i.e., 

(al : nl, . . . . emp: fel,es ,... } ,...) 
where ei ie a tuple co&sting of name, age, l aluy 
and children attributes. Name, age and salary ob- 
jects are atomic whereas the children object is a set of 
names of children. Below we show some expressiona on 
the emp object. 

. emp ( . age=301 
‘Ia there a 30-year old employee?” 

.emp(.age>30, .name=N) 
“List names of all employees older than 30. 
Note that the ordering for the age and name 
attributes is immaterial because we are nam- 
ing the attributes. 

.emp( .aalaryOE(=SOOO)) . 
“Is there an employee with salary of 
L(5000)?~ 
Thii example also exemplifies the need for the 
token denoted by ‘W’ before the functor sym- 
bol. Note that the use of the functor E, when 
juxtaposed with the attribute name nalary 
without the token, would be ambiguous with 
a possible attribute name of aalaryE. 

. emp( . age-30, .name=N) , 
.emp(.name=N, .aged=liO) 
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“List all 30 year old employees who have the 
same name as a SO year old employee.” 

. emp ( . name-N, .children(joIm)) 
“List names of all employees with a child 
named john.” 

2.2 Rules and programs 

Define a databwe, db to be a tuple object 

whose attributes are relations, i.e., a set of taple ob- 
jects. 

We define a rule as an implication head 6 body in 
which head is an expression of the form .p(czp) such 
that p is an attribute of db (also referred to as a derived 
predicate) and czp is a list of simple atomic expressions 
or objects and body is a conjunct of expressions on ob- 
jects er,...,e, 

.GlCZPl, . . . ) .e,ezpn 
Without loss of generality we shall restrict each ei to 
be an attribute of the database object, db. Therefore, 
each CZpi is a tuple expression involving exactly one at- 
tribute of the database object (i.e., a single relation). 
We can thus view the body as a conjunct of expressions 
on the database object using the variables Xl,. . . , Xk. 
We emphasise that we are initially restricting all ex- 
pressions in rules to be defined over the database ob- 
ject. 

We define a query to be a rule with an empty head 
and denote it as ?.elezpl, . . . , .e,,exp,,. 

A note on notational convenience: It is more common 
to write rules without attribute names. We can al- 
low this notational convenience by assuming that each 
predicate has an ordering of attributes in the tuples. 
For base predicates, such an ordering is declared in the 
schema; for derived predicates, left-to-right ordering 
in the rule definition may be assumed. As an exam- 
ple consider the emp relation of the previous exam- 
ple in which each tuple in emp consists of name, age, 
salary and children, in that order. 

.sameName(N) + .emp(N,SO, -, ,-I, 
.emp(N,liO, -, -1 

*sameName is a set of 30 year old employees 
who have the same name as a SO year old 
employee.” 

?.emp(N,--,--, . children f j elm) ) 
“List names of all the employees having a 
child named john.” 

A program is defined to be a triple (rdb, edb, q) where 
rdb is a finite collection of rules, cdb is a finite set of 
(base) relations, and q is a query. 

3.3 Semantics of Lo 

We start by informally explaining the notion of the 
universe, U, of a program P of Lo. Initially we take Uo 
to be the set of all atomic objects in P. In case there are 
none then Uo is to consist of a special atomic object, say 
1. Next, Ul is defined as the set of all possible tuple, 
functor and set objects that can be formed from the 
elements in UO. Proceeding inductively in this manner 
we let U be the infinite union of all Ui.’ 

We now define the satisfaction of a rule. Consider a 
rule of the form 

.P(...)+Pl,...,Pm 

Let u be a substitution and I c U. The rule is satisfied 
if 

whenever each pi,i E {l,...,m} is satisfied 
by some object oi E I under substitution u 
then .p(. . .)u is also satisfied by some object 
in I, or 

there is some pi which is not satisfied by any 
object in I. 

Note that a fact is trivially satisfied by the empty 
atomic object under the identity substitution. 

Given a collection of rules rdb, I s U is a model of 
rdb if I satisfies all the rules in rdb. A model M of a 
given collection of rules rdb is said to be minimal if no 
proper subset of M exists such that it is also a model 
of rdb. 

1Formally, we may deflnr IJ M follows. Let Uo be the ret con- 
sisting of all atomic objects. For n > 0 U, ie defined inductively 
ea follows (let P(S) denote the ret of rubeeti of ret S): 

Gb,#hO = un-1 u P(rJ,-1) 
G mb,nd = G m,n,j-1 u {f(“l,. . . @ok) 1 

fir a functor of arity of k, 
Md oi E G-,n,j-l) 15 i I k) 

G lr,nj = G n,n-l,j U {uk{(Ols * - * o ok) 1 
0; E Gn,n-l,jn 15 i I k)) 

00 ce 
u Sl8= uu G mi,n,i 

j=O n=O 

U= fiUi 
i=O 

End of Note 



Proposition: A program Lo has a unique miniial 
model. a 

We define the meaning of a program to be the unique 
minimal model of the program as defined above. 

Define an operator T, similar to (11, as follows: Given 
asetofrulesr&andasetI 

Tr4-l = {(sy)~ E P I 
.p(x) + .p~,. . ., .p,, is a rule in rdb, 
30 satisfying .pl,. . ., .pn} 

Define powers of the operator T ae followr: 

T t o(I) = T(I) 
Ttn(l)=T(Ttn-l(l))uTtn-l(1) 

(n 2 1) 

We define the least &point of the program (rdb, edb, q) 
to be the set of objects TIa t w(4) where w denotes 
the first ordinal number. Note that T is monotonic. 

Propoeition: T,aa t w(g) exists and is equivalent to 
the unique minimal model of a given program P = 
(rdb, edb,>q). m 

We assume that the least Sxpoint of a program giver 
the meaning of the program in the sense that the an- 
swer to a query 4 with respect to the least fucpoint M 
of a program P ia 

Wla . . .,&) I (4(-G,. . .,&)a) E M) 

where u is the substitution {XJdl, . . . , Xk/dk}. 

Proposition: Lo subsumes Datalog, i.e., if P is a Dat- 
alog program with unique minimal model M, then M 
is also a model of the Lo program P. m 

3 Extending Lo to L1 

No 0x10 #hall drive w from the paradirr that Cantor hu 
created. 

-FIILBERT 

We extend Lo to L’ by generalisiig set expressions of 
Lo. These general&rations give the ability to negate set 
expressions, operate on or construct sets and insert or 
delete elements from sets. 

Sexp -) Sign Sexpl 1 4ezp 1 (Sezp) 
S-p1 7 PIP, I 0 I WdM I c 

. . ., ExpList} I {Expfiat,. . .} 
-+ {..., EzpList, . . .} 

Sign ++I+ 

3.1 Set Selection 

Recently the problem of allowing sets in logic program- 
ming languages has received attention from 14, 51. It is 
a consequence of the definition of Lo that relations and 
sets are treated uniformly. Thus no special provisions 
have to be made to support sets. In fact, by general- 
ising set expressions we can allow subsets of sets to be 
selected. The need for such a selection mechanism has 
been felt for some time in LDL Ill]. We shall allow 
sets with unknown cardinal&y, with a known cardinal- 
ity, i.e., exactly an integer ‘k”, and sets in which the 
cardinality is bounded by some integer, i.e., at most 
Ok”. It is this third case which allows the associativ- 
ity problems to creep in and requires AC1 unification 
which is semi-decidable[ 11). 

The meaning of set selection expressions is as below: 

(} denotes the empty set. 

{X,Y,Z} denotes a set of cardinality 3. 

{(X,Y,Z)} denotes a singleton set. 

{X,Y,Z,. . .} denotes a set of cardinality 2 3. 

{. . .,X,Y,Z} denotes a set of cardiiality <, 3. 

{. . .,X,Y,Z . . .} denotes a set of arbitrary car- 
diiality. 

Note that {X, . . .} as defined above is equivalent to (X) 
in LO. 

Example: Consider as before the tuple object db 
which has a set object family(Mother, Children) as an 
attribute; the elements of family are as follows: 

{(mary, (bill, jack}), (jill, {peter,paul, mary}), 
baw, OH. 

Here are some sample queries: 

?.family{--,-Kids} 
“List all sets of children” 
Answer: Kids/ {biijack}, 

KW befw=ubaryh Kids/ 0 

?.family{lmary,{=bill}} 
‘Does Mary have a single child’ 
Answer: no. 

?.family{=X,{ . ..) -Y,-2)) 
=Who has at most two children” 
Answer: X/mar-y, Xjnancy and commutative 
bindings for Y and Z 

?.family{-X,(-Y,-Z,-WY)) 
aWho has exactly three children” 
Answer: (X/jill, Y/peter, Z/Paul, W/mazy) 
where we have omitted other answers due to 
commutativity of the set elements. 
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?.family{=X, {=Y ,=z,. * .}} 
‘Who has more than two children” 
Answer: X/mar-y, X/jill with commutative 
bindings for Y and Z. 

Example: Constructing enumerated sets. 

.p(X,Y,Z) + .book(X,<30), 
.book(Y,<SO), .book(Z,<30) 

“Collect sets of three books individually cost- 
ing less than $30 each.” 

.bookDeal{{X,Y,Z}} c .book(X,Px), 
.book(Y,Py), .book(Z,Pz), 
Px+Py+Pz 5 $100 

We are assuming the existence of evaluable predicates 
and functions such as +. Note that here we are asking 
for exactly three books whose cost is at most $100. We 
can use the argument { . . .,X,Y,Z} to ask for at most 
three books, etc. 14). 

3.2 Grouping and Negation 

In this section we 6rst consider the generalisation of 
set terms to allow elements to be grouped into sets of 
arbitrary cardinality and then to allow negation. A 
grouping rule is a rule of the form 

.p(X, setfUame(Y)) +- body(X, Y) 

Readers are referred to (41 for a formal description 
of the semantics of grouping rules. Informally, the op- 
erational semantics of such a rule are as follows. The 
body of the rule is satisfied by a set of substitutions 
inducing the construction of a relation, called the body 
relution, and for each value 9 of the variables 58 we 
collect all the Y-values ~1, . . . , y, into the set object 
named eetname. 

Example: Set Grouping. Group all parts by supplier. 
.p(SuppZier, pwt.9(Part)) + 

.b(Supplier, Port) 

Next we consider the generalisation of set expres- 
sions to allow negation. We propose to use stratified 
negation [8] as in LDL and Datalog’ with a simple 
syntactic change. Observe that in LDL a negation is 
used only in conjunction with a predicate which was 
defined to be a set of tuples. Recalling our philosophy, 
that a predicate is a set of tuples, we conclude that 
the negation is defined only in conjunction with a set. 
The syntax used in LDL is to prefix the negation sym- 
bol 7 to the predicate expression to get the negated 
expression (i.e.,-emp(...)) whereas we use emp-,(ezP). 
We illustrate the usage by the following example. 

Example: Consider the following query on the emp 
relation. 

?.emp(.name = Nl, .saZary = Sl), 
.emp~(.saZary)Sl, .name # Nl) 

Find the employee with a salary much 
that no other employee haa a larger 
salary. “O 

We emphasise that the semantics of negation in L1 
are identical to that of stratified negation in LDL and 
Datalog. 

3.3 Semantics of L1 

We define a notion of an admissible L1 program 
(rdb, edb, q) a~ follows. We start by defining a pref- 
erence relation between attributes in rules of rdb. If 
there is a rule of the form 

.p(. . *) + . . . , .q(. . .), . . . 

then we say that p 2 q. If the rule is of the form 

.p(. . .) + . . . , .q-(. . .), . . . 

or it is a grouping rule of the form 

.p(. .., (. . .)) + . . .,.q(. . .), . . . 

then we say that p > q. 

We shall say that a program irr admiible if there 
does not exist a sequence of attributes 

.Plma . . . ek-l.pkek 

such that B E {>, 1) and .pl = .pk and there is some 
Bj is >, (V15 j I k). 

As in Datalog and LDL the admissibility require- 
ment induces a partitioning on the rules of rdb and we 
may write rdb as composed of the disjoint sets of rules 
Lo,&, . . . . L n. 

Given a program (rdb,edb, q) we define the notion 
of a standard model of a program as follows. Let 
Lo , . . . , L, be a partitioning of rdb U edb. Then 

MO =TL, t4d) 

MI = TL, tw(Mo) 

IIt is inrtructive to note that the equivalent Datdog’ query 
? ctnp(N1, SI), -remp(N2,S2),S2)Sl, N1 # N2. 

ir unsafe. 
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We define the meaning of an admissible L’ program 
to be the set M,. As in LDL and Datalog it can be 
shown that M,, is a minimal model of the correspond- 
ing program. 

Propooition: I? subsumes Datalog’ and update-free 
LDL. a 

5.4 Insertion and deletion in set ex- 
pressions 

The final generalisation we consider of set expressions 
is that to allow elements to be inserted and deleted 
from set objects. LDL has the capability to insert and 
delete tuples from a base relation. For example the 
LDL rules 

. ..+ . . ..+b(X.Y) 

. ..+ . ..) 4X Y) 

have the meaning that the substitution for X and Y 
that result from the body are inserted and deleted in 
the ‘+’ apd ‘-’ cases respectively. We propose a syn- 
tactic change to denote the insertion (reap. deletion) 
of tuple from the set object b by b+ ( :X, :Y) (resp. 
b-(:X, :YI). We empahsise that this being a syntac- 
tic change, the semantics presented in [9] carry over 
to thii case. In particular, note that the basic maxim 
in update semantics in LDL was that a query provides 
bindings for tuples that are to be inserted or deleted, 
i.e., lkst compute the set of tuples for an update and 
then do the update.3 Thi maxim and its concommi- 
tant update semantics can be carried over into L’ with- 
out change. For the sake of completeness, we present 
below some examples of updates to base relations, so 
as to make the presentation self-contained for readers 
unfamiliar with the update proposal in LDL. 

Example [9]: 

Fire all managers who make more than their 
employees. 
.fireEmpO + 

.emp(N,X,Sl), .mgr(N,M), 

.emp(H,Y,<Sl), .emp-(N,N,Sl). 
Note that the set of employees to be d$eted 
is determined by the subgoals preceding 
.emp-(...I. 

Give every database employee a 10 percent 
raise. 
?.eds(X,db,S), Sl=S*l.l, 

ede-(X,db,S), edsf(X,db,Sl). 

8The name update maxim was wed in Query-by-Example 
(WE). 

Further note that the procedural constructa presented 
in LDL [9] may be assumed without any syntactic 
change. Also the declarative and operational semantics 
defined for these procedural constructs may be used 
with minor changes in L1. As none of our examples in 
this paper use procedural constructs we leave this out 
from our presentation. 

Propoeition: L’ subsumes LDL with updates. m 

4 L2: A higher-order language 

Two worlds become much like ewh other 
-T. S. ELIOT, LITTLE OlDDING 

In L’ we restricted attribute names and functor sym- 
bols to be values. In thii section we remove this restric- 
tion and define a notion of higher-order quantification 
over attribute names and functor symbols. The result- 
ing language is rich enough to express and query meta 
and schema information. Essentially we generalise L’ 
expressions as follows: 

Fname -I constant 1 variable 
Aname ---, constant 1 variable 

Thus, we re-define the notions of functor and tuple 
expressions A functor expression is an expression of the 
form aDF(expl, . . . , ezp,) where F is either a variable 
ranging over functor symbols or a functor symbol itself. 
Further, expj, j = 1,. . ., n is an expression for the 3’h 
argument for the n-ary functor reference F. 

Similarly, a tuple expression is a conjunct of elemen- 
tary expressions as defined below: 

.Alexpl, .A+xp~, . . . , .AkCxpk 

whereea&Ai, i=l,..., k, is either a variable for an 
attribute name or an attribute name itself. Further, 
each espj is au expression on the object associated with 
the Aj attribute of the tuple. 

A variable occurring in a functor symbol or an at- 
tribute position in an expression will be referred to as a 
higher-order variable. We define a higher-order exprw 
sion as an expression as defined before, using the new 
definition for functor and tuple expression and use the 
word expression to mean possibly a higher-order ex- 
pression from now on. Informally, the evaluation of an 
expression is as before, except that now a substitution 
must also give bindings to the variables standing for at- 
tribute names and functor symbols, i.e, a substitution 
is now defined to be a non-empty finite set of ordered 
pak {X1/01,. . ., X,,/on} such that (‘5’1 5 i I n) Xi is 
a distinct variable ranging over not only the objects in 
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the univeme (a5 defined earlier) but also over functor 
and attribute names. 

A rule is defined as an expression of the form 

db(ew) + elez~l, . . . , e,ezp,. 

where each ei in the body is now allowed to range over 
the object5 in the univeme and each aspi is a higher- 
order expression. The body ia viewed a5 a conjunct 
of expressions on the object5 of the universe using, a5 
before, the variable5 Xi, . . . , x&. Since the objects ULIU- 
ally range over the database, we still omit the usage of 
db in rules; for all object5 other than the database, db, 
we shall be explicit in referring to that object, Qb- 
serve that the head predicate is still restricted to be 
a name in the database object (cf. section &a) and 
not a variable and exp is a list of simple ato.& ex- 
pressions or objects. Thue, all variables in $he head 
are still required to be referenced in the body, A5 a 
consequence, the eet of tuple5 defining the predicate 
p ie still defined by the eubetitutions for th5 variables 
Xl , . . .,& Needles5 to say that the de&&ion of a 
program remain5 unchanged. 

Declaratively, the satisfaction of a rule r with higher- 
order database expreeaions by a collection of object5 
I can be understood a5 the question: Doe5 there ex- 
ist a higher-order substitution u such that I b r&I 
Note that under this interpretation and the notion of a 
higher-order substitution the declarative model of La 
program5 can be defined in a manner similar to the 
method employed for L’ programs.’ We leave this for 
a formal and fuller presentation. 

We discuss the operational model in the followbg 
two eubsections by first preeenting 5ome iIluminatkg 
examples to impart the essential ideas underlying the 
operational semantics. First, in the next subsection, 
we present the language with the restriction that the 
ci’5 in the rules are still restricted to only the databwe 
object in the universe (55 before), except that th5 & 
lowed expression5 are higher-order expressions. We re 
fer to this class of expression5 55 higher-order dat&we 
expressions. In a later section we relax this restriction 
and allow all objects in the universe. 

4.1 Higher-order queries on +dh 
database object 

Consider the rule: .p(X) c .X It bear5 repetition that 
the above rule is equivalent to 

.p(X) + db.X 

‘The main difference would be in the deAnit$enof the universe 
u. 

in our notation 55 was declared earlier and we have, for 
notational convenience, been omitting the prefix “db”. 
We shall continue to do 80 but the reader5 are reminded 
to keep this in mind. The predicate p compute5 the 
names of all the predicate5 (both derived 55 well as 
base) in the database, db. Informally, the substitution 
for X range5 over all the predicates. For each rrubsti- 
tution, the corresponding tuple in p ie added. A5 the 
range of X is limited to the predicate5 in the database 
object, (i.e., for all other objects of the universe the 
expression, .X, is false) the computation of the above 
rule computes the meaning of the rule as per T t w. 

Operationally, consider a rule with higher-order 
variables, Xi,. . . , &, (i.e., variable5 referring to a 
database attribute position). Rewrite the rule for each 
possible substitution for these variables. The rewritten 
rules are all rules in L’ and their meaning ie defined as 
before, a5 long a5 the number of substitution5 for the 
variable5 ia finite. The substitutions for the variables 
have to be finite because, the database predicates have 
finite attributes. In short, the extension of expressions 
to higher-order is limited by the range of attribute5 
in the database and thue make5 the language decid- 
able. We refer to this process of associating a meaning 
aa replacement eemantics. Let ua consider some more 
examples. 

Example: Consider the databaea consisting of three 
relations: systems, ai and hi, each representing the em- 
Rloyees in the respective departments. The tuplee in 
all three relations contain name, tel (i.e., telephone 
not), and salary. 

.p(X) + .Y(.nasw-Xl 
The predicate p define5 all the names of the 
employee5 in systems, ai and hi relations. 

.p(X,Y) +.Y(.name=X) 
A query, ? . p ( j ohn, Y) , corresponding to the 
predicate p, compute5 john’s department. 

.p(X,Z) c.X(.name-Z, .tel-l), 
.Y(.name# Z, .tel=T) 

The predicate p compute5 the name5 of all 
employee5 (and their department name) who 
share their telephone. 

.p(X,Z) +.X(.name-Z, .tel-T), 
.Y(.name# Z, .tel-T) , Y# X 

The predicate p compute5 the names of em- 
ployees (and the relation name) who share 
their telephone with an employee in another 
department .I 

In summary, any rule involving higher-order database 
expressions with variable5 ranging over attribute 
names c8n be aaaociated with a meaning using the 
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above replacement semantics. The approach we have 
taken for these queries parallels the approach taken in 
Office-by-Example (OBE) [14] [lo], where such higher- 
order queries were defined using a similar domain cal- 
CUIUS but in a very limited context (e.g., OBE did not 
have recu.rsion,complex objects, etc.). Interestingly, 
these rules cannot be etated in this manner in Prolog. 
The notion of quantifying over database predicates was 
not attempted in Prolog (however, the notion of meta 
predicates that are allowed in Prolog is addressed in 
the next subsection). 

4.2 Higher-order queries on objects in 
the universe 

Consider the example of the database containing the 
relation family (mother, children) from section 3.1 
and the rule 

.p(X, Y) + .family(X, Y), Y{’ bill.. .} 

defining the predicate p to contain all mothers (and 
the set of her children) having a child named bill. 
Note that the variable Y refers to a set that need not 
be an attribute of the database. The expression states 
that the variable Y is substituted for a set that has 
an element bill in it. Thii expression in the body 
of the rule is not a higher-order database expression 
as discussed in the previous subsection. (In the se- 
quel we shall refer to such expressions as higher-order 
conditions). But the same operational semantics carry 
over to this case because the values that can be sub- 
stituted for Y are limited by the finite values for Y in 
the database. Thus replacement semantics will provide 
the meaning for this program also. 

On the other hand consider the following example: 

.member(P,X) + P(X) 
This defines a member predicate, that tests 
the membership of X in the set P. 

Note that in the above rule, any value from the uni- 
verse can be substituted for P. Therefore, the number 
of substitutions is unbounded. As a result, we cannot 
give replacement semantics to this rule. On the other 
hand, if the query ? .member(s, jill) (where a is a 
particular set object) is asked then replacement seman- 
tics can be applied to this rule for this query. In short, 
we observe that such queries have a meaning if proper 
bindings are supplied from the head; otherwise, they 
are deemed unsafe.’ Thus, we can attribute an oper- 
ational meaning to a rule for a given binding for the 

*Note that unrafe queries in LDL do not have operational 
remantic8. 

attributes of the predicate. A binding for a predicate 
is the bound or unbound pattern of its attributes for 
which the predicate is to be computed. 

We give below more examples of such usage. 

Example: 

.intereection(P, Q, (X)) t P(X), Q(X). 
This defines the thiid attribute of the inter- 
section predicate to be the intersection of the 
sets, P and Q. Note that the safety requires 
that P and Q be bound. 

.subset(Q,P) +.intersection(P,Q,P). 
P is a subset of Q. from the definition of the 
intersection predicate we can infer that the 
subset predicate also requires both P and Q 
to be bound. 

.diff(P, 9, (X)) + 
.member(P,X), .memberl(Q,X) 

Set difference is defined using negation. 

.r(P,-0)) + P(X). 

.+,Q,W)) t Q(X). 

.union(P,Q, (Y)) + .r(P,Q, {. . .,Y,. . .}). 
Union is expressed through multiple rules 
with the same head predicate symbol. n 

Notice that the lack of such higher-order variables in 
LDL (and other languages using bottom-up semantics), 
requires the use of special evaluable predicates for set 
operations. 

The above examples show the need for character- 
ising admissible rules using higher-order variables as 
follows. A rule base rdb ia said to be ordered if each 
rule is associated with an ordering of the conjunct6 iu 
the body. An ordered rdb ia said to be covered for 
higher-order variables with respect to a given query, 
if the following condition is recursively true. For each 
rule defining the query, all the higher-order variables 
are rule-covered and the same ordered tdb ie covered 
for each predicate occurring in the body (with the im- 
plied binding). 

Given a rule t in an ordered rdb of the form 

p(. . .) 4-- exp1,. . . , esp, 

and a binding b for p, the higher-order variables in 
r are said to be rule-covered if for each higher-order 
variable occurring in czpi in an attribute position the 
same variable occurs in some expj, j = 1,. . . , i - 1 or 
in a bound argument position of p. 

Define p <, q if there exists a rule of the form 

.p(. . .) + . . . ,q(. . .), . . . 
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and p < q if there exists a rule of the form 

.p(. . .) t . . . ,q( . . . . x ,...) ,... 

where X is a higher-order variable. We clay that an 
ordered rdb in stratifiable with respect to higher-order 
variables if there does not exist a sequence of the pred- 
icate symbols of rdb 

.Plh.fi. *. flk-l.Pk@k 

such that 19 E {<, 5) and .pl = .pk and there is some 
Bj is < (Vl 5 i 5 k;). 

We dellne a set of rules rdb to be admiseible with 
respect to a query q if there exists an ordering for rdb 
such that the ordered rdb is covered and rdb is etrati- 
fiable with respect to higher-order variables. 

Informally, the admissibility condition has the fol- 
lowing effect. The substitutions for every higher-order 
variable X can be computed independently of the 
higher-order condition that uses X. 

The admissibility condition on rdb ensures that re- 
placement semantics will associate only a finite num- 
ber of objects with higher-order variables. Conse- 
quently, replacement semantics will give an L’ program 
to which the semantics of section 3 can be attributed. 

Oblrerve that all the examples shown above satisfy 
the admissibility condition. However, this condition is 
too restrictive as the following example shows. Pump 
applies an operation to members of a set [2]. 

Example: 

.pump(X,Result.Operation,Identity) t 
.partition(X,Xl,X2),X{Y...} 
,.pump(Xl,Rl,Operation,Identity) 
,.pump(X2,R2,Operation,Identity) 
,.Operation(Rl,R2,Result). 

.pump((},Reeult,Operation,Identity) 
c Result - Identity. 

Consider the query ‘I. pump (X, S , sum, 0) (where sum is 
an evaluable predicate which adds two integers). Note 
that this query gives a single binding for the higher- 
order variables Operation, and Identity. Consa 
quently, replacement semantics correctly provides an 
L’ program even though the rules are inadmissible! ln 
fact .pump will compute the result of any commutative 
and associative operation with an identity. m 

The above example shows that the stratification con- 
dition is too restrictive. We formulate a less restrictive 
strategy as follows. Consider a rule r which contains 
one higher-order condition. Let the higher-order vari- 
able be X. Compute, disregarding the higher-order 
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condition, the set of all substitutions for X. Note 
that if this set is finite then replacement semantics 
will work. The finiteness of substitutions for X can be 
viewed as the traditional problem of safety in logic pro- 

grams. In [7] an algorithm employing a sufficient test 
has been proposed using which the finiteness property 
can be checked. It is possible to extend this strategy 
to rules with more than one higher-order condition but 
for the sake of brevity we leave this to a fuller presen- 
tation. 

5 Adding a schema facility 

The complete consort dancing together 
-T. g. ELIOT, LITTLE CIDDINO 

As mentioned before, most query languages (if not all) 
provide a separate set of commands for defining the 
schema of the database. Furthermore, this schema in- 
formation could not be used to compose a condition 
on the database. For example, list attributes (in all 
predicates of the database) that have the data type 
of DATE and change the values in all these attributes 
from month/day/year format to day/month/year for- 
mat. ln this section, we present an extension of the 
language to allow such queries and updates. 

We have already observed that the query to list all 
the predicate names in the database(i.e., ?.X) uses the 
structure of the database to pose the query. In order 
to pose a query using schema information, we extend 
the language to refer to the meta information of the 
data. Furthermore, using the same syntax, we show 
that meta information can be defined, thusly, providing 
a systematic framework for schema definition. 

We m-define the notion of an expression to include 
meta-information as follows. The meta information 
for any object is a tuple object. Examples of at- 
tributes that may be defined in this tuple are type, keg, 
cardinality, etc. Obviously, the list of attributes in this 
tuple determine the expressive power of the language. 
As the language provides the capability to define any 
number of different attributes each of which is an ob- 

ject of arbitrary complexity, we expect the expressive 
power to be unlimited. ln the examples of this section, 
we shall use only the type attribute and also assume 
only the values, stn’ng, integer, set, tuple, and atom’ 
for this attribute. 

Observe that any condition on meta information can 
be expressed as a tuple expression. Thus, we define a 
meta-expression, mexp to be Ctexplexp, in which the 
texp, enclosed by square brackets, is a tuple expres- 
sion on the meta information and exp is the expression 

OAtom is one of the atomic typecl; e.g., integer, string etc. 
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on the object. Thus, we have defined meta-expression 
using the notion of an expression. We m-define an ex- 
pression on an object, exactly as before, but recursively 
on meta-expressions. 

A meta-expression in said to be satisfied on an object 
if the meta-information satisfies texp and the object 
satisfies exp. Needless to say that the evaluation of an 
expression and the resulting substitutions are extrapo- 
lated in the obvious manner. We leave unchanged the 
definition8 of rules, programs, etc. 

We alao allow the use of + (resp. -) prefixed to an 
attribute in a tuple expression. This represents the in- 
sertion (resp. deletion) of the attribute into the schema 
for that tuple. Observe the difference between the fol- 
lowing two cases: 

?- .p(X) ?.p-(XI 

In the tit case the predicate (assuming that it ia part 
of edb) is to be deleted from the database, whereas in 
the second case, all the tuplee are to be removed from 
the relation p. 

In summary, we have proposed the following changes 
to the productions for EJxp and Texp: 

,Exp-+ Ezpl 1 [Tczp]Ezpl 
Expl --+ Aezp ] Fezp 1 Tczp [ Sezp 
Texp ---, Sign .Aname Exp, Texp 

1 Sign.AnameEzp I e 

We use this language for schema definition as well aa in 
posing a queries and updates. This ia exemplified in the 
following two examples. Note that the proposal here 
attempts to give a aampling of the capabilities of this 
language as opposed to describing it completely. As 
mentioned before, the compreheneivenese will depend 
on the meta-information aa well as the capability of the 
system to use this information. 

Example: Insertion or deletion of relations, attributes 
and types. 

?+ . r 1. type-net] { ( .name C . type=etringl , 
. age C. type=integerl I.. .} 

Thb definea a predicate r in the cdb to be a set of 
tuples, each of which contains two attributes, name 
and age, which are defined to be of string and integer 
type respectively. Similarly, deletion can be done using 
the ‘-II operator. 

?.r{+.ealary[.type=integer, 
. def ault=O] . . . } 

This adds a new attribute, salary of type integer to the 
base predicate r and the default value for that attribute 
to be rero. 

?.r-(.ealaryl-.type=integer, 
.default=O]=X, .name=N), 
. i2r (X ,Y) , . r+ ( . salary [+ . type=real , 

. def ault=Ol =Y , . name-N) 

This changea the attribute, salary in the base predicate 
r, to be of type real from type integer. Further, all the 
values are also mapped through an evaluable predicate, 
i2r which coerces integers to reals. m 

Example: Usage of Schema Information. 

.pl(Y) +.X( .Y) 

.p2(Y) +.X(.Y[.type=integer]) 

.p3(Y) +.X(.Y[.type=integer]), 
Y-Gel Yll 

Observe that we are using the Prolog notation of con- 
catenation in this example. An appropriate definition 
of this evaluable function is assumed here. This exam- 
ple ie eimilar to the predicate to lit all the predicate 
names. The first rule computes all the attribute names 
in the database. The second rule lists only those at- 
tributes that are of type integer. Of those attributes, 
p3 computes only those that start with a. 

.pl(Y) +.X(.Y{ . ..) x )... }, 

.p2(Y) +.X(.Y[.type=aetl) 

Predicate pi computes all attribute names in all the 
predicates of the database that are sets and have at 
least one eet with sero or more elements. In contrast, 
p2 computes all attribute names in the predicates of 
the database that are defined to be sets, irrespective of 
any value associated with that attribute. n 

Note that we have shown that any query (or update) 
can be used in conjunction with a condition on the 
meta information. This uniformity in the treatment 
of the schema information is achieved through the use 
of the higher-order predicates, as well ae the notion of 
updating these higher-order predicates. 

6 Conclusion 

And all rhall be well 
All manner of thing rhall be well 

-T. S. ELIOT, LITTLE CUDDINO 

Over the last few months we have been engaged in the 
exercise of designing a language which has powerful 
features for deductive databases; and, whose seman- 
tics are declaratively specified. In this paper we have 
concentrated on assimilating higher-order information 
into a deductive database framework. 

The central idea of this paper is that higher-order 
unification can be replaced by higher-order matching 
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over a finite set of values. We have rhown that this 
claim can be consistently upheld over a variety of pow- 
erful features and operations. 
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