Efficient Transitive Closure Algorithms

Yannis E. Ioannidis t
Raghu Ramakrishnan

Computer Sciences Department
University of Wisconsin
Madison, W1 53706

Abstract

We have developed some efficient algorithms for
computing the transitive closure of a directed graph.
This paper presents the algorithms for the problem of
reachability. The algorithms, however, can be adapted
to deal with path computations and a significantly
broader class of queries based on one-sided recursions.
We analyze these algorithms and compare them to
algorithms in the literature. The results indicate that
these algorithms, in addition to their ability to deal with
queries that are generalizations of transitive closure,
also perform very efficiently, in particular, in the con-
text of a disk-based database environment.

1. Introduction

Several transitive closure algorithms have been
presented in the literature. These include the Warshall
and Warren algorithms, which use a bit-matrix
representation of the graph, the Schmitz algorithm,
which uses Tarjan’s algorithm to identify strongly con-
nected components in reverse topological order, and the
Seminaive and Smart/Logarithmic algorithms, which
view the graph as a binary relation and compute the
transitive closure by a series of relational joins.

While all of the above algorithms can compute
transitive closure, not all can be used to solve some
related problems. Schmitz's algorithm cannot be used
to answer queries about the set of paths in the transitive

1 Partially supported by the National Science Foundation under Grant
IRI-8703592.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is given
that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 14th VLDB Conference
Los Angeles, California 1988

382

closure (e.g. to find the shortest paths between pairs of
nodes) since it loses path information by merging all
nodes in a strongly connected component. Only the
Seminaive algorithm computes selection queries
efficiently. Thus, if we wish to find all nodes reachable
from a given node, or to find the longest path from a
given node, with the exception of the Seminaive algo-
rithm, we must essentially compute the entire transitive
closure (or find the longest path from every node in the
graph) first and then perform a selection.

We present new algorithms based on depth-first
search and a scheme of marking nodes (to record ear-
lier computation implicitly) that computes transitive
closure efficiently. They can also be adapted to deal
with selection queries ‘and path computations
efficiently. In particular, in the context of databases an
important consideration is I/O cost, since it is expected
that relations will not fit in main memory. A recent
study [Agrawal and Jagadish 87] has emphasized the
significant cost of I/O for duplicate elimination. The
algorithms presented here will incur no I/O costs for
duplicate elimination, and we therefore expect that they
will be particularly suited to database applications. (We
present an analysis of the algorithms that reinforces this
point.)

The paper is organized as follows. We introduce
some notation in Section 2. Section 3 presents the algo-
rithms, starting with some simple versions and subse-
quently refining them. We present an analysis of these
algorithms in Section 4 and discuss selection queries in
Section 5. Section 6 contains a comparison of the algo-
rithms to related work. We briefly discuss these algo-
rithms in the context of path computations, one-sided
recursion, and parallel execution in Section 7. Finally,
our conclusions are presented in Section 8.

2. Notation and Basic Definitions

We assume that the graph G is specified as fol-
lows: For each node i in the graph, there is a set of suc-
cessors E; = { j 1 (i, j)isanarcof G }.

We denote the transitive closure of a graph G by
G*. The strongly connected component of node i is
definedasV, = (i Ju (jl(,jde G*and (j,i) e
G*) }. The component V; is nontrivial if V; # (i }.
The condensation graph of G has the strongly con-
nected components of G as its nodes. There is an arc
from V; to V; in the condensation graph if and only if
there isa path fromi to j inG.

The algorithms we present construct a set of suc-
cessors in the transitive closure for each node in G . The
set of successors in the transitive closure for a node i is
Si={jl(,j)isanarc of G*). A successor setS; is
partitioned into two sets M; and 7T;, and these may be
thought of as the ‘‘marked” and ‘‘tagged’’ subsets of
S;. Initially M; = T; = ¢forall i.

3. The Transitive Closure Algorithms

3.1. A Marking Algorithm

In this section, we present a simple version of the
algorithm. We do not suggest using this algorithm in
general; we present better algorithms, which are
derived by refining this algorithm. (In this algorithm
alone, S; is partitioned into two sets M; and U; - not T;
- that can be thought of as ‘‘marked”” and
‘‘unmarked’’.)

proc Basic TC (G)
Input: A digraph G with successor sets E;,i=1ton.
Output: S; = U; U M;,i=1ton, denoting G*.
(Ui =EiM; =0

fori =1tondo

while there is anode j € U;
doM; :=M; UM] uij) Ui:=U; vulU;-M; od

od
}
Proposition 3.1: Algorithm Basic_TC correctly com-
putes the transitive closure of a directed graph G .

3.2. A Depth-First Transitive Closure Algorithm

Suppose that the graph G is acyclic. Let us
number the nodes using a depth-first search such that
all descendants of a node numbered n have a lower
number than n. If we now run algorithm Basic_TC
using this ordering, every time we add a successor set
S; o aset S, §; = M;, and U; = . We refer to such

t The set S; may be thought of as containing elements that are either
marked or tagged. Agrawal and Jagadish [Agrawal and Jagadish 88)
pointed out that this would lead to O (n?) storage overhead for the
marks and tags. They observed that implementing this by partitioning
S; into separate sets incurs almost no additional overhead. (The space
for storing the graph is O(22) in any case.)

383

additions as closed additions. (The successor set §; is
closed, that is, it contains all successors of j in the tran-
sitive closure.)

To deal correctly with cycles, we must make
some modifications. The idea is to ignore back arcs
(arcs into nodes previously visited by the depth-first
search procedure) during the numbering phase. The
algorithm Basic_TC is run using this numbering. In the
presence of cycles, not all additions are closed. (For
example, the addition of S; to S; when the arc (i, j)isa
back arc is not a closed addition.)

While numbering the nodes in a preprocessing
phase for algorithm Basic_TC exposes the underlying
ideas clearly, we might improve performance by doing
the transitive closure work as we proceed in the
numbering algorithm. The following simple algorithm
illustrates the idea, although it only works for dags.

proc Dag DFTC(G)
Input: A graph G represented by successor sets E;.
Output: S;,i=1ton, denoting G*.

{for i =1tondovisited[i] :=0; S; := dod
while there is some node i s.t. visited [i] = 0 do visit(i) od
}

proc visit (i)
{ visited[i] := 1;
while there is some j € E; - S; do
if visited [i] = O then visit(j);
S =8 uS, uij}
od
}

The above algorithm can be modified to deal with
cyclic graphs as follows. We need to distinguish nodes
that are reached via back arcs, and we now partition §;
into two subsets M;, and 7;. T; denotes nodes reached
via back arcs.

proc DFTC(G)
Input: A graph G represented by successor sets E;.
Output: S; =M; UT;,i=1ton, denoting G*.

{ /* visited[i] 1 if visit 1(i) has been called. */
J* visited2[i] 1 if visit 2(i) has been called. */
/* popped(i] 1if call to visit 1(i) has returmed. ¥
[* Global The suce. set of the root of a str. comp. */
fod Initialized before calling visit 2 for root. */

fori =1tondo
visited [i] := visited 2{i] := popped[i] := 0;
M; :=T; :=Global :=¢

od
while there is some node i s.t. visited [i] = 0 do visitl(i) od
}

proc visitl (i)
{ visited[i] = 1;
while there is j € E; - M; -T; do
if visited [j] = O then visit1(j);
if popped[j1>0 /* (i, j) is not a back arc. */
then (M; :=M;, UM; U {j ki Ti :=(T:i VT;)-M; }
elseT; =T v{j)
od
iti € T; then /* i belongs to a strong component. */
itT;=(i}) Miistheroot. ¥/
then (M; :=M; L {i };Ti=
Global :=M;; visit2(i) }
else {T;:=T;-{i) Mi=Mu{i}}
popped[i] =1
}

[* Assigns Global to succ. sets of all nodes in str. comp. */

proc visit2(i)

{ visited2[i] = 1;

while there is j € E; s.t. visited2[j]=0 and T; # @
visit2(j) od

M; :=Global;T; := &

}
Theorem 3.2: Algorithm DFTC correctly computes
the transitive closure of G .

Notice that visif2 is called immediately after a
strong connected component is identified and fully
updates the successor lists of all nodes in the com-
ponent. An alternative would be to make the calls to
visi12 after visit] is called for all the nodes in the graph.
This second alternative has strictly inferior perfor-
mance to DFTC, because nodes in a strong connected
component might be visited from nodes outside the
component while still having their successor lists
incomplete. A variant of this alternative was suggested
by Agrawal and Jagadish [Agrawal and Jagadish 88].

do

P

Figurs 3.1: A graph with cycles.

The example of Figure 3.1 illustrates the basic
difference between the DFTC algorithm and

384

Dag DFTC, which is the need for a second phase to
take care of nontrivial strongly connected components.
The graph of Figure 3.1 contains two such components,
namely {a,b,d} and {e.,f}. Concentrating on the
former, when a is visited via the arc (d ,a), the succes-
sor list of a has not been computed yet, and so the suc-
cessor set of d cannot be updated properly. Basic_TC
solves the problem by continuing to visit the successors
of a again, but this may lead to serious inefficiencies.
DFTC solves the problem in the second pass, where a
is identified as the root of the component and its succes-
sor list is distributed to all the nodes in the component.
This is done by the calls to visir2. Similar comments
hold for the other component also.

3.3. Optimized Processing of Nontrivial Strong
Components

There is a major potential inefficiency in DFTC
in that the second pass over a strong component re-
infers several arcs of the transitive closure that have
been inferred during the first pass also. This can be
seen in the component {a ,b,d} of Figure 3.1. Assume
that from d we first visit ¢ and f and then visita. As
soon as (d ,a) is discovered as a back arc, DFTC puts a
in the tagged set of 4, and it then pops back to b adding
into its successor list d.e.f, and a, with @ being
tagged. Finally, the successor list of a is updated to
contain all the nodes in the graph without any tags.
During the second phase of going over the component
{ab.d), nodes d.e.f,and a (as well as ¢) will be
reinferred as successors of b. In this section we
develop an algorithm that avoids this duplication of
effort by essentially generating the successors of only
one of the nodes in a nontrivial strong component dur-
ing the first pass. In the second pass, the lists of all the
other nodes are updated, thus avoiding any unnecessary
duplication of work.

In this version of the algorithm, we do not need
to distinguish tagged elements by partitioning successor
lists, since a stack mechanism that is used to construct
the successor set for (the root of) a strongly connected
component allows us to make this distinction. During
the process of the algorithm, the elements of the stack
are lists of successors of nodes in some nontrivial
strongly connected component. If we discover that
some of these (potentially distinct) ‘‘components’’ are
in fact part of the same component, then elements of
the stack are merged to reflect this. * The array visited
contains integer elements in this algorithm. The nota-

1 There are other transitive closure algorithms that use stacks (c.g.,
[Schmitz 83, Agrawal and Jagadish 88]). Our use of the stack, how-
ever, is unique in that it is a stack of successor lists of nodes in non-
trivial strong components, as opposed to a stack of nodes.

tion Ly := L, e L is used to indicate that list L, is con-
catenated to list L; by switching a pointer, at O(1) cost.
For the special case when L, is @ (that is, when list L,
is to be assigned to the empty list L) we use the nota-
tion Ly := e L>. In contrast, the notation Ly := Ly w Ly

is used to denote that a copy of L is inserted into L ;.

proc Global_DFTC (G)

Fasonaate ovanh £ vaneasantad hu susnsacons
lnylu n EXGPIL W ICPIUSEIING Uy SWARSUT

Output: S;, i=1to n, denoting G*.
{
MProotf] root of the str. comp. of stack frame f. ¥/

P list[f] successors of nodes in the str. comp. of ¥/
fad stack frame f . */

E..
&&=

aate
o

/* nodes(f] nodes in the str. comp. of stack frame f. */
P prli] pointer to the stack frame of the strong ¥/
Y i component where i belongs. */
M top pointer to the top of the stack. */
/* visited[i] order in which visit (i) is called. */

/* bot temporary variable used when collapsing */

Vid multiple potential str. comp. into one. ¥/
vis :=1;top :=0;

fori:=1twondo
visited[i)] := popped|[i] :=root[i] := 0;
ptr(i] := n+1; list[i] := nodes[i} := S; := nil
od
while there is some i s.t. visited[i}=0 do visit(i) od
}
proc visit (i)
{ visited[i] := vis; vis :=vis +1;
while there is j € E;-S;-{ i } do
if visited [j] = O then visit(j);
if popped(j1>0and ptrij]l=n+1
J* i j in different strong component. */
then S; :=S; uS; uljh
if popped(j}> 0 and ptr[j] # n+1
/* i .j in same str, comp. but (i ,j) not a back arc. */
then {
bot :=min (top ptr [i1ptr 1)
/* merge multiple potential str. comp. into one. ¥/
while top > bot do
list {top~1] := list [top—1) e list[top };
nodes [top —1] := nodes [top —1] enodes [top };
If visited [root [top]] < visited [root {top -1]]
then root [top—1)] := root[top];

top :=1top - 1;
od
if ptr (i1 = n+1 /* (i) is a back arc.
/* New stack frame is created.

then list [top] := list{top] e S;;
prlil:=top;S; :=elist[top]
1

i popped[j]1=0
then { top :=top +1; rootftop} :=j;
listftop]:=eS;;

nodes [top] := nil ; ptr(i] :=top }
od

ifi =root[top] /* Propagate successors of root to the rest */
/* of the nodes in a strong component. ¥/

then { foreach j € nodes[top]u {i}

do S =listltoplw {i Jiprjl=n+10d;

top :=top -1}
elself ptr[i]1+ n+1 /* Insert i into the strong component */
/* where it belongs. */

then { list[ptr[i]) :=list[ptr iU (i };
nodes [ptr[i]] := nodes [prr i1JU{i } };
poppedli} =1
)

Thanwame 2 2 Alonsithen Llabhal NPT anvesacles
ALCUITIE Jede Aaguann Uvod_prie vuliciuy

computes the transitive closure of G .

The key point in the algorithm is the following
invariant: If ptr[i} = n, and m = min (n, top), then
every node in the set list[m] U nodes [m] is reachable
from i, and node i is reachable from every node in the
set nodes[m]. The node root[m] is the earliest visited
node which can be reached from some node in the set
nodes [top]. This underlies the collapsing of multiple
potential strong components into one.

Duplication of effort is avoided by distributing
the work associated with a nontrivial strong component
between the first and the second pass. In component
{a,bd} of Figure 3.1, as successors are generated,
they are put into the appropriate list of the global stack.
When the root @ has been processed, that list contains
the successors of a, which have been generated once
for every independent path of some node in the com-
ponent. Nodes e and f may have been generated as
successors of d originally, but when the algorithm
recognizes that d belongs'to a nontrivial strong com-
ponent, these successors are moved to the appropriate
list of the global stack in O(1) time (by list concatena-
tion). Hence, all of these inferences can be attributed to
a, so that when in the second phase we make the list of
a list of b and 4 also, this effort has not been
accounted before.

We want to illustrate two points about the opera-
tion of the global stack of lists. The first is concerned
with separate strong components. In Figure 3.1,
assume that (d.,a) is traversed before (d.,e). When
(d ,a) is traversed, an empty list is pushed on the stack.
Later, when (f ,e) is traversed and the second com-
ponent is discovered, another empty list is pushed on
the stack. When we pop up to e again, the list of the
top of the stack contains ¢ and f, the fact that the visit
to the top strong component is completed is recognized,

and after the second pass, the top of the stack is
removed. Thus, when we continue popping up from d,
the lower strong component does not appear as such in
the stack, and so no undesirable interference occurs.

The second point we want to illustrate is con-
cermed with a single strong component which is
discovered in a piecemeal fashion. Figure 3.2 will

serve as the working example.
3] £ e f

b 8
Figure 3.2: A strongly connected graph.

The whole graph is one strong component. Assume
that the nodes are visited in the order a, b, c, h,d, e,
g, and f. Thus the back arcs (h,b) and (g.d) are
discovered before (f ,a) is. This results in two poten-
tially independent components to be pushed on the
stack, namely, {b,c,h} and (d.e.g} After (f .a) is
discovered, a third level is added to the stack, because
there is no way of knowing that all of the nodes belong
to the same component. This is discovered when we
pop up back to e again, the second if-statement in the
algorithm case is triggered, and the two lists at the top
(corresponding to a and d respectively) are merged
into one in O(1) time by simply changing some
pointers. When ¢ is reached, similar actions are taken,
so that when a, the root, is reached, all its successors
are correctly found in the top list.

4, Analysis of the Algorithms

We now present an analysis of the complexity of
all the above algorithms. For each algorithm, we first
analyze its time complexity assuming that everything
fits in main memory. We then analyze its I/O complex-
ity assuming that data has to be moved back and forth
between main memory and disk. For the second case,
the first analysis represents the expected CPU time. In
addition, in Section 6, we will present an analysis of the
Seminaive algorithm [Bancilhon 85]), Warren’s algo-
rithm [Warren 75], and an algorithm by Schmitz
[Schmitz 83], and we will compare their performance
with that of our algorithms.

The forthcoming analysis assumes that all algo-
rithms use the appropriate structures (combination of
list representation and bit representation of a graph) so
that duplicate elimination can be done in constant time.
This can be achieved as follows: Whenever an arc (i ,j)
is to be added to a list we check the ij bit of the adja-
cency matrix. If itis 1, we don’t do anything. If itis O,
we make it 1 and add the arc in the successor list. All
this is of cost O(1). We could have duplicate elimina-

386

tion done in O(1) time even if we used the adjacency
matrix representation alone, but then we would not be
able to search only existing arcs; we would have to scan
the 0’s of the matrix as well. This would increase the
time complexities of all the algorithms.

Analyzing the I/O performance of the algorithms
is very hard when taking into account the effect of
buffering. For several of the algorithms concemed, the
appropriate buffering strategy is not obvious. We felt
that unless the algorithms are implemented and tested,
the comparison may be unfair if we uniformly assume
the same buffering strategy. Hence, in the forthcoming
analysis we assumed minimal amount of buffering, i.e.,
we assume that the size of main memory is O (n).
Also, to simplify the analysis, we used a successor set
as the unit of transfer between main memory and disk.
Although successor sets may be very different in size
and data is read from and written back to disk one page
at a time, we believe that the number of successor set
reads and writes gives an excellent indication of the
actual I/O cost. For our analysis we will use the fol-
lowing parameters. (In the sequel, "strong component”
refers to a nontrivial one.)

n number of nodes in the graph

e number of arcs in the graph

number of arcs in the condensation graph
of a given graph

n. number of nodes in a strong component ¢
e number of arcs in a strong component ¢
e number of arcs emanating from nodes in a strong

component ¢ (= ; dy)
vee
t number of arcs in the transitive closure
t, number of nodes reachable from node v
t number of nodes reachable from (any node of) a strong

component ¢
out-degree of v

We will also use the following notation for various necessary
sets.

set of nodes in the graph

set of arcs in the graph

set of arcs in the condensation graph of a given graph
set of arcs in a strong component ¢

set of arcs in the transitive closure

SCC set of strong components in the graph

Notice that E=E,, U &Ec that
¢ € 5CC
€ =€on + &_ e.. Finally, we will use the O(.) nota-
c €5CC

tion for both cpu and I/O cost. We will retain, how-
ever, several of the constants of the various terms in the
cost so the comparison between the various algorithms

NpEE

and

can be more accurate. Also, the cost will always be
broken into two parts, the search part and the inference
part. In our notation, the inference part will be put
within square brackets [...]. For example, a cost of
O (x+[y)) indicates O (x) search time and O (y) infer-
ence time,

4.1. Basic_TC

The outer for-loop of Basic TC is executed n
times. For every node v, the while-loop may be exe-
cuted ¢, times in the worst case (i.e., when all nodes are
reachable from v and they are all unmarked as they are
discovered). The list manipulation inside the loop
represents the number of arcs inserted in T (these may
include duplicates). Put differently, it represents the
number of inferences performed by the algorithm.
Inserting the successors of w to the successors of v
involves d,, additions. In addition, the initialization of
S, costs d, additions. We conclude that the cpu cost of
the algorithm is

cpu(Basic TC)=0(n +t +[e + (v.';e Td.,]). 1)

One can verify that in the worst case this is an O (n3)
algorithm,

We now turn to analyzing the I/O cost of
Basic_ TC. A node’s original successor set is brought
once into memory and from that point on stays there
until it is processed completely. So, the outer loop
represents n reads. The initialization step and the list
manipulation steps require one read for each arc in T.
So the total I/O cost of the algorithm is

i_o(Basic_ TC)=0(n +[t]).)

4.2. Dag DFTC

Dag_DFTC is a straightforward adaptation of the
depth-first algorithm, with an additional list manipula-
tion every time we pop up from a node. The search
part of the algorithm costs O (n+e) time [Aho et al.
74]. This includes the calls to visit and the execution
of the for-loop inside visit. In the inference part of the
algorithm, every arc (v,w) in T — E is inferred once for
every successor of v that can reach w, Equivalently,
this can be seen from the fact that every time we pop up
from an arc (v,w) in E, w and its succegsors are added
to the successors of v. Hence, the total complexity of
Dag_DFTC becomes

cpu(Dag DFTC)=0(n +e +[e + ; 0. 3
(vw)eE
In the worst case this can again be an O (n3) algorithm.

Notice, however, the improvement over Basic_TC. On
the search part, Basic_TC searches ¢ arcs as opposed to

387

e arcs. On the inference part, the two terms cannot be
directly compared, but we can show that their average
over all graphs is the same.

For the I/O cost, recall that we assume only
minimal buffering (at least two successor sets, though).
In the worst case, the successor set of a node is brought
in from disk once for every call to the node and once
for every pop-up to the node from one of its successors.
The former corresponds to the search part and can
involve up to n+e calls (one for each incoming arc and
one for a possible visit to the node from the outer level
of the algorithm). The latter corresponds to the infer-
ence part and can involve up to e pop-ups. The worst
case assumes that visits to a node from its predecessors
and pop-ups to the node from its successors are far
enough in time that the successor set of the node has
been paged out. Hence, the I/O cost of Dag DFTC is

i o(Dag_ DFTC)=0(n +e +[e]). @

Notice again the improvement over Basic_TC.

4.3. DFTC

The general DFTC algorithm, which can handle
cyclic graphs as well, is much more complex to analyze
in comparison to the special algorithm for dags. This is
due to the partitioning of the nodes reachable from
another node into tagged and marked so that cycles can
be identified, and due to the overhead of a second visit
to the nodes in all nontrivial strongly connected com-
ponents to adjust their sets of reachable nodes. For
nodes that do not belong to a nontrivial strongly con-
nected component, the algorithm performs exactly as
Dag DFTC. For nodes in nontrivial strongly con-
nected components the following differences can be
identified between the two algorithms with respect to
their cost:

(a) Each strongly connected component is traversed
in depth-first order a second time by calls to
visit2. For a strongly connected component c,
the cost of that is e2“. (There is no n. factor
here, because we always start from the root of the
¢ and all the interesting nodes are known to be
reachable from the root.)

In the first pass, some of the transitive arcs from
nodes in a strongly connected component are not
inferred. Nevertheless, in the worst case, all
those arcs will be inferred in the first pass too,
and the inference cost of the first pass would be
like the one for the acyclic graphs.

The nodes reachable from nodes in a strongly
connected component (except the root) are
inferred once in the second pass. Some of them
have already been inferred in the first phase, so

®

©

this may represent unnecessary work.,
Incorporating all the above observations we may con-
clude that the cpu cost of DFTC is
cpu(DFTCY=0(n +e +

[-X

[e + o ,3:@ Btw + ¢ e};cc(nc ~DeeD).

Notice that if SCC is empty, the formula reduces to (3).
Also notice that most of the time the inferences in the
first pass will be fewer than what is implied by the first
summation in the inference part of the cost.

Comments similar to (a), (b), and (c) hold for the
disk-based version of the algorithm. Assuming no
buffering again, the cost of the first pass is exactly the
same as it was before (in terms of successor set
retrieval). In the second pass over a strongly connected
component the successor sets of all the nodes in it are
brought from disk once to be updated. For this we
assume that the tagged successors of a node can be
brought in separately (so that when a node has an
empty tagged successor list nothing is brought in
memory). They may need to be brought as many times
as their out-degree, however, when visit2 pops-up to the
node. So, the extra /O involved with the second visit
of strongly connected components is n.+e. for each
component ¢. The successor set of each node (except
the root) is then updated (actually, assigned a value)
once as well. This can be done, however, after we pop
up to the node from its last child and we are ready to
pop up to the parent of the node. Hence this cost has
been already accounted as part of the search cost of the
second pass. For uniformity, however, we will remove
it from there and account it as inference cost. Given
the above, the total number of extra I/O needed for that
is n.-1 for each component ¢. This brings the total /O
up to

et
c

©)

i o(DFTC)=0(n +e + &Ce‘.+ ©)

[e + . ‘gcc(nc—l)])-
Again, if SCC is empty, (6) reduces to (4).

4.4. Global DFTC

The last algorithm that was presented for reacha-
bility (Section 3.3) was Global DFTC, which instead
of popping up the list of nodes reachable from a
strongly connected component to its root, it makes use
of a global "stack” of successors. Thus, the number of
inferences in the first pass over a component is minim-
ized. Specifically, we observe the following:

(a) Search time for the first pass is O (n+e). The
total cost of manipulating the stack while the

388

algorithm operates in a strongly connected com-
ponent ¢ is no more than O (n,). This is because,
in the worst case, a new level is introduced to the
"stack" for every back arc in the graph, there can
be at most n. back arcs in a strongly connected
component, and because merging of two con-
secutive levels is of cost O (1).

Search time for the second pass over a strongly
connected component ¢ is O(n.). This is
because, all the nodes of ¢ have been collected in
a separate list.

In comparison to DFTC, the second pass costs
the same in terms of inferences. There is a big
win, however, over the first pass. Each node
reachable from a strongly connected component
is generated only once, unless it is outside the
component and it is reachable from nodes in the
component by two completely independent paths.
This means that the set of arcs of the condensa-
tion graph E_,, will be used as the basis of the
inference, instead of the complete set of the arcs.
That is, the number of inferences in the first pass
will be O (econ + o w§5 t»). In addition, each

®)

©

node of a strongly connected component ¢ is
inferred once during the first pass over the com-
ponent.

Adding up all the costs involved we conclude that the
cpu cost of the algorithm is

cpu(Global DFTC) =
O(n+e +ce§‘Cnc +

M

¢ € XCC

lecon + w + ne + § (n.—1)t:1).
(¢ € 5CC c € 5CC

vw)eE
For the sake of marginally additional search time, the
inference time of Global DFTC is significantly smaller
than that of DFTC.

Since the stack is assumed to be in main
memory, the search part of the second pass over the
strongly connected components costs no I[/O. >From
the first pass over the whole graph we have O (n+e).
In analogy to the cpu time, e, Successor sets are
inferred during the first pass and ». -1 during the second
pass for every strong component c¢. Hence, the total
I/O cost becomes

i_o(Global DFTC)=0(n +e +
[econ + . e%?C(nc -DD.

The improvement over DFTC is again noticeable.

@®

5. Selections

When a selection of the form "columnl = ¢" is
specified, the algorithm deals with it effectively. (That
is, we want to compute all tuples of the form (c,?) in
the transitive closurc.) In fact, the algorithm becomes
much simpler. We need not do any numbering of
nodes, and so we can directly run algorithm Basic_TC.
Further, the first loop is no longer necessary. We can
simply consider the selected node ¢ and execute the
inner loop.

On the other hand, a selection of the form
"column2 = ¢" (i.e. compute all tuples of the form
(2,¢)) requires us to first generate a new representation
for the relation p, which is the set of predecessor sets.
The algorithm can then be used exactly as for the other
selection.

Finally, consider a selection of the form
“columnl = ¢ 1 and column2 = ¢2". That is, we simply
wish to see if (c 1,c2) is in the transitive closure. To do
this, we proceed as in the case of selection "columnl =
¢ 1", with the difference that we can stop if ¢2 is added
to SL,1.

6. Related Work

A large body of literature exists for main-
memory based algorithms for transitive closure.
Recently, with the realization of the importance of
recursion in new database applications, transitive clo-
sure has been revisited and re-examined in a data inten-
sive environment. In this section, we will review a
significant subset of the existing algorithms comparing
them with ours. In particular, we compare
Global DFTC with the traditional Warshall and War-
ren algorithms [Warshall 62], [Warren 75], [Agrawal
and Jagadish 87], an algorithm by Schmitz [Schmitz
83], and the Seminaive algorithm [Bancilhon 85]. We
also discuss some other related work on transitive clo-
sure.

6.1. Schmitz

In all the relevant literature, the algorithm by
Schmitz [Schmitz 83] is the one closest to our best
algorithm for reachability, i.e., Global DFTC. It is
based on Tarjan’s algorithm for identifying the strong
connected components of a graph {Tarjan 72]. Schmitz
showed that his algorithm had better performance than
an algorithm by Eve and Kurki-Suonio [Eve and
Kurki-Suonio 77], which we will not discuss further, as
well as Warshall’s algorithm [Warshall 62). The com-
mon characteristics of Schmitz’s algorithm and
Global_DFTC are that (a) they are based on a depth-
first traversal of the graph, (b) they identify the strong
connected components of the graph, and (c) they take

389

advantage of the fact that nodes in the same component
have exactly the same descendants and that they are
descendants of each other. On the other hand, the two
algorithms differ in that (a) Schmitz is using a stack of
nodes in the graph, whereas we use a "stack” of succes-
sor lists and (b) Schmitz is waiting for a whole strong
connected component to be identified before it starts
forming the descendant list of the nodes in the com-
ponent, whereas we do that dynamically by associating
partial descendant lists with the elements of the stack.
Due to space limitations we do not present Schmitz’s
algorithm here. We will only give the formulas for its
cost and compare them with the corresponding formu-
las of Global DFTC. The basic idea of the algorithm
is that when Tarjan’s algorithm identifies a strong com-
ponent, its nodes are at the top of the stack. Thus,
Schmitz’s algorithm scans the successor sets of all the
elements of the component in the stack, and adds their
descendants to the descendant list of the component.

Schmitz’s algorithm (in its original form) finds
the transitive closure of the condensation graph only.
That is, it generates only one descendant list per strong
component. To compare it with Global DFTC uni-
formly, we assume that after the descendant list of the
representative node of the component is found, it is
copied to all other members of the component as well.
With this modification the cost of Schmitz’s algorithm
is

cpu(Schmitz)=02n +2e +n +
[econ + (v ,w§ E-tw +n + . e&(J(nc‘l)’c D.

an

Comparing (11) to (7) we notice that the inference time
is exactly the same: the two algorithms are identical.
The search time, however, is different. In particular,

° Schmitz’s algorithm always manipulates the
stack, paying a cost of O(n), whereas
Global DFTC manipulates the stack only when
it operates in a nontrivial strong connected com-
ponent, paying a cost of O (c efs‘,ccnc). Assuming

that each operation on the stack costs roughly the
same in the two algorithms, Global DFTC wins.
Also,

. Schmitz’s algorithm delays the generation of the
descendant list of any node until a complete
strong connected component is found. Therefore,
in its second pass it scans all the nodes and all
their successors again, paying an additional cost
of O (n+e), whereas Global DFTC simply scans
the nodes in the nontrivial components, paying a
cost of O (e}r‘ccnc). Global_DFTC outperforms

c

Schmitz’s algorithm again.

A final note on the cpu performance of the two algo-
rithms is that on acyclic graphs, the performance of
Global_DFTC is the same as that of DFTC'; no over-
head is paid. In contrast, Schmitz’s algorithm pays the
extra overhead of a second pass and of manipulating
the stack.

Analogous comments are appropriate for the 1/O
cost of the two algorithms. Assuming minimal buffer-
ing, the two major overheads for Schmitz’s algorithm
are the following:

. Since additions are delayed until a component is
found, every time the algorithm pops up to a
node v from a node w, v’s successor list will be
brought back without taking advantage of the fact
that w’s list is in memory. This accounts to an
additional O(e) in successor list reads during
search time for Schmitz’s algorithm.

° In the second pass over a strong connected com-
ponent, we assume that all but one of its nodes
have their successor lists on disk. Hence,
0 (c egbcn.,) more lists have to be brought in dur-

ing this phase.

According to the above, the I/O cost of Schmitz’s algo-
rithm becomes

i o(Schmitz)=0(n +2e¢ + %Cnc + (12)
lecon + . e&'C(nc_l)D.

Comparing (12) with (8) we see that the total overhead
paid by Schmitz is O(e + &Cnc) and is paid at
X] .

search time. Regarding the inference part, the two
algorithms are again identical. In the best case (which
happens to be when the graph is one strong com-
ponent), Global DFTC wins by almost a factor of 2 in
successor list I/O over Schmitz’s algorithm. In the
worst case (which happens when the graph is acyclic),
and assuming that e2n, Global DFTC outperforms
Schmitz’s algorithm by at least 1/3.

6.2. Seminaive

The Seminaive algorithm was developed as an
algorithm to answer queries on general recursively
defined relations [Bancilhon 85]. We present the algo-
rithm in a way that resembles the algorithms we have
developed in order to compare its time complexity with
theirs. In particular, the descendants of every node are
found first, before finding the descendants of any other
node. In contrast, Seminaive works in stages, and at
each stage k finds the descendants of all the nodes that
are k arcs away from the node. This does not affect the
cpu cost of the algorithm, whereas it should improve its

390

I/O cost, since the descendant list of each node is not
moved back and forth between main-memory and disk.
Considering the main memory version of Seminaive,
one realizes that it is equivalent to Basic_TC without
taking marking into account. The algorithm is shown
below.

proc Seminaive (G) {

Input: A Graph G specified using successor sets E;, i =1 ton.
Outpus: S;, i=1ton, denoting G*.

U,' :=E.';M.' =0
fori :=1ton do
while there is j € U;-{i}
do M; :=M,' v (]), U.' =U; VE; -M; od
od

Seminaive will always perform like Basic TC if the
latter is provided with the worst of ordering of nodes
(so that no advantage can be taken from marking).
Hence, its performance is given by the same formulas
like Basic TC, since they represent worst-case
behavior. We would like to emphasize, however, that
on the average, even Basic TC will do much better
than Seminaive, due to the effect of marking. 1+

Seminaive imposes an order on how U; is pro-
cessed. In particular, nodes are processed on a first-
come-first-served basis, which corresponds to a
breadth-first traversal of the nodes in the graph rooted
in i. Since no marking is in effect, however, the order
of processing does not affect the cpu time analysis in
any way. The formula for the cpu cost is repeated
below for ease of reference:

cpu(Seminaive)=0(n +1t + [e + ; dy]). 13)

(vw)eT
Comparing with Global DFTC, we see that the infer-
ence parts are not directly comparable. We can show,
however, that on cyclic subgraphs, Global DFTC
always wins, whereas on the acyclic part (the condensa-
tion graph) the two formulas have the same average
over all graphs, but one can be better than the other on
any specific graph. With respect to the cost of search-
ing, the presence of ¢ in Seminaive’s cost formula, as
opposed to e in Global_DFTC’s cost formula, makes
Global_DFTC superior.

t In fact, this is how the algorithms were originally conceived.
Marking provides a way of exploiting search order, and depth-first
search provides a way of finding a good order. Further, focusing on
one node at a time enables us to do duplicate elimination with no ad-
ditional I/O since the required successor sets are always in memory,
under the assumption that at least two sets fit into memory.

In terms of I/O, traditional implementations of
Seminaive work by performing a sequence of joins of
relations (i.e., successor list blocks). Blocking, how-
ever, can be applied to all the algorithms we have
described so far. For example, instead of getting one
node’s successor set, one can bring a block’s worth of
successor sets and proceed appropriately. We believe
that blocking affects all algorithms in this paper in the
same manner. Hence, for the sake of comparison, we
will adopt the Basic TC /O cost formula for Sem-
inaive as well. It is given below:

i_o(Seminaive) =0 (n + [t]). (14)

Comparing (14) with (8) we see that there are
some cases where Seminaive will do better. A specific
example is a graph that is fully connected, i.e., has n2
nodes. In that case (14) gives O (n+n2) whereas (8)
gives O(2n+n?. For most graphs, however,
Global_DFTC is far saperior to Seminaive,

6.3. Warshall and Warren

The traditional transitive closure algorithms are
the one proposed by Warshall [Warshall 62] and its
modification proposed by Warren [Warren 75]. They
are both based on an adjacency matrix representation of
the graph, and their main difference is the order in
which they access the elements of the matrix. Both
algorithms have O (n?) complexity, where the primitive
operations are bit or’s and and’s. On the average, how-
ever, the Warren algorithm performs better than
Warshall’s. Moreover, this is true, for the most part, in
disk-based implementations of the algorithms also
[Agrawal and Jagadish 87]. Thus, we decided to dis-
cuss only the Warren algorithm. The Warren algorithm
can be written in the notation we have developed as fol-
lows.

Input: A Graph G specified using successor sets E;, i =1 ton.
Output: S;, i =1 ton, denoting G*.

proc Seminaive (G) {

S :=E;
fori:=1ton do

forj:=1toi-1doifj€S; thenS; =5; USJ;Od
od
fori ;=1ton do

forj:=i+lton doif j € S; then S; :=S§; US;; od
od

This is the "straightforward implementation” [Agrawal
and Jagadish 87] of the Warren algorithm written in
terms of successor lists. We assume that the if-
statement is checked while scanning over the range of j

(i.e., the successor list of { is sorted). Since the way the
algorithm will run depends on the names of (numbers
assigned to) the nodes, it is relatively difficult to come
up with a precise measure of the complexity of the
algorithm. In the worst case, the two for-loops over j
will be executed once for every descendant of i, except
itself, (i.e., all descendants are inserted in front of j).
In both loops, complete descendant lists might be
added. With this pessimistic assumption, the worst
case cpu cost of the algorithm is given by the formula
cpu(Warren)=0(n +1t +[e + fy rt""l')' (15)

(v.w)e

Comparing even against (13), (15) makes the Warren
algorithm look even worse than Seminaive, let alone
Global_DFTC. We believe, however, that on the aver-
age it will perform better than Seminaive. To get a
better feeling for the Warren algorithm let us consider
the best case. In that case, nothing happens in the
second pass, and the first pass scans only original arcs
(i.e., all descendants are inserted behind j). In that case
the best case cpu cost of the algorithm is given by

cpu(Warren)=Q(n +e +[e + . ;’:‘ Etw]). 16)

This can only happen if the graph is acyclic (this is just
a necessary condition, not a sufficient one). Notice that
(16) is equal to (3), which is the running time of
Global_DFTC for the acyclic case. Although this is
simply an indication and not a proof, it seems that
Global_DFTC will never perform worse than the War-
ren algorithm, and in most cases it will perform much
better,

Similar conclusions can be drawn in terms of the
I/O performance of the Warren algorithm. Assuming
no blocking, the worst and best case performance are

given by the following formulas:
i_o(Warren)=0 (2n +[t]). a7
i_o(Warren) =Q(n + [e]). (18)

In the worst case, the Warren algorithm has worse 1/O
behavior than Seminaive, whereas in the best case it
may outperform Global_DFTC by less than a factor of
2 (n+e vs. n+2e). We believe that on the average
Global_DFTC will perform much better than the War-
ren algorithm, but an average-case analysis and/or
implementation is needed to establish this. There is,
however, some empirical evidence in support of this
conjecture. Agrawal and Jagadish have results that
show that the I/O costs for Seminaive are 100 to 700
times more than the I/O costs for a careful implementa-
tion of Warren. This factor comes down to about 4

when the implementation of Seminaive is refined to
reduce the cost of duplicate elimination [Agrawal and
Jagadish 87]. We remarked earlier that the behavior of
Basic_TC is similar to the performance of Seminaive
(assuming no costs for duplicate elimination) when the
ordering of nodes is such that the marking optimization
never applies. We therefore expect that Basic_TC, and
even more so Global DFTC, will perform better than
Seminaive by a significant factor on the average. Since
the average case behavior of Seminaive is seen to be
close to that of a careful implementation of Warren, this
indicates that our algorithms will outperform Warren
on the average.

We would like to emphasize here that the above
analysis is done under the assumption of minimal
buffering and no blocking of successor sets on disk.
Agrawal and Jagadish’s implementation of the Warren
algorithm uses blocking extensively. Since the Warren
algorithm is quite different in nature from the algo-
rithms presented in this paper, it is hard to say whether
blocking will affect the Warren algorithm and
Global_DFTC in the same way. (Of course, the
appropriate blocking and paging strategies will also
differ significantly.) Further investigation is needed in
this direction in order to compare the two algorithms
with blocking.

6.4. Other Work

Besides Seminaive, another popular algorithm
that has been proposed for general recursion is the
Smart or Logarithmic algorithm [Valduriez and Boral
86, Ioannidis 86]). The idea behind the algorithm is to
first compute all the pairs of nodes that are a number of
arcs apart that is a power of 2, and then compute the
remaining arcs performing much fewer operations than
would otherwise be needed (i.e., if Seminaive was
used). Regarding the transitive closure of a graph, it
has been shown that Smart outperforms Seminaive for a
large class of graphs and under varying assumptions
about storage structures and join algorithms. The
power of the algorithm relies heavily on computing sets
of arcs, so it is hard to formulate it in a way that can be
directly compared with the algorithms presented in this
paper. It has been shown, however, that the straightfor-
ward implementation of the Warren algorithm some-
times performs better than Smart and sometimes worse,
whereas the blocked implementation uniformly outper-
forms Smart. We speculate that since our analysis
showed that Global DFTC outperforms the Warren
algorithm, it will outperform Smart as well.

A straightforward disk-based implementation of
Warren’s algorithm was proposed and tested against
Smart/Logarithmic [Lu, Mikkilineni, and Richardson
87]. It used hashing as a basic storage structure and

392

employed hash-based join techniques. The cost of the
algorithm was analyzed and compared to the cost of
two versions of Smart/Logarithmic. The analysis was
much more detailed than the one presented in this paper
for the Warren algorithm, since the cost of buffering
and hashing had to be taken into account. The main
results of the analysis were that the Warren algorithm
works better than Logarithmic when there is ample
main memory available and when there is a great varia-
tion in the lengths of the various paths in the graph. As
we mentioned above, another implementation of the
Warren algorithm, much better suited to disk-based
data, was developed by Agrawal and Jagadish
[Agrawal and Jagadish 87). They used blocking to
improve the performance and provided empirical evi-
dence that the algorithm outperforms both Seminaive
and Smart/Logarithmic almost uniformly.

Lu proposed another algorithm for reachability
that uses hash-based join techniques to compute the
transitive closure of a relation [Lu 87]. Its basic struc-
ture is that of Seminaive, but it employees two interest-
ing tricks that speed up computation: (a) the original
relation is dynamically reduced by eliminating tuples
that are known to be useless in the further production of
the transitive closure, and (b) as soon as a tuple is pro-
duced, if it is inserted in the same hash bucket that is
being processed, the tuple is processed also. Lu
showed that for a restricted class of graphs his algo-
rithm performs better than both Seminaive and
Smart/Logarithmic.

In the context of the Probe DBMS prototype,
transitive closure was identified as an important class of
recursion and was generally termed traversal recursion
[Rosenthal et al. 86). Traversal recursion was formally
specified using path algebras [Carre 79], and it focused
primarily on path computation problems. The algo-
rithms proposed for traversal recursion were Seminaive
and one-pass traversals, i.e., algorithms that need to
traverse a graph only once. It was argued that one-pass
traversals are better than Seminaive, but no formal
argument or empirical results were provided. Under
the assumptions made in this paper, our results confirm
the above claim (at least for reachability).

7. Path Computations, One-sided Recursion, Paral-
lelism

In this paper, we have focussed on the reachabil-
ity problem, presenting a number of increasingly
sophisticated algorithms and analyzing their perfor-
mance. While this analysis shows that these algorithms
perform efficiently, they do not bring out what we con-
sider to be one of their most important assets, which is
their broad applicability and versatility. They are easily
adapted to deal with path computations, in which we

ask for aggregate properties such as the shortest path
between two points, and one-sided recursions, which is
a class of recursive programs that generalizes transitive
closure [Naughton 87]. Some of the algorithms can be
adapted for parallel evaluation, and to take advantage
of infrequent updates. We discuss these issues briefly in
this section.

An important generalization of reachability is the
problem of path computations. Examples include
finding the shortest path between two points, bill-of-
materials, and other problems of practical significance.
A number of transitive closure algorithms cannot deal
with path computations [Schnorr78, Schmitz83]. Of
the algorithms presented in this paper, only
Global DFTC cannot be adapted to deal with path
problems, since it loses path information in processing
strongly connected components. We have adapted
DFTC to perform path computations, proved it correct,
and analyzed its performance [Ioannidis and Ramak-
rishnan 88]. The adaptation is straightforward. As with
the reachability problem, selections can be dealt with
efficiently. Thus, we can effectively find the shortest
path from a given node to every other node in the
graph. (In this special case, it coincides with Dijkstra’s
algorithm for shortest paths.)

One-sided recursions form a class of recursive
programs that generalize transitive closure. They are
presented as a class of programs that permit efficient
algorithms for selection queries [Naughton 87]. We
have considered how the algorithms in this paper can
be adapted to deal with one-sided recursions [Ioannidis
and Ramakrishnan 88). For selections, Basic_TC, suit-
ably refined, coincides with the algorithm presented by
Naughton {Naughton 87)]. For computing queries that
do not involve selections, the adapted algorithm may
perform better than Seminaive (which is the algorithm
that Naughton suggests in this case).

Finally, we remark that the simplest algorithm
presented in this paper, Basic_TC, may often be the
algorithm of choice. This is for two reasons. First, con-
sider a situation in which the graph is acyclic (or close
to acyclic) and updates are infrequent. We can store the
relation according to a reverse topological ordering,
and re-organize it periodically to restore this property
(which may be affected by intervening updates). If
Basic_TC is run on such a relation, it obtains much of
the improvement in DFTC, since the depth-first order
of processing (which is achieved in DFTC by the order
of calls) is achieved through the order in which the
nodes are stored (and selected for processing by
Basic_TC). DFTC improves on Basic_TC in this case
only when there are cycles. In fact, Basic TC might
well outperform DFTC since it does not have the over-
head of setting up the calls to visit 1, which involves the

393

I/O of fetching in successor lists. An adaptation of
Basic_TC for path computations is of particular interest
since many path computations are based on the acycli-
city of the underlying graph.

The second reason for choosing Basic_TC has to
do with its potential for parallel evaluation. The addi-
tion of successor set §; to S; in the loop can be parallel-
ized. Further, the loop can simultaneously be executed
for more than one node. (In doing this, we might lose
some of the benefits of the depth-first ordering, but this
is a trade-off that can be refined.)

Space limitations prevent us from developing the
ideas in this section further, We refer the interested
reader to [Toannidis and Ramakrishnan 88].

8. Conclusions

We have presented several closely related algo-
rithms for evaluating a broad range of queries related to
transitive closure. With the exception of Seminaive, no
other approach offers efficient performance over such a
variety of queries, including selections, single-source
and all-sources path problems, and even one-sided
recursions. Our analysis indicates that this flexibility is
not achieved at the cost of efficiency; indeed, in many
cases, the algorithms are seen to reduce to well-known
algorithms (e.g. Dijkstra’s algorithm) or to do better
than less flexible algorithms (e.g. Schmitz). The algo-
rithms are similar to the Schmitz algorithm and some
other algorithms that identify strongly connected com-
ponents and compute the transitive closure over the
condensation graph in that they exploit a topological
ordering of nodes. They differ significantly in not
separating the identification of the components from the
transitive closure phase, and in not merging all nodes in
strongly connected components a—priori. The first of
these differences offers a computational advantage,
whereas the latter allows the adaptation of these algo-
rithms to path problems.

We view this work as a first step. Our analysis,
while it indicates the promise of the algorithms
presented here, still needs to be refined and supple-
mented by a comprehensive performance evaluation
based on actual implementations of the algorithms. We
also need to explore the effect of the various heuristics
mentioned in the paper, and to study the relationship of
the more sophisticated algorithms to one-sided recur-
sions.

9. References

[Agrawal and Jagadish 87]
Agrawal, R., and H. V. Jagadish, "Direct Algorithms
for Computing the Transitive Closure of Database

Relations", Proc. of the 13th International VLDB
Conference, Brighton, England, September 1987, pp.
255-266.

[Agrawal et al. 87]
Agrawal, R., S. Dar, and H. V. Jagadish, "Transitive
Closure Algorithms Revisited: The Case for Path Com-
putations”, unpublished manuscript, December 1987.
[Agrawal and Jagadish 88]
Agrawal, R., and H. V. Jagadish, personal communica-
tion, January 1988.

[Aho et al. 74]
Aho, A. V,, J. E. Hopcroft, and J. D. Ullman, The
Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974,

[Bancilhon 85]
Bancilhon, F., "Naive Evaluation of Recursively
Defined Relations”, Technical Report DB-004-85,
MCC, Austin, TX, 1985.

[Carre 79]
Carre, B., Graphs and Networks, Clarendon Press,
Oxford, England, 1979.

[Dijkstra 59]
Dijkstra, E. W., "A note on two problems in connec-
tion with Graphs", Numerische Mathematik, Vol. 1, pp.
269-271.

[Eve and Kurki-Suonio 77]
Eve, J. and R. Kurki-Suonio, "On Computing the Tran-
sitive Closure of a Relation", Acta Informatica, Vol. 8,
1977, pp. 303-314.

[loannidis 86]
Toannidis, Y. E., "On the Computation of the Transi-
tive Closure of Relational Operators”, Proc. of the 12th
International VLDB Conference, Kyoto, Japan, August
1986, pp. 403-411.

[loannidis and Ramakrishnan 88]
Ioannidis Y. E. and R. Ramakrishnan, “Efficient Tran-
sitive Closure Algorithms", Technical Report #765,
Computer Sciences Dept., University of Wisconsin,
Madison, April 1988.

[Lu 87]
Lu H., "New Strategies for Computing the Transitive
Closure of a Database Relation”, Proc. of the 13th
International VLDB Conference, Brighton, England,
September 1987, pp. 267-274..

[Lu, Mikkilineni, and Richardson 87}
Lu, H., K. Mikkilineni, and J. P. Richardson, "Design
and Evaluation of Algorithms to Compute the Transi-
tive Closure of a Database Relation", Proc. of the 3rd
International Data Engineering Conference, Los
Angeles, CA, February 1987, pp. 112-119.

394

[Naughton 87]
Naughton, J. F., "One-Sided Recursions”, Proc. of the
6th ACM-PODS Conference, San Diego, CA, March
1987, pp. 340-348.

[Rosenthal et al. 86]
Rosenthal, A, et al., "Traversal Recursion: A Practical
Approach to Supporting Recursive Applications”,
Proc. of the 1986 ACM-SIGMOD Conference, Wash-
ington, DC, May 1986, pp. 166-176.

[Schmitz 83]
Schmitz, L., "An Improved Transitive Closure Algo-
rithm", Computing, Vol. 30, 1983, pp. 359-371.

[Schnorr 78]
Schnorr C. P., "An Algorithm for Transitive Closure
with Linear Expected Time", SIAM J. Computing,
Vol. 7, No. 2, May 1978, pp. 127-133.

(Tarjan 72]
Tarjan, R. E., "Depth First Search and Linear Graph
Algorithms", SIAM Jour. of Computing, Vol. 1, No. 2,
1972, pp. 146-160.

[Valduriez and Boral 86]
Valduriez, P., and H. Boral, "Evaluation of Recursive
Queries Using Join Indices", Proc. of the 1st Interna-
tional Expert Database Systems Conference, Charles-
ton, SC, April 1986, pp. 197-208.

[Warren 75]
Warren, H. S., "A Modification of Warshall’s Algo-
rithm for the Transitive Closure of Binary Relations”,
CACM, Vol. 18, No. 4, April 1975, pp. 218-220.

[Warshall 62]
Warshall, S., "A Theorem on Boolean Matrices",
JACM, Vol. 9, No. 1, January 1962, pp. 11-12.

