
COMPUTING FACTS IN NON-HORN DEDUCTIVE SYSTEMS.

Eliezer L. Lozinskii

Institute of Mathematics and Computer Science
The Hebrew University, Jerusalem, Israel.

Abstract. Let S be a set of clauses (non-Horn as well
as Horn ones), and q an atomic query. Consider the prob-
lem of deriving from S all ground unit clauses satisfying
q , which we call computing all facts for q . It is shown
how a non-Horn system S can be transformed into a set
of singleton -head -rules , SH (S) , such that computing of
all facts for a given query q in S is reduced to the query
evaluation in a set of Horn clauses relevant to q which is
a SL $set of SH (S) . The transformation is sound and com-
plete.

1. Introduction.

Consider a deductive database DB as a set of clauses
(either Horn or non-Horn ones) [7]. Let q be an atomic
query regarding a relation P such that q: 3 x(P(x)) or
q : 3 x(-+’ (x)) , x is a vectors of terms. Consider ground
atoms P (a), P (b), P(c) (a, b, c are vectors of constants),
and suppose that P(a) is true and P(b) is false in all
models of DB , while P(c) is true in some models but false
in others. Then P(a), -P(b) must appear in an answer to
q . As to P (c) , it is not determined definitely by DB , but
we may assume its truth value according to one of well
known approaches, like Closed World Assumption [15],
Negation as Failure [S] (for Horn systems) or Generalized
Closed World Assumption [13]. We say that P(a) and

4 (b) are facts in DB , while regarding P(c) we have
got just a belief.

Any state of DB reflects our current knowledge (rather
incomplete) about the real world. Suppose we assumed that
P(c) is false, but later on have discovered that P(c) is
actually true. In this case we must revise our belief about
P(c) . This need for revising beliefs in the course of

Permission to copy without fee. all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the VLDB copyright notice and the title of the
publication and its date appear. and notice is given that copying is
by permission of the Very Large Data Base Endowment. To copy
other&e. or to republish, requires a fee and/or special permission
from the Endowment.

acquiring new information is responsible for
non-monotonicity of databases [6,12,13,16,]. On the other
hand, the set of facts is most stable and monotonic in the
sense that no new data consistent with DB can disprove a
fact, since all facts belong to all models of DB .

With this in mind, given a database DB and a unit
clause C , we are interested in deriving from DB all facts
satisfying C . Recently a number of efficient query evalua-
tion methods have been developed for Horn databases
[2,3,7-11,14,17-19,211, while the current research on non-
Horn systems is less comprehensive. It is either concerned
mainly with producing beliefs rather than facts
[12,13,16,22], or applicable to particular systems, e.g.,
stratified databases [1,201.

In the sequel we present an efficient method of deriving
facts from a general database (Horn as well as non-Horn
one) by transforming it to a set of Horn clauses relevant to a
given query, and then applying techniques developed for
Horn-systems.

2. Clauses and sh-rules.

Consider a deductive system, S , and an atomic query
q : P (x 1, xk) , where for i = 1, k xi is either a variable

or a constant. First, we would like to know what ground
instances of P are facts in S such that
SC P(al,. . . ,ak) or SI- -P(al,...,ak)
(al,. . . , ak are constants).

Definition 1. (a) Consider a clause
A:ll V12V,..., vl,, (ll,...,/k are literals) that iS

equivalent to an implication
B:41 A ,..., A 4i +li+l V ,..., v 1, . We say that B
presents the clause A in the form of a rule or an axiom ,
where li+l v , . . . , v lk is the head of the axiom, and
7 1 1 A,..., A 4; is its body . Where it is appropriate

we omit connectives, and display clauses and axioms as sets
of literals:

A: {11,12,. . . ,lk},

B:{ -Jl,... a ~li}~{li+l~-**~lk}v

This research is supported in part by Israel National Council for
Research and Development, grant 2454-3-87.

Proceedin s of the 14th VLDB Conference
Los Ange es, California 1988 P 273

Head (B) = {Li +I,Lk I Ljdj for i+lSjSk},

Body @) = iL 10 . . . ,Li I Lj= 4j for l<jG].

(b) If the head of a rule, C , contains exactly one
literal, then C is called a singleton -head-rule (sh -rule ,
for short).

(c) If a clause A contains k literals, then there are k
different sh-rules corresponding to A :

Ai: { 4j I 1SjU and j#i) + li, for i=l,..., k,

andaset SH(A)={Al... . , Ak } is a full set of sh-rules
corresponding to A .

(d) Consider an sh-rule C containing in its body
literals L 1 ,L2 unifiable by a substitution 81 ,
Llel =L201 , while Head(C) is not unifiable by 81 with
any literal of C , which means that there is no literal
L E Body (C) such that Head (C)e, = -LB1 . Then a f&z-
tor F 1 = CO1 is a body-factor of C . If there is a literal
L3 E Body(C) such that Head(C)e, = 43% then
F2 = CO2 is a head-factor of C such that

Head (F 2) = Head (C)e,,

Body (F2) = (Body cc) - iL3m2.

(e) In the sequel we shall resolve two sh-rules only
upon a literal that appears in the head of one of them and in
the body of the other. Let C t ,Cz be sh-rules, and suppose
Lie = Lie, where

Li E Head(Lj E Body(C2).

Then Res(Cl,Cz) isa resolvenr of Ct,Cz (upon Li,Lj)
such that

Head (Res (C1,C2)) = Head(C&

Body @es (C I ,Cd)=Bod~ G l)e u (Body (Cd-&J&3

Thus, Res(Cl,C2) denotes a resolvent of Ct,C2 upon the
head of C t , preserving the head of C2 . n

Example 1. Consider two clauses

A : -J’ (KY) v Q Wh

B:~Q<~~,~z)vR(~~,~~)vR(~J.~z).
Then by Definition 1, sh-rules corresponding to A are

A 1: YQ 6~) + -P(x,y), A2: P Cr.y) -j Q @,x);

sh-rules corresponding to B are

Bl: 401. W, 403,12) + -Q(tl. rd.

4 E SH(E)<

Bk E T=SH(a< sh E’=B

Bz:Q<tl, tz). 4(tgrt2)-+R(tl, tg), Fig. 1.

B3: Q(rl, t2)9 401, b) +ROt. rd.

Full sets of sh-rules
SH(A)=(A,,Ad, SH(B)={Bl,B2,B3). A MT

factor of B1 is F1: 4(tl, tl) + -Q(rt, tl). A head-
factorof B2 is Fz:Q(tl, tl)+R(rl,tl).
A resolvent of A2 and B3 is

Res(AzvB3):P(t2, rd. d(tl, ?3)+R(t3, t2). n

Let Bk E T be an instance of a rule D E SH (DB) such that
& = D Q ((T is a substitution). Denote

Head(D) = i&

Lemma 1. Let SH (DB) denote a full set of sh-rules
corresponding to all clauses of a deductive database DB ,

SH(DB)= u SH(C). Then
CEDB

(a) C’ is an instance of a clause of DB iff there are
instances of rules of SH (DB) that constitute a full set of
sh-rules corresponding to C ;

(b) F is a factor of a clause of DB iff there are factors
of rules of SH (DB) (head- or body-factors) that constitute
a full set of sh-rules corresponding to F ;

(c) Res is a resolvent of two clauses of DB iff there
are resolvents of rules of SH (DB) that constitute a full set
of sh-rules corresponding to Res .

Proof. (a) * Let C’ be an instance of a clause
CEDB such that C={L1,..., Ld, and
e=ce={t,e,.... L$3J (0 is a substitution). SH(DB)

includes a full set of sh-rules corresponding to C :

SH(C) = {Ci I 1liS.k and Head = Li

and Body (Ci) = { 4j I Lj E C and j#i J},

Then a set of instances of rules of SH (C) ,

SH (C)O = {C’i I lSi41: and Head (C’i) = Lie

and Body(C’i) = { 4.jO I Lj e C and jiti I],

is a full set of sh-rules corresponding to C’ ,
SH (C’) = SH (C)e.

(a) * Let T be a set of instances of rules of
SH (DB) such that T is a full set of sh-rules corresponding

to a clause B = {L1, . . . ,L,} (Fig. 1 illustrates the rela-
tionship among the clauses and rules mentioned in this
proof):

T = {Bi I 1liSm and Head (Bi) = Li

and Bo& (Bi) = { 4j I Lj E B and j&J].

sh E

BOdy(D)={GVj I lljlm and j#iJ.

274

Then D is an sh-rule, Ek , corresponding to a clause
EE DB, E={M1,..., M,,, } . So, SH (DB) must contain
the full set of sh-rules corresponding to E :

SH(E)={Ei I11i4n and Head(Ei)=Mi

and Body(Ei) = {+fj I l<jGn and jiti JJ.

Since Bk = Do = Ek(T , the set T is actually an instance of
SH (E) :

T = {Bi I llilm and Head (Bi) = MiO

and Body(Bi)= {-MAO I ISi<m and j#iJJ

= SH (E)o.

Therefore, there is an instance of E ,
E’=Eo={Mlo,..., M,,,oJ , such that T is a full set of
sh-rules corresponding to E’ .

(b),(c) By an argument similar to that used in (a). For
the sake of brevity some proofs are presented in a sketchy
form. n

Consider a sound and complete proof-procedure such as
a deduction process of resolution [4] which we denote
DPR . It consists of a sequence of steps such that each one
derives either an instance or a factor of a clause, or a resol-
vent of two clauses of DB .

Lemma 1 implies the following
Theorem 1. A clause C is derivable from a deduc-

tive database DB iff a full set of sh-rules corresponding to
C is derivable from SH (DB) .

Proof. + Let a clause C be derivable from a set of
clauses DB by a deduction process of resolution, DPR , in
IZ steps. Denote by DBi the state of DB after performing

of i steps of DPR , and by SH (DBi) the full set of sh-
rules corresponding to DBi , SO, DBo = DB . We show by
induction on the number of steps of DPR that for every
DBi there is a set of sh-rules SHi(DB) derivable from
SH (DB) which is a full set of sh-rules corresponding to
DBi such that SHi(DB) = SH (DBi) .

Indeed, SHo(DB) = SH (DB) = SH (DBo) . Suppose
that the claim holds for all i Ik , i.e., SHk(DB) = SH (DBk) .
Let step k+l of DPR derive a new clause D , so,
DBk+t =DBk u {D} . Then by Lemma 1 a full set of sh-
rules SH (0) corresponding to D can be derived from
sHk(DB) , therefore
sffk+l (DB) = sHk(DB) u SH (0) = SH (DBk+*) is deriv-
able from SH (DB) and consists of a full set of sh-rules
corresponding to DBk+t . If a clause C is derivable from
DB in II steps of DPR , i.e., C E DB, , then there is
SfWW derivable from SH (DB) such that
SH,,(DB) = SH(DB,) , and hence SH(C) E SH,,(DB) .

e In the same way, by induction on the number of
steps of a deduction process performed in SH (DB) , using
the argument of Lemma 1. n

A unit clause is at the same time a full set of its sh-
rules. And DPR , being a sound and complete procedure for
refutation, is so for deriving unit clauses. Hence, Theorem 1
yields the following

Corollary 1. A ground unit clause is a fact in DB iff
it is a fact in SH (DB) . n

3. Hornization of sh-rules.

Due to Theorem 1 and Corollary 1, the same set of
facts can be produced by dealing with sh-rules instead of
general clauses. Since the former is a special case of the
latter, performing derivation on sh-rules may be simpler and
more efficient than handling general clauses. This section
shows how a further simplification of the derivation process
can be achieved.

Let S be a set of sh-rules. Consider a rule A E S with
a negated predicate in its head, Head (A) = 4’ (x) (x is a
vector of variables and constants), and a rule B E S con-
taining -P(y) in its body. Suppose that P (x)0 = P @)O ,
so A and B can be resolved upon the head of A produc-
ing ReslA, B) . Now, replac_e --P by a new predicate
symbol P getting new rules A,_B , respectively. Still A, i
are resolvable upon the head of A .

_Definition 2.- Let A be an sh-rule, and
p={P1I-QI,... ,Pkl dkJ1 stand for a substitution that

renames negated predicate symbols, such that PifPj and
Pi#Pj for i#j . Then Ap is a renaming (or more
specifically, p-renaming) of A . Since all predicate sym-
bols appearing in p are distinct, we have pp-’ = E , where
& is _ an- empty substitution, and
~-‘={-1piIPi I Pil3iE pJ. n

Example 2. Consider sh-rules of Example 1. A
renaming su&titution_ for all negated predicates is
p = {Pi -P, Q/ TQ, RI -RJ . Then the following is the
p-renaming of the rules of SH (A), SH (B) :

Al =A1p: &y, x) -+P(x, y);
-
Az=A~P:P(x,Y)+QCY,X,;
-
B1 =BIP :% 131, h, t2) 3 ih, t2);

& =B2p: QO,, t2), %Q. t2) +-R(tl, 13);

i3 =B3p: QO,, t21, b, t3) +R(f3, t2). H

Let p be a renaming substitution for o/l negated
predicate symbols of S , p = {PiI 9i I 9i E SJ , and S
denote the set of p-renamings of all sh-rules of S .-Then,
with respect to the predicate symbols appearing in S- (the
original as well as the new “barred” ones), all rules of S are
Horn clauses, since there is no negated predicate in their
heads or bodies. Because deduction by resolution on Horn

275

clauses is much simpler and more efficient than that per-
formed on general clauses or sh-rules with negation, we are
interested in determining the conditions under which a
derivation performed on p-renamed rules of S gives the
same result as the one carried out on the original rules of S .

Lemma 2. Let S be a set of sh-rules, p - a renam-
ing substitution for all negated predicate symbols of S , and
S - the set of p-renamed rules of S . Then

(a) C’ is an instance of_a rule C E S iff there exists an
instance D’ of a rule D E S such that D’ is a p-renaming
of C’ ;

(b) Res(A, B) is a resolvent of rules A, B E_S iff
there exists a resolvent Res (C, D) of rules C, D E S such
that Res (C, D) is a p-renaming of Res (A, B) ;

(c) F is a body-factor of a rule C E S iff there exists
a body-factor G of a rule D E S such that G is a p-
renaming of F ;

(d) If H is a head-factor of a rule-C E S , then there
may not exist a factor G of a rule of S such that G is a
p-renaming of H .

Proof. (a) * Let- C’ be an instance of a rule
C E S , C’ = 0. Then S contains a p-renaming D of
c, D = Cp . Hence, an instance D’ of D ,
D’ = D0 = Cp0 is a p-renaming of C’ ; indeed,
CpB = C0p since 8 and p are independent and distinct:

the former is a substitution for variables, while the latter -
for predicate symbols.

(a) e= Let D’ be an instance of DE ?, D’=D0,
while D is a p-renaming of a rule C E S , D = Cp . Then
there is an instance C’ of C , C’ = Ct3 such that D’ is a
p-renaming of C’ , since D’ = D8 = Cp0 = Cfp .

(b),(c) By an argument similar to that used in (a).

(d) Let C be a rule in S such that Head(C) = P (x) ,
-P(y) E Body(C), and P(x)9 = P(y)9 . Then C has a

head-factor H such that Head(H) = P(x)8 and
Body (H) =)Ody (C)Q - { -2 f&y)eJ . Consider _ a p-
renaming C of C , i.e., C = Cp and _C E S . Since
Head(C)=P(x)p=P(xl, but -J’(y)p=P(y), there is
no literal in th_e body of C whose negation is unifyable with
the head of C . And there may not be any other rule in S
with P in its head. The same holds regarding a rule
D E S with a negated head such that Head (0) = 4 (x) ,
R (y) E Body (0) , and R (x)0 = R (y)o . n

Definition 3. Consider a set S of sh-rules. Suppose
that a formula Q has been derived from S by performing a
deduction process of resolution, DPR ($) . Let HEADF (Q)
be a set of all head-factors computed in the course of
DPR ($) . It has been pointed out in this section that if p is
a renaming substitution for all negated predicate symbols of
a set S of sh-rules then a p-renaming of any rule of S
becomes a Horn clause. So, we call this transformation into
Horn clauses a hornization . Let us call a set of renamed

rules of s , HORN (S, I$) , a hornization of S with
respect to a formula $ if it includes renamings of all
head-factors needed for deriving $ from S :

HORN (S, Cp) = {Cp I C E (S u HEADF @I))). n

If we add all the rules of HEADF ($) to S , then Cp
can be derived from S u HEADF (#) without computing of
any head-factor, and by Definition 3 $ can be derived from
S ” HEADF (4) iff it is derivable from S . On the other
h_and, by Lemma 2, a formula 6 can be derived from a set
T of p-renamed sh-rules of T iff a formula $ =$p-’ is

derivable from T without computing of any head-factor.
This implies the following

Theorem 2. A formula Q, is derivable from a set of
sh-rules S iff its p-renaming is derivable from
HORN(S, 4). n .

Theorem 2 holds for recursive rules as well as for
non-recursive ones since p-renaming preserves recursion,
and the latter does not interfere with head-factoring. Indeed,
if C is a recursive sh-rule such that -p(x) yippears in its
head, and * (y) in its body, then P(x), P(y) appear,
respectively, in the head and body of Cp , thus preserving
.the recursion. If the body of C contains also P(z) that is
unifiable with P(x) in its head, then the corresponding
head-factor F of C and its p-renaming Fp can be cdm-
puted without interfering with the recursion- between
--P(x) and -P(y) (respectively, between P(x) and
P(Y) 1.

Theorem 1 makes it possible that derivation of a for-
mula from a general non-Horn system can be performed in a
set of the corresponding sh-rules. An important practical
consequence of Theorem 2 is that it determines conditions
under which this process can be further reduced to handling
of a’sset of homized rules by employing numerous efficient
techniques developed for Horn systems [2,3,7-11,14,17-
19,211. In particular, regarding a ground unit clause, Corol-
lary 1 and Theorem 2 imply

Corollary 2. Consider a set of clauses S , a full set
SH (S) of sh-rules corresponding to S , a ground unit clause
C , and a homization of SH(S) w.r.t. C ,
HORN(SH (S), C) . Then C is a fact in S iff Cp is a fact
in HORN(SH(S), C) . n

4. Relevant rules.

Consider a set of sh-rules S , and a unit clause c .
Without loss of generality, let C = P (x) (x is a vector of
variables and constants). An instance of C can be derived
immediately only from a rule with P in its head, so, denote
by So(P) a set of all such rules in S :

So(P) = {A I A E S and P E Head(A)J.

276

Consider a rule B such that Head(B) = P (y) ,
Body(B)={L1,..., LmJ . To produce an instance P(y)0
by using B we need to derive L&3 for all Li E Body(B) .
Lie can be produced immediately only by a rule with Li in
its head belonging to a set
So(&) = {D I D E S and Li E Head (D)J . In the same
way denote

S1(P)= u u So(R);
Ed,(P) Rdbdy(E)

Sj(P)= U u sow.
EeSj-,(P) Rd’hfyQ) (1)

Definition 4. If L is a literal (a predicate symbol or
its negation), and a rule A may be used in a derivation of
an instance of a unit clause containing L, then
A is relevant to L . Let RELEV(L) denote a set of all
rules of a system S that are relevant to L . Then
RELEV(L) is defined as follows:

(a) If L E Head (A) then A E RELEV(L) ;
(b) If R E Head(B) such that R E Body (0) and

D E RELEV(L) then B E RELEV(L) ;
(c) No rule different from those of (a),(b) belongs to

RELEV(L) .
Hence (cf. (1)),

RELEV(L) = y&(L), RELEV(L) ES . W
i>O

By Definition 4 any rule not belonging to RELEV(L)
is useless with regard to derivation of an instance of L .
Therefore all instances of L can be derived from
RELEV(L) which is only a subset of S . Hence, the follow-
ing holds:

Theorem 3. A ground instance L’ of a unit clause
containing a literal L can be derived from a set of sh-rules
S iff L’ is derivable from a set of relevant rules
RELEV(L) E S . n

A set of sh-rules can be displayed by means of a
system graph introduced in [10,111.

Definition 5. A system graph , SG (S) , of a set of
sh-rules S is a directed bipartite graph consisting of a set of
ax-nodes (ar for axiom) representing sh-rules, a set of
rel -nodes (rel for relation) representing predicates, and a
set of arcs, such that

(a) there is a distinct ax-node representing every sh-rule of
s;

(b) there is a distinct rel-node for each predicate symbol
P , and another one for -P ;

(c) if there is a rule A in S such that
Body(A)={L1,..., Lkj , Head (A) = Lk+l then there are
arcs from rel-nodes representing L 1, . . . , Lk to the ax-node
representing A , and an arc from the ax-node A to the rel- _

Example 3. Consider a set of clauses S = {A, B, CJ :

A: -P(x,Y)v ~Q(x,y>; B: Q(v,w)v -J?(v,w);

C: Q(tl,td v R(t2,td v 4(tl,tyl.
The full set of sh-rules, SH (S) , corresponding to S is

iAl:Q(x,~) j +'(LY>; .42:Pky)+ -Q(x,y);

Bl:R(v,w)+Q(v,w); B2:-Q(v,w)~-~(v,w);

CI : 402, tdr Z.01, t3) + Q(t,, td;

c2 : -Q(tl, td, T(tl, tj)+R(tz, tg);

c3: -Q(tl,td, -J?(t2,f3)+ lT(tl,tg)J.
The p-renaming of SH (S) is

&:Q(x,Y)+~(x,Y); ~2:Pky)+,ecx,y,;

& : R(v, w) + Q(v, w); B2 : $(v, w) -+&v, w);

c, :&tz, td, T(tl, t3)--)Q(t19 td;
- -
C2 : Q<tl, td, T(tl, td -+ R(t2, tg);

23 :ih, tz>, h, t3) --+$tl, tdJ.
The set of p-renamed rules relevant to p :

RELEV(F) = {A,, x2. B,, B2, cl, &J.

(Note that I?, d RELEV(F)).

The system graph of RELEV(F) is displayed in Fig. 2
in solid lines. Ax-nodes are round, rel-nodes - square.

n

Fig. 2.

Definition 6. If there is a directed path (or an arc, in
particular) in a system graph SG from a node v t to a node
v2 , then v1 is a predecessor (resp., an
immediate predecessor) of v:! , and v2 is a successor
(resp., an immediate successor) of v 1 . We use pred (~2) ,
impred (~2) , succ (v 1) , imsucc (v 1) to denote these rela-
tionships between nodes of a system graph. n node representing Lk+l . n

277

5. Computing facts.

Given a goal of computing all facts satisfying a unit
clause C = L (x) , and having determined the set of sh-rules
relevant to 15 , RELEV(L) , we should now produce its
homization, HORN(R&!&V(L), L) in order to perform
evaluation of L entirely in a set of Horn clauses (cf.
Theorem 2, Corollary 2). For this purpose we need a set
HEADF(L) of all head-factors useful for deriving L from
RELEV (L) . The following Lemma is helpful:

Lemma 3. Let S be a set of sh-rules, and SG -
its system graph. Then a rule with literals L1 in its body
and L2 in its head can be derived from S iff node L1 is a
predecessor of node L2 in SG . n

This Lemma provides grounds for computing
HEADF (L) :

Algorithm 1. (Given RELEV(L) , returns
HEADF (L))
1) Construct a system graph SG for RELEV(L) .
2) HEADF(L) := 0 . For every pair of rel-nodes

L1, L2 such that one contains negation of the predi-
cate symbol of the other, and L1 =pred(Lz) perform
2.1) - 2.3):

2.1) Compute a path-resofvent , PRes (L 1, L2) defined as
follows. Let a directed path from L1 to L2 be
Parh(Ll,L2)=iLl,Al,Pl,A2,P2,
. . . . P,,,-l, A,,,, Lz} such that PI,. . . , P,.-1 are rel-
nodes. Al, . . . , A,,, are ax-nodes. Compute first
Res (A 1, AZ) upon P 1 , with P2 in its head, then

Res (A 1, Ai) = Res (Res (A 1, Ai-), Ai) for all
i= ,.. 3 . ,m-I , and finally,
PRes(Ll, Lz)=Res(Al, A,,,) such that
Head(PRes(L1, L2)) = Lps, and
Lla~ Body(PRes(Ll,L&, where o is the
corresponding substitution.

2.2) If there is a substitution 0 such that Ll00 = 42~8
then compute a head-factor, F = PRes (L 1, L2)0 .

2.3) HEADF (L) := HEADF (L)y{FJ . n

Example 4.-Consider again Example 3 and the set of
rules relevant to P . In its system graph (Fig. 2, solid lines)
we have:

a=pred (Q), P =pred (p);

Pathl@,Q)=i& CZ, R, BI,QJ;

Parh&,Q)=f~, B2,R, cl,QJ;

Path l(P, P) = {P, x2, G, c2, R, El, Q, 21, FJ;

Path2(P, P) = (P, x2, a, B2, R, cl, Q. Al, PJ.

So, the following path-resolvents and their head-factors can

be computed:

PResl@. Q) : h. td, T(tl, td +Qh. td,

FI : TOl, tl) +Q(rl. TV>;

PResd. Q) : &h td, TVl, t3) -+ Q(tl. rd.

F2 =Fl : T@I, tl> -+ QOl, rd;

PResl(P, ~):P(t~,td.T(t~, td+h, td,

F3 : T(tl. tl) --+(t,, tl);

PResAP, PI :P(tz, t3). TOl, 13) +F(tI, td,

F4 =F3 : T(tl, tl) -+F(tI, tl).

Ijenc., HORN(RELEV(p), P) = {xl, A2, &, B2,
Cl, C2, F1, F3J . The addition of Fl, F3 is shown in Fig.
2 in broken lines. m

Given a database DB (either Horn or non-Horn) and
an atomic query q : L(x), L E (P, -P) , the following
algorithm derives aI1 facts satisfying q by reducing DB to
a set of homized rules relevant to q .

1)

2)
3)

4)

5)

6)

Algorithm 2. (given DB and q , returns Facts(q))
Compute a full set SH (DB) of sh-rules corresponding
to all clauses of DB .
Compute a set RELEV(q) of rules relevant to q .
By applying Algorithm 1 compute a set HEADF (q)
of head-factors for q .
Produce a set HORN(RELEV (q), q) of Horn clauses
by p-renaming of all the rules of
RELEV (q) v HEADF (q) . (Denote q’ = qp)
Apply to HORN(RELEV(q), q) any query evaluation
method that is sound and complete for Horn systems,
producing all facts satisfying q’ that are derivable
from HORN (RELEV (q), q).
Compute a set Facts (q) of all facts satisfying q that
are derivable from DB , by p-‘-renaming of all facts
produced at step 5). n

Theorem 4. Algorithm 2 is sound and complete in
the sense that given a database DB and an atomic query q

it produces all and only the facts that are derivable from
DB and satisfy q .

Proof. By Corollary 1 a ground unit clause is a fact in
DB iff it is a fact in SH (DB) computed at step 1) of Algo-
rithm 2. By Corollary 2 and Theorem 3 a ground instance
C of q is a fact in SH(DB) iff Cp is a fact in
HORN(RELEV(q), q) computed at step 4). The query
evaluation method applied at step 5) is sound and complete
for HORN(RELEV(q), q) , hence step 6) computes all and
only the facts for q derivable from DB . n

Conventionally, a database DB consists of an inten-
tional part, IDB - a set of non-unit clauses (rules,

278

axioms), and an extensional one, EDB - a set of ground
unit clauses (facts). To estimate the complexity of Algorithm
2 denote by n the number of clauses in the IDB , by
m - the maximum number of literals in a clause of IDB ,
by h - the number of head-factors computable in
RELEV(q) in the course of evaluating q . Let HT(n. m)
stand for run-time complexity of deriving all facts for an
atomic query by an efficient algorithm in a Horn database,
and NHT(n, m) correspond to achieving of the same goal
by Algorithm 2 in a non-Horn one. If both databases have
the same volume of EDB , then

NHT (n, m) < HT (m (n + h), m).

It should be noted that sets RELEV(q) and
HEADF (q) are determined by the predicate symbol appear-
ing in q , but not by the particular binding of its terms.
Therefore steps 1) - 4) may and should be preprocessed at
the system design stage for all (or most frequently queried)
literals, so only steps 5),6) are to be performed at a query
run-time.

Acknowledgments.
Many thanks to the anonymous referees for their very

helpful comments.

1.

2.

3.

4.

5.

6.

7.

8.

References.

Apt, K., Blair, H., and Walker, A., Towards a theory of
declarative knowledge. Proc. Workshop on Founda-
tions of Deductive Databases and Logic Programming,

Minker, J., (ed.), Washington, D.C., 1986,546-629.
Bancilhon, F., Maier, D., Sagiv, Y., and Ullman, J.D.,
Magic sets and other strange ways to implement logic
programs. Proc. 5th ACM SIGACT-SIGMOD Symp. on
Principles of Database Systems (Cambridge, 1986), l-
15.
Beeri, C., and Ramakrishnan, R., On the power of
magic. Proceedings 6th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems
(San Diego, 1987).

Chang, C.-L., and Lee, R. C.-T., Symbolic Logic and
Mechanical Theorem Proving. Academic Press, 1973.
Clark, K.L., Negation as failure. Logic and Data Bases,
Gallaire, H., and Minker, J. (eds.), Plenum Press, New
York, 1978,293-322.
Gabbay, D.M., Theoretical foundations for non-
monotonic reasoning in expert systems. Logics and
Models of Concurrent Systems, Apt, K.R. (Ed.), NATO
AS1 Series, vol. F13, Springer-Verlag, 1985,439-455.
Gallaire, H., Minker, J., and Nicolas, J.-M., Logic and
databases: a deductive approach. ACM Computing Sur-
veys 16 (1984), no. 2, 153-186.
Gardarin, G., and De Mainderville, C., Evaluation of
database recursive logic programs as recurrent function
series. Proceedings of the ACM SIGMOD Intl. Conf. on
Management of Data (Washington, D.C., 1986).

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Henschen, L. J., and Naqvi, S. A., On compiling
queries in recursive first-order databases. J. ACM 31, 1
(Jan. 1984), 47-85.
Kifer, M., and Lozinskii, E.L., Filtering data flow in
deductive databases. Lecture Notes in Computer Sci-
ence, v. 243, Springer-Verlag, 1986, 186-202.
Lozinskii, E.L., Evaluating queries in deductive data-
bases by generating. Proceedings 9th Intl. Joint Confer-
ence on Arttficial Intelligence (Los Angeles, 1985),
173-177.
McCarthy, J., Circumscription - a form of non-
monotonic reasoning. Artificial Intelligence 13 (1980),
27-39.
Minker, J., On indefinite databases and the closed world
assumption. Lecture Notes in Computer Science 138,
Springer- Verlag, 1982,292-308.

Minker, J., and Nicolas, J.-M., On recursive axioms in
deductive databases. Information Systems 8, 1 (1983),
1-13.
Reiter, R., On closed world data bases. Logic and Data
Bases, Gallaire, H., and Minker, J. (Eds.), Plenum
Press, New-York, 1978,55-76.
Reiter, R., A logic for default reasoning. Artificial Intel-
ligence 13 (1980), 81-132.
Sacca, D., and Zaniolo, C., On the implementation of a
simple class of logic queries for databases. Proceedings
5th ACM SIGACT-SIGMOD Symposium on Principles
of Databases Systems (Cambridge, 1986), 16-23.
Ullman, J. D., Implementation of logical query
languages for databases. ACM Trans. Database Syst.,
10 3 (Sept. 1985), 289-321.
Van Gelder, A., Message passing framework for logi-
cal query evaluation. Proceedings of the ACM SIG-
MOD Intl. Conference on Management of Data (Wash-
ington, D.C., 1986), 155-165.
Van Gelder, A., Negation as failure using tight deriva-
tions for general logic programs. Proc. Third IEEE
Symp. on Logic Programming, Salt Lake City, Utah,
1986.
Vieille, L., Recursive axioms in deductive databases:
the querylsubquery approach. Proceedings Ist Intl.
Conference on Expert Database Systems (Charleston,
1986). 179-194.
Yahya, A., and Henschen, L.J., Deduction in non-Horn
databases. J. of Automated Reasoning I (1985). 141-
160.

279

