Towards a Real Horn Clause Language

Ravi Krishnamurthy
MCC
Austin, TX 78759
ravi@mcc.com

ABSTRACT: Current database languages based on
Horn clauses and the bottom-up model of computa-
tion, such as LDL and Datalog, are not as expressive
as Prolog. For example, such languages do not sup-
port schema and higher-order predicates in an inte-
grated framework but rely on a separate language to
specify the schema information and on evaluable pred-
icates for expressing higher-order information. Prolog
on the other hand while providing powerful features
does so in only a procedural setting. Caught between
a rock and hard place we ask whether a Horn clause
language can be designed which provides most if not
all of the power of Prolog in a declarative framework.
In this paper we start with a simple logic programming
language in which the central notion is that of an ob-
ject and an expression. We build upon these simple
constructs and show that the resulting language has
the power of Datalog and a bottom-up semantics. We
then successively increase the expressive power of the
language to subsume LDL in the sense that we can
support sets, stratified negation, and updates to base
relations. Finally, we show that our language can sup-
port meta, schema and higher-order constructs in an
integrated, consistent and clean framework.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is given
that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires s fee
and/or special permission from the Endowment.

Proceedings of the 14th VLDB Conference
Los Angeles, California 1988

Shamim Nagqvi
MCC
Austin, TX 78759
shamim@mcc.com

1 Motivation

Let us learn how lo’s freney came—
She telling her disasters manifold.
—ZSCHYLUS, PROMETHEUS BOUND.

Prolog would have made a wonderful database lan-
guage if all its power had been provided in a declar-
ative framework. But precisely those very constructs
which one finds so useful and powerful, e.g., negation,
cut, updates etc., come only in a procedural setting.
The pure subset of Prolog is uninteresting as a real
programming language.

Many logic-oriented database languages are being
proposed, e.g., LDL [13], Datalog, NAIL!, etc., with
declarative semantics. These, however, are not as pow-
erful as Prolog. In many cases they do not have cut,
meta predicates, schema definition, updates, etc. The
question is whether a Horn clause language can be de-
signed which provides most if not all the powerful fea-
tures of Prolog in a declarative setting and which is
amenable to efficient compilation. Towards this goal,
in [9] we proposed the addition of procedurality and
updates while still retaining the declarative semantics
of pure Horn clause languages. In (6] we proposed a fea-
ture called non-deterministic choice that encompasses
the use of cut in Prolog and is shown to be even more
powerful in a certain sense.

Continuing in this vein, in this paper we move a step
closer to our goal by proposing a language in which
the definition and manipulation of meta information
and data is unified. Traditionally, a separate language
is provided for this purpose. Our proposed language
encompasses meta-data and data by allowing higher-
order predicates to be defined in the language. Higher-
order languages have been met with skepticism since,
among other reasons, the unification problem is un-
decidable. Our solution is to follow conventional wis-
dom that led to the development of languages based
on bottom-up semantics, summed up in the following
statement from [12] “The important fact to be observed

in bottom-up processing is that it has replaced full uni-
fication with matching (i.e., only one of the two terms
contains variables).” The effect of replacing unifica-
tion with matching is a gain in performance. This has
been the foremost reason for the recent burst of interest
in bottom-up processing of Horn clause queries. Us-
ing the same wisdom, we have asked ourselves whether
there exists a higher-order language in which higher-
order unification can be replaced by the matching op-
eration. In this paper we present such a language and
show its use in providing the capability of expressing
and manipulating schema and higher-order informa-
tion in a database system. Our language allows queries
that can not be expressed in Prolog. Further, we show
that it is capable of defining schema information as well
as being able to use them in the program, e.g., updat-
ing all attributes of all relations that have DATE as
their data type.

As a side benefit we have also been able to provide
a standard treatment of sets. For example, languages
such as LDL [4] and LPS [5] treat relations and sets
differently. Such a duality is unnatural and as a conse-
quence not all operations defined for sets are applica-
ble to relations. By standardizing the treatment of sets
and relations, we have not only simplified the expres-
sions but also allow a richer collection of set selection
expressions which also promise to help the set unifica-
tion problem {11].

Our presentation in this paper is necessarily impres-
sionistic. In particular, we have attempted to impart
in a clear and consistent manner the essential ideas of
the language. This has necessitated a consistent syntax
in which we have liberally used disambiguating tokens.
We readily recognize that it may not be user-friendly.
We have provided sketches of formal semantics, both
declarative and operational, for parts of our language
and in some cases arguments which point how seman-
tics can be defined. A formal paper on this subject is
forthcoming.

The organisation of the paper is as follows. We start
by defining a simple subset, called L°, of our language.
We show that L° is equivalent to Datalog and that it
can be extended to L! which allows stratified negation,
updates to base relations and set grouping. Moreover,
L} treats sets and relations uniformly and allows a rich
collection of set expressions. The higher-order counter-
part of L! is called L? and we show how higher-order
information is expressed and manipulated in L. The
semantics of L? use higher-order matching. Finally, we
show how L? supports and manipulates achema infor-
mation.

253

L% A language of objects and
expressions

An easy commerce of the old and the new
-—T. S. ELIOT, LITTLE GIDDING

The conceptual structure of L? is based on objects and
expressions on objects. An object can be classified into
one of four categories: a set of objects, a tuple of ob-
jects, a functor object or an atomic object. Examples
of atomic objects are integers, characters, etc.

A functor object is recursively defined as an object of
the following form, where f is an n-ary functor symbol:
f(objecty,...,object,)

A tuple object is a sequence of named objects. Syn-
tactically, a tuple of objects can be viewed as

(attry : objecty,...,attry : objecty) in which, each
attry : object; pair refers to the object; that is the attry
attribute of the tuple. We usually refer to object; to be
the attr; object of the tuple and when there is no con-
fusion, we informally refer to the attr; object as attr;.
For example (name : john, sal : 10K) is a tuple object.

A set object is a named (not necessarily homoge-
neous) collection of objects. For example, p{(name :
john,sal : 10K),...} is a set object named p whose
elements are tuple objects.

Corresponding to each kind of object we have an
expression of that type. An expression, evaluated on
an object, under a substitution (defined below), returns
true or false. An atomic expression (evaluated on an
atomic object) returns true only for an atomic object;
and, similarly for functor, tuple and set expresgions. If
an expression evaluates to true on an object then we
say that the object satisfies the expression.

An atomic expression is an expression of the form aX
where X is either a variable (denoted by a capitol letter)
or a value (denoted by a lowercase letter or number)
and @ € {<, &, >, 2,=,#}. For example, >Cand <6
are atomic expressions. The subset of atomic expres-
gions ensuing from restricting a to the symbol = shall
be called simple atomic expressions. In simple atomic
expressions we shall often omit the equality sign. The
simple atomic expression of the form = X is also a
valid tuple, functor and set expression.

A functor expression is an expression of the form
Q@f(expy,...,ezp,) where ezp;, 5 = 1,...,n is an ex-
pression for the j*# argument for the n-ary functor f.

A tuple expression is a conjunct of the form
«G16ZP1, G26TP2,y+ . .y QxETPK
where each ezp; is an expression on the object associ-
ated with the a; attribute of the tuple. Note that in
general an attribute a; may not be defined for a tuple

object but such an expression is still syntactically valid
for the tuple object.

A set expression is defined to be
(exp)
in which exp is an expression on an object, i.e., element,
of the set.

We also define the empty expression ¢ which satisfies
all objects. In summary we show below the grammar
for expressions of L? in which words starting with an
uppercase letter denote non-terminals,

Ezp — Ac | Fe|Te| Se |= variable

Ae — Relop constant | Relop variable | e
Fe— QFname(EzpL) | €

EzpL — Ezp,EzpL| Exp

Te— .AnameEzp,Te | .AnameEzp | ¢
Se — (Ezp) | €

Fname — string constant

Aname — string constant

Relop — >2|<|<|=|#

Constants and variables are defined, in the usual man-
ner, as strings starting with lower and upper case let-
ters, respectively.

2.1 Evaluation of expressions

A substitution is a non-empty finite set of ordered pairs
{Xi1/o1,...,Xn/0n} such that (V1 < i < n) X; is a dis-
tinct variable, o; is an object. We view a substitution
as a mapping on variables that is the identity almost
everywhere. If o is a substitution and X a variable the
result of applying o to X is defined as

xo = {

We extend this mapping to expressions in a man-
ner consistent with the above definition. If o
{Xi/o1,...,Xn/0n} and e is an expression then

eod =[AX1...AX.elo1...0n
Evidently the idea behind an application of o to
an expression ¢ is to replace the free occurrences of
Xi,...,Xn in ¢ by the objects 03,...,0p.

if (X/o) €0
otherwise

0,

X,

If 6 and o are two substitutions and § U a is a sub-
stitution then we say that a and 4 are mutually con-
sistent; otherwise they are said to be inconsistent.

A ground (i.e., free of variables) atomic expression,
say ac, evaluated on an atomic object, say o, returns
true if the comparison oac is true. An atomic expres-
sion, ac, evaluated on an atomic object o returns true,
if there exists a substitution o such that oaco is true.
In such a case we shall say that the object o satisfies

254

the expression. Any object, o, satisfies the expression
= X for the substitution X/o.

A functor object o with n-ary functor symbol f sat-
isfies a functor expression Qf(ezp;,ezps,...,cxpy) if
there exists a substitution o such that (V1 < ¢ <
n)exp;o is satisfied by the object o; in the s** argu-
ment of o.

A tuple object 0 = (b,
tuple expreasion

\B16XP1, GIETPYy -+ ey 0nTPp, N S K
if there exists a substitution o such that (V1 < ¢ <
n).aiezp; there exists by : 0; € 0, (1 < 5 < k) such that
bj = a; and o; satisfies exp; under the substitution o.

P 01y..., b0k : o) satisfies a

A set object s satisfies a set expression (ezp) if and
only if there exists a substitution o and an element
o € 8 such that o satisfies exp.

Example: Below we show examples of objects and
expressions that satisfy them.

expression object substitution

=X b (X/b)

n>X,m=Y (n:6,m:a) (X/5Y/a)

(n>X,m=Y) {(n:6,m:a), (X/5,Y/a)
(n:8,m:b)}

ef(X,g(Y)) 1(5,9(a)) (X/5,Y/a)

Example: Consider a tuple object in which the emp
attribute is a set of tuple objects, i.e.,

(a1 :n1,...,emp: {e1,e3,...},...)
where ¢; is a tuple consisting of name, age, salary
and children attributes. Name, age and salary ob-
jects are atomic whereas the children object is a set of
names of children. Below we show some expressions on
the emp object.

.emp(.age=30)
“Is there a 30-year old employee?”

.emp(.age>30, .name=N)

“List names of all employees older than 30.”
Note that the ordering for the age and name
attributes is immaterial because we are nam-
ing the attributes.

.emp(.salary@s£ (=5000)) .

“Is there an employee with salary of
£(5000)7”

This example also exemplifies the need for the
token denoted by “Q* before the functor sym-
bol. Note that the use of the functor £, when
juxtaposed with the attribute name salary
without the token, would be ambiguous with
a possible attribute name of salary£.

.emp(.age=30, .name=N),
.emp(.name=N, . aged=50)

“List all 30 year old employees who have the
same name as a 50 year old employee.”

.emp(.name=N, .children(john))
“List names of all employees with a child
named john.”

2.2 Rules and programs
Define a database, db to be a tuple object
db=(ry:81,r3:83,...,7n: 8,)

whose attributes are relations, i.e., a set of tuple ob-
jects.

We define a rule as an implication head + body in
which head is an expression of the form .p(ezp) such
that p is an attribute of db (also referred to as a derived
predicate) and ezp is a list of simple atomic expressions
or objects and body is a conjunct of expressions on ob-
jects e1,..., ¢

WC1CTPLy e 0oy CnCTPy

Without loss of generality we shall restrict each e; to
be an attribute of the database object, db. Therefore,
each exp; is a tuple expression involving exactly one at-
tribute of the database object (i.e., a single relation).
We can thus view the body as a conjunct of expressions
on the database object using the variables X3,..., Xk.
We emphasize that we are initially restricting all ex-
pressions in rules to be defined over the database ob-
ject.

We define a query to be a rule with an empty head
and denote it as 7.¢;exp;, ..., .€neTPn-

A note on notational convenience: It is more common
to write rules without attribute names. We can al-
low this notational convenience by assuming that each
predicate has an ordering of attributes in the tuples.
For base predicates, such an ordering is declared in the
schema; for derived predicates, left-to-right ordering
in the rule definition may be assumed. As an exam-
ple consider the emp relation of the previous exam-
ple in which each tuple in emp consists of name, age,
salary and children, in that order.

.sameName(N) — .emp(N,30, —, —),
.emp(N,60, —, —)

“sameName is a set of 30 year old employees

who have the same name as a 50 year old

employee.”

?7.emp{N,—,—, .children(john))

“List names of all the employees having a

child named john.”

End of Note

255

A program is defined to be a triple (rdb, edb, g) where
rdb is a finite collection of rules, edb is a finite set of
(base) relations, and ¢ is a query.

2.8 Semantics of L°

We start by informally explaining the notion of the
universe, U, of a program P of L°. Initially we take Up
to be the set of all atomic objects in P. In case there are
none then Uj is to consist of a special atomic object, say
L. Next, U, is defined as the set of all possible tuple,
functor and set objects that can be formed from the
elements in Up. Proceeding inductively in this manner
we let U be the infinite union of all U;.!

We now define the satisfaction of a rule. Consider a
rule of the form

2(.)—p1yeiyPm

Let o be a substitution and I C U. The rule is satisfied
T

whenever each p;,t € (1,...,m} is satisfied
by some object o; € I under substitution o
then .p(...)o is also satisfied by some object
in I, or

there is some p; which is not satisfied by any
object in I.

Note that a fact is trivially satisfied by the empty
atomic object under the identity substitution.

Given a collection of rules rdb, I C U is a model of
rdb if I satisfies all the rules in rdb. A model M of a
given collection of rules rdb is said to be minimal if no
proper subset of M exists such that it is also a model
of rdb.

Formally, we may define U as follows. Let Ug be the set con-
sisting of all atomic objects. For n > 0 U, is defined inductively
as follows (let P(S) denote the set of subsets of set S):

Gm.,n.O =Up-1 U P(Un—l)

Gm.n,j = Gm.n,j—l U{f(oh oo nok) |
Jis a functor of arity of k&,
and o; € Gu,n.j—lp 1€4< b}

Gmingi =GCmpn-1,;5VY {ua{{o1,.. vox) |
0, EGQmn—-1,5,1S¢< k}}

n = J U 6o

§=0 n=0

Proposition: A program L° has a unique minimal
model. g

We define the meaning of a program to be the unique
minimal model of the program as defined above.

Define an operator T, similar to [1], as follows: Given
a set of rules rdb and a set I

Tan(l) = {(X)oep|

p(X) «~ .p1,. .., .Pn is & rule in rdb,
3o ‘a“‘fy'.“g Plyeeey 'Pn}

Define powers of the operator T as follows:

Tt1o(n)=T(I)

Ttn(l)=T(T {n-1D)UT n—1())
(n21)

We define the least fixpoint of the program (rdb, edb, g)
to be the set of objects Trap T w($) where w denotes
the first ordinal number. Note that T is monotonic.

Proposition: T4 1 w(¢) exists and is equivalent to

the unique minimal model of a given program P =

(rdb,edb,q). m

We assume that the least fixpoint of a program gives
the meaning of the program in the sense that the an-
swer to a query ¢ with respect to the least fixpoint M
of a program P is

{(dl,...,dk) | (¢(X1,...,Xk)0’) € M}

where o is the substitution {X,/dy,..., Xx/dk}.

Proposition: L° subsumes Datalog, i.e., if P is a Dat-
alog program with unique minimal model M, then M
is also a model of the L° program P. g

3 Extending L° to L!

No one shall drive us from the paradise that Cantor has
created.
—HILBERT

We extend L° to L! by generalising set expressions of
LO. These generalisations give the ability to negate set
expressions, operate on or construct sets and insert or
delete elements from sets.

Sezp — Sign Sexpl | ~Sezp | (Sezp)
Sezpl — (ezp) | {} | {EzpList} | e
— {..., ExpList} | {EzpList,...}
— {...,Ezplast,...}
Sign —+|~|e

3.1 Set Selection

Recently the problem of allowing sets in logic program-
ming languages has received attention from [4, 5. It is
a consequence of the definition of L° that relations and
sets are treated uniformly. Thus no special provisions
have to be made to support sets. In fact, by general-
izing set expressions we can allow subsets of sets to be
selected. The need for such a selection mechanism has
been felt for some time in LDL [11]. We shall allow
sets with unknown cardinality, with a known cardinal-
ity, i.e., exactly an integer “k®, and sets in which the
cardinality is bounded by some integer, i.e., at most
“k*. It is this third case which allows the associativ-
ity problems to creep in and requires ACI unification
which is semi-decidable[11].

The meaning of set selection expressions is as below:

{} denotes the empty set.

{X,Y,Z} denotes a set of cardinality 3.
{(X,Y,Z)} denotes a singleton set.
{X,Y,Z,...} denotes a set of cardinality > 8.
{...X,Y,Z} denotes a set of cardinality < 3.

{..,X,Y,Z ...} denotes a set of arbitrary car-
dinality.

Note that {X, ...} as defined above is equivalent to (X)

in L.

Example: Consider as before the tuple object db

which has a set object family(Mother, Children) as an

attribute; the elements of family are as follows:
(nancy, {})}.

Here are some sample queries:

7.family{—,=Kids}
“List all sets of children”®
Answer: Kids/ {bill,jack},
Kids/ {peter,paul,mary}, Kids/ {}
7.family{=mary,{=bill}}

“Does Mary have a single child”
Answer: no.

7. family{=X,{...,=Y,=Z}}

“Who has at most two children”

Answer: X/mary, X/nancy and commutative
bindings for Y and Z

7. family{=X, {=Y,=Z,=W}}

“Who has exactly three children”

Answer: (X/jill, Y/peter, Z/paul, W/mary)
where we have omitted other answers due to
commutativity of the set elements.

256

7. family{=X, {=Y,=Z,...}}

“Who has more than two children”

Answer: X/mary, X/jill with commutative
bindings for Y and Z.

Example: Constructing enumerated sets.

.p(X,Y,Z) «— .book(X,<30),
.book(Y,<30), .book(Z,<30)

“Collect sets of three books individually cost-

ing less than $30 each.”

.bookDeal{{X,Y.Z}} «~ .book(X,Px),
.book(Y,Py), .book(Z,Pz),
Px+Py+Pz < $100

We are assuming the existence of evaluable predicates
and functions such as +. Note that here we are asking
for exactly three books whose cost is at most $100. We
can use the argument {...X,Y,Z} to ask for at most
three books, etc. [4].

3.2 Grouping and Negation

In this section we first consider the generalisation of
set terms to allow elements to be grouped into sets of
arbitrary cardinality and then to allow negation. A
grouping rule is a rule of the form

(X, setname(Y)) « body(X,Y)

Readers are referred to [4] for a formal description
of the semantics of grouping rules. Informally, the op-
erational semantics of such a rule are as follows. The
body of the rule is satisfied by a set of substitutions
inducing the construction of a relation, called the body
relation, and for each value Z of the variables X we
collect all the Y-values y;,...,yn into the set object
named setname.

Example: Set Grouping. Group all parts by supplier.
.p(Supplier, parts(Part)) —
.b(Supplier, Part)

Next we consider the generalisation of set expres-
sions to allow negation. We propose to use stratified
negation (8] as in LDL and Datalog™ with a simple
syntactic change. Observe that in LDL a negation is
used only in conjunction with a predicate which was
defined to be a set of tuples. Recalling our philosophy,
that a predicate is a set of tuples, we conclude that
the negation is defined only in conjunction with a set.
The syntax used in LDL is to prefix the negation sym-
bol — to the predicate expression to get the negated
expression (i.e.,~emp(...)) whereas we use emp—(ezp).
We illustrate the usage by the following example.

257

Example: Consider the following query on the emp
relation.

?7.emp(.name = N1, .salary = S1),
.emp—(.salary)S1, .name # N1)

Find the employee with a salary such
that no other employee has a larger
salary.''3

We emphasige that the semantics of negation in L!
are identical to that of stratified negation in LDL and
Datalog.

3.3 Semantics of L!

We define a notion of an admissible L' program
(rdb, edb, q) as follows. We start by defining a pref-
erence relation between attributes in rules of rdb. If
there is a rule of the form

Plee)—onglel)y

then we say that p > g. If the rule is of the form

Pl) =gl),

or it is a grouping rule of the form

] (R U) IR T) TP

then we say that p > gq.

We shall say that a program is admissible if there
does not exist a sequence of attributes

.plol.pz vee 0k—1-Pkok

such that § € {>,>} and .p; = .px and there is some
b5is >, (V1< 35 < k).

As in Datalog and LDL the admissibility require-
ment induces a partitioning on the rules of rdb and we
may write rdb as composed of the disjoint sets of rules

LO) Lls"',Ln'

Given a program (rdb,edb,g) we define the notion
of a standard model of a program as follows. Let
Lo,..., Ly be a partitioning of rdbU edb. Then

My=T, 1 w(¢)
M1 = T[,l Tw(Mo)
M, =T, 1 w(Mn-1)

31¢ is instructive to note that the equivalent Datalog™ query
7 emp(N1,851), ~emp(N2,52),52)51, N1 # N2.
is unsafe.

We define the meaning of an admissible L' program
to be the set M,,. As in LDL and Datalog it can be
shown that M,, is a minimal model of the correspond-
ing program.

Proposition: L' subsumes Datalog™ and update-free
LDL. g

8.4 Insertion and deletion in set ex-
pressions

The final generalisation we consider of set expressions
is that to allow elements to be inserted and deleted
from set objects. LDL has the capability to insert and
delete tuples from a base relation. For example the
LDL rules

e +B(X, Y)
e, =b(X, Y)

have the meaning that the substitution for X and Y
that result from the body are inserted and deleted in
the ‘+’ and ‘-’ cases respectively. We propose a syn-
tactic change to denote the insertion (resp. deletion)
of tuple from the set object b by b+(:X,:Y) (resp.
b-(:X,:Y)). We empahsise that this being a syntac-
tic change, the semantics presented in [9] carry over
to this case. In particular, note that the basic maxim
in update semantics in LDL was that a query provides
bindings for tuples that are to be inserted or deleted,
i.e., first compute the set of tuples for an update and
then do the update.® This maxim and its concommi-
tant update semantics can be carried over into L* with-
out change. For the sake of completeness, we present
below some examples of updates to base relations, so
as to make the presentation self-contained for readers
unfamiliar with the update proposal in LDL.

Example [9]:

Fire all managers who make more than their
employees.
.fireEmp() «
.emp(N,X,81), .mgr(N,M),
.emp(M,Y,<81), .emp—(N,M,81).
Note that the set of employees to be deleted
is determined by the subgoals preceding
.emp—(...).

Give every database employee a 10 percent

raise.

7.eds(X,db,8), 81=8+1.1,
eds—(X,db,8), eds+(X,db,51).

3The same update maxim was used in Query-by-Example

(QBE).

Further note that the procedural constructs presented
in LDL [9] may be assumed without any syntactic
change. Also the declarative and operational semantics
defined for these procedural constructs may be used
with minor changes in L!. As none of our examples in
this paper use procedural constructs we leave this out
from our presentation.

Proposition: L! subsumes LDL with updates. g

4 L% A higher-order language

Two worlds become much like each other
—T. S. ELIOT, LITTLE GIDDING

In L! we restricted attribute names and functor sym-
bols to be values. In this section we remove this restric-
tion and define a notion of higher-order quantification
over attribute names and functor symbols. The result-
ing language is rich enough to express and query meta
and schema information. Essentially we generalise L!
expressions as follows:

Fname - constant | variable
Aname — constant | variable

Thus, we re-define the notions of functor and tuple
expressions A functor expression is an expression of the
form @F(ezpy,...,ezp,) where F is either a variable
ranging over functor symbols or a functor symbol itself.
Further, ezp;,5 = 1,...,n is an expression for the j*#
argument for the n-ary functor reference F.

Similarly, a tuple expression is a conjunct of elemen-
tary expressions as defined below:

.Ayezpy, .Azezps, ..., Axezpy

where each 4;, + = 1,...,k, is either a variable for an
attribute name or an attribute name itself. Further,
each ezp, is an expression on the object associated with
the A; attribute of the tuple.

A variable occurring in a functor symbol or an at-
tribute position in an expression will be referred to as a
higher-order variable. We define a higher-order expres-
sion as an expression as defined before, using the new
definition for functor and tuple expression and use the
word expression to mean possibly a higher-order ex-
pression from now on. Informally, the evaluation of an
expression is as before, except that now a substitution
must also give bindings to the variables standing for at-
tribute names and functor symbols, i.e, a substitution
is now defined to be a non-empty finite set of ordered
pairs {X1/01,..., Xn/on} such that (V1 <i < n) X;is
a distinct variable ranging over not only the objects in

258

o

the universe {as define

RLRIVEISC a8 CGell

ttribute names.

[+¥]

e

and

A rule is defined as an expression of the form
db.p(ezp) — erezpy, ..., e ezp,.

where each ¢; in the body is now allowed to range over
the objects in the universe and each exp; is a higher-
order expression. The body is viewed as a conjunct
of expressions on the objects of the universe using, as
before, the variables X, ..., Xj. Since the objects usu-
ally range over the database, we still omit the usage of
db in rules; for all objects other than the database, db,
we shall be explicit in referring to that object, Qb-
serve that the head predicate is still restricted to be
a name in the database object (cf. section 2.3) and
not a variable and exp is a list of simple atamic ex-
pressions or objects. Thus, all variables in the head
are still required to be referenced in the body. As a
consequence, the set of tuples defining the predicate
p is still defined by the substitutions for the variables
X1,..., Xx. Needless to say that the definition of a
program remains unchanged.

Declaratively, the satisfaction of a rule r with higher-
order database expressions by a collection of objects
I can be understood as the question: Does there ex-
ist a higher-order substitution o such that I | rg?
Note that under this interpretation and the notion of a
higher-order substitution the declarative model of L?
programs can be defined in a manner similar to the
method employed for L! programs.* We leave this for
a formal and fuller presentation.

We discuss the operational model in the followipg

twao ﬂn}\aanfn\na l\u Graf nrneAnOann snma :"nm:nal‘xnn
préscnuiig sGine iuuinawiig

examples to nnpart the essential ideas underlying the
Fimf

ion

CeaOn,
we present the language with the restriction that the

.. 'a n l“:n rn‘n- are -0'1" rnnfnnfnr‘ to nnlu l'lln ﬂnfgl’:nen
s Vieny e

object in the universe (as before), except that the al-

]nmnr] bv’r\fﬂﬁﬂ‘lnﬂﬂ !ll‘ﬂ ‘I'Iff‘\ BI‘_A“AAI‘ ﬂv"\"ﬂﬂﬁ‘l\l’lﬂ Wn ro.
AU Saps 2.9 YS s

anaratinnal scamantisa in }kn next anknnr
vy\u A AR P A

fer to this class of expressions as higher-order database

. . . .
axnrassions. In a later section wa relax this restristion
CAPICSSICNS, Al & 2l SO0 WO TCIGA Vaiil JTES sveaal

and allow all objects in the universe.

4.1 Higher-order
database object

queries on the

Consider the rule: .p(X) « .X It bears repetition that
the above rule is equivalent to

p(X) —db.X

4The main difference would be in the definition of the universe

259

.

notational convenience, been omitting the prefix “db®.

shall santinna ta fln an hnt tha "ﬂﬂt“" are remindad
"9 Bu(-u WWALAVAMUY VW WV MUY VAW AVWBNAWLE WAV A WASAAM WA

to keep this in mind. The predicate p computes the
namas cf all f]vu; n—nll\rabnu {kn"l'l AA“\'A’I

AimasivD

base) in the database, db. Informally, the substitution
for X ranges over all the predicates,
tution, the corresponding tuple in p is added. As the
range of X ig limited to the predicates in the database
object, (i.e., for all other objects of the universe the
.X, is false) the computation of the above
rule computes the meaning of the rule as per T' T w.

as wall aa
VAR e

For each subati-

exnression.
expression,

Operationally, consider a rule with higher-order
variables, Xi,...,Xx, (i.e., variables referring to a
database attribute position). Rewrite the rule for each
possible substitution for these variables. The rewritten
rules are all rules in L! and their meaning is defined as
before, as long as the number of substitutions for the
variables is finite. The subsiitutions for the variables
have to be finite because, the database predicates have
finite attributes. In short, the extension of expressions
to higher-order is limited by the range of attributes
in the database and thus makes the language decid-

able. We refer to this process of associating a meaning
as repxaceme.uu semantics.
examples.

Y PRI PRI P I CeP
uet us Lulsiucl dUMIS 111Ul e

Example: Consider the database consisting of three
relations: systems, ai and hi, each representing the em-
ployees in the respective departments. The tuples in
a]l three relations contain name, tel (i.e., telephone
no.), and salary.

p(X) ~ .Y(.name=X)
The predicate p defines all the names of the
employees in systems, ai and hi relations.

cp\A. II —, l \ uwu—nl

A query, 7.p(jobn, Y), corresponding to the

predicate p, computes john's department.

.p(X,Z) «—.X(.name=Z, .tel=T),
.Y(.name# Z, .tel=T)

The predicate p computes the names of all

employees (and their department name) who

share their telephone.

.P(X,2) —.X{.name=Z, .tel=T),
.Y(.name# Z, .tel=T), Y# X

The predicate p computes the names of em-

ployees (and the relation name) who share

their telephone with an employee in another

department.m

sammary, any rule involving h rder database

expressions with variables rangmg over attribute
names can be associated with a meaning using the

In summary.

Q

above replacement semantics. The approach we have
taken for these queries parallels the approach taken in
Office-by-Example (OBE) [14] {10}, where such higher-
order queries were defined using a similar domain cal-
culus but in a very limited context (e.g., OBE did not
have recursion,complex objects, etc.). Interestingly,
these rules cannot be stated in this manner in Prolog.
The notion of quantifying over database predicates was
not attempted in Prolog (however, the notion of meta
predicates that are allowed in Prolog is addressed in
the next subsection).

4.2 Higher-order queries on objects in
the universe

Consider the example of the database containing the
relation family(mother,children) from section 3.1
and the rule

PX,Y) — . family(X,Y),Y{=bill.. .}

defining the predicate p to contain all mothers (and
the set of her children) having a child named bill.
Note that the variable Y refers to a set that need not
be an attribute of the database. The expression states
that the variable Y is substituted for a set that has
an element bill in it. This expression in the body
of the rule is not a higher-order database expression
as discussed in the previous subsection. (In the se-
quel we shall refer to such expressions as higher-order
conditions). But the same operational semantics carry
over to this case because the values that can be sub-
stituted for Y are limited by the finite values for Y in
the database. Thus replacement semantics will provide
the meaning for this program also.

On the other hand consider the following example:

.menber{(P,X) «— P(X)
This defines a member predicate, that tests
the membership of X in the set P.

Note that in the above rule, any value from the uni-
verse can be substituted for P. Therefore, the number
of substitutions is unbounded. As a result, we cannot
give replacement semantics to this rule. On the other
hand, if the query 7.member(s, jill) (where s is a
particular set object) is asked then replacement seman-
tics can be applied to this rule for this query. In short,
we observe that such queries have a meaning if proper
bindings are supplied from the head; otherwise, they
are deemed unsafe.® Thus, we can attribute an oper-
ational meaning to a rule for a given binding for the

5Note that unsafe queries in LDL do not have operational
semantics.

attributes of the predicate. A binding for a predicate
is the bound or unbound pattern of its attributes for
which the predicate is to be computed.

We give below more examples of such usage.

Example:

.intersection(P, Q, (X)) « P(X), Q(X).

This defines the third attribute of the inter-
section predicate to be the intersection of the
gets, P and Q. Note that the safety requires
that P and @ be bound.

.subset (Q,P) «.intersection(P,Q,P).
P is a subset of Q. From the definition of the
intersection predicate we can infer that the
subset predicate also requires both P and @
to be bound.

diff(P,Q, (X)) —~

.member(P, X), .member—(q,X)
Set difference is defined using negation.
X(P,—(X)) « P(X).
r(—Q, (X)) — Q(X).
union(P, Q,(Y)) — .r(P,Q,{....Y,...}).
Union is expressed through multiple rules
with the same head predicate symbol. g

Notice that the lack of such higher-order variables in
LDL (and other languages using bottom-up semantics),
requires the use of special evaluable predicates for set
operations.

The above examples show the need for character-
izing admissible rules using higher-order variables as
follows. A rule base rdb is said to be ordered if each
rule is associated with an ordering of the conjuncts in
the body. An ordered rdb is said to be covered for
higher-order variables with respect to a given query,
if the following condition is recursively true. For each
rule defining the query, all the higher-order variables
are rule-covered and the same ordered rdb is covered
for each predicate occurring in the body (with the im-
plied binding).

QGiven a rule r in an ordered rdb of the form

p(...) — expy,...,czpn

and a binding b for p, the higher-order variables in
r are said to be rule-covered if for each higher-order
variable occurring in ezp; in an attribute position the
same variable occurs in some ezp;,J = 1,...,4 —lor
in a bound argument position of p.

Define p < q if there exists a rule of the form

7 S IR | (Y TR

260

and p < q if there exists a rule of the form

Pl =il X00),.

where X is a higher-order variable. We say that an
ordered rdb is stratifiable with respect to higher-order
variables if there does not exist a sequence of the pred-
icate symbols of rdb

P101.p2. . . Ok—1.pibOk

such that f € {<, <} and .p; = .px and there is some
b; is < (V1< j < k).

We define a set of rules rdb to be admissible with
respect to a query q if there exists an ordering for rdb
such that the ordered rdb is covered and rdb is strati-
fiable with respect to higher-order variables.

Informally, the admissibility condition has the fol-
lowing effect. The substitutions for every higher-order
variable X can be computed independently of the
higher-order condition that uses X.

The admissibility condition on rdb ensures that re-
placement semantics will associate only a finite num-
ber of objects with higher-order variables. Conse-
quently, replacement semantics will give an L! program
to which the semantics of section 3 can be attributed.

Observe that all the examples shown above satisfy
the admissibility condition. However, this condition is
too restrictive as the following example shows. Pump
applies an operation to members of a set (2].

Example:

.pump (X,Result,Operation, Identity) «—
.partition(X,X1,X2),X{Y...}
, -pump (X1,R1,0peration, Identity)
, -pump (X2,R2,Operation, Identity)
, .Operation(R1,R2,Result).

.pump({} ,Result,Operation, Identity)
+— Result = Identity.

Consider the query ?.pump(X,8,sum,0) (where sum is
an evaluable predicate which adds two integers). Note
that this query gives a single binding for the higher-
order variables Operation, and Identity. Conse-
quently, replacement semantics correctly provides an
" L! program even though the rules are inadmissible! In
fact . pump will compute the result of any commutative
and associative operation with an identity. g

The above example shows that the stratification con-
dition is too restrictive. We formulate a less restrictive
strategy as follows. Consider a rule r which contains
one higher-order condition. Let the higher-order vari-
able be X. Compute, disregarding the higher-order

261

condition, the set of all substitutions for X. Note
that if this set is finite then replacement semantics
will work. The finiteness of substitutions for X can be
viewed as the traditional problem of safety in logic pro-
grams. In [7] an algorithm employing a sufficient test
has been proposed using which the finiteness property
can be checked. It is possible to extend this strategy
to rules with more than one higher-order condition but
for the sake of brevity we leave this to a fuller presen-
tation.

5 Adding a schema facility

The complete consort dancing together
—T. S. ELIOT, LITTLE GIDDING

Ag mantinnad hafara mast anare lan

LA A8AVALVAVIAVA V‘!IV‘U, ARAWOV ‘1““] ‘“IIIIQ

gua
provide a separate set of commands for defining the
schema of the database. Furthermore, this schema in-
formation could not be used to compose a condition
on the database. For example, list attributes (in all
predicates of the database) that have the data type
of DATE and change the values in all these attributes
from month/day/year format to day/month/year for-
mat. In this section, we present an extension of the
language to allow such queries and updates.

We have already observed that the query to list all
the predicate names in the database(i.e., 7.X) uses the
structure of the database to pose the query. In order
to pose a query using schema information, we extend
the language to refer to the meta information of the
data. Furthermore, using the same syntax, we show
that meta information can be defined, thusly, providing
a systematic framework for schema definition.

nat
v

ges (if not all)

We re-define the notion of an expression to include
meta-information as follows. The meta information
for any object is a tuple object. Examples of at-
tributes that may be defined in this tuple are type, key,
cardinality, etc. Obviously, the list of attributes in this
tuple determine the expressive power of the language.
As the language provides the capability to define any
number of different attributes each of which is an ob-
ject of arbitrary complexity, we expect the expressive
power to be unlimited. In the examples of this section,
we shall use only the type attribute and also assume
only the values, string, integer, set, tuple, and atom®
for this attribute.

Observe that any condition on meta information can
be expressed as a tuple expression. Thus, we define a
meta-expression, mexp to be [texp]exp, in which the
texp, enclosed by square brackets, is a tuple expres-
sion on the meta information and exp is the expression

S Atom is one of the atomic types; e.g., integer, string etc.

on the object. Thus, we have defined meta-expression
using the notion of an expression. We re-define an ex-
pression on an object, exactly as before, but recursively
on meta-expressions.

A meta-expression is said to be satisfied on an object
if the meta-information satisfies texp and the object
satisfies exp. Needless to say that the evaluation of an
expression and the resulting substitutions are extrapo-
lated in the obvious manner. We leave unchanged the
definitions of rules, programs, etc.

We also allow the use of + (resp. -) prefixed to an
attribute in a tuple expression. This represents the in-
sertion (resp. deletion) of the attribute into the schema
for that tuple. Observe the difference between the fol-
lowing two cases:

7-.p(X) 7.p-(X)
In the first case the predicate (assuming that it is part
of edb) is to be deleted from the database, whereas in

the second case, all the tuples are to be removed from
the relation p.

In summary, we have proposed the following changes
to the productions for Exp and Texp:

Ezp— Ezpl|[Tezp|Ezpl
Ezpl — Aezp| Fexp | Texp | Sexp
Texp — Sign .Aname Ezp,Texp
| Sign.AnameEzp | €

We use this language for schema definition as well as in
posing a queries and updates. This is exemplified in the
following two examples. Note that the proposal here
attempts to give a sampling of the capabilities of this
language as opposed to describing it completely. As
mentioned before, the comprehensiveness will depend
on the meta-information as well as the capability of the
system to use this information.

Example: Insertion or deletion of relations, attributes
and types.

?+.r[.type=set]{(.name[.type=string]l,
.age[.type=integer])...}

This defines a predicate r in the edb to be a set of
tuples, each of which contains two attributes, name
and age, which are defined to be of string and integer
type respectively. Similarly, deletion can be done using
the “~” operator.

?7.r{+.salary[.type=integer,
.default=0] ...}

This adds a new attribute, salary of type integer to the
base predicate r and the default value for that attribute
to be gero.

262

?.r—(.salary[-.type=integer,
.default=0]=X, .name=N),
.i2r(X,Y), .r+(.salary[+.type=real,
.default=0]=Y, .name=N)

This changes the attribute, salary in the base predicate
r, to be of type real from type integer. Further, all the
values are also mapped through an evaluable predicate,
#2r which coerces integers to reals. g

Example: Usage of Schema Information.

1Y) —.X(.Y)

.p2(Y) —.X(.Y[.type=integer])

p3(Y) «—.X(.Y[.type=integer]),
Y=[s| Y1]

Observe that we are using the Prolog notation of con-
catenation in this example. An appropriate definition
of this evaluable function is assumed here. This exam-
ple is similar to the predicate to list all the predicate
names. The first rule computes all the attribute names
in the database. The second rule lists only those at-
tributes that are of type integer. Of those attributes,
p3 computes only those that start with s.

p1(Y) —.XCY{...,X,...})
p2(Y) —.X(.Y[.type=set])

Predicate p1 computes all attribute names in all the
predicates of the database that are sets and have at
least one set with zero or more elements. In contrast,
P2 computes all attribute names in the predicates of
the database that are defined to be sets, irrespective of
any value associated with that attribute. g

Note that we have shown that any query (or update)
can be used in conjunction with a condition on the
meta information. This uniformity in the treatment
of the schema information is achieved through the use
of the higher-order predicates, as well as the notion of
updating these higher-order predicates.

6 Conclusion

And all shall be well
All manner of thing shall be well
—T. S. ELIOT, LITTLE GIDDING

Over the last few months we have been engaged in the
exercise of designing a language which has powerful
features for deductive databases; and, whose seman-
tics are declaratively specified. In this paper we have
concentrated on assimilating higher-order information
into a deductive database framework.

The central idea of this paper is that higher-order
unification can be replaced by higher-order matching

over a finite set of values. We have shown that this
claim can be consistently upheld over a variety of pow-
erful features and operations.

Acknowledgements

We thank Hassan Ait-Kaci for setting us straight on many
issues and pointing us in right directions and Pat Lincoln for
valuable discussions. The set notation we have used stems
from a proposal by Carlo Zaniolo. We hope that these friends
will continue to help us because “It ain’t over till the fat Iady
sings ..."»

References

[1] Apt, K., Emden, M.: Contributions to the Theory
of Logic Programming, J. of the ACM, 29(8),
1982,

(2] Bancilhon, F., Briggs, T., Khoshafian, S., Val-
duriez, P.: FAD, A Simple and Powerful Database
Language, Proc. VLDB, Brighton, 1987.

(3] Bancilhon, F., Maier, D., Sagiv, Y., Ullman, J.:
Magic Sets and Other Strange Ways to Implement
Logic Programs, ACM Sym. on PODS, Boston,
1986.

(4] Beeri, C., Naqvi, S., Shmueli, O. and Tsur, S.:
Sets and Negation in a Logic Database Language,
ACM Sym. on PODS, 1987.

[5] Kuper, G.: Logic Programming with Sets, ACM
Sym. on PODS, 1987.

[6] Krishnamurthy, R., Naqvi, S.: Non-Deterministic
Choice in Datalog, 3rd International Conf. on
Data and Knowledge Bases, Jerusalem, 1988.

[7) Krishnamurthy, R., Ramakrishnan, R., Shmueli,
O.: A Framework for Testing Safety and Effective
Computability of Extended Datalog, Proc. SIG-
MOD, Chicago, 1988.

[8] Nagvi, S.: A Logic for Negation in Database Sys-
tems, MCC Technical Report and Proc. of work-
shop on Deductive Databases, Washington, 1986.

[9] Naqvi, S., and Krishnamurthy, R.: Database Up-
dates in Logic Programming, ACM Sym. on
PODS, 1988.

[10] Whang, K., et al.: Office-by-Example: An In-
tegrated Office System and Database Manager,
ACM Trans. on Office Info. 8., 1987.

[11] Shmueli, O., Tsur, 8., Zaniolo, C.: Rewriting of
Rules Containing Set Terms in a Logic Data Lan-
guage (LDL), ACM Sym. on PODS, 1988.

[12] Sacca, D., Zaniolo, C.: Implementation of Recur-
sive Queries for a Data Language Based on Pure
Horn Logic, International Conf. on Logic Pro-
gramming, Melbourne, 1987.

[13] Tsur, S., Zaniolo, C.: LDL: A Logic Based
Database langauge, Proc. VLDB, 1986, Tokyo.

[14] Zloof, M.: Office-by-Example: A Business Lan-
guage that Unifies Data and Word Processing and
Electronic Mail, IBM Systems Journal 21(8),
1982.

263

