
Fixed-point semantics and the representation of algorithms on
large data

Michel de Rougemont
Laboratoire de Recherche en Informatique,

Universitb de Paris&d,
91405 Orsay, France.

e-mail: mdrQlri

Abstract: In the first part of this paper, we differen-
tiate between two fixed-point semantics that can be
used to interpret logic-programs using relations to-
gether with functions: on the one hand the fixed-point
semantic used in logic-programming [121, where no dif-
ference is made between data and logical definitions,
and on the other hand the fixed-point semantic used
in the theory of inductive definitions 1131, where the
logical definitions are interpreted relative to the data.
We take a logic-program defining a boolean predicate
P and show that if we follow the first semantic, P is
interpreted as false, and that if we follow the second,
P is always true. If we view the logic-program as a set
r of axioms, then r +=/in P, whereas not (I’ /= P),
i.e. P is a logical consequence for finite structures of
r, but not a logical consequence of I’.

In the second part of the paper, we illustrate this fun-
damental distinction as we try to represent classical
(and hence efficient) algorithms, by logic-programs.
We take Shortest-paths algorithms on valued graphs
as examples and in particular represent Dijkstra’s
shortest path algorithm as an inductive definition, un-
der the operational semantic introduced in [7,6].

1 Introduction

In order to extend the current limitations on com-
putability in the context of large data two research
directions have been studied.

Permission to copy without fee 111 or part of this mataisl is
granted provided that Ihe copies are not made or distributed for
direct commacisl advantage, the VIDB copyright mticc axi
the title of the publication and its date appear. and notice is given
hat copying is by permission of the V~IY Large Data Base
Endowment. To copy o&&se. or to republish, xequims a fee
and/or special permission from the Endowment.

Either new programming languages are designed in
order to deal with databases, or classical database lan-
guages such as SQL are extended in order to cope with
the growing requirements of computing.

As the data is large, another very important compo-
nent is the theory of algorithms, when the primary
property of algorithms besides their denotation, is
their complexity, i.e. the classical time-complexity
(space-complexity), measuring the number of steps
(the number of memory registers) in the worst-case
or average case.

Theoretical studies in the “low-polynomial” time hi-
erarchy find direct applications, if they distinguish al-
gorithms of complexity O(n), O(n.log n), O(n*) and
O(n3), as they distinguish on large data between effec-
tive and non-effective algorithms, where n is the main
parameter measuring the rise of the data. The notion
of an c~ectiuc algorithm has to be seriously refined
when dealing with large databases, as empirical evi-
dence seems to indicate that an ineffective algorithm
is one whose complexity property is somewhere be-
tween O(n*) and O(n3). The barrier to break is not
the polynomial time barrier, but the O(n*) barrier.

In this paper, we show how the theory of inductive
definitions allows the reprcseniation of classical effi-
cient algorithms when working with large data. An
inductive definition is compiled, using the operational
semantic introduced in]7,6], which provides access to
relational data stored on disks through selection3 only.
We associate a relative comp!exity with an inductive
definition, as we measure the complexity relative to
given operators (specified in the schema) and relative
to the selection operator on the data. In the imple-
mentation, we approximate the cost of selections as
constant by storing the data either as a B-tree with
secondary indices as required by the selections we per-
form, or as Bang data-structures [lo], refining the

Proceedings of the 14th VLDB Conference
Los Angeles, California 1988 264

Grids [141.

We therefore obtain a model of computation where
the complexities are relative but can be composed in
a constructive way to define an absolute complexity.
In this model we measure the number of given opera-
tions on a schema, but oft.en distinguish between the
classical complexity and the number of selections on
the data (noted A(f(n))). An algorithm is A(n),O(n?)
on a schema if its worst-case complexity is quadratic
in n, with a linear number of selections on the data.

An algorithm is usually constructed using other algo-
rithms as given, and this is why the primary logical
complexity measure has to be a relative measure, as-
suming a unit-cost for the given algorithms. As exam-
ples, we consider algorithms for shortest-path prob-
lems on valued graphs, and in particular Dijkstra’s
shortest-path algorithm [9,1]. A valued graph is a
ternary schema &(X,Y,Z), where X and Y range over
the domain of the graph, and Z over the positive real
numbers. &(a, b, i) if there is an edge between point
a and point b of cost i. We will give various inductive
definition for the query SP(x,y,u) such that SP(a, b, i)
if the shortest-path between a and b is of cost i.

In the first part of the paper, we emphasize the
various fixed-point semantics that can be taken as
foundations for logic-programs. We will show that
the fixed-point semantic associated with the least-
Herbrand model [121, i.e. the semantic taken in clas-
sical logic-programming differs with the fixed-point
semantic used in inductive definitions [13], for logic-
programs with function symbols. When the logic pro-
grams are purely relational these semantics coincide.
On the class of graphs with a successor as a partial
function on the domain, a minimum element inf and
a maximum element sup, we take an inductive detini-
tion of the predicate Max(x) such that Maz(a) if a is
at a maximum distance from inf ‘. We then consider
P() + %Maz(z). The fixed-point semantic based on
the least Herbrand model interprets P() as false, but
the fixed-point semantic based on inductive definitions
always interprets P() as true.

This phenomenon is fundamental for the representa-
tion of algorithms, as some basic constructions used
by algorithms may be effective on finite structures,
but non-constructive on infinite structures. In actual

‘The inductive definition of the predicate Max in [ll] is fun-
damental to observe that inductive queries are closed under
complement.

fact, we show that the query SP on valued graphs
has the same property as Max. If we define Q()
+ 3u SP(inf,sup,u), then Q is always true on fi-
nite graphs, but may be false on some infinibe graphs.
We then give various inductive definitions for SP, that
correspond to different algorithm, and in particular
to Dijkstra’s shortest-path algorithm. This inductive
definition is A(n),O(n”), but breaks the 0(x1?) barrier
for the average complexity, and allows u3 to solve the
problem on large data.

In the second section, we review the two fixed-point
semantics, and exhibit a logic-program that differen-
tiates them. In the third section, we relate the previ-
ous phenomenon with the query SP, and make some
general remarks concerning the definability of SP in
various logic-based languages. We then give two in-
ductive definitions for SP, one of them representing
Dijkstra’s shortest path algorithm, and make a com-
parison with other approaches, the approach of “re-
cursive queries” in databases [3], and the classical ap
preach to represent algorithms [l]. In the fourth sec-
tion we explain the practical side of this approach, as a
prototype computing optimum routes on the German
railway database is built following this theory.

2 Fixed-point semantics.

2.1 Notations

We assume that data is given as sets of tuples defining
relational sets & ,.., &k. &(a1 ,.., aj) iff <al ,..., aj> is a
tuple of arity j in the set $8 where al,...,aj E D, for a
finite set D. A database is a relational structure DB=
CD, &,..,&k> and a database schema is the class K of
all finite relational structures DB of similar signature.
A logical database is a logical expansion of a database,
i.e. a structure U=<D, &,..$k, RI,.., R1, fl,...,fm,
Fl,..., Fp>, where RI,..., RI are relations on D, fl,... ,fm
are functions on D, Fl,..., Fp are functionals 2, A log-
ical schema is the class K of all finite structures U of
similar signatures. For a logical database U, El,...&
are base relations, whereas &l,..&k, Rl,..,Rl are ez-
plicit relations.

The base relations are stored on secondary stor-
age, and are accessed through selections only: if

2A functional takes a relation, a function or a set as argu-
merits, and returns a value of D. For example the Functional
Min, takes a finite set as argument and returns the minimum
element in that set. Min(S) = o if o E S, and is the minimum
elementof the flnite set S.

265

Ej(XIv -**9 Xj) is a schema of arity j, and con-
tains Q tuples, then a selection on an arbitrary set
of attributes producing m tuples is done in time
AD+a.logq + P.m, where Q, /3 are small in compari-
son with the constant AD (disk access). In practice, m
is small and the cost of a selection can be considered
as constant.

The logical schemas that we consider contain an or-
dering of the domain, i.e. the restriction of the lex-
icographic ordering to the finite domain D. It is im-
plicetely used by the data structures to ensure that the
selections are done in constant time. We assume that
a successor function (sue), and a predecessor function
(pre) are explicitely given in the logical schemas. A
constant function info defines the minimum element
and another function sup0 defines the maximum el-
ement of the structure. The predecessor of info is
undefined (pre(inf()) T), and the successor of sup0 is
also undefined (suc(inj()) I). As customary, we ab-
breviate i~j() and sup0 with inf and sup, treating
the constant functions as distinguished elements.

l Example 1: Let K be the class of fi-
nite graphs G,,=< D,,,& succ,pte,inj, sup >,
D={ a, ai, a,,, b}, & C D.D, such that there
is an edge between a and ai , ai and b, and be-
tween a; and ai+i for i 2 1. The successor func-
tion starts with in j()=a, then joins ai,a. and
then aup()=b. The predecesssor function is the
inverse of the successor. We represent Gs and
the infinite graph G,, where w={1,2,3 ,.... }.:

l Example 2: Let K’ be the class of structures
G’n where each G’n is a valued graph, with
the functions sue, prc, in j, sup. as in example 1.
G’, also uses the set of positive real numbers R
as parameters, and the function +. We write
G’, =< D,,,E,suc,pre,inj,sup,Min;R,+ >,
where E c D.D.R.

The edges of example 1 are of cost l., but in ad-
dition there are new edges between a and ai, oi
and b of cost l/i for i 2 1. We represent G’ a and
G’W

266

2.2 Inductive queries: data as a finite
model.

To a structure U of a class K, we associate the first-
order language L(K) with equality: it has first-order
variables x,y,z,... ranging over D, relational sym-
bols &,..&, R1,.., RI, the identity symbol =, func-
tions symbols fl,...,fm an d the usual logical symbols
V,A, 3, v, 1) =t f.

The ext,ended first-order language L1 (K) includes
L(K), but in addition expressions built with function-
als.

a If 11, is a l-order formula and if Min a functional
taking a set as argument, then the expression
3u[z = Min({u}) A $(z, y, u))] is an extended l-
order formula. The interpretation of this formula
is:

[3u(z = Min({u)) A $b, ~,u))l~b, 6) iff

S={c/[$(a, b,c)lU} and a = Min(S).

This interpreation is exactly the one taken in lan-
guages such as SQL. One computes the set S, and
then applies the functional Min. Notice that the
notation Min({u}), is strictly equivalent to the
“GROUP by u n notation in SQL.

Let L(K) be the extended first-order language, with
relational symbols RI,.., Rk, first-order variables xl,
x2,.-1 and the classical functions and Functionals. As-
sume the classical notions of satisfiability for formulas

Fbl ,--tXk, sit--9 Si), the notion of S occuting poai-
tiuely in F [131, and the notion of a relational query
defined in [4,5,2).

Definition (131: An inductive system with parameters
on a class K is a sequence of formulas Fl,...,Fk in the
language L(K)U{sl,...,sk}, such that each Si occurs
positively in each Fj for 1 5 i,j 5 k, and such that
each Si is of arity ri+p. We write a system as:

‘Sllxl*...xlrl y ,..... y,) F F1{xII...xlrl. S1...Ek : yl...yp)

P21X2*...X2rl. Y ,..... yp) 4= F2(x21...~~~~. sl...sk : yi...yp)

Sk(xkI...Xkrl’ y‘,.... y,,) F Fk(XkI...Xkrk. sl...sk : yI...yp)

”

The parameters yl ,...,yp are kept const,ant. in the re-
cursions, whereas the xij’s play the role of recursion
variables. The fixed-point semantic (131 associates
with the system S and with each structure U, the
fixed-points IS,%i” defined at the finite closure ordi-

nal X, for the stages defined as: [Syl” = 4 (the empty
set); [Si+‘]” = [Fi([Si]U,,..., &,i”)iu

Then [Sy]” = [S;““l” = (S?j”.

If the formulas Fi contain some function& (Min, Max,
etc....) then the iterations are not necessarly mono-
tone: in this case the relation IS,Fl” is defined as the
cumulative &cd-point, i.e. the limit of the sequence:
[Sp]“, [S,‘j” ,..... [Sj]‘, jSi+l]u ,.... where [Sf”l” =

[@J (Fi([Sil” ,...., [Si,l”)lu.

Deflnition:[8] A relational query is inductive of di-
mension d on a class K if there exists a system of
dimvngion d such that for all U: [QIU = ISFlu.

l Consider the example 1: we can define the follow-
ing queries:

Anc(x,y) *E(s, Y) V %IE(z, 2) A Anc(z, Y)]

i

Con0 4= VzComp(z).

Camp(x) *E(inf, z) V 3z(Comp(z)AE(z, z)].

The first system defines the classical Ant query,
with an existential induction of dimension 1. The
second system defines the boolean query (true or
false) Con(): Con0 if there is a path from inf to
all other points. Con0 is inductive of dimension
1, but not existential, as a universal predicate ap-
pears in the first formula of the system.

Consider the class of valued graphs as in example
2, with the functional Min2 that takes 2 sets as
arguments and returns the minimum element of
both sets.

Arcmin(z,y,u) +&(z,y,u),u= Min({u}).

We verify that Arcmin(a, b, ;) if i is the minimum
of lj / Eta, 4 A).

267

SP(z, y, u) e 3uAncm(z, u, y) A u = Min({u}).

Ancm(z, u, Y) -4% Y, 4 v 32, u, wjE(z, 2, U)A 1 Ancm(z, w, y) A t = u + WA

Ancm(z,j, y)Au = Min2({t}, {j})].

This second system defines SP, of dimension 2 us-
ing y as a parameter, by induction on the length
of the pat,hs. Ancm(a,i,b) if there is a path of
length i obtained by taking the path of minimum
cost among all the minimum paths of length i-l.
This induction is non-monotonic, as it uses the
functional Min2.

We say that a boolean query Q is always true on a
class K, if it is true for all finite structures of K.

2.3 The least Herbrand model.

In this classical approach to logic programming 1121,
the definitions are viewed as first-order axioms, i.e.
replacing + by the logical implication +-. The rela-
tional data are considered as first-order axioms, to-
gether with the relational data.

What we viewed as a set of definitions, is now viewed
as a set of clauses. In case of existential inductions,
which are positive (no negation on the given explicit
relations), the clauses are Horn-clauses, built from
terms containing possibly some functions symbols.

Within this framework, the set of terms of a program
P (a set of clauses) is the Herbrand Universe, defining
the Herbrand interpretations. The interesting one is
the least Herbrand model that can be defined by it-

[Pilu iff P() E Tb, i.e. the i-th iteration of Tr -I.

In this case, the Herbrand model and the finite struc-
ture are isomorphic. In the more interesting case of
logic-programs with functions symbols, the Herbrand
base is infinite, whereas the structure is finite, an en-
tirely different sibuation.

2.4 A logic-program for the Maxi-
mum.

In this section we present a logic-program with func-
tions (pre and succ) that distinguishes the two fixed-
point semantics. The program is best understood as
an inductive definition of the predicate Max(x), on the
class of graphs of example 1. We first show an induc-
tive definition of Max and of the boolean predicate P()
saying that there exists a maximum. We then trans-
form the inductive definition into an existential posi-
tive one, making an extensive use of the functions. At
this point we reach a unique logic-program that can
be interpreted following the two semantics we intro-
duced. P() is true for all G, of example 1, following
the fixed-point semantic of the inductive definitions,
but P() is not a logical consequence of the axioms, as
the model G, is such that P() is false.

2.4.1 definition of P and Max.

Consider the system defining the boolean P on the
class of graphs of example 1 with the relation I, the
ordering on the domain: in a first step we define
Ancm, and then define P on the new class expanded
with Ancm. We then transform this induction into an
existential induction.

erating a monotone operator Tp, defining the set of
clauses on the left hand side of +, given the set of Max(z) G 3uAncm(z,u) A (Vy(3uAncm(y,u) A y #

clauses on the right hand side (see 112)).
I
z --* u I u)].

For a boolean predicate P() is true if P() E Tp t w, Ancm(z,u) * (z = inf Au = inf)V(3y,uAncm(y, u)
following LLoyd’s notations. In the case of logic- Ag(y, z),u = succ(u)).

programs without function symbols, the two interpre-
tations are clearly equivalent: &(z, y) 4= (2 = inf A y = succ(inf)) V (z =

succ(inf) A y = sup) V (au, uE(u, u) A z = u A y =

Proposition: For logic-programs without functions succ(u) A y # sup).
symbols, the fixed-point semantics based on inductive

1

defintion and on the least Herbrand model coincide: We simply state that Ancm(a,i) if a is at a distance
i from inf, and that Maz(o) if Ancm(u, j) and for

Proof: By induction on the stages, it is simple to re- alI c different from a if Ancm(c,i) then i 5 j. The
alize that a boolean predicate P is such that for all U, definition of E, axiomatises the class of graphs of the

268

figure 1. The induction defining Ancm is posit.ive and
existential, whereas the one defining P is universal and
negative in Ancm. We can however always replace this
two steps system with a one step existential system,
using the functions, and implicitely the finiteness o/
the structures. We then obtain:

‘PO %= 3zMaz(z).

Maz(z) + 3uAncm(z, u) A [Checkmaz(z, u)].

Checkmaz(z, u) += Checkrec(u, sup).

Checkrec(u, y) * y = inf V (%Ancm(y,u) A u <
y A Checkrec(u, pre(y)).

Ancm(z,u) -+ (z = inf A u = inf) V (3y, uAncm(y, u)
AB(y, i), u = succ(u)).

a(z, y) 4= (z = inf A y = succ(inf)) V (2 =

succ(inf) A y = sup) V (h, uE(u,u) A z = u A y =

succ(u) A y # sup).
.

In this new induction, we replaced the universal quan-
tifier by a recursive predicate (Checkrec), verifying
that all points are at a distance less than the distance
of the maximum point (doing a linear search on the
domain). The program we obtain is an existential in-
duction, hence can be viewed as a set of clauses with
function symbols.

Proposition: P() is always true on the class K of
example 1.

Proof: One verifies that the definition of Maz is cor-
rect, and we know that any finite graph has a maxi-
mum. i

Proposition: As a logic-program P() is false.

Proof: P() is true iff P E Tp t w iff P is a logical
consequence of the axiom. But P is not a logical con-
sequence of the axiom, as for the model G,, P is false,
as there is no maximum. Hence P() is false using the
logic-programming semantic. -1

2.5 The logical foundations of induc-
t ive queries

The foundations of classical logic-programming is that
a predicate is true iff it is a logical consequence of
the axioms. The previous example shows that the se-
mantic of inductive queries, because it differs with t,he
logic-programming semantic, will not share this funda-
mental property. There is however another property
that can be taken as logical foundation:

Theorem: For a set r of first-order axioms, and a
predicate P appearing on the left-hand side, P() is al-
ways true as an inductive query iff I’ +Iitr PO.

Proof: For any finite structure P() is true, and we can
then build a constructive proof of P, by computing P.
This proof will show that P is a logical consequence
for finite structures of the logic-program, viewed as a
set r of first-order axioms. -1.

This simple result, generalizes however to some
second-order axioms. We will see such examples later.

3’ The representation of algo-
rithms.

The previous phenomenon is important however, if
one tries to represent classical algorithms as logic-
programs, because the basic constructions of an algo-
rithm may use the finiteness of the data implicitely.
Notice that classical query languages also use the
finiteness of the data implicitely: a selection of a re-
lation yields effcctiuely a relation, because the domain
is finite. On an infinite structure, a selection is in-
effective. In the same way, an inductive definition is
effective on finite structures, but ineffective on an in-
finite one.

If a proper distinction between recursion variables and
parameters is iade, we can then take the operational
semantic introduced in [7,6], that can be understood
as: pass the parameters by due, then iterate the
set constructions until the closure ordinal is reached.
With this semantic some very efficient algorithm can
be represented as inductive definitions.

3.1 The model.

In this paper we have been using an important ex-
pression: A logic-program represents an algorithm. We

269

now define this concept precisely: Let P be a program ity. Hence SP is not Datalog definable. -I
having a certain relative complexity property, and let
A be an algorithm having another relative complexity,
i.e. assuming a unit-cost for the given operations.

Definition: A program P repnsent~ an algorithm
A, if they have the same denotation and the same rel-
ative complexity properties, within a constant factor.

As an example, we concentrate on algorithms defining
SP on the class of valued graphs, as in the example
2. This is an example of both practical and theoretic
interest. In practice, we don’t look for an arbitrary
path (as in Ant for example), but for those paths that
satisfy a condition (as in SP). The theoretical interest
in SP in explained next.

3.2 Definability of SP.

3.3 An inductive definition of SP

We now switch to the classical logic-programming no-
tations, where non-free variables in a definition ate by
default existentially quantified, where n,n replaces A,
“;” replaces V, and “:” replaces +. We do not use the
symbol ” :-“, replacing +, because we now adopt the
fixed-point semantic of inductive queries. In fact we
now consider systems with the functionals Min, and
Min2, under the cumulative fixed-point semantic (see
section 2). We take the ip [7,6] notations, where the
defined predicate of a system is emphasized, following
the key-word “ind”. This induction reflects the one we
gave as an example in section 2, and is on the length
of the paths.

Consider the class of graphs as in example 2, and
let us define the boolean predicate Q() as foilows:
Q() e 3uSP(inf, sup, u). ind SP(x,y,u)

Proposition: Q is always true on the class K’ of ex-
ample 2, but false on G’,.

Proof:We can repeat the same argument as in the case
of the Maximum: every finite G’ has a minimum path
from inf=a to sup=b. The infinite graph G’, does
not, as given any path, there always exists a shorter
one. -I

In addition we can observe that SP is not definable
without some basic non-monotone constructions. In
particular it is not definable in Datalog.

It is essential to observe the monotonicity of queries
defined in Datalog. If Q is an existentially inductive
query and if Q is true on a structure U (database
state), then if we add some tuples to U, defining U’,
then Q will be true in U’. This relecta the fact that
an existential proof is maintained in larger structures,
or the fact that a calculus for first-order logic must be
monotone.

Proposition: SP is not definable in Datalog.

Proof: suppose it were. On G’s, we would have
G’a k SP(inf,sup,2/3). If we now add the extra
relational edges to define G’4 (3 edges more), then
not(G: l== SP(inf, sup, 2/3), as the minimum path is
of cost l/2. We would then contradict the monotonic-

SP(x,y,u) : Ancm(x,v,y) ,u=Min((v)).

AIlcm(x,u,y) :E(x,y,u) ; [E(x,z,v) ,Ancm(z,w,y),
t=v+w,Ancm(x, j ,y), u=Min2(<t),<j))l.

. .

This induction is of dimension 2, and uses y as a pa-
rameter. Its relative complexity is O(n”), but its ab-
solute complexity is worse than O(n3), and therefore
is not very interesting.

3.4 Dijkstra’s shortest path algo-
rithm.

Dijkstra’s algorithm is captured by a mote complex
induction than the one described in the previous ex-
ample. The essential of the definition is the simultane-
ous induction of Ancm, together with a binary relation
S(X,Yb

For y=a let S’ = { u/S’(u) u)), i.e. the set defined
at stage i. The essential and non-trivial property of
the system [Ancm,Sj is the fact that for all i, And
contains the shortest path relative to the subgraph
defined by 5”. This induction is non-monotonic, as it
uses the functionals Min2 and Min, but also an explicit
negation. We now take the full class of non-motonone
inductions, under the cumulative fixed-point semantic.

270

The compilation techniques used in (7,G] generalizes to
this case.

ind SP(x,y,u)

SP(x,y,u) : Ancm(x,v,y) ,u=Min(<v)).

Ancm(x,v ,y) : E(x,u,z),S(u,y),Ancm(u,t,y),
Ancmfx, w, y> , v=Min2 ({v/1, <t+z))

; E(x,v,y).

Shy) : hcm(u,z’ ,y) ,Aucm(v,z,y) ,
not S(u,y) .z’=Min((z>).

This system is of dimension-2, where y is a parameter.
The definition of Ancm can be understood as: The
marking at stage i for y=a, is obtained from the mark-
ing at stage i-l, by considering the new paths from the
new b such that Sib’(b,a), and by taking their mini-
mum. The definition of S can be understood as : The
new point b at stage i is obtained by taking the point of
minimum cost among the points that are not in S’-‘.
What is fundamental to observe is that, we only ex-
plore the new paths from one point b, computed by
S. This makes the program far more efficient than the
one based on the induction on the length of the paths,
where all the paths of length k are generated from
some paths of length k-l.

The principle of this induction is exactly the princi-
ple of Dijkstra shortest path algorithm [9,1]. It shows
the strong relationship that exists between a specific
algorithm and an inductive definition. If one looks at
a book on algorithms [l] and compares the represen-
tation of this algorithm with the one we gave, one can
observe that the graph is usually represented as an ar-
ray, and that the complexity analysis of the algorithm
assumes that accessing an element in the array can be
done in 1 step. This hypothesis is true for n small,
but false for large n, in contradiction with an ajymp
totic complexity analysis. In this representation, the
program is compiled in such a way that we only ac-
cess the data with a selection (in fact a selection on
the first attribute). The hypothesis of a selection in
constant time is t.rue, the overall complexity analysis
can be done by the compiler, and is compatible with

n large. The program takes 2 recursion variables, and
hence is of worst-case complexity O(n?), but in fact is
far better for the average complexity. This requires a
finer analysis of the induction, in order to show that
only one point is explored, as the inductive computa-
tions proceed.

3.5 Comparison
approaches

with other

3.5.1 Recursive queries in databases

It is important to note that the operational semantics
presented in [3], although presented in terms of classi-
cal logic-programming terms, seem to adopt the fixed-
point semantic of inductive queries, as they lead to
computations of finite sets, implicitely using at some
point the finiteness of the data. Most of these meth-
ods concentrate on Datalog, which does not allow the
definition of SP, as we have seen using a simple mono-
tonicity argument.

The use of these operational semantic to represent al-
gorithms is very unclear, as is the promised optimiza-
tion that these methods claim.

3.5.2 The classical representation of algo-
rithms

The logical representation of a classical algorithm has
to be compared with the one given in classical books
on algorithms [l]. In these books, the data is usually
stored in an array, and one assumes that accessing an
element of the array is done in constant time. This
hypothesis is however only true for small graphs, and
false for large graphs. Hence the complexity analy-
sis, as an asymptotic measure, i.e. for large graphs is
in contradiction with the implicit hypothesis on the
relative costs. What we obtain in our representation
as a logical definition, is a representation of the al-
gorithm, where the basic hypothesis are compatible
with n large, and hence the complexity analysis makes
sense. What is however fundamental to observe is that
the relative complexity of the program is syntactically
captured by the dimension of the inductive definition.

4 The practical use

We have been applying the previous theory in design-
ing a practical system to compute optimum routes

271

from the German railway network database. The
schema is far more complex than the valued graphs
we considered, as it gives the precise schedule of trains
(10 attributes). If we look for the shortest route in
time between two stations, we proceed as follows. In
a first step, we write Dijkstra’s algorithm as an induc-
tive definition with the time, as a cost function. It
is interesting to note, t.hat selections on only one at-
tribute are performed (departing station), and that a
B-tree structure without secondary indices suffices to
store the data. When compiled SP executes on a sim-
ulated database within 20 to 60 seconds on a SUN3.
and this is far too long for real applications.

We precompute all shortest paths between the 50
largest German cities, using the previous definition of
SP. We then code a natural heuristics SPl for SP than
can be understood as: to compute the shortest route
between a and b, if a and b are large cities then look
at the precomputed routes, otherwise determine two
large cities al and bl that can be reached from a and
b by direct trains in time ta and tb; let tl be the time
of the shortest route between al and bl; then the time
of the shortest route between a and b is tl + ta + tb.

This heuristics for SPl can then be detined by a very
simple inductive definition on the expanded schema,
and is compiled using the same techniques. It executes
within 10 seconds, and with a high probability gives a
solution to the problem.

References

Ill

PI

PI

141

151

161

I71

PI

PI

PO1

IllI

PI

WI

I141

A. Aho, J. Hopcroft, and J. Ullman. The design
and analysis of computer algorithms. Addison-
Wesley, 1974.

Ullman J. Aho A. Universality of data retrieval
languages. In Principlea of Programming lun-
guages, pages ll-,117, ACM, 1979.

F. Bancilhon and R. Ramakrishnan. An ama-
teur’s introduction to recursive query processing
strategies. SIGMOD, 1986.

3. Barwise and Y. Moschovakis. Global in-
duct.ive definability. Journal of Symbolic Logic,
43(3):521-534, 1978.

A. Chandra and D. Harel. Structure and com-
plexity of relational queries. Journal of Computer
and System Sciences, 25(l):QQ-128, 1982.

M. de Rougemont. Calculabilite et bases de
donnees. Techniques et Science informatiques,
6(5):419-434, 1987.

M. de Rougemont. The computation of induc-
tive queries by machines. In Logic, Language and
Computation, ASL, 1985. Abstract in Journal of
Symbolic Logic 51(3):p. 839, 1986.

M. de Rougemont. Second-order and inductive
definability on finite structures. Zeitachtift fur
Mathematische Logik und Grundlagen der Math-
em&k, 33(1):47-63, 1987.

E. Dijkstra. A note on two problems in connexion
with graphs. Numerische mathematik, 1:269-271,
1959.

M. Freeston. The bang file: a new kind of grid
file. In SIGMOD, 1987.

N. Immerman. Relational queries computable in
polynomial time. In Symposium on the theory of
Computing, pages 147-152, ACM, 1982.

J.W. Lloyd. Foundations of Logic Programming.
Springer-Verlag, 1984.

Y. Moschovakis. Elementary Induction on Ab-
stract Structures. North-Holland, 1974.

J. Nievergelt, H. Hinterberger, and K.C. Sevcik.
The grid file: an adaptable, symmetric multikey
file structure. ACM Transactions on Database
Systems, 9(1):38-71, 1984.

272

