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Abstract. Let S be a set of clauses (non-Horn as well 
as Horn ones), and q an atomic query. Consider the prob- 
lem of deriving from S all ground unit clauses satisfying 
q , which we call computing all facts for q . It is shown 
how a non-Horn system S can be transformed into a set 
of singleton -head -rules , SH (S) , such that computing of 
all facts for a given query q in S is reduced to the query 
evaluation in a set of Horn clauses relevant to q which is 
a SL $set of SH (S) . The transformation is sound and com- 
plete. 

1. Introduction. 

Consider a deductive database DB as a set of clauses 
(either Horn or non-Horn ones) [7]. Let q be an atomic 
query regarding a relation P such that q: 3 x(P(x)) or 
q : 3 x( -+’ (x)) , x is a vectors of terms. Consider ground 
atoms P (a), P (b), P(c) ( a, b, c are vectors of constants), 
and suppose that P(a) is true and P(b) is false in all 
models of DB , while P(c) is true in some models but false 
in others. Then P(a), -P(b) must appear in an answer to 
q . As to P (c) , it is not determined definitely by DB , but 
we may assume its truth value according to one of well 
known approaches, like Closed World Assumption [15], 
Negation as Failure [S] (for Horn systems) or Generalized 
Closed World Assumption [13]. We say that P(a) and 

4 (b) are facts in DB , while regarding P(c) we have 
got just a belief. 

Any state of DB reflects our current knowledge (rather 
incomplete) about the real world. Suppose we assumed that 
P(c) is false, but later on have discovered that P(c) is 
actually true. In this case we must revise our belief about 
P(c) . This need for revising beliefs in the course of 
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acquiring new information is responsible for 
non-monotonicity of databases [6,12,13,16,]. On the other 
hand, the set of facts is most stable and monotonic in the 
sense that no new data consistent with DB can disprove a 
fact, since all facts belong to all models of DB . 

With this in mind, given a database DB and a unit 
clause C , we are interested in deriving from DB all facts 
satisfying C . Recently a number of efficient query evalua- 
tion methods have been developed for Horn databases 
[2,3,7-11,14,17-19,211, while the current research on non- 
Horn systems is less comprehensive. It is either concerned 
mainly with producing beliefs rather than facts 
[12,13,16,22], or applicable to particular systems, e.g., 
stratified databases [ 1,201. 

In the sequel we present an efficient method of deriving 
facts from a general database (Horn as well as non-Horn 
one) by transforming it to a set of Horn clauses relevant to a 
given query, and then applying techniques developed for 
Horn-systems. 

2. Clauses and sh-rules. 

Consider a deductive system, S , and an atomic query 
q : P (x 1, . . . . xk) , where for i = 1, . . . . k xi is either a variable 

or a constant. First, we would like to know what ground 
instances of P are facts in S such that 
SC P(al,. . . ,ak) or SI- -P(al,...,ak) 
(al,. . . , ak are constants). 

Definition 1. (a) Consider a clause 
A:ll V12V,..., vl,, (ll,...,/k are literals) that iS 

equivalent to an implication 
B:41 A ,..., A 4i +li+l V ,..., v 1, . We say that B 
presents the clause A in the form of a rule or an axiom , 
where li+l v , . . . , v lk is the head of the axiom, and 
7 1 1 A,..., A 4; is its body . Where it is appropriate 

we omit connectives, and display clauses and axioms as sets 
of literals: 

A: {11,12,. . . ,lk}, 

B:{ -Jl,... a ~li}~{li+l~-**~lk}v 
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Head (B ) = {Li +I, . . . .Lk I Ljdj for i+lSjSk}, 

Body @ ) = iL 10 . . . ,Li I Lj= 4j for l<jG]. 

(b) If the head of a rule, C , contains exactly one 
literal, then C is called a singleton -head-rule ( sh -rule , 
for short). 

(c) If a clause A contains k literals, then there are k 
different sh-rules corresponding to A : 

Ai: { 4j I 1SjU and j#i) + li, for i=l,..., k, 

andaset SH(A)={Al... . , Ak } is a full set of sh-rules 
corresponding to A . 

(d) Consider an sh-rule C containing in its body 
literals L 1 ,L2 unifiable by a substitution 81 , 
Llel =L201 , while Head(C) is not unifiable by 81 with 
any literal of C , which means that there is no literal 
L E Body (C) such that Head (C)e, = -LB1 . Then a f&z- 
tor F 1 = CO1 is a body-factor of C . If there is a literal 
L3 E Body(C) such that Head(C)e, = 43% then 
F2 = CO2 is a head-factor of C such that 

Head (F 2) = Head (C)e,, 

Body (F2) = (Body cc) - iL3m2. 

(e) In the sequel we shall resolve two sh-rules only 
upon a literal that appears in the head of one of them and in 
the body of the other. Let C t ,Cz be sh-rules, and suppose 
Lie = Lie, where 

Li E Head( Lj E Body(C2). 

Then Res(Cl,Cz) isa resolvenr of Ct,Cz (upon Li,Lj) 
such that 

Head (Res (C1,C2)) = Head(C& 

Body @es (C I ,Cd)=Bod~ G l)e u (Body (Cd-&J&3 

Thus, Res(Cl,C2) denotes a resolvent of Ct,C2 upon the 
head of C t , preserving the head of C2 . n 

Example 1. Consider two clauses 

A : -J’ (KY) v Q Wh 

B:~Q<~~,~z)vR(~~,~~)vR(~J.~z). 
Then by Definition 1, sh-rules corresponding to A are 

A 1: YQ 6~) + -P(x,y), A2: P Cr.y) -j Q @,x); 

sh-rules corresponding to B are 

Bl: 401. W, 403,12) + -Q(tl. rd. 

4 E SH(E)< 

Bk E T=SH(a< sh E’=B 

Bz:Q<tl, tz). 4(tgrt2)-+R(tl, tg), Fig. 1. 

B3: Q(rl, t2)9 401, b) +ROt. rd. 

Full sets of sh-rules 
SH(A)=(A,,Ad, SH(B)={Bl,B2,B3). A MT 

factor of B1 is F1: 4(tl, tl) + -Q(rt, tl). A head- 
factorof B2 is Fz:Q(tl, tl)+R(rl,tl). 
A resolvent of A2 and B3 is 

Res(AzvB3):P(t2, rd. d(tl, ?3)+R(t3, t2). n 

Let Bk E T be an instance of a rule D E SH (DB) such that 
& = D Q ( (T is a substitution). Denote 

Head(D) = i& 

Lemma 1. Let SH (DB) denote a full set of sh-rules 
corresponding to all clauses of a deductive database DB , 

SH(DB)= u SH(C). Then 
CEDB 

(a) C’ is an instance of a clause of DB iff there are 
instances of rules of SH (DB) that constitute a full set of 
sh-rules corresponding to C ; 

(b) F is a factor of a clause of DB iff there are factors 
of rules of SH (DB) (head- or body-factors) that constitute 
a full set of sh-rules corresponding to F ; 

(c) Res is a resolvent of two clauses of DB iff there 
are resolvents of rules of SH (DB) that constitute a full set 
of sh-rules corresponding to Res . 

Proof. (a) * Let C’ be an instance of a clause 
CEDB such that C={L1,..., Ld, and 
e=ce={t,e,.... L$3J (0 is a substitution). SH(DB) 

includes a full set of sh-rules corresponding to C : 

SH(C) = {Ci I 1liS.k and Head = Li 

and Body (Ci) = { 4j I Lj E C and j#i J}, 

Then a set of instances of rules of SH (C) , 

SH (C)O = {C’i I lSi41: and Head (C’i) = Lie 

and Body(C’i) = { 4.jO I Lj e C and jiti I], 

is a full set of sh-rules corresponding to C’ , 
SH (C’) = SH (C)e. 

(a) * Let T be a set of instances of rules of 
SH (DB) such that T is a full set of sh-rules corresponding 

to a clause B = {L1, . . . ,L,} (Fig. 1 illustrates the rela- 
tionship among the clauses and rules mentioned in this 
proof): 

T = {Bi I 1liSm and Head (Bi) = Li 

and Bo& (Bi) = { 4j I Lj E B and j&J]. 

sh E 

BOdy(D)={GVj I lljlm and j#iJ. 
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Then D is an sh-rule, Ek , corresponding to a clause 
EE DB, E={M1,..., M,,, } . So, SH (DB) must contain 
the full set of sh-rules corresponding to E : 

SH(E)={Ei I11i4n and Head(Ei)=Mi 

and Body(Ei) = {+fj I l<jGn and jiti JJ. 

Since Bk = Do = Ek(T , the set T is actually an instance of 
SH (E) : 

T = {Bi I llilm and Head (Bi) = MiO 

and Body(Bi)= {-MAO I ISi<m and j#iJJ 

= SH (E)o. 

Therefore, there is an instance of E , 
E’=Eo={Mlo,..., M,,,oJ , such that T is a full set of 
sh-rules corresponding to E’ . 

(b),(c) By an argument similar to that used in (a). For 
the sake of brevity some proofs are presented in a sketchy 
form. n 

Consider a sound and complete proof-procedure such as 
a deduction process of resolution [4] which we denote 
DPR . It consists of a sequence of steps such that each one 
derives either an instance or a factor of a clause, or a resol- 
vent of two clauses of DB . 

Lemma 1 implies the following 
Theorem 1. A clause C is derivable from a deduc- 

tive database DB iff a full set of sh-rules corresponding to 
C is derivable from SH (DB) . 

Proof. + Let a clause C be derivable from a set of 
clauses DB by a deduction process of resolution, DPR , in 
IZ steps. Denote by DBi the state of DB after performing 

of i steps of DPR , and by SH (DBi) the full set of sh- 
rules corresponding to DBi , SO, DBo = DB . We show by 
induction on the number of steps of DPR that for every 
DBi there is a set of sh-rules SHi(DB) derivable from 
SH (DB) which is a full set of sh-rules corresponding to 
DBi such that SHi(DB) = SH (DBi) . 

Indeed, SHo(DB) = SH (DB) = SH (DBo) . Suppose 
that the claim holds for all i Ik , i.e., SHk(DB) = SH (DBk) . 
Let step k+l of DPR derive a new clause D , so, 
DBk+t =DBk u {D} . Then by Lemma 1 a full set of sh- 
rules SH (0) corresponding to D can be derived from 
sHk(DB) , therefore 
sffk+l (DB) = sHk(DB) u SH (0) = SH (DBk+*) is deriv- 
able from SH (DB) and consists of a full set of sh-rules 
corresponding to DBk+t . If a clause C is derivable from 
DB in II steps of DPR , i.e., C E DB, , then there is 
SfWW derivable from SH (DB) such that 
SH,,(DB) = SH(DB,) , and hence SH(C) E SH,,(DB) . 

e In the same way, by induction on the number of 
steps of a deduction process performed in SH (DB) , using 
the argument of Lemma 1. n 

A unit clause is at the same time a full set of its sh- 
rules. And DPR , being a sound and complete procedure for 
refutation, is so for deriving unit clauses. Hence, Theorem 1 
yields the following 

Corollary 1. A ground unit clause is a fact in DB iff 
it is a fact in SH (DB) . n 

3. Hornization of sh-rules. 

Due to Theorem 1 and Corollary 1, the same set of 
facts can be produced by dealing with sh-rules instead of 
general clauses. Since the former is a special case of the 
latter, performing derivation on sh-rules may be simpler and 
more efficient than handling general clauses. This section 
shows how a further simplification of the derivation process 
can be achieved. 

Let S be a set of sh-rules. Consider a rule A E S with 
a negated predicate in its head, Head (A) = 4’ (x) (x is a 
vector of variables and constants), and a rule B E S con- 
taining -P(y) in its body. Suppose that P (x)0 = P @)O , 
so A and B can be resolved upon the head of A produc- 
ing ReslA, B) . Now, replac_e --P by a new predicate 
symbol P getting new rules A,_B , respectively. Still A, i 
are resolvable upon the head of A . 

_Definition 2.- Let A be an sh-rule, and 
p={P1I-QI,... ,Pkl dkJ1 stand for a substitution that 

renames negated predicate symbols, such that PifPj and 
Pi#Pj for i#j . Then Ap is a renaming (or more 
specifically, p-renaming ) of A . Since all predicate sym- 
bols appearing in p are distinct, we have pp-’ = E , where 
& is _ an- empty substitution, and 
~-‘={-1piIPi I Pil3iE pJ. n 

Example 2. Consider sh-rules of Example 1. A 
renaming su&titution_ for all negated predicates is 
p = {Pi -P, Q/ TQ, RI -RJ . Then the following is the 
p-renaming of the rules of SH (A), SH (B) : 

Al =A1p: &y, x) -+P(x, y); 
- 
Az=A~P:P(x,Y)+QCY,X,; 
- 
B1 =BIP :% 131, h, t2) 3 ih, t2); 

& =B2p: QO,, t2), %Q. t2) +-R(tl, 13); 

i3 =B3p: QO,, t21, b, t3) +R(f3, t2). H 

Let p be a renaming substitution for o/l negated 
predicate symbols of S , p = {PiI 9i I 9i E SJ , and S 
denote the set of p-renamings of all sh-rules of S .-Then, 
with respect to the predicate symbols appearing in S- (the 
original as well as the new “barred” ones), all rules of S are 
Horn clauses, since there is no negated predicate in their 
heads or bodies. Because deduction by resolution on Horn 
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clauses is much simpler and more efficient than that per- 
formed on general clauses or sh-rules with negation, we are 
interested in determining the conditions under which a 
derivation performed on p-renamed rules of S gives the 
same result as the one carried out on the original rules of S . 

Lemma 2. Let S be a set of sh-rules, p - a renam- 
ing substitution for all negated predicate symbols of S , and 
S - the set of p-renamed rules of S . Then 

(a) C’ is an instance of_a rule C E S iff there exists an 
instance D’ of a rule D E S such that D’ is a p-renaming 
of C’ ; 

(b) Res(A, B) is a resolvent of rules A, B E_S iff 
there exists a resolvent Res (C, D) of rules C, D E S such 
that Res (C, D) is a p-renaming of Res (A, B) ; 

(c) F is a body-factor of a rule C E S iff there exists 
a body-factor G of a rule D E S such that G is a p- 
renaming of F ; 

(d) If H is a head-factor of a rule-C E S , then there 
may not exist a factor G of a rule of S such that G is a 
p-renaming of H . 

Proof. (a) * Let- C’ be an instance of a rule 
C E S , C’ = 0. Then S contains a p-renaming D of 
c, D = Cp . Hence, an instance D’ of D , 
D’ = D0 = Cp0 is a p-renaming of C’ ; indeed, 
CpB = C0p since 8 and p are independent and distinct: 

the former is a substitution for variables, while the latter - 
for predicate symbols. 

(a) e= Let D’ be an instance of DE ?, D’=D0, 
while D is a p-renaming of a rule C E S , D = Cp . Then 
there is an instance C’ of C , C’ = Ct3 such that D’ is a 
p-renaming of C’ , since D’ = D8 = Cp0 = Cfp . 

(b),(c) By an argument similar to that used in (a). 

(d) Let C be a rule in S such that Head(C) = P (x) , 
-P(y) E Body(C), and P(x)9 = P(y)9 . Then C has a 

head-factor H such that Head(H) = P(x)8 and 
Body (H) =)Ody (C)Q - { -2 f&y)eJ . Consider _ a p- 
renaming C of C , i.e., C = Cp and _C E S . Since 
Head(C)=P(x)p=P(xl, but -J’(y)p=P(y), there is 
no literal in th_e body of C whose negation is unifyable with 
the head of C . And there may not be any other rule in S 
with P in its head. The same holds regarding a rule 
D E S with a negated head such that Head (0) = 4 (x) , 
R (y) E Body (0) , and R (x)0 = R (y)o . n 

Definition 3. Consider a set S of sh-rules. Suppose 
that a formula Q has been derived from S by performing a 
deduction process of resolution, DPR ($) . Let HEADF (Q) 
be a set of all head-factors computed in the course of 
DPR ($) . It has been pointed out in this section that if p is 
a renaming substitution for all negated predicate symbols of 
a set S of sh-rules then a p-renaming of any rule of S 
becomes a Horn clause. So, we call this transformation into 
Horn clauses a hornization . Let us call a set of renamed 

rules of s , HORN (S, I$) , a hornization of S with 
respect to a formula $ if it includes renamings of all 
head-factors needed for deriving $ from S : 

HORN (S, Cp) = {Cp I C E (S u HEADF @I))). n 

If we add all the rules of HEADF ($) to S , then Cp 
can be derived from S u HEADF (#) without computing of 
any head-factor, and by Definition 3 $ can be derived from 
S ” HEADF (4) iff it is derivable from S . On the other 
h_and, by Lemma 2, a formula 6 can be derived from a set 
T of p-renamed sh-rules of T iff a formula $ =$p-’ is 

derivable from T without computing of any head-factor. 
This implies the following 

Theorem 2. A formula Q, is derivable from a set of 
sh-rules S iff its p-renaming is derivable from 
HORN(S, 4). n . 

Theorem 2 holds for recursive rules as well as for 
non-recursive ones since p-renaming preserves recursion, 
and the latter does not interfere with head-factoring. Indeed, 
if C is a recursive sh-rule such that -p(x) yippears in its 
head, and * (y) in its body, then P(x), P(y) appear, 
respectively, in the head and body of Cp , thus preserving 
.the recursion. If the body of C contains also P(z) that is 
unifiable with P(x) in its head, then the corresponding 
head-factor F of C and its p-renaming Fp can be cdm- 
puted without interfering with the recursion- between 
--P(x) and -P(y) (respectively, between P(x) and 
P(Y) 1. 

Theorem 1 makes it possible that derivation of a for- 
mula from a general non-Horn system can be performed in a 
set of the corresponding sh-rules. An important practical 
consequence of Theorem 2 is that it determines conditions 
under which this process can be further reduced to handling 
of a’sset of homized rules by employing numerous efficient 
techniques developed for Horn systems [2,3,7-11,14,17- 
19,211. In particular, regarding a ground unit clause, Corol- 
lary 1 and Theorem 2 imply 

Corollary 2. Consider a set of clauses S , a full set 
SH (S) of sh-rules corresponding to S , a ground unit clause 
C , and a homization of SH(S) w.r.t. C , 
HORN(SH (S), C ) . Then C is a fact in S iff Cp is a fact 
in HORN(SH(S), C) . n 

4. Relevant rules. 

Consider a set of sh-rules S , and a unit clause c . 
Without loss of generality, let C = P (x) (x is a vector of 
variables and constants). An instance of C can be derived 
immediately only from a rule with P in its head, so, denote 
by So(P) a set of all such rules in S : 

So(P) = {A I A E S and P E Head(A)J. 
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Consider a rule B such that Head(B) = P (y) , 
Body(B)={L1,..., LmJ . To produce an instance P(y)0 
by using B we need to derive L&3 for all Li E Body(B) . 
Lie can be produced immediately only by a rule with Li in 
its head belonging to a set 
So(&) = {D I D E S and Li E Head (D)J . In the same 
way denote 

S1(P)= u u So(R); 
Ed,(P) Rdbdy(E) 

Sj(P)= U u sow. 
EeSj-,(P) Rd’hfyQ) (1) 

Definition 4. If L is a literal (a predicate symbol or 
its negation), and a rule A may be used in a derivation of 
an instance of a unit clause containing L, then 
A is relevant to L . Let RELEV(L) denote a set of all 
rules of a system S that are relevant to L . Then 
RELEV(L) is defined as follows: 

(a) If L E Head (A) then A E RELEV(L) ; 
(b) If R E Head(B) such that R E Body (0) and 

D E RELEV(L) then B E RELEV(L) ; 
(c) No rule different from those of (a),(b) belongs to 

RELEV(L) . 
Hence (cf. (1) ), 

RELEV(L) = y&(L), RELEV(L) ES . W 
i>O 

By Definition 4 any rule not belonging to RELEV(L) 
is useless with regard to derivation of an instance of L . 
Therefore all instances of L can be derived from 
RELEV(L) which is only a subset of S . Hence, the follow- 
ing holds: 

Theorem 3. A ground instance L’ of a unit clause 
containing a literal L can be derived from a set of sh-rules 
S iff L’ is derivable from a set of relevant rules 
RELEV(L) E S . n 

A set of sh-rules can be displayed by means of a 
system graph introduced in [ 10,111. 

Definition 5. A system graph , SG (S) , of a set of 
sh-rules S is a directed bipartite graph consisting of a set of 
ax-nodes (ar for axiom) representing sh-rules, a set of 
rel -nodes (rel for relation) representing predicates, and a 
set of arcs, such that 

(a) there is a distinct ax-node representing every sh-rule of 
s; 

(b) there is a distinct rel-node for each predicate symbol 
P , and another one for -P ; 

(c) if there is a rule A in S such that 
Body(A)={L1,..., Lkj , Head (A) = Lk+l then there are 
arcs from rel-nodes representing L 1, . . . , Lk to the ax-node 
representing A , and an arc from the ax-node A to the rel- _ 

Example 3. Consider a set of clauses S = {A, B, CJ : 

A: -P(x,Y)v ~Q(x,y>; B: Q(v,w)v -J?(v,w); 

C: Q(tl,td v R(t2,td v 4(tl,tyl. 
The full set of sh-rules, SH (S) , corresponding to S is 

iAl:Q(x,~) j +'(LY>; .42:Pky)+ -Q(x,y); 

Bl:R(v,w)+Q(v,w); B2:-Q(v,w)~-~(v,w); 

CI : 402, tdr Z.01, t3) + Q(t,, td; 

c2 : -Q(tl, td, T(tl, tj)+R(tz, tg); 

c3: -Q(tl,td, -J?(t2,f3)+ lT(tl,tg)J. 
The p-renaming of SH (S) is 

&:Q(x,Y)+~(x,Y); ~2:Pky)+,ecx,y,; 

& : R(v, w) + Q(v, w); B2 : $(v, w) -+&v, w); 

c, :&tz, td, T(tl, t3)--)Q(t19 td; 
- - 
C2 : Q<tl, td, T(tl, td -+ R(t2, tg); 

23 :ih, tz>, h, t3) --+$tl, tdJ. 
The set of p-renamed rules relevant to p : 

RELEV(F) = {A,, x2. B,, B2, cl, &J. 

(Note that I?, d RELEV(F) ). 

The system graph of RELEV(F) is displayed in Fig. 2 
in solid lines. Ax-nodes are round, rel-nodes - square. 

n 

Fig. 2. 

Definition 6. If there is a directed path (or an arc, in 
particular) in a system graph SG from a node v t to a node 
v2 , then v1 is a predecessor (resp., an 
immediate predecessor ) of v:! , and v2 is a successor 
(resp., an immediate successor ) of v 1 . We use pred (~2) , 
impred (~2) , succ (v 1) , imsucc (v 1) to denote these rela- 
tionships between nodes of a system graph. n node representing Lk+l . n 
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5. Computing facts. 

Given a goal of computing all facts satisfying a unit 
clause C = L (x) , and having determined the set of sh-rules 
relevant to 15 , RELEV(L) , we should now produce its 
homization, HORN( R&!&V(L), L) in order to perform 
evaluation of L entirely in a set of Horn clauses (cf. 
Theorem 2, Corollary 2). For this purpose we need a set 
HEADF(L) of all head-factors useful for deriving L from 
RELEV (L) . The following Lemma is helpful: 

Lemma 3. Let S be a set of sh-rules, and SG - 
its system graph. Then a rule with literals L1 in its body 
and L2 in its head can be derived from S iff node L1 is a 
predecessor of node L2 in SG . n 

This Lemma provides grounds for computing 
HEADF (L) : 

Algorithm 1. (Given RELEV(L) , returns 
HEADF (L) ) 
1) Construct a system graph SG for RELEV(L) . 
2) HEADF(L) := 0 . For every pair of rel-nodes 

L1, L2 such that one contains negation of the predi- 
cate symbol of the other, and L1 =pred(Lz) perform 
2.1) - 2.3): 

2.1) Compute a path-resofvent , PRes (L 1, L2) defined as 
follows. Let a directed path from L1 to L2 be 
Parh(Ll,L2)=iLl,Al,Pl,A2,P2, 
. . . . P,,,-l, A,,,, Lz} such that PI,. . . , P,.-1 are rel- 
nodes. Al, . . . , A,,, are ax-nodes. Compute first 
Res (A 1, AZ) upon P 1 , with P2 in its head, then 

Res (A 1, Ai) = Res ( Res (A 1, Ai- ), Ai) for all 
i= ,.. 3 . ,m-I , and finally, 
PRes(Ll, Lz)=Res(Al, A,,,) such that 
Head( PRes(L1, L2)) = Lps, and 
Lla~ Body(PRes(Ll,L&, where o is the 
corresponding substitution. 

2.2) If there is a substitution 0 such that Ll00 = 42~8 
then compute a head-factor, F = PRes (L 1, L2)0 . 

2.3) HEADF (L) := HEADF (L)y{FJ . n 

Example 4.-Consider again Example 3 and the set of 
rules relevant to P . In its system graph (Fig. 2, solid lines) 
we have: 

a=pred (Q), P =pred (p); 

Pathl@,Q)=i& CZ, R, BI,QJ; 

Parh&,Q)=f~, B2,R, cl,QJ; 

Path l(P, P) = {P, x2, G, c2, R, El, Q, 21, FJ; 

Path2(P, P) = (P, x2, a, B2, R, cl, Q. Al, PJ. 

So, the following path-resolvents and their head-factors can 

be computed: 

PResl@. Q) : h. td, T(tl, td +Qh. td, 

FI : TOl, tl) +Q(rl. TV>; 

PResd. Q) : &h td, TVl, t3) -+ Q(tl. rd. 

F2 =Fl : T@I, tl> -+ QOl, rd; 

PResl(P, ~):P(t~,td.T(t~, td+h, td, 

F3 : T(tl. tl) --+(t,, tl); 

PResAP, PI :P(tz, t3). TOl, 13) +F(tI, td, 

F4 =F3 : T(tl, tl) -+F(tI, tl). 

Ijenc., HORN( RELEV(p), P) = {xl, A2, &, B2, 
Cl, C2, F1, F3J . The addition of Fl, F3 is shown in Fig. 
2 in broken lines. m 

Given a database DB (either Horn or non-Horn) and 
an atomic query q : L(x), L E (P, -P) , the following 
algorithm derives aI1 facts satisfying q by reducing DB to 
a set of homized rules relevant to q . 

1) 

2) 
3) 

4) 

5) 

6) 

Algorithm 2. (given DB and q , returns Facts(q) ) 
Compute a full set SH (DB) of sh-rules corresponding 
to all clauses of DB . 
Compute a set RELEV(q) of rules relevant to q . 
By applying Algorithm 1 compute a set HEADF (q) 
of head-factors for q . 
Produce a set HORN(RELEV (q), q) of Horn clauses 
by p-renaming of all the rules of 
RELEV (q) v HEADF (q) . (Denote q’ = qp ) 
Apply to HORN( RELEV(q), q) any query evaluation 
method that is sound and complete for Horn systems, 
producing all facts satisfying q’ that are derivable 
from HORN ( RELEV (q), q). 
Compute a set Facts (q) of all facts satisfying q that 
are derivable from DB , by p-‘-renaming of all facts 
produced at step 5). n 

Theorem 4. Algorithm 2 is sound and complete in 
the sense that given a database DB and an atomic query q 

it produces all and only the facts that are derivable from 
DB and satisfy q . 

Proof. By Corollary 1 a ground unit clause is a fact in 
DB iff it is a fact in SH (DB) computed at step 1) of Algo- 
rithm 2. By Corollary 2 and Theorem 3 a ground instance 
C of q is a fact in SH(DB) iff Cp is a fact in 
HORN( RELEV(q), q) computed at step 4). The query 
evaluation method applied at step 5) is sound and complete 
for HORN( RELEV(q), q) , hence step 6) computes all and 
only the facts for q derivable from DB . n 

Conventionally, a database DB consists of an inten- 
tional part, IDB - a set of non-unit clauses (rules, 
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axioms), and an extensional one, EDB - a set of ground 
unit clauses (facts). To estimate the complexity of Algorithm 
2 denote by n the number of clauses in the IDB , by 
m - the maximum number of literals in a clause of IDB , 
by h - the number of head-factors computable in 
RELEV(q) in the course of evaluating q . Let HT(n. m) 
stand for run-time complexity of deriving all facts for an 
atomic query by an efficient algorithm in a Horn database, 
and NHT(n, m) correspond to achieving of the same goal 
by Algorithm 2 in a non-Horn one. If both databases have 
the same volume of EDB , then 

NHT (n, m) < HT (m (n + h), m). 

It should be noted that sets RELEV(q) and 
HEADF (q) are determined by the predicate symbol appear- 
ing in q , but not by the particular binding of its terms. 
Therefore steps 1) - 4) may and should be preprocessed at 
the system design stage for all (or most frequently queried) 
literals, so only steps 5),6) are to be performed at a query 
run-time. 
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