Extended User-Defined Indexing
with Application to Textual Databascs

Clifford A. Lynch
Division of Library Automation
Office of the President and Universitywide Services
University of California
Berkeley, CA 94720

Michael Stonebraker
Department of Electrical Engineering & Computer Sciences
University of California, Berkeley
Berkeley, CA 94720

Abstract

A number of application-specific searching mechanisms,
including keyword searching in textual databases, can
be implemented naturally in a relational DBMS us-
ing abstract datatypes and user-defined operators. For
query efficiency these operators and abstract datatypes
must be supported by indices. A new indexing scheme
is proposed which allows a large class of query predi-
cates to be evaluated using indices, including many key
operators for textual databases. The indexing scheme
also significantly reduces the space required to store
indexed textual data in a relational database system.

1. Introduction

Information retrieval systems such as online library cat-
alogs, citation retrieval systems, and full-text database
systems are usually implemented using either inverted-
file database systems or special-purpose software that
does not use a DBMS [Lynch 1987]. Substantial prob-
lems arise when attempts are made to use a modern
relational DBMS such as INGRES or DB2 to support
these applications. Examples of such problems are ex-
cessive disk space consumption and overly complex and
expensive queries. This paper explores the application

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is given
that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 14th VLLDB Conference
Los Angeles, California 1988

of user-defined operators and abstract datatypes as a
means of effectively implementing information retricval
(TR) applications using relational DBMS technol gy.

An abstract datatype (ADT) is an encapsulated
data structure that is accompanied by a set of user-
defined operators with which to manipulate the ADT.
The internal impleientation is concealed from its nsers,
who manipulate the ADT using its associated opera-
tors. User-defined operators can also be defined for ex-
isting (built-in) datatypes, and thus serve as an extensi-
bility mechanism in their own right. In the early 1980s
several efforts were made to incorporate ADTs into
relitional database systems, including ADT-INGRES
[Ong et al. 1984] and RAD [Osborn & Heaven 1986}.
Current research DBMSs such as POSTGRES [Stone-
braker & Rowe 1985), EXODUS [Carey & DeWitt 1985:
Carey ct al. 1986a,1986b] and STARBURST [Schwarz
et al. 1986; Lindsay et al. 1987 clearly view sys-
tem extensibility as a major goal and include mecha-
nisms to simplify the incorporation of new operators
and datatypes.

In order to make user-defined operators practical
for large, high-volumne database applications, however,
appropriate secondary index structures must provide
fast access paths for query evaluation. Previous work
on indexing support for ADTs and user-defined op-
erators [Stonebraker et al. 1983a; Stonebraker 1986]
showed how a variety of operators and accompanying
indices could be included in a relational DBMS. This
paper.demonstrates that the previous indexing propos-
als must be generalized in order to overcome the prob-
lems inherent in using relational DBMS technology for
IR applications.

Section 2 of the paper begins by defining keyword
searching, a common search technique for textual data
of all types. This is done in the context of a database
design for an online library catalog. The space uti-
lization and query complexity problems that arise with
a standard RDBMS are illustrated. Section 3 reviews
previous proposals for addressing these problems and
argues the case for user-defined operators as the appro-
priate method for incorporating keyword s« arching into
an RDBMS. Previous proposals for indexing such op-
erators are examined in Section 4. Section 5 develops
a new extended indexing proposal and compares the
resulting performance and query utilization against a
typical inverted-file DBMS, INGRES, and DB2. As a
byproduct of this analysis we show tlat the storage sys-
tem used in INGRES provides major benefits for bibli-
ographic databases compared to that of DB2. Section
6 surveys related user-defined operators for IR applica-
tions that can be supported effectively by the proposed
indexing scheme.

2. Database Definition and Queries for
Keyterin Searching

A relational database corresponding to a typical online
library catalog would include a relation BOOKS:

CREATE TABLE BOOKS
(BODK-ID INTEGER,
TITLE LONG VARCHAR,
other columns);

and a relation containing keywords from the TITLE
column of books in the BOOKS relation:

CREATE TABLE TITLE-KEYWORDS
(TITLE-KEYWORD VARCHAR,
BOOK-ID INTEGER);

An online catalog would include similar relations for
keywords extracted from other columns, such as subject
headings or cataloger’s notes appearing in BOOKS.

The keywords appearing in the TITLE-KEY-
WORDS relation that corresponds to a TITLE col-
umn value in the BOOKS relation are not simply all
of the words in the TITLE column value. The precise
algorithm for deriving keywords is very application-
dependent. The value in the TITLE column of
BOOKS will be in mixed case, and, therefore, the key-
words appearing in TITLE-KEYWORDS will be con-
verted to all uppercase (or lowercase) to permit case-
insensitive searching. Words containing punctuation,
such as “data-base” may generate multiple keywords

307

(e.g., “DATA”, “BASE”, and “DATABASE”). Variant
spellings may be accommodated by generating multiple
keywords (thus the word “colour” in a title generates
keywords “C’OLOR” and “COLOUR”). Abbreviations
may be expanded (e.g., “U.S.” in a title generates key-
words “UNITED” and “STATES”). Some words are
suppressed because they are too common to be useful
for retrieval purposes (e.g., articles such as “THE” or

“A”).

A typical large online catalog might have four mil-
lion tuples in the BOOKS relation and 20 million tuples
in the TITLE-KEYWORDS relation. For performance
reasons, indices would be created on BOOKS(BOOK-
ID) and TITLE-KEYWORDS(TITLE-KEYWORD).

The datahase requires cunsiderable disk space for
redundant information. Specifically, the DBMS does
not understand the semantics of keywords because key-
words are derived from a title by an application pro-
gram external to the DBMS. These derived values ap-
pear once in the TITLE-KEYWORDS table proper and
again in the secondary index to this relation (at least
under DB2). In addition, the need to create multiple
tables because a book title can have many keywords
creates overhead through the BOOK-ID columns nec-
essary to relate those tables to one another as well as

the need to index BOOKS on BOOK-ID.

Space utilization is not a problem unique to re-
lational databases. It also arises in inverted-file sys-
tems commonly used for information retrieval applica-
tions. An inverted-file implementation of the example
database would consist of book records containing a
title and all the extracted title keyterms. The title
keywords would be extracted into a B-tree index, with
each unique title keyword appearing in the B-tree ac-
companied by a list of pointers to all records containing
that keyword. An inverted-file system has no built-in
understanding of keywords, and thus precomputed key-
words must be stored in both data and indices. Com-
puter Corporation of America’s Model 204 inverted-file
DBMS includes an interesting but ultimately unsatis-
factory attempt to ameliorate this problem. Model 204
allows fields in records to be defined as standard keys
(both indexed and stored in the data records) or as in-
visible keys [CCA 1986]. Invisible keys are indexed and
then removed from the data records. While this re-
duces space utilization, the reduction is accomplished
at the expense of logical database integrity and con-
sistency. There is no way to update invisible key en-
tries in indices to reflect changes to the data records
from which they came since the DBMS has no means
of computing invisible key values from the remaining

ficlds of the data record. In addition, query evaluation
strategies are scverely constrained because predicates
invelving invisible keys can be resolved only through
reference to indices and not by direct examination of
records sclected by other predicates.

However, a relational system consumes substan-
tially more space than an inverted-file system since
BOOK-ID values connecting the wmultiple relations
must be stored as well. The need for indices on BOOK-
ID to provide adequate retrieval performance further
increascs storage overhead. Technigues such as invisi-
ble keys will be no more satisfactory in a relational sys-
tem than they are in an inverted-file system like Model
204.

The amount of space consumed is dependent on
the specifics of table storage and index data structures.
It is interesting to contrast INGRES and DB2 in this re-
gard. INGRES has the ability to construct primary or
secondary indices, whercas DB2 offers only secondary
indices and clustering [Selinger et al. 1979; Stonebraker
et al. 1976]. Since the relations BOOKS and TITLE-
KEYWORDS each have only a single index, the IN-
GRES storage scheme allows significant space savings
by allowing these tables also to serve directly as indices.
In the case of INGRES, we assume that BOOKS is a
hash table on a primary key of BOOK-ID and that
TITLE-KEYWORDS is a B-tree on primary key of
TITLE-KEYWORD. For DB2, we assume that TITLE-
KEYWORDS is clustered on TITLE-KEYWORD, and
that secondary indices exist on BOOKS(BOOK-ID)
and TITLE-KEYWORDS(TITLE-KEYWORD).

DB2 does manage index storage more efficiently
than INGRES. In particular, DB2 stores each value
only once in an index, followed by a list of tuple IDs
(TIDs) identifying rows containing that value. IN-
GRES repeats the index value once for each tuple con-
taining it by storing a (value,TID) entry. In a biblio-
graphic database, some keyword values will appear tens
of thousands of times. Implementation of a compressed
storage scheme for index pages in INGRES using dif-
ferential encoding techniques would be advantageous in
bibliographic retrieval applications.

A typical user query against an online catalog is
“find all books containing the words ‘american’ and
‘history’ anywhere in the book’s title.” This translates
into the SQL query:

SELECT BOOK-ID,TITLE,other columns
FROM BOOKS, TI-TLE-KEYWORDS TK1,
TITLE-KEYWORDS TK2

308

VW+4ERE BOOKS.BOOK-ID =
ALD TK1.BUOK-ID = TK2.
AND TK1.TITLE-XKEYWORD
AND TK2.TITLE-KKYWORD

TK1 .BOOK-ID
BOOK-ID
"AMERICAN"
YH1STORY";

[[]

This is a reasonably complex gnery involving three
joins. In general, a user query involving n keywords
translates to an SQL query involving n + 1 joins. These
joins make the queries expensive, particularly when
more than two or three keywords are specified.

3. Previous Proposals for Improving
Bibliographic Databases with
RDBMSs

A few rescarchers have previously examined the difficul-
ties in using standard RDBMSs for bibliographic and
information retrieval applications. [Macleod & Craw-
ford 1983) survey this work. Papers such as [Craw-
ford 1981; 'Maclcod & Crawford 1983, Schek 1981]
discuss some of the problems in handling keywords
within the relational model and recognize that in a
standard relational system separate relations for key-
words are required, and consequently that keyword
queries will require joins. These papers offer few pro-
posals for resolving the problems that they identify.
[Macleod 1979] suggests some cosmetic extensions us-
ing macros to simplify query formulation and some ex-
tended string-matching operators that are akin to more
elaborate versions of the SQL LIKE operator. Such ex-
tended string-matching operators have also been pro-
posed in other contexts such as document processing
[Stonebraker et al. 1986]. [Schek 1981] sketches a pro-
posal to enhance an RDBMS with a series of operators
that pattern match on text fields and thus allow the
searching of keywords that are appropriately encoded
within the text fields {or any other substring). This ap-
proach has been refined and implemented in the AIM-1I
system |[Dadam et al. 1986). These proposals are not
satisfactory solutions for keyword searching for the fol-
lowing reasons:

e Proposals for pattern-matching operators are of
little use unless indices can be defined to permit
- their rapid evaluation. However, pattern-matching
facilities are so general that the only feasible type
of index structure will be similar to those described
in [Schek 1978, 1981; Kropp et al. 1979]. Such a
structure requires a very large index on arbitrary
string fragments and slow, complex access method
algorithms that match fragment patterns by se-
lecting candidate tuples through computations on
the index and then examining the tuples. Space
requirements and performance from such an index

will be unacceptable in a large database.

The extraction of keywords is a sufficicntly com-
plex, algorithmically oriented process that it is un-
likely to be expressed through any rcasonable set of
pattern-matching operators. At best, enormously
complex patterns will be required which will be
computationally expensive. This problem wiil re-
main even in systems which have enough memory
to allow a database to be memory-resident.

Proposals to add Luilt-in operators specifically to
match fields that contain a keyword do not make
sense since, as previously discussed, keyword ex-
traction is highly application-dependent. It is not
feasible to develop a standard keyword-matching
operator that will meet the needs of textual appli-
cations.

Sct-valued relations [Zaniolo 1983] offer a way to
avoid joins. The BOOKS relation might be redefined
(vsing Zaniolo’s GEM notation for sets adapted for

SQL) as:

CREATE TABLE BONKS
(BOOK-ID INTEGER,
TITLE LONIG VARCHAR,
TITLE-KEYWORDS {VARCHAR},
other columns);

and a query for books by title keyword “history” in the
set-valued relation would be specified as

SELECT * FROM BOOKS WHERE
"HISTORY" IN TITLE-KEYVWORDS;

However, the availability of sets does not eliminate the
need to store keyterms redundantly both in the relation
proper and again in the index. Additionally, proposals
for set-valued relations do not speak to an indexing
strategy for members of a set comprising a column value
and have not been generalized to permit set elements
that are ADTs. The indexing proposal presented here
can be readily extended to work for an RDBMS that
has been enriched to include sets as a datatype and
complements set-valued relations well.

Nested relations [Dadam et al. 1986; Schek and
Scholl 1986] can be viewed as a generalization of set-
valued relations. They could be used to provide much
the same effect as set-valued relations: the title key-
words for each title could be defined as a single-column
relation. Nested relations share with set-valued rela-

309

tions a high storage overhead due to the need to re-
dundantly store the keywords in the relation and in an
index, and again proposals for nested relations do not
fuily address the indexing issue. Finally, a nested reja-
tion implementation of a large bibliographic database
would give rise to a daiabase containing miilions of re-
lations; this is likely to be quite cumbersome.

4. Extended Sccondary Indices, User-
Defined Operators, and Abstract
Datatypes

Keyword derivation is a rather ad-hoc, database- and
application-specific process, best implemented by the
developer of a particular application using procedures
written in a programming language. By its na-
ture, keyword extraction is not a database primitive.
The natural and appropriate tools for this type of
application-specific extension within a DBMS are ab-
stract datatypes and user-defined operators. However,
to be practical, uscr-defined operators must be accom-
panied by sccondary indices. Previous proposals re-
viewed below do not provide the necessary indexing
capability and must be generalized.

[Stonebraker et al. 1983a] (and subsequently
[Stonebraker 1986], which greatly extended, simplified,
and generalized the proposal from the original paper)
dcveloped a detailed scheme for defining ADTs and
user-defined operators in database systems. Perhaps
the most important contribution of these two papers is
their recognition that ADTs and accompanying opera-
tors must be supported by secondary indices to be vi-
able in many real-world contexts. Without the perfor-
mance such indices provide, ADTs have limited utility
as practical tools for building production applications.
Thus, a facility called eztended secondary indices was
also proposed, which provides the following capabilities:

The ability to create indices on ADT columns with
existing operators.

The ability to create indices on ADT columns to
support new user-defined operators.

The ability to create indices on non-ADT columns
(e.g., existing built-in datatypes) to support new
user-defined operators.

The proposed facility can be summarized as follows.

Note that the proposal of [Stonebraker 1986] has been

recast from QUEL to SQL and some of the terminology
has been changed here.

1. AD'l's are registered with the DBMS; the def-
inition includes the specification of a pair of functions
to convert the ADT to and from character form, which
arc used to support input and output of the ADT.

2. New operators can be registered with the
DBMS. The main case considered is binary infix op-
erators, where one defincs the datatypes of the left-
and right-hand operands and the operator’s result, the
operator’s precedence, and the name of a function that
implements the operator.

3. Restricted classes of Boolean-valued binary
operators, in which both arguments have the same
datatype, may be supported through B-trec indices us-
ing the B-tree access method built into the DBMS. The
classes of operators that can be supported through the
B-tree access method are those that can play the same
role as the usual comparison operators with respect to
the datatype upon which they operate. To construct
a B-tree consisting of instances of a given datatype, it
is necessary to have an operator that provides an or-
dering on that datatype analogous to the < operator
on numeric or character datatypes. This B-tree can
be searched for entries satisfying operators analogous
to any of the operators {<, >, =, >, <} using this
comparison operator. Other restricted classes of opera-
tors can be supported through different access methods
which may be included in the DBMS. The specific re-
strictions are access-method-dependent. In this paper
we will consider only B-tree indices.

A user-defined operator class is established for B-
trees by providing a name for the class and supplying a
list of user-defined operator names, and specifying the
correspondence between the user-defined operators and
the standard B-tree operators {<, >, =, <, >}. (See
[Stonebraker 1986] for details.) Any built-in datatype
that can be ordered using the usual comparison oper-
ators (e.g., integers or strings) is assumed to have an
associated default ordering class consisting of the stan-
dard comparison operators.

A B-tree index to support a specific ordering op-
erator class can be created through the SQL statement

CREATE INDEX indez-name ON table {column)
ORDERING operator-class-name

The analog to < in operator-class-name is used to place
the values that appear in column into a B-tree struc-
ture. Subsequently, predicates of the form (column
relop value) can be supported through this B-tree index
when relop is an operator that is a member of the user-

310

defined ordering operator class specified in the CRE-
ATE INDEX statement. The ORDERING clause is
compatible with currcnt query language usage in that,
if it is omitted, the built-in ordering operator class is
used when column contains a built-in datatype known
to the DBMS, such as integer or character string.

Two approaches to formulating keywords with
user-defined operators are possible. Neither approach
allows useful indexing to support the operators under
the proposal of [Stonebraker 1986]. The first approach
uses an ADT for sets of strings. Define a unary opera-
tor, KI'YWORDS, on strings returning a set-of-strings
ADT containing all the keywords from the input string.
Define CONTAINS as a Boolean-valued binary opera-
tor with one ADT set-of-strings operand and one string
operand. CONTAINS is true if the string operand
is a member of the set specified by the set-of-strings
operand. Using these operands a user query such as
“find all books with the word ‘history’ in the title” can
be formulated as:

SELECT * FROM BOOKS WHERE
KEYWORDS(TITLE) CONTAINS "HISTORY";

The indexing proposal of [Stonebraker 1986] does
not allow rapid evaluation of this query for two reasons.
The two operand datatypes of the CONTAINS opera-
tor are not identical, and thus CONTAINS cannot be
a member of an operator class. Additionally, even if
CONTAINS could be indexed somehow, the presence
of the unary operator KEYWORDS in the WHERE
clause of the query prohibits the use of an index to
evaluate the predicate. The first objection can be over-
come by redefining CONTAINS as an operator on pairs
of sets-of-strings (where A CONTAINS B is true if ev-
ery member of B is a member of A). However, this more
general CONTAINS operator cannot be indexed using
[Stonebraker 1986] because it does not induce a total
ordering on instances of the datatype sets-of-strings. to
one of the ordering operators {=, >, <, <, >} in any
operator class.

The second approach defines a Boolean-valued bi-
nary operator on strings, CONTAINS-KEYWORD. A
CONTAINS-KEYWORD B is true if B is a keyword
contained in the string A. With this approach, the user
request for all books with the word ‘history’ in the title
becomes the SQL query

SELECT » FROM BOOKS WHERE
TITLE CONTAINS-KEYWORD “HISTORY"®;

Again, the indexing proposal of [Stonebraker 1986]

provides no help in cvaluating this query. The prob-
lem is that the CONTAINS-KEYWORD operator is
not analogous to any of the comparison operators and
thus cannot be a member of an operator class.

5. Generalized Extended Secondary Indices

The keyterm searching problem is an instance of a gen-
eral retrieval problem that scems likely to arise in a
wide range of applications. One has a table with a col-
umn C of datatype DI, and a unary operator U which
takes an argument of type DI and returns a datatype
D2 or set-of-D2. There is a B-tree operator class on
D2, and an index is required to evaluate predicates of
the form (U(C) opr v), where opr is a member of the
operator class and v is a (constant) value of datatype
D2. The following extensions to the scheme described
in [Stonebraker 1986] add the functionality necessary
to create indices in support of this class of predicates.

5.1 List Datatypes

A new set of datatypes called LIST's is defined. It is pro-
posed that these be bnilt-in, rather than user-defined,
datatypes for the following reasons:

e Building in lists allows the DBMS to extend au-
tomatically most built-in or user-defined operators
on other datatypes to lists of these datatypes. The
inheritence technique used to extend these opera-
tors is described below.

e The DBMS will need to understand the seman-
tics of lists in order to implement the extensions
to indexing discussed below. If lists are to be user-
defined datatypes, an ad-hoc parameter-passing
mechanism will have to be defined to support in-
dexing.

Almost everything discussed below can be accom-
plished with lists as a user-defined rather than a built-in
datatype, at the expense of less-attractive syntax and
more effort for the user in explicitly extending opera-
tors to lists.

A list is a set of zero or more instances of a spe-
cific datatype; the datatype may be a built-in datatype
or a user-defined ADT. Thus, there are datatypes
LIST-OF-INTEGER, LIST-OF-CHARACTER, LIST-
OF-REAL, etc. The syntax for defining a list encloses
its elements with braces, for example, {1, 2, 3, 4} or
{‘a,” ‘b, ‘c,’ ‘d’}. Lists of lists (of a specific type) are
permitted.

311

Built-in or user-defined operators on instances of
a given datatype extend to lists of that datatype as
follows. Assume that {z;} and {y;} are lists of the
appropriate datatype.

e A unary operator (in functional notation) F ap-
plied to a list {z;} rcturns a new list {F(z;)}.

e Any binavy-valued operator OPR where both ar-
guments are of the same datatype permits a list of
that datatype for cither or both arguments, and
{z:} OPR {y,} returns a new list with ¢ *7 cntrics
{z; OPR y;}. U cither argument list is empty, the
result is an empty list.

e The exception to the precceding rule is that lists of
Boolcan values are not permitted. While Boolean-
valued operators extend to permit lists as argu-
ments, they continue to return Boolean values. A
value of true is returned if the operator returns true
for any {z; OPR y;} and false otherwise. These
rules define the operator =, when extended to lists,
to have the semantics that {z;} = 2z is true if and
only if z; = z for some 1 ; {z;} = {y,} is true
if z; = y, for some pair (z, 7). This exception
permits built-in comparison operators to extend
to lists gracefully. An alternative way of formulat-
ing the same requirement would be to allow lists of
Boolean values, and to say that when a predicate
evaluates to a list of Boolean values it is consid-
ered true if the list contains the value true, and
false only if all entries in the list of Boolean values
have the value false.

Through these rules all built-in arithmetic oper-
ators extend immediately to lists of integers or reals;
all comparison operators {=, >, <, >, <} extend to
lists of any built-in datatypes on which they are defined
(such as integers and strings). Because of the rule for
extending Boolean-valned binary operators above, if L
is a list of integers, for example, (L > X) and (L < X)
may both be true. Thus the standard comparison op-
erators do not form a B-tree operator class on LIST-
OF-INTEGERS since they do not create an ordering
on these lists.

5.2 Indexing

We propose to extend the CREATE INDEX statement
to permit another parameter OPERATOR operator-
name in addition to the ORDERING parameter of
[Stonebraker 1986].

The semantics of

CREATE INDEX indez-name
ON table (column-name)
ORDERING operator-class-name
OPERATOR operator-name

are as follows:

1. The operator-name operator must be a unary
operator that has an argument datatype equal to the
datatype of the colimn being indexed. It can return
any datatype including list of a datatype.

2. If operator-name returns an ADT, the ORDER-
ING parameter must also be supplied to define an or-
dering operator class for that ADT type that will be
used to build the index. This is necessary because the
DBMS must know how to order the ADT to build the
index. A nomnstandard (user-defined) ordering opera-
tor class can be employed to construct an index on a
built-in datatype returned by operator-name by speci-
fying the ORDERING parameter to identify the non-
standard ordering operating class. If operator-name
returns a built-in datatype, the ORDERING param-
cter may be omitted, and the standard built-in order-
ing operator class for that datatype will be used by
default to build the index if such a class exists. (If
the DMBS does not know how to order the datatype
recturned by operator-name and is not instructed how
to do so through specification of an ordering operator
class through the ORDERING parameter of the CRE-
ATE INDEX statement, the attempt to construct the
index is terminated with an error indication.)

3. As the index is created, each value in column-
name is passed to the operator operator-name. If the
operator returns a single value, that value (along with
the TID of the relevant row) is placed in the index. If
the operator returns a [ist, then entries are placed in
the index for each element of the list, along with the
TID of the relevant row. If null values are allowed in
the relation, it will be desirable to allow the operator
to return zero values (indicating that nothing is to be
stored in the index for the given tuple) or a null value
for the returned datatype, depending on the specific
application.

The choice of processing here, depending on
whether the operator returns a list, is the only point
where DBMS must understand the semantics of lists.

312

If lists are provided as user-defined rather than built-in
datatypes, some ad hoc method must be used to allow
lists to be passed back from the operator.

Many ind. x ciutries can be generated from a single
column valne in a tuple. Therefore, if the old and new
values for a column in a tuple being updated are made
available to the indexing rontines, significant optimiza-
tion may be possible in some instances when operator-
name returns a hst. Assume that the value of column-
name is being changed from old to new. Only those list
elements in operator~name{n,ew) - operator—nam}e{old)
need to be entered into the index, and only those list
elements in operator-name(old) — opecrator-name(new)
need to be deleted from the index.

4. An index built throngh this construct can be
used to resolve predicates of the form

(operator-nume(column-name) relop value)

where relop is any operator in the B-tree operator class
nsed to build the index (ecither the default ordering op-
erator class or one explicitly specified through the OR-
DERING parameter). Resolving the predicate is ac-
complished simply by looking up value in the B-tree
index that has been created on operator-name(column-
name) using the ordering operator class. This proposal
is upwardly compatible to the proposal in [Stonebraker
1986). If no OPERATOR parameter is specified in the
CREATE INDEX statement, then the index can be
used to resolve predicates of the form (column-name
relop value} where relop is a member of the ordering
operator class specified in the ORDERING parameter.
Note that the two predicate types {column-name relop
value) and (operator-name (column-name) relop value)
cannot be supported through the same index.

SQL also permits the creation of indices using mul-
tiple columns through the syntax

CREATE INDEX indez-name ON table {col-
umnl,column®,...,columnk)

Specifying k-ary operators rather than unary operators
in the OPERATOR keyword of the extended CREATE
INDEX statement permits a straightforward accommo-
dation of this more general form of index construction,
thus allowing the construction of an index that can be
used to quickly evaluate predicates of the form

(operator-name(columnl,columng,...,columnk) re-
lop value).

5.3 Applications to ;7cyterm Secarching

One operator needs to be defined to extract all key-
words from a string:

DEFINE OPERATOR TOXKEN=KEYWORDS,
ARGUMENT1=CHARACTER,
RESULT::1.IST-0F -CHARACTER

The table TITLE-KEYWORDS then can be climi-

nated, along with its associated index. In its place, an
additional index on the BOOKS relation can be built:

CREATE INDEX TITLE-KEYWORDS ON
BOOKS(TITLE) OPERATOR KEYWORDS;

Using this operator, a search for all books with
titles containing a specified keyword (for example,

“DATABASE”) can be formulated as

SELECT #* FxOM BOOKS WHERE
KEYWORDS(TITLE) "DATABASE";

Here the operator = is being extended as discussed
above to permit a LIST-OF-CHARACTER datatype
on the left and a CHARACTER datatype on the right.
Similarly, all books with titles containing keywords
beginning with the prefix “COMPUT” (“COMPUT-
ERS”, “COMPUTING?”, etc.) can be requested by

SELECT * FROM BOOKS WHERE
KEYWORDS(TITLE) LIKE "COMPUTY";

5.4 Effects on Query Processing Costs

Comparisons will be made among four environments:
an inverted-file system such as ADABAS [Software AG
1982] (which is commonly used in real bibliographic
retrieval systems today, and thus provides a perfor-
mance baseline for other implementations); standard
INGRES; standard DB2; and a relational system in-
corporating the extensions proposed in this paper. this
analysis are summarized in Table 1. In the analysis,
we assume that the database consists of the two tables
defined at the beginning of Section 2 for the INGRES
and DB2 cases, and that in the extended relational case
the database consists of a single relation with secondary
index as defined in Section 5.3.

We will compare the number of reads necessary to
evaluate queries. A hash table lookup is assumed to be
one read (no overflow); a B-tree lookup is assumed to
be three reads (the effects of caching index blocks in the

313

buffer pool are ignored). Storage pages arc assumed to
be 1K. We assume that a TID or an inverted-file record
number is 4 bytes, and thus about 1000 TIDs fit on a
storage page. We assume that title keywords average
9 characters in length, and that the intcger values for
BOOK-IDs require 4 bytes. We assume that about 300
tuples from the TITLE-KEYWORDS relation fit on a
storage page since each tuple averages 14 bytes inclnd-
ing a length count for the variable-length keyword.

Consider a single keyword query, such as “find all
books with the word ‘packet’ in the title.” This trans-
lates into an SQI. query:

SELECT BOOK-ID,TITLE,other columns
FROM BOOKS, TITLE-KEYWORDS WHERE
BOOKS.BOOK-ID =
TITLE-KEYWORDS .BOOK-ID AND
TITLE-KEYWORDS . TITLE-K-YWORD =
“PACKET";

in standard DB2 or INGRES, and into the query

SELECT BOOK-ID,TITLE,other columns FROM
BOOKS WHERE KEYWORDS(TITLE) YPACKET";

in the extended relational system.

Assume that there are n books containing the key-
word “packet” in the title. For the inverted-file system,
the query requires one index lookup (3 reads), n /1000
reads to obtain the inverted list, and n reads to ac-
tually fetch the records, for a total of 3 + n /1000 +
n reads. For INGRES, one index lookup on TITLE-
KEYWORDS is required (3 reads), followed by n /300
page reads to obtain all of the tuples and BOOK-IDs;
n hash table lookups are then required against the
BOOKS relation to obtain the actual records, for a to-
tal of 3 + n/300 + n reads. If differental encoding is
used to store the TITLE-KEYWORDS relation in un-
extended INGRES, query cost is equivalent to that of
the inverted-file system.

For DB2, the situation is much worse. One index
lookup (3 reads) and n /300 reads of tuples in TITLE-
KEYWORDS are needed to obtain BOOK-IDs. Each
of the n BOOK-IDs must then be looked up (at three
reads per lookup) in the BOOK-ID index to BOOKS.
After each BOOK-ID is looked up, the corresponding
tuple from BOOKS must be read. The total cost is 4n
+ n/300 + 3 reads.

With the proposed extension, DB2 requires only 3
+ n /1000 + n reads, as does INGRES with differen-

tial encoding on the secondary index built through the
extended indexing mechanism. Without differential en-
coding, the performance of INGRES with the proposed
extension is nnaltered.

Consider a two-keyword query, such as “find all
books with the words ‘computer’ and ‘art’ appearing
in the title.” This turns into an SQL query like

SELECT BOOK-ID,TITLE,other columns
FROM BOOKS WHERE
KEYWORDS(TITIE)
KEYJORDS(TITLE)

“"ART" AND
= "HISTORY';

in the extended RDBMS. The query for the standard
DBMS is identical in structure to the example query
at the beginning of the paper. Assume that there are
12,000 books that have a title containing the keyword
COMPUTER and 17,000 that have a title containing
the keyword ART, and assume that there are 40 books
where the keywords COMPUTER and ART both ap-
pear in the title. In analyzing standard INGRES and
DB2 we will assume (optimistically) that the query
planner chooses the most selective predicate as its ac-
cess path and that there is sufficient memory to main-
tain one part of the join in memory.

In an inverted-file system like ADABAS, this query
would require two index lookups (one for each keyword)
and the reading into memory of two record pointer
lists, one of 12 pages and one of 17 pages. These two
lists of pointers would be intersected to find the records
containing both keywords, and the 40 resulting record
pointers would be used to read 40 records. The total is
75 reads.

INGRES will perform one lookup and 40 page
reads to load the tuples in TITLE-KEYWORDS satis-
fying TITLE-KEYWORD=“COMPUTER” into mem-
ory, and then perform an index lookup and 56
page reads to run through the tuples in TITLE-
KEYWORDS satisfying TITLE-EKEYWORD=“ART",
matching each against the incore tuples from the first
predicate. This will result in 40 tuples, each of
which has to be read from BOOKS for a total of 142
reads. If differential encoding is used to store TITLE-
KEYWORDS, then the performance is equivalent to
the inverted-file system in terms of I/O as long as the
tuples satisfying the most selective predicate can be
maintained entirely in memory. It is worth noting, how-
ever, that the processing done by INGRES to resolve
the join will be much more CPU-intensive than the
pointer list intersection performed by the inverted-file
system. In addition, if the smallest set of tuples cannot

314

be maintained in memory, the I/O cost for INGRES
without differential encoding becomes 1927 reads; with
differential encoding it is 271 reads.

Again, the situation with DB2 is much worse. Ba-
sically the same processing logic is followed, but it re-
quires 160 rcads instead of 40 to obtain the resultant
tuples fron BOOKS. In addition, an extra read is re-
quired after each index Jookup to start the sequential
scan of tuples in TITLE-KEY WORDS. Thus, DB2 will
require 264 reads.

For the proposed extended relational database,
this query would require 1 index lookup (3 reads) fol-
lowed by reading 12 index pages that identify 12,000
rows in BOOKS (assuming that the extended RDBMS
sclects the optimal access path). These rows would
be read and scanned to resolve the index. The total
is 12,015 reads. The reason that this performs badly,
however, is that the evaluation strategy for the Boolean
AND is not appropriate. If the DBMS knew the strat-
egy of looking up the other predicate involved in the
AND, first intersecting the TID lists and then reading
the TIDs resulting from the TID list computation, the
performance would be identical to that of the inverted-
file implementation. (See [Lynch 1987] for a discussion
of this query processing strategy.)

In general, if there are two keywords, the first iden-
tifying z books and the second y books (z < y), and
there are z books containing both keywords, then the
inverted-file system takes 6 + z /1000 + y /1000 + 2
reads; INGRES requires 6 + z /300 + y /300 + z; and
the extended relational system requires 3 + z /1000 +
z reads. With appropriate query processing strate-
gies, the extended relational system requires min{6 +
z /1000 + y /1000 + z, 3 + z /1000 + z} reads.

5.5 Effects on Space Utilization

Assume that the database contains 4 million books,
that the average title is 45 characters long, and that
the average title keyword is 9 characters long; we as-
sume 5 keywords per title on average. Assume further
that about one million unique title keywords occur in
the database. There are 20 million occurrences of title
keyterms. (These values are consistent with actual ob-
served figures for bibliographic databases of this size,
such as the University of California’s MELVYL®online
catalog [Lynch 1987].) We analyze the space required
in order to provide an index on title keyterms.

The inverted-file system will store every title
keyterm occurrence in its record in the data records

(20 million * 9 bytes), the unique title keywords in the
index (1 million * 9 bytes), and 20 million pointers in
the index. This totals 215MB.

Standard INGRES will require 24 milion BOOK-
IDs to connect the TITLE-KEYWORDS and BOOKS
relations (20 million in TITLE-KEYWORDS and 4 mil-
lion in BOOKS), plus one copy of the title keywords
(20 million * 9 bytes, or about one million * 9 bytes
if differential encoding is used). This totals 105MB if
differential encoding is wsed in the TITLE-KEYWORD
relation and 276MB if differential encoding is not used.

Standard DB2 will store an extra (differentially en-
coded) copy of the keywords in an index (89MB) and an
index for BOOKS on BOOK-ID (8 bytes * 4 million, or
32MB), for a total of 226MB if the TITLE-KEYWORD
relation is stored with differential encoding, and 397MB
if differential encoding is not used.

The extended relational system will store one mil-
lion * 9 bytes of keywords and 20 million # 4 bytes of
pointers (assuming a differcutial encoded index) for a
total of only 89MB.

6. Other Applications of User-Defined
Operators and Generalized Extended
Scecondary Indexing

The same need for lists of values derived from
colimns appears in many other contexts in biblio-
graphic databases. In this section we consider a few
of these situations.

6.1 Searchable vs. Displayable Forms

Typically, users want to search independently of case
and without regard to most punctuation, accent marks,
and special characters. In addition, when specifiying
full titles or subject headings, users want to search in-
dependently of the presence or absence of a leading
article. Thus, a second copy of each field in a bibli-
ographic record is normally maintained which has been
converted to a suitable form for matching against search
criteria entered by the user at a terminal, along with the
“full” field suitable for display to the user as a search
result. These two forms are called searchable and dis-
playable fields respectively. The precise conversion pro-
cess from displayable to searchable form is complex and
varies from system to system, but is similar to keyword
extraction. The searchable form of the field is derivable
from the displayable form (which must be retained in
the database) and its only purpose is to serve as an

315

access path into the database.

Tn a standard RDBMS ciic would construct the
BOOKS table as

CREATE TABLE BO:KS
(BOOK-ID INTEGER,
DISPLAYABLE-TITILE LONG VARCHAR,
SEARCHABLE-TITLE LONG VARCHAR,
other columns);

with an index on the SEARCHABLE-TITLE colnmn.
By defining a unary operator SEARCHABLE that re-
turns the searchable form of the string that is passed
as the function argument, this table could be simplified
by eliminating the SEARCHABLE-TITLE column and
creating an index:

DEFINE INDEX SEARCHABLE-TITLES ON BOOKS
(DISPLAYABLE-TITLE) OPERATOR SEARCHABLE;

Using this new operator, one can search for books con-
taining a given title through a query such as

SELECT % FROM BOOKS WHERE
SEARCHABLE (DISPLAYABLE~TITLE) =
"THE WINDS OF WAR";

6.2 Personal Name Indexing

(Personal) author names provide an interesting exam-
ple of a rather different keyword extraction algorithmn.
A tuple for a book usually will contain a full author
name, such as JOHN JACOB ASTOR, as an additional
field. A user can specify many forms of a name that
should match this author name, such as ASTOR; AS-
TOR,}.; ASTOR,J.J.; ASTOR,JOHN; ASTOR,JOHN
JACOB; or ASTOR,J. JACOB.

To support this type of access, a series of “name
keywords” are extracted from each name in the
database using a rather complex algorithm [DLA 1987].
Each keyword that is not from the last name is pre-
fixed with a character that cannot occur in a name
(the symbol @ is used in the example below); these key-
words denote initials, first names, and middle names.
The number of prefix characters gives the “type” of
the extracted keyword (e.g., one for first initial or
first name, three for middle name, etc.). Essentially,
these special characters are used to avoid requiring
separate indices on first name, first initial, middle
name, first and middle initials, etc. For example,
the name above might produce the name keywords:

ASTOR,@J),@JOHN,@@J]J,@@Q@JACOB. Clearly, this

personal name keyword cxtraction can be implemented
by a user-defined operator, say NAMEKT, where
NAMEKT(“JOHN JACOB ASTOR”) == {“ASTOR”,
“@y, ‘@JOHN", “GajJJ”, “QeQJACOD”}.

When various forms of the name are cncountered
by the user interface, the interface generates name key-
words as follows:

Name entered by user Name keywords generated

ASTOR,J ASTOR,@]J
ASTOR,JJ ASTOR,@@JJ
ASTOR,JOHN ASTOR,@JOIIN
ASTOR, ASTOR,QJOHN,
JOHN JACOB @@QJACOB

Searches for personal names result in predicates of the
form (NAMEKT(AUTHOR) = name-keyword) being
included in the query constructed by the user interface,
with one predicate for each name keyword generated by
the user interface. For example, for the end-user query

FIND AUTHOR ASTOR, J

the user interface will generate two name keywords for
“ASTOR” and “@J” and construct the query

SELECT » FROM BOOKS WHERE
NAMEKT (AUTHOR) “"ASTOR"
AND NAMEKT(AUTHOR) = "“@J*;

7. Conclusions

The extensions to indexing proposed in this paper en-
able a large class of user-defined operators to be sup-
ported by indices. Additional generalizations support-
ing even larger classes of operators are described in
[Lynch 1987]; space limitations preclude a discussion
of these generalizations here. These extensions effi-
cient evaluation of queries containing predicates that
involve such operators. The extensions are essential for
the efficient support of large text-oriented by RDBMSs
and additionally offer great space savings for textual
databases. The proposed extensions also fit well with
proposals for set-valued columns. When complemented
by proper query optimization methods [Lynch 1987]
they also offer substantial gains in query execution
performance. Some rethinking of optimization strate-
gies becomes necessary when user-defined indexing is

316

used - ith textual databares, however, since it replaces
multirelation joins {which are extensively optimized
by most »ystems) with simpler single-relation queries
(which historically have received less attention as a tar-
get for optimization).

References

[CCA 1986] Computer Corporation of America. Model
204 System Overview (Cambridge, MA: Computer Cor-
poration of America, 1986).

[Carey & DeWitt 1985] Carey, Michael J. and De-
Witt, David J. “Extensible Database Systems,” in Pro-
ceedings, 1st Int rnational Workshop on Expert Data
Bases, Kiowa, SC, October 1984.

[Carey et al. 1986a] Carey, Michael J.; DeWitt, David
J.; Richardson, Joel E.; and Shekita, Eugene J. “Ob-
ject and File Management in the EXODUS Extensible
Database Management System,” in Proceedings, 12th
International Conference On Very Large Databases,
Kyoto, Japan, August 1986, pp. 91-100.

[Carey et al. 1986b] Carey, Michael J.; DeWitt, David
J.; Frank, Daniel; Goetz, Graefe; Richardson, Joel E;;
Shckita, Eugene J.; and Muralikrishna, M. “The Archi-
tecture of the EXODUS Extensible DBMS,” in Proceed-
ings, 1986 International Workshop on Object-Oriented
Database Systems, Pacific Grove, CA, September 1986.

[Crawford 1981] Crawford, Robert G. “The Relational
Model in Information Retrieval,” Journal of the Amer-
ican Soctety for Information Science 32 (1981), pp. 51—
64.

[Dadam et al. 1987] Dadam, P.; Duespert, K.; Ander-
son, F.; Blanken, H.; Erbe, R.; Guenauer, J.; Lum, V,;
Pistor, P.; and Walch, G. “A DBMS Prototype to Sup-
port Extended NF? Relations: An Integrated View on
Flat Tables and Hierarchies,” in Proceedings, SIGMOD
‘86, pp. 356-364.

[DLA 1987} Division of Library Automation. MELVYL
Online Catalog Reference Manual (Berkeley, CA: Divi-
sion of Library Automation, University of California,
1987).

[Kropp, et al. 1979] Kropp, D.; Schek, H-J.; Walch, G.
“Text Field Indexing,” Datenbank-technologie (German
Chapter of the ACM) September 21-22, 1979, pp. 101-
115.

[Lindsay ct al. 1987] Lindsay, Bruce; McPherson, John;
and Pirahesh, Hamid, “A Data Management Exten-
sion Architecture,” in Proceedings, SIGMOD ‘87, San
Francisco, CA, May 1987, pp. 220--226.

{Lynch 1987] Lynch, Clifford A. Eztending Relational
Database Management Systems for Information Re-
trieval Applications, Ph.D. Thesis (Berkeley, CA: De-
partment of Klectrical Engineering and Computer Sci-
ences, University of California, Berkeley 1987).

[Macleod 1979] Macleod, Ian A. “SEQUEL as a Lan-
guage for Document Retrieval,” Journal of the Amer:-
can Society for Information Science 30 (1975), pp. 243-
247.

[Macleod & Crawford 1983] Macleod, Ian A. and Craw-
ford, Robert G. “Document Retrieval as a Database
Application,” Information Technology: Research and
Development 2 (1983), pp. 43-60.

[Ong et al. 1984] Ong, J.; Fogg, D.; and Stonebraker,
M. “Implementation of Data Abstraction in the Re-
lational Database System INGRES,” SIGMOD Record
14:1 (March 1984), pp. 1-14. [Osborn & Heaven 1986]
Osborn, Sylvia L. and Heaven, T.E. “The Design of a
Relational Database System with Abstract Datatypes
for Domains,” ACM Transactions on Database Man-
agement 11:3 (September 1986), pp. 357-373.

[Schek 1978] Schek, H-J. “The Reference String Index-
ing Method,” Information Systems Methodology, Pro-
ceedings, 2nd Conference in Informatics, Venice, Octo-
ber 10-112, 1978, pp. 432-459. '

[Schek 1981] Schek, H-J. “Methods for the Administra-
tion of Textual Data in Database Systems,” Informa-
tion Retrieval Research, Oddy, R.N.; Robertson, S.E.;
Van Rijsbergen, C.J.; and Williams, P.W. (eds.) (Lon-
don, England: Butterworths, 1981), pp. 218-235.

[Schek and Scholl 1986] Schek, H-J. and Scholl,
M.H. “The Relational Model with Relation-Valued At-
tributes,” Informations Systems 11:2 (1986), pp. 137-
147.

[Schwarz et al. 1986] Schwarz, P.; Chang, W.; Frey-
tag, J.C.; Lohman, G.; McPherson, J.; Mohan, C,;
and Pirahesh, H. “Extensibility in the STARBURST
Database System,” in Proceedings, 1986 International
Workshop on Object-Oriented Database Systems, Pa-
cific Grove, CA, September 1986, pp. 85-92.

317

[Selinger et al. 1979] Selinger, Patricia Griffiths; Astra-
han, M.M.; Chamberlin, D.D.; Lorie, R.A.; and Price,
T.G. “Access Path Sclection in a Relational Datahase
Management System,” in Procecedings, SIGMOD ‘79
(1979), pp. 23-34.

[Software AG 1982] Software AG of North America, Inc.
ADABAS Introduction Manual (Reston, VA: Software
AG of North America, Inc., October 1982).

[Stonebraker 1986] Stonebraker, Michael. “The Inclu-
sion of New Types in Relational Data Base Systems,”
in Proceedings, 2nd International Conference on Data
Base Fngineering, Los Angeles, CA, February 1986.

[Stonebraker et al. 1976] Stonebraker, Michael; Kreps,
Peter; Wong, Eugene; and Held, Gerald. “The Design
and Implementation of INGRES,” ACM Transactions
on Database Systems, 1:3 (September 1976), pp 189-
222. Also in The INGRES Papers: Anatomy of a Re-
lational Database System, Stonebraker, Michael (ed.)
(Reading, MA: Addison-Wesley Publishing Co., 1986),
pp- 5-45.

[Stonebraker et al. 1983a] Stonebraker, Michael;
Rubenstein, Brad; and Guttman, Antonin. “Appli-
cation of Abstract Data Types and Abstract Indices
to CAD Data Bases,” in Proceedings, Engineering Ap-
plications Stream of 1988 Data Base Week, San Jose,
CA, May 1983. Alsoin The INGRES Papers: Anatomy
of a Relational Database System, Stonebraker, Michael
(ed.) (Reading, MA: Addison-Wesley Publishing Co.,
1986), pp. 317-333.

[Stonebraker et al. 1983b] Stonebraker, Michael; Stet-
tner, Heidi; Kalash, Joseph; Guttman, Antonin; and
Lynn, Nadene. “Document Processing in a Relational
Database,” ACM Transactions on Office Information
Systems 1:2 {April 1983). Also in The INGRES Pa-
pers: Anatomy of a Relational Database System, Stone-
braker, Michael (ed.) (Reading, MA: Addison-Wesley
Publishing Co., 1986), pp. 357-375.

[Stonebraker & Rowe 1985] Stonebraker, Michael and
Rowe, Lawrence A. “The Design of POSTGRES,”
in Proceedings, SIGMOD ‘86, Washington, DC, May
1986, pp. 340-355.

[Zaniolo 1983] Zaniolo, Carlo. “The Database Lan-
guage GEM,” in Proceedings, SIGMOD ‘83, pp. 207-
218.

