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Abstract 

In order to handle spatial data efficiently, aa re- 
quired in computer aided design and g-data ap 
plications, a database management system (DBMS) 
needs an access method that will help it retrieve 
data items quickly according to their spatial loca- 
tion. In this paper we present a classification of 
existing spatial access methods and show that they 
use one of the following three techniques: clipping, 
overlapping regions, and transformation. From a 
practical point of view we provide a tool box sup- 
porting simple design of a spatial access method for 
a given point access method using one of the above 
techniques. We analyze the technique of transfor- 
mation in more detail and show that our new con- 
cept of asymmetric partitioning is more retrieval 
efficient than the traditional symmetric approach. 
Furthermore we suggest a hybrid method combin- 
ing the techniques of overlapping regions and trans- 
formation and provide an analysis and comparison 
of our new method. For data for which an analysis 
of R- and R+-trees was available, these comparisons 
demonstrate a superiority of our scheme. 

1 Introduction 

Access methods for secondary storage which allow efficient 
manipulation of large amounts of records are an essential 
part of a database management system (DBMS). In tra- 
ditional applications, objects are represented by records, 
which are d-dimensional points, d 2 1, and thus point 
access methods (PAMs) are required. We distinguish ac- 
cess methods for primary keys (one-dimensional points) 
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and access methods for secondary keys (multidimensional 
points). 

However, it turned out that PAM are not sufficient for 
applications like computer aided design ([SRG 831, [MT 83]), 
automatic generation of maps POD 871, or image pro- 
cessing [R.L 851. In particular, new access methods are 
necessary for the organization of multidimensional spatial 
objects, like rectangles, polygons, circles, etc. . We call 
these methods spatial access methods (SAMS). Addition- 
ally, queries asking for spatial objects seem to be more 
complex than queries asking for points. For instance a 
typical spatial query is the point-query: Given a point, 
find all spatial objects that contain the point. 

In this paper we will deal with SAMs baaed on multi- 
dimensional dynamic hashing schemes (MDHs). We will 
show that MDHs without directory, whose most efficient 
representative is PLOP-Hashing [KS 881, can easily be ex- 
tended to very efficient SAMs. Moreover, our new method 
combines different techniques of various previous SAMs. 
Particularly, our scheme generalizes on one hand the con- 
cept of transformation of spatial objects [NH 851, on the 
other hand the basic concept of R-trees [Gut 841. 

In the following we assume that d-dimensional spatial 
objects are in the d-dimensional unit cube Ed = [0, l)d, d 1 
1. Obviously, this can easily be fulfilled by simple trans- 
formation. The problem of storing d-dimensional spatial 
objects can be reduced to handle d-dim. rectangles by 
finding the minimum bounding rectangle (MBR) of a spa- 
tial object. Moreover we will assume that the sides of the 
MB& are parallel to the axis of the data space Ed. 

The remainder of this paper is organized as follows. 
In section 2 we briefly review one of the most efficient 
MDH schemes without directory, called multidimensional 
dynamic piecewise linear order preserving hashing, in short 
PLOP-Hashing. For a more complete discussion we refer 
to [KS 881. Then in section 3 we will present a classifica- 
tion of existing SAMs baaed on three techniques: clipping, 
overlapping regions, and transformation. We discuss the 
properties of schemes using these techniques. In section 4 
we apply the technique of overlapping regions to PLOP- 
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Hashing. In section 5 we apply the transformation and 
overlapping region technique to PLOP-Hashing which re- 
sults in a hybrid SAM. The most important contribution 
of this paper is the design of an asymmetric partitioning 
and an analysis thereof. Section 6 concludes the paper and 
gives some aspects of future work. 

2 Piecewise Linear Order Preserv- 
ing Hashing 

The basic idea of multidimensional PAMs is to divide the 
data space into disjoint regions. The objects contained in 
one region are stored in one bucket, or in a short chain 
of buckets. In order to support a dynamic adaptation, 
the number of disjoint regions depends on the number of 
records. MDH schemes commonly partition the data space 
using a dynamic grid. 

In the past few years a large spectrum of MDH schemes 
was proposed. MDH schemes fall in one of two categories: 
those that do not use a directory and those that use a 
directory. There is a large variety of MDH schemes with 
directory, like the grid file [NHS 841, multidimensional ex- 
tendible hashing [Oto 841 or different types of hash trees 
([Oto 861, [Ouk 851, [WK 851). In all these schemes the 
directory resides fully or partially on secondary storage. 

In this section we will review PLOP-Hashing, a MDH 
scheme without directory. In [KS 881 we presented PLOP- 
Hashing in detail and reported on an experimental per- 
formance comparison with the grid file [NHS 841, where 
PLOP-Hashing turned out to be the superior scheme. 

MDH schemes without a directory are based on (one- 
dimensional) linear hashing [Lit SO]. Using a hashing func- 
tion H, we compute the address of a short chain of buckets, 
where the set of addresses {O,..,m-1) is time varying. Giv- 
ing up the directory we have to allow overflow records, i.e. 
records which cannot be placed in the first bucket of the 
corresponding chain, called primary bucket. The overflow 
records are stored in a so-called secondary bucket which 
is chained with the primary bucket. The primary bucket 
resides in the primary file, the secondary bucket in the 
secondary file. This very simple type of treating overflow 
records is called bucket chaining. One chain of buckets is 
also called a page. 

Two basically different order preserving address func- 
tions have been suggested for MDH schemes without di- 
rectory. One of them is the interpolation function [Bur 831 
which generates a one-dimensional key from a d-attribute 
composite key using z-ordering [OM 841 and then computes 
the address using a one dimensional order preserving hash- 
ing function. The other address function is the one used 

Figure 1: Partition of the data space [0, 1)’ generated by 
PLOP-Hashing 

in MOLHPE [KS 861 and quantile-hashing [KS 871 which 
was originally suggested to compute directory addresses in 
multidimensional extendible hashing [Oto 841. In our ap- 
proach we will use this address function to compute page 
addresses. 

As already indicated, the data space is partitioned by 
an orthogonal grid, see figure 1. The partitioning points 
of the grid on each axis are defined by d binary trees, 
d 2 1, comparable to the scales of the grid file. Each in- 
ner node of such a binary tree stores a partitioning point 
representing a (d-l)-dimensional hype&me that cuts the 
space into two rectangular shaped regions. Each leaf is as- 
sociated with a d-dimensional slice S(i,j) of the data space 
which is bounded by two neighboring partioning hyper- 
planes, 0 5 i < mj, 1 5 j 5 d, where mj is the number 
of slices corresponding to the jth axis. Such a slice S(i, 
j) is addressed by the index i stored in the corresponding 
leaf, 0 2 i < mj, 1 < j 5 d. The whole data space is 
the union of d-dimensional rectangles which are not cut by 
any partitioning hyperplane and are therefore called cells. 
All the d-dimensional points lying in one cell are stored in 
one page. The address of that page is computed using the 
index ij of all slices S(ij, j), whose intersection results in 
the corresponding cell, 0 5 ij < mj, 1 5 j 5 d. In figure 1, 
the addresses of the pages are depicted in the correspond- 
ing cells. For example key K = (0.2,O.S) belongs to slices 
S(l,l) and S(2,2), and therefore K is stored in the page 
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with address 9. Additionally to an index i, each leaf con- 
tains the number d of points which are in the slice S(i, j), 
0 5 i < mj, 1 < j 5 d. This information is used to expand 
the file in a piecewise linear fashion. 

Before explaining the principle of piecewise linear ex- 
pansions, let us introduce some further notations. The file 
size m is given by the number of pages in the file. The level 
L = [log, mJ indicates how often the file size has doubled, 
assuming a file size of one page at the beginning. More- 
over the level Zj of axis j, which is given by Ij = [log, mj] , 
1 5 j < d, specifics how often the number of slices of axis j 
has doubled. For example in figure 1 the file has 16 pages 
and therefore the level L is 4, II = 2 and 1, = 2. During one 
doubling of the file size the number of pages increases from 
2L to 2Lt’ - 1. During this process, one axis s, 1 5 8 5 d 
called split axis is selected in which the expansions are car- 
ried out. Let us assume that the split axis s is chosen in 
a cyclic order, i.e. s = L MOD d + 1. Then our scheme 
partitions the data space -metrically, i.e. ]li - lj] 5 1, 
~<i,j<d. 

The pages of the file are arranged in groups go, .., g,,,,-1, 
where the union of the cells of one group gj is the slice 
S(j,s), 0 5 j c m,. A rule, called control function, triggers 
the expansion of the file by another group of pages, respec- 
tively slice. First one group of pages will be selected by 
the control function (e.g. if the load factor of this group 
is more than 100%). We have illustrated this situation on 
the left side of figure 2, where we have a file of 4 pages. 
Thus the level L = 2 and s denotes the first axis. Now we 
consider two groups gc = { 0,2} and gr = { 1,3}. Assum- 
ing zs > 26 (b = capacity of a bucket), i.e. the group go 
contains more than 2b records, the control function calls 
for an expansion of the file, particularly of the group go. 
Thus the slice S(O,l) will be cut into two by inserting a 
new partitioning point into the binary tree of the first axis 
and expanding the file by the group gz = {4,5), see the 
right side of figure 2. 

The expansion of one group does not proceed in one 
macro step, but step by step using an expansion pointer 
(epr, ..,epd), which indicates the page to be expanded next. 
Thus the split group will be expanded linearly as for linear 
hashing [Lit SO], and the whole file will be expanded in a 
piecewise linear fashion. 

In addition to the expansion of the file we have con- 
sidered contraction and reorganization. As for expansion 
we have a control function, which triggers merging of two 
groups belonging to neighboring slices into one group. We 
have chosen the following control function for contraction: 
Merge the pair of neighboring groups with the minimum 
number of records, if the load factor is below 45%. 

Until now, we have described PLOP-Hashing as a sym- 

Figure 2 Expansion of a file organized by PLOP-Hashing 

metric MDH scheme without directory. However, PLOP- 
Hashing allows a dynamic B,symmetric partitioning of the 
data space. In this sense “dynamic” means that after dou- 
bling of the file size the expansion axis can be chosen in an 
arbitrary way yielding an asymmetric partition. Moreover 
considering an expansion of the file, PLOP-Hashing allows 
distributing the records of c slices over c+l slices, c > 0, 
and thus supports partial expansions ([Lar 801, [KS 861). 

3 An overview of spatial access 
methods 

In this section we will provide an overview of spatial access 
methods (SAMS) which are based on the approximation of 
a complex spatial object by the minimal bounding rectan- 
gle (MBR) with th e sides of the rectangle parallel to the 
sxes of the data space. In figure 3, polygons are illustrated 
together with their MBRs in the 2dimensional data space 
[O,l)‘. The most important property of this simple ap- 
proximation is that a complex object is represented by a 
limited number of bytes. Although a lot of information is 
lost, MBRs of spatial objects preserve the most essential 
geometric properties of the object, i.e. the location of the 
object and the extension of the object in each axis. 

There are other proposals using more complex approx- 
imations of spatial objects. The most interesting of them, 
which is particularly designed for the organization of data 
in secondary memory, is used in the PROBEproject [Ore 861. 
Similar to quad- and octtrees [Sam 851, a grid is assumed 
covering the spatial object where all cells of the grid inter- 
secting the object are stored in a file. Combining cells to 
rectangles and applying z-order [OM 84) to identify these 
rectangles, results in a more compressed representation of 
objects than in case of octtrees. To support clustering of 
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Figure 3: Some polygons and their corresponding MBRs 

spatial objects, all corresponding rectangles of the object 
are stored in a separate file for this particular object. A 
minimal bounding rectangle characterizes an object using 
a short record. Thus it is possible to organize the ap- 
proximation of different objects in a single file. For every 
minimal bounding rectangle of an object, a pointer refers 
to a file where a more exact approximation or the exact 
description of the object is stored. 

SAMs organizing minimal bounding rectangles of ob- 
jects can be classified into three groups. Each of these 
groups is characterized by a special technique that allows 
an extension of a multidimensional point access method 
(PAM) to a multidimensional SAM. Thus the performance 
of such SAMs depends on the underlying PAM and de- 
pends on the applied technique. In the remainder of this 
section we will essentially limit our discussion to the prop- 
erties of these techniques. 

In the following, we consider several so-called spatial 
queries. The first two queries should be supported by each 
SAM : 

1. point query : 
Given a point P E Ed, find all d-dim. rectangles R 
in the file with P E R 

2. rectangle intersection : 
Given a d-dim. rectangle S s Ed, find all d-dim. 
rectangles R in the file with S I-I R # 8 

3. rectangle enclosure : 
Given a d-dim. rectangle S c Ed, find all d-dim. 
rectangles R in the file with R > S 

4. rectangle containment : 
Given a d-dim. rectangle S s Ed, find all d-dim. 
rectangles R in the file with R E S 

5. volume queries : 
Given u E (O,l), find all d-dim. rectangles R in the 
file with volume equal to v. 

As demonstrated in [HKSS 881, queries (3) - (5) are very 
important to recognize similar CAD-objects in CAD data” 
In order to maintain low insertion costs, exact match queries 
should also be supported efficiently. In particular, a SAM 
should be dynamic, i.e. insertions and deletions should 
not reduce retrieval performance. In analogy to PAMs it 
is important that retrieval performance should essentially 
be independent of the distribution of the spatial objects. 
These last two aspects usually depend on the underlying 
PAM and are therefore not discussed in detail in this sec- 
tion. 

Additionally to the distribution of objects the density 
O(P) of a point P E Ed can influence retrieval perfor- 
mance, where the density O(P) is the number of rectangles 
in the file containing P E Ed. The global density of a file 
is given by 

0 = &%0(P) (1) 

The value of 0 heavily depends on the particular applica- 
tion. Let us consider two applications in the area of car- 
tography, where we organize polygons using the minimal 
bounding rectangles (MBR) of the polygons: 

1. storing contour lines, which are used in topographical 
maps, leads to a high global density 

2. storing limits of lots, which are used in conventional 
maps, commonly leads to a low density 

3.1 Clipping 

Clipping can easily be explained by describing the inser- 
tion of a new rectangle. Assuming a partition of the data 
space into disjoint regions, an insertion of a rectangle will 
be performed like an insertion of a point. Problems will 
only occur, if a rectangle R intersects with more than one 
disjoint region. Clipping of a rectangle means that R is 
partitioned into a minimal set of rectangles {R’, .., Rg}, 
where 

R=fiR’, q>l 
i=l 

Every rectangle R’, 1 5 i 5 q, intersects. with exactly 
one disjoint region. Now we can insert these q rectangles 
R’ , .., E1p into the fle. 

In figure 4 we have depicted the partition of the data 
space after insertion of ten 2-dimensional rectangles RI, .., RIO 
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Figure 4: Insertion of ten P-dim. rectangles RI, .., RIO into 
a file using clipping based on PLOP-Hashing 

into the file using clipping based on PLOP-Hashing. The 
file consists of six pages, three slices vertical to axis 1 and 
two slices vertical to axis 2. Rectangles R5 and Rs are 
partitioned into two, rectangle Rg is partitioned into four 
rectangles. 
The most important advantage of schemes using clipping 

is that they are really extensions of the underlying PAM. If 
such a scheme organizes only point data, it will inherit all 
the properties of the underlying PAM. Additionally, d-dim. 
points and d-dim. rectangles can be organized together in 
one file. 

However, a drawback is obviously the duplication of 
rectangles in the Iile, for instance rectangle Rg must be 
stored four times in our example, see figure 4. Thus stor- 
age utilization will be indirectly reduced. Deletions and 
insertions require more disk accesses than in case of point 
data. In particular, a rectangle must be inserted in all 
buckets where the corresponding region intersects the rect- 
angle. Moreover, assuming a bucket capacity of b records, 
b > 1, and an underlying point access method allowing no 
overflow records, all such SAMs based on clipping require 
that the following condition 2 is fulfilled 

(2) 

This phenomenon can be easily illustrated by an ex- 
ample. Let us assume b=2 and three P-dim. rectangles 
RI n R2 n R3 # 8. Because overflow records are avoided, 
these. rectangles must be stored on several buckets. In par- 
ticular, a hyperplane must exist that separates these rect- 

angles into two subsets. This hyperplane requires clipping 
at most one of these rectangles. Therefore at least on the 
left or on the right of the hyperplane, there will be again 
three rectangles with a nonempty common intersection. 

PLOP-Hashing allows overflow records and therefore 
the functionality of the derived SAM is guaranteed. How- 
ever, retrieval performance can suffers from the redun- 
dance introduced by clipping. 

Assuming condition 2 is fulfilled, let us now consider 
spatial queries. To answer a point query (1) and a rect- 
angle enclosure query (3) only one data page must be ac- 
cessed. Obviously, this behavior makes such schemes very 
attractive. Assuming the same search rectangle for query 2 
and query 4 the same data buckets must be accessed (and 
thus the same number of disk accesses is required) although 
the number of answers of query 4 is usually much lower 
than of query 2. In case of query 4, a lot of records, so- 
called false drops, must be accessed which do not satisfy 
the query. To reduce disk accesses for these queries, rect- 
angles that are completely contained in an arbitrary query 
rectangle must be separated from all other rectangles with 
a nonempty intersection outside of the query rectangle. If 
this requirement is fulfilled, search regions will be disjoint 
and thus the number of false drops can be reduced. Let 
us now consider query 5. This type of query cannot be 
supported in anyway by a SAM based on clipping, i.e such 
a query can only be answered, if all data pages in the file 
sre accessed. 

It is important to realize that clipping can be applied 
to every multidimensional PAM. In particular, the R+-tree 
[SRF 871, Box - Excel1 [TS 821 and the multi layer grid 
file [SW 881 are SAMs applying the technique of clipping 
based on the K-D-B-tree [Rob 811, Excel1 [TS 82) and the 
grid file [NHS 841, respectively. All these underlying PAMs 
avoids overflow records and therefore the functionality of 
the corresponding SAM is limited to applications where 
condition 2 is fuhYled. 

3.2 Overlapping Region Schemes 

Such as clipping, overlapping region schemes (OR - schemes) 
organize d-dimensional rectangles using a d-dimensional 
PAM. For the following considerations we define the region 
of a bucket as the minimal bounding box of the rectangles 
belonging to the bucket. Contrary to clipping, OR-schemes 
allow data buckets where the corresponding regions have 
a common overlap. We will discuss the principle of OR- 
schemes by a short introduction to the R-tree [Gut 841, 
one of the most popular SAMs. 

The R-tree is a balanced tree generalizing the B+-tree 
concept [Corn 791 to spatial objects. Storage utilization is 
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Figure 5: Organization of some rectangles and the corre- 
sponding structure of the R-tree 

guaranteed to be above 50%. Minimal bounding rectangles 
of spatial objects are stored in the leaves of the tree, where 
each of the leaves corresponds to a data bucket. In an inner 
node of the tree there are tuples (R,p), where p is a pointer 
referring to a son and R is the minimal bounding rectangle 
of all rectangles in the corresponding son. Since clipping of 
rectangles is avoided, a rectangle is stored in exactly one of 
the data blocks. Thus overlapping regions of different data 
blocks are allowed for the organization of spatial objects. 

In figure 5 we have illustrated the structure of an R- 
tree and the partition of the corresponding data space. As 
demonstrated, the regions Sz and Ss have a non-empty 
common intersection. 

The advantage of OR-schemes is that storage utiliia- 
tion depends only on the underlying PAM, since every rect- 
angle is uniquely represented in the file. Thus the W-tree 
inherits the guarantee of at least 50% storage utilization 
to the R-tree. Another nice property is that, in analogy 
to clipping methods, d-dim. points and d-dim. rectangles 
can be organized together in one file. 

However, retrieval performance depends heavily on the 
amount of overlap. As demonstrated in [FSR 871, retrieval 

performance can degenerate, if rectangles with highly vary- 
ing volumes occur. Particularly to rmswer an exact match 
query more than one access to data buckets is usually re- 
quired. Obviously, this will increase costs for insertions 
and deletions. 

Let us now consider spatial queries as introduced at 
the beginning of this section. Depending on the amount of 
overlap, a point query requires more than one access to a 
data bucket and quite a few accesses to directory buckets. 
For example, assuming a point P E Sz f~ Sa in figure 5, 
the corresponding point query requires access to two data 
buckets. Similar to clipping schemes, both, a rectangle 
containment query and a rectangle intersection query re- 
quire access to the same data buckets. As mentioned, a 
separation of these different rectangles can improve per- 
formsnce. 

In [Ooi 871 overlapping regions is proposed for the kd- 
tree [Ben 751. In section 4 we will to apply the technique 
of overlapping regions to PLOP-Hashing. 

3.3 Transformation 

The basic idea of transformation-schemes (T-schemes) is 
to represent minimal bounding rectangles of multidimen- 
sional spatial objects by higher dimensional points. For 
instance, a 2dimensional rectangle R with sides parallel 
to the axis is represented by a I-dimensional point (center 
representation) 

(cl, ~2, el, 4 

where c = (cl, cz) E (0,l)’ is the center of the rectangle 
and e = (el,ez) E (0,0.5)’ is the distance of the center 
to the sides of the rectangle. As proposed by Nievergelt 
and Hinrichs [NH 851, these 4-dimensional points can be 
organized by the grid file [NHS 841, generally speaking by 
a multidimensional PAM. 

Another choice of parameters is the corner representa- 
tion, where a 2-dim. rectangle can be represented by its 
lower left comer (Zi, Iz) E [O, 1)” and its upper right comer 
(ui, uz) E [O, 1)‘. However, the choice of the parameters 
can influence performance and characteristics of the SAM. 
The basic advantage of the center representation is that 
location parameters, like the center of a rectangle, are dis- 
tinct from extension parameters. Moreover, the center of 
a rectangle seems to be the best location parameter, since 
the distance to all other points within the rectangle is min- 
imized. 

Due to the illustration of examples, in the following we 
limit our considerations to segments (l-dim. rectangles). 
According to the different representations, a segment can 
be described by (c,e), where c E (0,l) is the center and 
e E (0,0.5) is half of the length of the segment or by (I, u), 
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Figure 6: Transformation of segments Ij into P-dim. points 
I” = (cj, ej) (center representation) and Sj = (Ij, uj) (cor- 
ner representation), j = 1,..,4 

where J E [O,l), and ue(O,l) is the left and right limit 
of the segment, respectively. Let us mention that most 
PAMs - in particular PAMs based on hashing, such as the 
grid file [NHS 841, hashtrees [Oto 861 or quantile hashing 
[KS 871 - assume a rectangular shaped data space. Re- 
trieval performance and storage utilization will decrease, 
if the data space contains regions where no data occurs, 
socalled dead regions . Let us consider the corner repre- 
sentation, then the 2-dim. data space must be the unit 
square [0, 1)z. However data occurs only above the diag- 
onal, because J < 21. Thus in case of segments in half of 
the data space no data occurs and for 3-dimensional rect- 
angles only l/8 of the data space can contain data. Using 
the center representation, the S-dim. data space is given 
by (0,l) x (0,0.5). As depicted in figure 6 data can only 
occur in the triangular shaped subspace 

T = {(c, e) 1 e < min(c, 1.0 - c), c E (0,l.O) } 

However, since in common applications the length of seg- 
ments is quite short with respect to the unit segment [OJ), 
the subspace T can be reduced to a trapezoid formed sub 
space (also called the real data space) 

T emm = { (c,e) 1 e < min(c, 1.0 - c,emaz) ,c E (0,l.O)) 

where emaz E (0,0.5) is the maximum length of a segment 
presently in the file. For emax k: 0 the real data space 
corresponds approximately to the rectangular shaped data 
space (0,l) X (0, emax). 

Assuming segments, spatial queries can be illustrated 
in 2-dim. data space. For a segment S, we have depicted in 
figure 7 the disjoint regions where segments R occur with 
R > S, R C S and R n S # 0. Obviously, T-schemes 
have the advantage that the rectangle enclosure query is 
particularly supported, i.e all answers for the query are in a 
cone shaped region of the data space (0,l) x (0,emax). In 
a similar way, the search region of point queries, rectangle 
intersection queries and rectangle containment queries can 
be represented as cone shaped subspace of the data space, 

t extension 

C 1-O center 

Figure 7: Assuming the center representation and a seg- 
ment S=(c,e), the regions where are all segments R with 
R > S,R c S are disjoint, and the region where are all 
segments R with R n S # 0 contains the other “search” 
regions 

see figure 7. An additional advantage of T-schemes is that 
queries are supported asking for the volume of rectangles 
or for the length of the sides of rectangles. 

In analogy to OR-schemes, rectangles are uniquely rep- 
resented in the file. Applications are not restricted to 
those fulfilling a particular condition such as for clipping 
schemes. Additionally, all properties of the underlying 
PAM are inherited to the T-scheme. 

The main drawback is that d-dimensional rectangles 
lying close together are spread out in the 2d-dimensional 
data space. This will typically occur if rectangles have 
strongly varying volumes. However, a large distance of 
segments in the transformed data space does not imply 
that these rectangles are stored far away from each other 
in the file. 

The major problem of T-schemes is how we can esti- 
mate the value of emax to reduce the data space as much 
aa possible. For a motivation of the problem let us con- 
sider the grid file [NHS 841. During the initialization of 
the grid file the user must fix the data space for the whole 
life cycle of the file. At the point of initialization, the user 
often has no knowledge of the data to arrive later. Thus, 
typically the value of emax will be highly overestimated or 
‘even emax will be set to the possible maximum value of 
the domain. In the following sections, we will demonstrate 
how we can avoid these drawbacks of existing T-schemes 
using PLOP-Hashing and the transformation technique. 

4 Overlapping Regions applied to 
PLOP-Hashing 

In this section we will propose a SAM based on PLOP- 
Hashing and the technique of overlapping regions. As 
mentioned in section 2, PLOP-Hashing organizes the data 
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space using a dynamic grid. The d-dim. grid is specified 
by d binary trees which reside in main memory. In the 
leaves of the binary trees we store information to compute 
addresses and additionally we store the number of records 
in a slice to control expansion. Let us consider a-dim. 
rectangles given by 

(cl,% el, e2) 

where c = (cr,cz) E (0,l)’ is the center of the rectangle 
and e = (el,ez) E (0,0.5)2 is the distance of c to the sides 
of the rectangle. The center of the rectangle uniquely de- 
termines the address of the page storing the rectangle. The 
address is independent of the distance e. We will see that 
e determines the degree of overlap. 

Additionally to PLOP-Hashing used as a PAM, we 
store in the leaf of the j-th binary tree corresponding to 
slice S(i,j) the minimum min(i,j) and the maximum max(i,j), 
0 5 i < mj, 1 5 j 5 d, where 

min(i, j) := min {I iI= cj - ej, R = (c, e) is a rectangle 
in the file with c E S(i, j)} 

max(i, j) := max {I II= cj + ej, R = (c, e) is a rectangle 
in the file with c E S(i, j)} 

This additional information is stored in the leaf corre- 
sponding to the slice S&j). To give an intuitive under- 
standing of this method, we will consider the example il- 
lustrated in figure 8. The data space is divided by the grid 
in six disjoint regions, each corresponding to a page on 
secondary storage. In the snapshot depicted in figure 8 we 
have inserted 10 rectangles Rl,..,Rlo in the fde, the same 
rectangles as in the example of section 3.1 . Although rect- 
angle Re intersects 4 grid cells, its address is determined 
by its center and thus R.s is stored in the same page ss R3. 

Now let us consider insertion of the rectangle RI1 = 
(cll,ell), where cri = (0.55, 0.35) and err = (0.15,0.05). 
We proceed as follows: 

1. Searching the binary trees using the components of 
cl1 yields the P-dim. index il = 1 (see figure 8) and 
is = 0, and thus yields the address of the page, where 
the rectangle has to be inserted. 

2. Since 0.4 = cir - err < m&(1,1) = 0.588, min(l,l) 
has to be updated (min(l,l) := 0.4). 

3. Additionally max(O,2) has to be updated (max(O,2) 
:= 0.4). 

Similar to the R-tree, the cost of a point query is usu- 
ally more than one disk access. Considering performance 
of exact match queries, insertions and deletions, in our 
method one page access suffices whereas the number of 

I Y 
W-J 

Figure 8: OR-method applied to PLOP-Hashing with the 
binary trees shown 

disk accesses in the R-tree increases with increasing size of 
the rectangle. As in all schemes applying the OR-method, 
the performance of point and rectangle intersection queries 
in our scheme depends on the variation in the size of the 
rectangles. Insertion of some large rectangles may reduce 
the performance rapidly. We conclude that a combination 
of the technique of overlapping regions and a PAM based 
on an efficient MDH scheme is an interesting competitor 
to the R-tree. 

5 Asymmetric partioning of the 
data space 

In this section we will propose a variant of PLOP-Hashing 
suitable for organization of Sd-dimensional points, which 
are generated by transformation of d-dim. rectangles. Niev- 
ergelt and Hinrichs [NH 851 have proposed a similar scheme 
based on the grid file. However our scheme offers three 
essential improvements: the partition of the ‘real’ data 
space, the dynamic organization of each axis and the asym- 
metric partition of the data space. These three properties 
are discussed in the remainder of this section. We want to 
emphasize that property 2 and to a large portion property 
1 cannot be achieved in a MDH scheme with directory, like 
the grid file. 
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In the following, we consider the organization of seg- 
ments (one-dimensional rectangles) transformed into 2-dim. 
points (c,e) using the center representation, where c is the 
center of the segment, 0 < c < 1 and e is the distance of 
c to the margin, 0 < e < 0.5. As shown in section 3.3, we 
can reduce our data space to 

T emo2 = {(c,e) IO s c 2 1.0, 0 5 e 5 emaz} 

To maintain a dynamic organization of the c-axis, when 
the value of emax changes, we store for each slice of the 
c-axis the maximum e-value 

emaxi = max {e 1 I = (c, e) is a segment in the file 
with (c, e) E S(i, c)} 

where S(i,c) is the slice for index i in the c-axis, 0 5 i < m, 
and m, is the number of slices in the c-axis. Then emax is 
given by emax = max (emasil0 5 i < m,}. 

We emphasize that in case of the grid file the domain 
of the scales is fixed. The maximum and minimum of the 
domain must be chosen during the initialization of the file. 
Moreover the values of records which will be inserted in 
the file are unknown. To guarantee the functionality of 
the method, the maximum of the e-axis is highly overes- 
timated. Thus in the grid file empty data space where 
records do not occur is likely to be created. 

The knowledge of emax, the maximum in the e-axis, 
heavily influences the type of partitioning of the data space. 
PLOP-Hashing was proposed to partition the data space 
symmetrically (see section 2). Nevertheless, allowing ssym- 
metric partitions will improve retrieval performance. Let 
us consider an example, where emax x 0. Since segments 
are nearly reduced to one-dimensional points, a scheme 
which partitions only the c-axis (such as proposed in sec- 
tion 4), seems be more attractive than a scheme with a 
symmetric partition of the data space. 

5.1 Choice of the partition in case of uni- 
form distribution 

In the following, our goal is to minimize the number of 
disc accesses in a point query using PLOP-Hashing as un- 
derlying PAM. The above considerations indicate that the 
minimum will generally not be achieved for a symmetric 
partitioning of the center-axis and the extension-axis, i.e. 
the levels of both axes differ by at most one (to put it 
differently, the number of partitioning points in one axis 
is at most twice the number of partitioning points in the 
other axis). In this section we will optimize the degree of 
asymmetry of both axis, i.e. we will optimize levels I, and 
I, of the center-axis and extension-axis, respectively, for a 
given global level L. We will assume that the L-dimensional 
records (c,e) E T.,,, are uniformly distributed in the data 

emax J \ 

-I 
\/’ 

0 .25 P .5 .75 1.0 c 

Figure 9: A the with 16 pages and asymmetric partition 
of the data space Tern-, where L = 4, 1, = 3, 1, = 1, 
PC = {0,1/g ..,7/8, l}, P, = {O,emas/2, emax} 

sp~%m,. Obviously, this is not a realistic assumption. 
However, under this assumption we will be able to de- 
rive the difference in performance for schemes with sym- 
metric and asymmetric partition of the data space with 
analytic tools. Under the assumption of uniform distribu- 
tion, PLOP-Hashing partitions the data space in equidis- 
tant cells. 

Let us now consider a file organized by PLOP-Hashing, 
which consists of n records and 2” pages, L 1 0, where L 
is the level of the file. Thus the set PC of partitioning 
points of axis c is given by P’ := { i/2’, 1 0 5 i 5 21c} 
and the set P, of partitioning points of axis e is given by 
P, := {emaz * i/2’. I 0 5 i 5 2’e). The variables 1, and 
1, denote the level of the axis c and axis e, respectively. 
Then the level of the file is given by L = 1, + 1.. In figure 9 
we have illustrated the different terms. 

Our goal is to estimate the average number of disk ac- 
cesses for answering a point query or a rectangle inter- 
section query. In this report, we will only consider point 
queries. A generalization to more complex queries is obvi- 
ous. 

L&PEI en&o2 := [emax, 1.0 - emaz). We will ask for 
all segments containing this point P. Since P E I,,,, the 
region where answers can occur is a right-angled triangle. 
Assuming a uniform distribution the expected number of 
answers for a point query is emax * n. Now we calculate 
the number of cells which intersect with the search region. 
Thus we need the lengths Si, 1 5 i 5 2’0, of the line 
segments, which are obtained by intersection of the search 
region and the hyperplanes belonging to the partitioning 
points of the e-axis, see figure 9. Then we obtain Si = 2i * 
emax/2’., i = O,.., 2”. Thus the expected value Ei how 
often hyperplanes of axis c intersect the line segments is 
Ei = &*2” = 2i*emax*2’c-‘e, i = 0, ..,2”. The expected 
number A of grid cells, which intersect the search region is 
given by A = g!!l( Ei + 1) = emax * (2” + 2L) + 2’. . For 
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I:= I,, we obtain the formula depending on the variable 1: 

A( I) := emaz * (2’ + 2L) + 2L-’ 0 5 15 L (3) 

The minimum value lmin of the function A(1) can be com- 
puted using the derivation A’(1). Then we obtain by A’(l,a) 
= 0 

lmin = 1 fL - log, emax)/ 
ifemax * 2L < 1 
otherwise (4) 

The minimum number Amin := A’(lmin) of grid cells which 
intersect the search region is given by 

Ani* = 
1 

Zemax * 2L + 1 ifemax * 2L < 1 
emax * 2L + 2(emax * 2L)1/2 otherwise 

(5) 
Thus the number of disk accesses to answer a point query 
is given by A(l)*cl, where cl denotes the average number of 
buckets per chain (page). To represent our result (5) as a 
function of n, we derive the usual performance measure pm 
for a complex query which is given by the quotient of the 
average number of accessed candidates (including the false 
drops) and the average number of answers. Considering 
the average storage utilization su = n/(2L * b), we obtain 
for 2L * emax 2 1 

pm= 
(Ami, * ~1) * (b * SU) 

emax * n 
= cl + O(l/fi) (6) 

after insertion of formula (5) and further manipulations. 
This result is independent of the degree of overlap. The 

first term of the sum corresponds to the average chain 
length which will be almost 1 in case of uniform distri- 
bution. The second term express the additional overhead 
introduced by the margin of a search region which is also 
induced by the margin of a range query in a MDH scheme 
storing point objects. 

In order to compare the difference of the performance 
for schemes which partition the data space in a symmetric 
fashion and schemes which partition the data space in a 
optimal way, we will present some analytic results. 

In the following we assume a file of 2L, L > 0, pages, 
which are completely filled. Thus the number n of records 
in the file is n = 2L * b, where b is the capacity of a 
bucket. To compare the performance, we define the param- 
eter VAR = ( Asym - Amin )/ Asym, where Asym = A(L/2) 
is the number of cells intersecting the search region in case 
of a symmetric partition. 

In our first diagram of the appendix (figure lo), we 
have depicted As,,,,, and Amin depending on the level L of 
the file, where b = 50 and emax = l/256. The difference 
in performance is essential. After insertion of 51266 seg- 
ments, 8 grid cells intersect the search region, whereas for 

a symmetric partition 36 grid cells intersect the search re- 
gion. In figure 11 of the appendix, we have depicted the 
parameter VAR depending on the number of records. 

In [FSR 871 the performance of R-trees and R+-trees is 
analyzed for a special uniform distribution. Due to space 
limitations this distribution is not explained here. We have 
evaluated the performance in case of this distribution for 
our scheme and depict it in figure 12 and 13 of the ap- 
pendix. In figure 12 the number of segments n is fixed 
(100,000) and the length of the segments and thus the 
density 0 is varying. In figure 13 the density 0 is fixed 
(0~40) and the number of segments is varying. Both fig- 
ures show the number of disk accesses to answer a point 
query. These figures, which were originally presented in 
[FSR 871 without th e values of our scheme, demonstrate 
the superior behavior of our scheme compared to R-trees 
and R+-trees. 

These results demonstrate that for an efficient SAM 
based on transformation, we have to allow for asymmetric 
partitions. As mentioned before, a uniform distribution of 
segments is unlikely to occur in practice. Thus the results 
of this section are more of a theoretical nature. 

5.2 Choice of the partion in case of non- 
uniform distributions 

In this section we do not assume an uniform distribution as 
in section 3.1. Thus we cannot use formula (3) for deciding, 
how we should partition the data space T,,,. 

Let us now assume that the file consists of 2L pages 
and let us assume we have to decide, which axis should be 
the next split axis. The grid partition GP is given by 

GP:=(Pc,Pe):= {(c,e) 1 (cEPcAO<e<0.5)V 
(eEP.AOIcll)} 

where PC and P. are the set of partitioning points of axis 
c and e, respectively. Now we proceed as follows: 

1. Compute grid partitions GP, and GP, where 

GP. = (Pc,fi:> 1 Fe I= 2’.+’ + 1 and 
GP, = (&,P,) 1 & I= 2’.+’ + 1 

2. Determine some points PI, ..,Pk E [0, l), Ic > 1. 
Compute the number of grid cells Ai, Af of the grid 
partition GP,, GP,, respectively, which intersect 
the search region of Pi, 1 5 i 5 k. 

3. If Ci”=, Ai > &, Ai, then e is the next split 
axis,otherwise c is the next split axis. 

In step 1 the “virtual” grid partitions GP, and GP, are 
constructed from the “real” grid partition GP and addi- 
tional information in the leaves of the binary trees. The 
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new sets PC and p= depend on the sets P. and PC. The 
sets are generated by an interpolation technique. In step 
2 the parameter k is not fixed, but should depend on the 
number of records in the file. We want to emphasize that 
this algorithm does not need any disk access. All the in- 
formation which is used by the algorithm is stored in main 
memory. 

6 Conclusion 

The contribution of this paper can be summsrized ss fol- 
lows: 

l A classification of existing spatial access methods is 
derived. Every spatial access method is based on a 
multidimensional point access method applying one 
of the following three techniques: transformation, 
clipping and overlapping regions. 

l As an example, we applied these different techniques 
to one of the most efficient point access methods, 
PLOP - Hashing. Additionally we discuss in detail 
the technique of transformation and introduce the 
concept of asymmetric partitioning which is more ef- 
ficient than the traditional symmetric partitioning. 

l We proposed a hybrid method based on PLOP-Hashing 
combining the techniques of overlapping regions and 
transformation. This hybrid method improves per- 
formance by tuning to the characteristics of the par- 
ticular application. 

l We provide an analysis of the hybrid method in com- 
parison to a scheme which partitions the data space 
symmetrically. Moreover we present a brief compar- 
ison to R-trees and R+-trees, which demonstrate the 
superiority of our scheme. 

In our future work we will verify our results by experi- 
ments in various applications with an implementation of 
our scheme. Our goal is an experimental comparison of 
different spatial access methods. 
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Figure 10: Disk accesses for symmetric and asymmetric 
partioning depending on the number of segments (b = 50, 
emax = l/256) 
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Figure 11: Performance gain VAR depending on the num- 
ber of segments (b = 50, emax = l/256) 
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Figure 12: Disk accesses depending on the density 0 ( b = 
50, rl = 100,000) 
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Figure 13: Disk accesses depending on the number of seg- 
ments (b = 50, 0 = 40) 
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