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Abstract: In the first part of this paper, we differen- 
tiate between two fixed-point semantics that can be 
used to interpret logic-programs using relations to- 
gether with functions: on the one hand the fixed-point 
semantic used in logic-programming [ 121, where no dif- 
ference is made between data and logical definitions, 
and on the other hand the fixed-point semantic used 
in the theory of inductive definitions 1131, where the 
logical definitions are interpreted relative to the data. 
We take a logic-program defining a boolean predicate 
P and show that if we follow the first semantic, P is 
interpreted as false, and that if we follow the second, 
P is always true. If we view the logic-program as a set 
r of axioms, then r +=/in P, whereas not ( I’ /= P), 
i.e. P is a logical consequence for finite structures of 
r, but not a logical consequence of I’. 

In the second part of the paper, we illustrate this fun- 
damental distinction as we try to represent classical 
(and hence efficient) algorithms, by logic-programs. 
We take Shortest-paths algorithms on valued graphs 
as examples and in particular represent Dijkstra’s 
shortest path algorithm as an inductive definition, un- 
der the operational semantic introduced in [7,6]. 

1 Introduction 

In order to extend the current limitations on com- 
putability in the context of large data two research 
directions have been studied. 

Permission to copy without fee 111 or part of this mataisl is 
granted provided that Ihe copies are not made or distributed for 
direct commacisl advantage, the VIDB copyright mticc axi 
the title of the publication and its date appear. and notice is given 
hat copying is by permission of the V~IY Large Data Base 
Endowment. To copy o&&se. or to republish, xequims a fee 
and/or special permission from the Endowment. 

Either new programming languages are designed in 
order to deal with databases, or classical database lan- 
guages such as SQL are extended in order to cope with 
the growing requirements of computing. 

As the data is large, another very important compo- 
nent is the theory of algorithms, when the primary 
property of algorithms besides their denotation, is 
their complexity, i.e. the classical time-complexity 
(space-complexity), measuring the number of steps 
(the number of memory registers) in the worst-case 
or average case. 

Theoretical studies in the “low-polynomial” time hi- 
erarchy find direct applications, if they distinguish al- 
gorithms of complexity O(n), O(n.log n), O(n*) and 
O(n3), as they distinguish on large data between effec- 
tive and non-effective algorithms, where n is the main 
parameter measuring the rise of the data. The notion 
of an c~ectiuc algorithm has to be seriously refined 
when dealing with large databases, as empirical evi- 
dence seems to indicate that an ineffective algorithm 
is one whose complexity property is somewhere be- 
tween O(n*) and O(n3). The barrier to break is not 
the polynomial time barrier, but the O(n*) barrier. 

In this paper, we show how the theory of inductive 
definitions allows the reprcseniation of classical effi- 
cient algorithms when working with large data. An 
inductive definition is compiled, using the operational 
semantic introduced in ]7,6], which provides access to 
relational data stored on disks through selection3 only. 
We associate a relative comp!exity with an inductive 
definition, as we measure the complexity relative to 
given operators (specified in the schema) and relative 
to the selection operator on the data. In the imple- 
mentation, we approximate the cost of selections as 
constant by storing the data either as a B-tree with 
secondary indices as required by the selections we per- 
form, or as Bang data-structures [lo], refining the 
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Grids [ 141. 

We therefore obtain a model of computation where 
the complexities are relative but can be composed in 
a constructive way to define an absolute complexity. 
In this model we measure the number of given opera- 
tions on a schema, but oft.en distinguish between the 
classical complexity and the number of selections on 
the data (noted A(f(n))). An algorithm is A(n),O(n?) 
on a schema if its worst-case complexity is quadratic 
in n, with a linear number of selections on the data. 

An algorithm is usually constructed using other algo- 
rithms as given, and this is why the primary logical 
complexity measure has to be a relative measure, as- 
suming a unit-cost for the given algorithms. As exam- 
ples, we consider algorithms for shortest-path prob- 
lems on valued graphs, and in particular Dijkstra’s 
shortest-path algorithm [9,1]. A valued graph is a 
ternary schema &(X,Y,Z), where X and Y range over 
the domain of the graph, and Z over the positive real 
numbers. &(a, b, i) if there is an edge between point 
a and point b of cost i. We will give various inductive 
definition for the query SP(x,y,u) such that SP(a, b, i) 
if the shortest-path between a and b is of cost i. 

In the first part of the paper, we emphasize the 
various fixed-point semantics that can be taken as 
foundations for logic-programs. We will show that 
the fixed-point semantic associated with the least- 
Herbrand model [ 121, i.e. the semantic taken in clas- 
sical logic-programming differs with the fixed-point 
semantic used in inductive definitions [13], for logic- 
programs with function symbols. When the logic pro- 
grams are purely relational these semantics coincide. 
On the class of graphs with a successor as a partial 
function on the domain, a minimum element inf and 
a maximum element sup, we take an inductive detini- 
tion of the predicate Max(x) such that Maz(a) if a is 
at a maximum distance from inf ‘. We then consider 
P() + %Maz(z). The fixed-point semantic based on 
the least Herbrand model interprets P() as false, but 
the fixed-point semantic based on inductive definitions 
always interprets P() as true. 

This phenomenon is fundamental for the representa- 
tion of algorithms, as some basic constructions used 
by algorithms may be effective on finite structures, 
but non-constructive on infinite structures. In actual 

‘The inductive definition of the predicate Max in [ll] is fun- 
damental to observe that inductive queries are closed under 
complement. 

fact, we show that the query SP on valued graphs 
has the same property as Max. If we define Q() 
+ 3u SP(inf,sup,u), then Q is always true on fi- 
nite graphs, but may be false on some infinibe graphs. 
We then give various inductive definitions for SP, that 
correspond to different algorithm, and in particular 
to Dijkstra’s shortest-path algorithm. This inductive 
definition is A(n),O(n”), but breaks the 0(x1?) barrier 
for the average complexity, and allows u3 to solve the 
problem on large data. 

In the second section, we review the two fixed-point 
semantics, and exhibit a logic-program that differen- 
tiates them. In the third section, we relate the previ- 
ous phenomenon with the query SP, and make some 
general remarks concerning the definability of SP in 
various logic-based languages. We then give two in- 
ductive definitions for SP, one of them representing 
Dijkstra’s shortest path algorithm, and make a com- 
parison with other approaches, the approach of “re- 
cursive queries” in databases [3], and the classical ap 
preach to represent algorithms [l]. In the fourth sec- 
tion we explain the practical side of this approach, as a 
prototype computing optimum routes on the German 
railway database is built following this theory. 

2 Fixed-point semantics. 

2.1 Notations 

We assume that data is given as sets of tuples defining 
relational sets & ,.., &k. &(a1 ,.., aj) iff <al ,..., aj> is a 
tuple of arity j in the set $8 where al,...,aj E D, for a 
finite set D. A database is a relational structure DB= 
CD, &,..,&k> and a database schema is the class K of 
all finite relational structures DB of similar signature. 
A logical database is a logical expansion of a database, 
i.e. a structure U=<D, &,..$k, RI,.., R1, fl,...,fm, 
Fl,..., Fp>, where RI,..., RI are relations on D, fl,... ,fm 
are functions on D, Fl,..., Fp are functionals 2, A log- 
ical schema is the class K of all finite structures U of 
similar signatures. For a logical database U, El,...& 
are base relations, whereas &l,..&k, Rl,..,Rl are ez- 
plicit relations. 

The base relations are stored on secondary stor- 
age, and are accessed through selections only: if 

2A functional takes a relation, a function or a set as argu- 
merits, and returns a value of D. For example the Functional 
Min, takes a finite set as argument and returns the minimum 
element in that set. Min(S) = o if o E S, and is the minimum 
elementof the flnite set S. 
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Ej(XIv -**9 Xj) is a schema of arity j, and con- 
tains Q tuples, then a selection on an arbitrary set 
of attributes producing m tuples is done in time 
AD+a.logq + P.m, where Q, /3 are small in compari- 
son with the constant AD (disk access). In practice, m 
is small and the cost of a selection can be considered 
as constant. 

The logical schemas that we consider contain an or- 
dering of the domain, i.e. the restriction of the lex- 
icographic ordering to the finite domain D. It is im- 
plicetely used by the data structures to ensure that the 
selections are done in constant time. We assume that 
a successor function (sue), and a predecessor function 
(pre) are explicitely given in the logical schemas. A 
constant function info defines the minimum element 
and another function sup0 defines the maximum el- 
ement of the structure. The predecessor of info is 
undefined (pre(inf()) T), and the successor of sup0 is 
also undefined (suc(inj()) I). As customary, we ab- 
breviate i~j() and sup0 with inf and sup, treating 
the constant functions as distinguished elements. 

l Example 1: Let K be the class of fi- 
nite graphs G,,=< D,,,& succ,pte,inj, sup >, 
D={ a, ai, . . . . . a,,, b}, & C D.D, such that there 
is an edge between a and ai , ai and b, and be- 
tween a; and ai+i for i 2 1. The successor func- 
tion starts with in j()=a, then joins ai, . . ..a. and 
then aup()=b. The predecesssor function is the 
inverse of the successor. We represent Gs and 
the infinite graph G,, where w={1,2,3 ,.... }.: 

l Example 2: Let K’ be the class of structures 
G’n where each G’n is a valued graph, with 
the functions sue, prc, in j, sup. as in example 1. 
G’, also uses the set of positive real numbers R 
as parameters, and the function +. We write 
G’, =< D,,,E,suc,pre,inj,sup,Min;R,+ >, 
where E c D.D.R. 

The edges of example 1 are of cost l., but in ad- 
dition there are new edges between a and ai, oi 
and b of cost l/i for i 2 1. We represent G’ a and 
G’W 
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2.2 Inductive queries: data as a finite 
model. 

To a structure U of a class K, we associate the first- 
order language L(K) with equality: it has first-order 
variables x,y,z,... ranging over D, relational sym- 
bols &,..&, R1,.., RI, the identity symbol =, func- 
tions symbols fl,...,fm an d the usual logical symbols 
V,A, 3, v, 1) =t f. 

The ext,ended first-order language L1 (K) includes 
L(K), but in addition expressions built with function- 
als. 

a If 11, is a l-order formula and if Min a functional 
taking a set as argument, then the expression 
3u[z = Min({u}) A $(z, y, u))] is an extended l- 
order formula. The interpretation of this formula 
is: 

[3u(z = Min({u)) A $b, ~,u))l~b, 6) iff 

S={c/[$(a, b,c)lU} and a = Min(S). 

This interpreation is exactly the one taken in lan- 
guages such as SQL. One computes the set S, and 
then applies the functional Min. Notice that the 
notation Min({u}), is strictly equivalent to the 
“GROUP by u n notation in SQL. 

Let L(K) be the extended first-order language, with 
relational symbols RI,.., Rk, first-order variables xl, 
x2,.-1 and the classical functions and Functionals. As- 
sume the classical notions of satisfiability for formulas 

Fbl ,--tXk, sit--9 Si), the notion of S occuting poai- 
tiuely in F [131, and the notion of a relational query 
defined in [4,5,2). 

Definition (131: An inductive system with parameters 
on a class K is a sequence of formulas Fl,...,Fk in the 
language L(K)U{sl,...,sk}, such that each Si occurs 
positively in each Fj for 1 5 i,j 5 k, and such that 
each Si is of arity ri+p. We write a system as: 

‘Sllxl*...xlrl y ,..... y,) F F1{xII...xlrl. S1...Ek : yl...yp) 

P21X2*...X2rl. Y ,..... yp) 4= F2(x21...~~~~. sl...sk : yi...yp) 

Sk(xkI...Xkrl’ y‘,.... y,,) F Fk(XkI...Xkrk. sl...sk : yI...yp) 

” 

The parameters yl ,...,yp are kept const,ant. in the re- 
cursions, whereas the xij’s play the role of recursion 
variables. The fixed-point semantic (131 associates 
with the system S and with each structure U, the 
fixed-points IS,%i” defined at the finite closure ordi- 

nal X, for the stages defined as: [Syl” = 4 (the empty 
set); [Si+‘]” = [Fi( [Si]U,,..., &,i”)iu 

Then [Sy]” = [S;““l” = (S?j”. 

If the formulas Fi contain some function& (Min, Max, 
etc....) then the iterations are not necessarly mono- 
tone: in this case the relation IS,Fl” is defined as the 
cumulative &cd-point, i.e. the limit of the sequence: 
[Sp]“, [S,‘j” ,..... [Sj]‘, jSi+l]u ,.... where [Sf”l” = 

[@J (Fi( [Sil” ,...., [Si,l”)lu. 

Deflnition:[8] A relational query is inductive of di- 
mension d on a class K if there exists a system of 
dimvngion d such that for all U: [QIU = ISFlu. 

l Consider the example 1: we can define the follow- 
ing queries: 

Anc(x,y) *E(s, Y) V %IE(z, 2) A Anc(z, Y)] 

i 

Con0 4= VzComp(z). 

Camp(x) *E(inf, z) V 3z(Comp(z)AE(z, z)]. 

The first system defines the classical Ant query, 
with an existential induction of dimension 1. The 
second system defines the boolean query (true or 
false) Con(): Con0 if there is a path from inf to 
all other points. Con0 is inductive of dimension 
1, but not existential, as a universal predicate ap- 
pears in the first formula of the system. 

Consider the class of valued graphs as in example 
2, with the functional Min2 that takes 2 sets as 
arguments and returns the minimum element of 
both sets. 

Arcmin(z,y,u) +&(z,y,u),u= Min({u}). 

We verify that Arcmin(a, b, ;) if i is the minimum 
of lj / Eta, 4 A). 
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SP(z, y, u) e 3uAncm(z, u, y) A u = Min( {u}). 

Ancm(z, u, Y) -4% Y, 4 v 32, u, wjE(z, 2, U)A 1 Ancm(z, w, y) A t = u + WA 

Ancm(z,j, y)Au = Min2({t}, {j})]. 

This second system defines SP, of dimension 2 us- 
ing y as a parameter, by induction on the length 
of the pat,hs. Ancm(a,i,b) if there is a path of 
length i obtained by taking the path of minimum 
cost among all the minimum paths of length i-l. 
This induction is non-monotonic, as it uses the 
functional Min2. 

We say that a boolean query Q is always true on a 
class K, if it is true for all finite structures of K. 

2.3 The least Herbrand model. 

In this classical approach to logic programming 1121, 
the definitions are viewed as first-order axioms, i.e. 
replacing + by the logical implication +-. The rela- 
tional data are considered as first-order axioms, to- 
gether with the relational data. 

What we viewed as a set of definitions, is now viewed 
as a set of clauses. In case of existential inductions, 
which are positive (no negation on the given explicit 
relations), the clauses are Horn-clauses, built from 
terms containing possibly some functions symbols. 

Within this framework, the set of terms of a program 
P (a set of clauses) is the Herbrand Universe, defining 
the Herbrand interpretations. The interesting one is 
the least Herbrand model that can be defined by it- 

[Pilu iff P() E Tb, i.e. the i-th iteration of Tr -I. 

In this case, the Herbrand model and the finite struc- 
ture are isomorphic. In the more interesting case of 
logic-programs with functions symbols, the Herbrand 
base is infinite, whereas the structure is finite, an en- 
tirely different sibuation. 

2.4 A logic-program for the Maxi- 
mum. 

In this section we present a logic-program with func- 
tions (pre and succ) that distinguishes the two fixed- 
point semantics. The program is best understood as 
an inductive definition of the predicate Max(x), on the 
class of graphs of example 1. We first show an induc- 
tive definition of Max and of the boolean predicate P() 
saying that there exists a maximum. We then trans- 
form the inductive definition into an existential posi- 
tive one, making an extensive use of the functions. At 
this point we reach a unique logic-program that can 
be interpreted following the two semantics we intro- 
duced. P() is true for all G, of example 1, following 
the fixed-point semantic of the inductive definitions, 
but P() is not a logical consequence of the axioms, as 
the model G, is such that P() is false. 

2.4.1 definition of P and Max. 

Consider the system defining the boolean P on the 
class of graphs of example 1 with the relation I, the 
ordering on the domain: in a first step we define 
Ancm, and then define P on the new class expanded 
with Ancm. We then transform this induction into an 
existential induction. 

erating a monotone operator Tp, defining the set of 
clauses on the left hand side of +, given the set of Max(z) G 3uAncm(z,u) A (Vy(3uAncm(y,u) A y # 

clauses on the right hand side (see 112)). 
I 
z --* u I u)]. 

For a boolean predicate P() is true if P() E Tp t w, Ancm(z,u) * (z = inf Au = inf)V(3y,uAncm(y, u) 
following LLoyd’s notations. In the case of logic- Ag(y, z),u = succ(u)). 

programs without function symbols, the two interpre- 
tations are clearly equivalent: &(z, y) 4= (2 = inf A y = succ(inf)) V (z = 

succ(inf) A y = sup) V (au, uE(u, u) A z = u A y = 

Proposition: For logic-programs without functions succ(u) A y # sup). 
symbols, the fixed-point semantics based on inductive 

1 

defintion and on the least Herbrand model coincide: We simply state that Ancm(a,i) if a is at a distance 
i from inf, and that Maz(o) if Ancm(u, j) and for 

Proof: By induction on the stages, it is simple to re- alI c different from a if Ancm(c,i) then i 5 j. The 
alize that a boolean predicate P is such that for all U, definition of E, axiomatises the class of graphs of the 
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figure 1. The induction defining Ancm is posit.ive and 
existential, whereas the one defining P is universal and 
negative in Ancm. We can however always replace this 
two steps system with a one step existential system, 
using the functions, and implicitely the finiteness o/ 
the structures. We then obtain: 

‘PO %= 3zMaz(z). 

Maz(z) + 3uAncm(z, u) A [Checkmaz(z, u)]. 

Checkmaz(z, u) += Checkrec(u, sup). 

Checkrec(u, y) * y = inf V (%Ancm(y,u) A u < 
y A Checkrec(u, pre(y)). 

Ancm(z,u) -+ ( z = inf A u = inf) V (3y, uAncm(y, u) 
AB(y, i), u = succ(u)). 

a(z, y) 4= (z = inf A y = succ(inf)) V (2 = 

succ(inf) A y = sup) V (h, uE(u,u) A z = u A y = 

succ(u) A y # sup). 
. 

In this new induction, we replaced the universal quan- 
tifier by a recursive predicate (Checkrec), verifying 
that all points are at a distance less than the distance 
of the maximum point (doing a linear search on the 
domain). The program we obtain is an existential in- 
duction, hence can be viewed as a set of clauses with 
function symbols. 

Proposition: P() is always true on the class K of 
example 1. 

Proof: One verifies that the definition of Maz is cor- 
rect, and we know that any finite graph has a maxi- 
mum. i 

Proposition: As a logic-program P() is false. 

Proof: P() is true iff P E Tp t w iff P is a logical 
consequence of the axiom. But P is not a logical con- 
sequence of the axiom, as for the model G,, P is false, 
as there is no maximum. Hence P() is false using the 
logic-programming semantic. -1 

2.5 The logical foundations of induc- 
t ive queries 

The foundations of classical logic-programming is that 
a predicate is true iff it is a logical consequence of 
the axioms. The previous example shows that the se- 
mantic of inductive queries, because it differs with t,he 
logic-programming semantic, will not share this funda- 
mental property. There is however another property 
that can be taken as logical foundation: 

Theorem: For a set r of first-order axioms, and a 
predicate P appearing on the left-hand side, P() is al- 
ways true as an inductive query iff I’ +Iitr PO. 

Proof: For any finite structure P() is true, and we can 
then build a constructive proof of P, by computing P. 
This proof will show that P is a logical consequence 
for finite structures of the logic-program, viewed as a 
set r of first-order axioms. -1. 

This simple result, generalizes however to some 
second-order axioms. We will see such examples later. 

3’ The representation of algo- 
rithms. 

The previous phenomenon is important however, if 
one tries to represent classical algorithms as logic- 
programs, because the basic constructions of an algo- 
rithm may use the finiteness of the data implicitely. 
Notice that classical query languages also use the 
finiteness of the data implicitely: a selection of a re- 
lation yields effcctiuely a relation, because the domain 
is finite. On an infinite structure, a selection is in- 
effective. In the same way, an inductive definition is 
effective on finite structures, but ineffective on an in- 
finite one. 

If a proper distinction between recursion variables and 
parameters is iade, we can then take the operational 
semantic introduced in [7,6], that can be understood 
as: pass the parameters by due, then iterate the 
set constructions until the closure ordinal is reached. 
With this semantic some very efficient algorithm can 
be represented as inductive definitions. 

3.1 The model. 

In this paper we have been using an important ex- 
pression: A logic-program represents an algorithm. We 
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now define this concept precisely: Let P be a program ity. Hence SP is not Datalog definable. -I 
having a certain relative complexity property, and let 
A be an algorithm having another relative complexity, 
i.e. assuming a unit-cost for the given operations. 

Definition: A program P repnsent~ an algorithm 
A, if they have the same denotation and the same rel- 
ative complexity properties, within a constant factor. 

As an example, we concentrate on algorithms defining 
SP on the class of valued graphs, as in the example 
2. This is an example of both practical and theoretic 
interest. In practice, we don’t look for an arbitrary 
path (as in Ant for example), but for those paths that 
satisfy a condition (as in SP). The theoretical interest 
in SP in explained next. 

3.2 Definability of SP. 

3.3 An inductive definition of SP 

We now switch to the classical logic-programming no- 
tations, where non-free variables in a definition ate by 
default existentially quantified, where n,n replaces A, 
“;” replaces V, and “:” replaces +. We do not use the 
symbol ” :-“, replacing +, because we now adopt the 
fixed-point semantic of inductive queries. In fact we 
now consider systems with the functionals Min, and 
Min2, under the cumulative fixed-point semantic (see 
section 2). We take the ip [7,6] notations, where the 
defined predicate of a system is emphasized, following 
the key-word “ind”. This induction reflects the one we 
gave as an example in section 2, and is on the length 
of the paths. 

Consider the class of graphs as in example 2, and 
let us define the boolean predicate Q() as foilows: 
Q() e 3uSP(inf, sup, u). ind SP(x,y,u) 

Proposition: Q is always true on the class K’ of ex- 
ample 2, but false on G’,. 

Proof:We can repeat the same argument as in the case 
of the Maximum: every finite G’ has a minimum path 
from inf=a to sup=b. The infinite graph G’, does 
not, as given any path, there always exists a shorter 
one. -I 

In addition we can observe that SP is not definable 
without some basic non-monotone constructions. In 
particular it is not definable in Datalog. 

It is essential to observe the monotonicity of queries 
defined in Datalog. If Q is an existentially inductive 
query and if Q is true on a structure U (database 
state), then if we add some tuples to U, defining U’, 
then Q will be true in U’. This relecta the fact that 
an existential proof is maintained in larger structures, 
or the fact that a calculus for first-order logic must be 
monotone. 

Proposition: SP is not definable in Datalog. 

Proof: suppose it were. On G’s, we would have 
G’a k SP(inf,sup,2/3). If we now add the extra 
relational edges to define G’4 (3 edges more), then 
not(G: l== SP(inf, sup, 2/3), as the minimum path is 
of cost l/2. We would then contradict the monotonic- 

SP(x,y,u) : Ancm(x,v,y) ,u=Min((v)). 

AIlcm(x,u,y) :E(x,y,u) ; [E(x,z,v) ,Ancm(z,w,y), 
t=v+w,Ancm(x, j ,y), u=Min2(<t),<j))l. 

. . 

This induction is of dimension 2, and uses y as a pa- 
rameter. Its relative complexity is O(n”), but its ab- 
solute complexity is worse than O(n3), and therefore 
is not very interesting. 

3.4 Dijkstra’s shortest path algo- 
rithm. 

Dijkstra’s algorithm is captured by a mote complex 
induction than the one described in the previous ex- 
ample. The essential of the definition is the simultane- 
ous induction of Ancm, together with a binary relation 
S(X,Yb 

For y=a let S’ = { u/S’(u) u) ), i.e. the set defined 
at stage i. The essential and non-trivial property of 
the system [Ancm,Sj is the fact that for all i, And 
contains the shortest path relative to the subgraph 
defined by 5”. This induction is non-monotonic, as it 
uses the functionals Min2 and Min, but also an explicit 
negation. We now take the full class of non-motonone 
inductions, under the cumulative fixed-point semantic. 
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The compilation techniques used in (7,G] generalizes to 
this case. 

ind SP(x,y,u) 

SP(x,y,u) : Ancm(x,v,y) ,u=Min(<v)). 

Ancm(x,v ,y) : E(x,u,z),S(u,y),Ancm(u,t,y), 
Ancmfx, w, y> , v=Min2 ({v/1, <t+z)) 

; E(x,v,y). 

Shy) : hcm(u,z’ ,y) ,Aucm(v,z,y) , 
not S(u,y) .z’=Min((z>). 

This system is of dimension-2, where y is a parameter. 
The definition of Ancm can be understood as: The 
marking at stage i for y=a, is obtained from the mark- 
ing at stage i-l, by considering the new paths from the 
new b such that Sib’(b,a), and by taking their mini- 
mum. The definition of S can be understood as : The 
new point b at stage i is obtained by taking the point of 
minimum cost among the points that are not in S’-‘. 
What is fundamental to observe is that, we only ex- 
plore the new paths from one point b, computed by 
S. This makes the program far more efficient than the 
one based on the induction on the length of the paths, 
where all the paths of length k are generated from 
some paths of length k-l. 

The principle of this induction is exactly the princi- 
ple of Dijkstra shortest path algorithm [9,1]. It shows 
the strong relationship that exists between a specific 
algorithm and an inductive definition. If one looks at 
a book on algorithms [l] and compares the represen- 
tation of this algorithm with the one we gave, one can 
observe that the graph is usually represented as an ar- 
ray, and that the complexity analysis of the algorithm 
assumes that accessing an element in the array can be 
done in 1 step. This hypothesis is true for n small, 
but false for large n, in contradiction with an ajymp 
totic complexity analysis. In this representation, the 
program is compiled in such a way that we only ac- 
cess the data with a selection (in fact a selection on 
the first attribute). The hypothesis of a selection in 
constant time is t.rue, the overall complexity analysis 
can be done by the compiler, and is compatible with 

n large. The program takes 2 recursion variables, and 
hence is of worst-case complexity O(n?), but in fact is 
far better for the average complexity. This requires a 
finer analysis of the induction, in order to show that 
only one point is explored, as the inductive computa- 
tions proceed. 

3.5 Comparison 
approaches 

with other 

3.5.1 Recursive queries in databases 

It is important to note that the operational semantics 
presented in [3], although presented in terms of classi- 
cal logic-programming terms, seem to adopt the fixed- 
point semantic of inductive queries, as they lead to 
computations of finite sets, implicitely using at some 
point the finiteness of the data. Most of these meth- 
ods concentrate on Datalog, which does not allow the 
definition of SP, as we have seen using a simple mono- 
tonicity argument. 

The use of these operational semantic to represent al- 
gorithms is very unclear, as is the promised optimiza- 
tion that these methods claim. 

3.5.2 The classical representation of algo- 
rithms 

The logical representation of a classical algorithm has 
to be compared with the one given in classical books 
on algorithms [l]. In these books, the data is usually 
stored in an array, and one assumes that accessing an 
element of the array is done in constant time. This 
hypothesis is however only true for small graphs, and 
false for large graphs. Hence the complexity analy- 
sis, as an asymptotic measure, i.e. for large graphs is 
in contradiction with the implicit hypothesis on the 
relative costs. What we obtain in our representation 
as a logical definition, is a representation of the al- 
gorithm, where the basic hypothesis are compatible 
with n large, and hence the complexity analysis makes 
sense. What is however fundamental to observe is that 
the relative complexity of the program is syntactically 
captured by the dimension of the inductive definition. 

4 The practical use 

We have been applying the previous theory in design- 
ing a practical system to compute optimum routes 
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from the German railway network database. The 
schema is far more complex than the valued graphs 
we considered, as it gives the precise schedule of trains 
(10 attributes). If we look for the shortest route in 
time between two stations, we proceed as follows. In 
a first step, we write Dijkstra’s algorithm as an induc- 
tive definition with the time, as a cost function. It 
is interesting to note, t.hat selections on only one at- 
tribute are performed (departing station), and that a 
B-tree structure without secondary indices suffices to 
store the data. When compiled SP executes on a sim- 
ulated database within 20 to 60 seconds on a SUN3. 
and this is far too long for real applications. 

We precompute all shortest paths between the 50 
largest German cities, using the previous definition of 
SP. We then code a natural heuristics SPl for SP than 
can be understood as: to compute the shortest route 
between a and b, if a and b are large cities then look 
at the precomputed routes, otherwise determine two 
large cities al and bl that can be reached from a and 
b by direct trains in time ta and tb; let tl be the time 
of the shortest route between al and bl; then the time 
of the shortest route between a and b is tl + ta + tb. 

This heuristics for SPl can then be detined by a very 
simple inductive definition on the expanded schema, 
and is compiled using the same techniques. It executes 
within 10 seconds, and with a high probability gives a 
solution to the problem. 
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