
Efficient Transitive Closure Algorithms

Yards E. Ioannidis t
Raghu Rantakrishnan

Computer Sciences Department
University of Wisconsin

Madison. WJ 53706

Abstract
We have developed some efficient algorithms for

computing the transitive closure of a directed graph.
This paper presents the algorithms for the problem of
reachability. The algorithms, however, can be adapted
to deal with path computations and a signitkantJy
broader class of queries based on onesided recursions.
We analyze these algorithms and compare them to
algorithms in the literature. The resulti indicate that
these algorithms, in addition to their ability to deal with
queries that am generakations of transitive closure,
also perform very efficiently, in particular, in the con-
text of a dish-based database environment.

1. Introduction
Several transitive closure algoritluus have been

presented in the literature. These include the Warshall
and Warren algorithms, which use a bit-matrix
representation of the graph, the Schmitz algorithm,
which uses Tatjan’s algorithm to identify strongly con-
nected components in reverse topological order, and the
Seminaive and Smart/Logarithmic algorithms, which
view the graph as a bii relation and compute the
transitive closure by a series of relational joins.

While all of the above algorithms can compute
transitive closure, not all can be used to solve some
related problems. Schmitx’s algorithm camrot be used
to answer queries about the set of paths in the transitive

Permission to copy without fee alI ar Put of this mataid is
grcmtcdpovided~theoopiesnellotmrdeardistribugdfor
ditectco mmacial advmage, the VKIB copyhght lrotice and
the title of the pblicatian and its date appear, and notice is given
hat copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, mquin~ a fee
d/or specialpumission fmm the Endowment.

Proceedings of the 14th VLDB Confemce
Los Angeles, California 1988

closure (e.g. to find the shortest paths between pairs of
nodes) since it loses path information by merging all
nodes in a strongly connected component. Only the
Seminaive algorithm computes selection queries
efficiently. Thus, if we wish to find all nodes reachable
from a given node, or to find the longest path from a
given node, with the exception of the Seminaive algo-
ritbm, we must essentially compute the entire transitive
closure (or find the longest path from every node in the
graph) first and then perform a selection.

We present new algorithms based on depth-first
search and a scheme of marking nodes (to record ear-
lier computation implicitly) that computes transitive
closure efficiently. They can also be adapted to deal
with selection queries ‘and path computations
efficiently. Jn particular, in the context of databases an
important consideration is J/O cost, since it is expected
that relations will not fit in main memory. A recent
study [Agrawal and Jagadish 871 has emphasized the
significant cost of J/O for duplicate elimination. The
algorithms presented here will incur no J/O costs for
duplicate elimination, and we therefore expect that they
will be particularly suited to database applications. (We
present an analysis of the algorithms that reinforces this
PW

The paper is organized as follows. We introduce
some notation in Section 2. Section 3 presents the algo-
rithms, starting with some simple versions and subse-
quently refining them. We present an analysis of these
algorithms in Section 4 and discuss selection queries in
Section 5. Section 6 contains a comparison of the algo-
rithms to related work. We briefly discuss these algo-
ritbms in the context of path computations, one-sided
recursion, and parallel execution in Section 7. Finally,
our conclusions are presented in Section 8.

2. Notation and Basic Definitions
We assume that the graph G is specitied as fol-

lows: For each node i in tbe graph, there is a set of suc-
CeSSOlS Ei = (j I(i, j)isanarcofG).

382

We denote the transitive closure of a graph G by
G’. The strongly connected component of node i is
dehed as vi = (i) u (j l(i,j)e G’and(j,i)E
G’)).Thecomp~net~Vi is~ntivialifVi f (i).
The condensation graph of G has the strongly con-
nected components of G as its nodes. There is an am
from Vi to Vj in the condensation graph if and only if
thereisapathfromi toj inG.

The algorithms we present construct a set of suc-
cessors in the transitive closure for each node in G . The
set of successom in the transitive closure for a node i is
Si~(jI(i,j)isan~ofG’). AsuccessorsetSiis
partitioned into hV0 sets Ml and Ti, and these may be
thought of as the “marked” and “tagged” subsets of
Si. h&llyMi =Ti =Oforalli.+

3. The Transitive Closure Algorithms

3.1. A Marking Algorithm
In this section, we present a simple version of the

algorithm. We do not suggest using this algorithm in
general; we present better algorithms, which are
derived by refining this algorithm. (In this algorithm
alone, Si is partitioned into two sets Mj and Vi - not Tj
- that can be thought of as “marked’* and
“unmarked”.)

proc Basic-TC (C)

Iq~:AdigraphG witbsuccessorsetsEi,i=lton.

Olctput:Si=UIvMi,i=lton.denotingG’.

(U, :=Ei;M, :=4
lori=ltondo

wldletbereisanodej E (I,
doMi:;=MiUM,V(j); U~:=U,VU,-Miod

od
1
Proposition 3.1: Algorithm Basic-TC cmrectly com-
putes the transitive closure of a directed graph G .

3.2. A Depth-First Transitive CIosure Algorithm
Suppose that the graph G is acyclic. Let us

number the nodes using a depth-first search such that
all descendants of a node numbered n have a lower
number than n. If we now run algorithm Basic-TC
using this ordering, every time we add a successor set
S) toaset&,Sj =Mi,andUj =d. Werefertosuch

t?bCretSim~bethouehtOfaScoa~g~~~~~~ue either
mabd or tagged. Agrawal and Jqadi.sh [Agmwal and Jagati 88)
pinted ant thst this would lead to O(n2) storage cve&ead for the
marks and tags. ‘lkey dxerved that implementing &is by paxtiticning
St into sepamte sets hors almost no additional cvehead. (llbe space
for storing the graph in O(n2) in any case.)

additions as closed additions. (The successor set Sj is
closed. that is, it contains all successors of j in the tran-
sitive closure.)

To deal correctly with cycles, we must make
some modifications. The idea is to ignore back arcs
(arcs into nodes previously visited by the depth-first
search lxocedure) during the numbering phase. ‘Ihe
algorithm Basic-TC is run using this numbering. In the
presence of cycles, not all additions are closed. (For
example, the addition of Sj to Si when the arc (i , j) is a
back ate is not a closed addition.)

While numbering the nodes in a preprocessing
phase for algorithm Basic-TC exposes the underlying
ideas clearly, we might improve performance by doing
the transitive closure work as we proceed in the
numbering algorithm. The following simple algorithm
ilhrstrates the idea, although it only works for dags.

proc DagDFTC (G)
Input: A graph G repmsented by successor sets El.
Output: Si, i = 1 to n, ¬ing G’.

(fori=ltondovbited[i]:=O;Si:=Ood
while there is some node i s.t. visited [i] = 0 do visit(i) od

I

pr0C visit (i)

(visited [i] := 1;
whilethereissomej E Ei -Si do

il visited [i] = 0 then visit(j);

Si := Si v Sj v (j)
od

1

The above algorithm can be mod&xl to deal with
cyclic graphs as follows. We need to distinguish nodes
that a~ mhed via back TICS, and we now partition Si
into hV0 subsets Mi, and Ti . Tj denotes nodes reached
via back arcs.

pror:Dm(G 1
Inprrt: A graph G represented by successor sets Ei .

Outprct:Si=MivTI,i=lton.denotingG’.
(p visited [i] 1 ifviPitl(i)bssbeencalled. *I

I* vi&d2[i] 1 if visit2(i) has bean called. */
P popped Ii I 1ifcalltovisifl(i)hasrettxned. +I
r Global The succ. set of the mot of a stz camp. */

r Initialized before calling visit 2 for mot. */

fori=ltondo
visited[i] := visited2[i] :=popped[i] := 0;
Mi := Ti := Global := 0

383

od
while there is some node i s.t. vkired [i] = 0 do vi&l(i) al

1

proc visit1 (i)

(visited [i] := 1;
whilethereisj E El -Ml -TJ do

if vi&d [i] = 0 then vi&l(j);
Upoppedfj]>O P(i,j)ismtabackarc.*/

then(Mf:=MIuMIu(j);Tr:P~~uTI)-MI)
else Ti := Ti u (j)

od
iliETithenribelongstoastrong~~.*/

ifTi=(i) Piisthemot.*/
then(Mi:=Miu(i);Ti=4

Global :=Mi; virir2(i))
else(Ti:=Z-(i);M~:=M~u(i))

poppfzd[i] := 1
1

P Assigns Global to sly%. sets of all nodes in str. camp. +/

prec vi&(i)
(visited 2[i] := 1;
while there is j E Ef s.t. visited2~]10 and TJ # B do

visit2(j) od
h4i :=Global;Ti :=d

1
Theorem 3.2: Algorithm DFTC correctly computes
the transitive closure of G .

Notice that vi&! is called immediately after a
strong co~cctcd component is identified and fully
updates the successor lists of all nodes in the com-
ponent. An alternative would be to make the calls to
visit2 afta visit1 is called for all the nodes in the graph.
This second alternative has strictly it&rim pafor-
mance to DFTC, because nodes in a Strong co~ecti
component might be visited from nodes outside the
component while still having their successor lists
incomplete. A variant of this alternative was suggested
by Agrawal and Jagadish [Agrawal and Jagadish 831.

f
Fll: 3.1: A graph w#b cycles.

The example of Figure 3.1 illustrates the basic
difference between the DFTC algorithm and

Dug-DFTC, which is the need for a second phase to
take care of nontrivial strongly connected components.
The graph of Figure 3.1 contains two such components,
namely (a ,b ,d) and (e J). Concentrating on the
former, when a is visited via the arc (d p), the succes-
sor list of a has not been computed yet, and so the suc-
cessor set of d cannot be updated properly. Bark-TC
solves the problem by continuing to visit the successors
of a again, but this may lead to serious inefficiencies.
DFTC solves the problem in the second pass, where a
is identified as the root of the component and its succes-
sor list is distributed to all the nodes in the component.
This is done by the calls to visir2. Similar comments
hold for the other component also.

3.3. Optimized Processing of Nontrivial Strong
Components

l&m is a major potential inefficiency in DFTC
in that the second pass over a strong component re-
infers several arcs of the transitive closure that have
been inferred during the lirst pass also. This can be
seen in the component (a ,b ,d) of Figure 3.1. Assume
thatfromd wefirstvisite andf andthenvisita. As
soonas(dp)isdiscoveredasabackarc,DFTCputsa
inthetaggedsetofd,anditthenpopsbacktob adding
into its successor list d,e f , and a, with a being
tagged. Finally, the successor list of a is updated to
contain all the nodes in the graph without any tags.
During the second phase of going over the component
(a,b,d), nodes d&f, and a (as well as c) will be
reinferred as successors of b. In this section we
develop an algorithm that avoids this duplication of
effort by essentially generating the successors of only
one of the nodes in a nontrivial strong component dur-
ingthefirstpass. Inthesecondpass,thelistsofallthe
other nodes are updated, thus avoiding any unnecessary
duplication of work.

In this version of the algorithm, we do not need
to distinguish tagged elements by partitioning successor
lists, since a stack mechanism that is used to construct
the successcx set for (the root of) a strongly connected
component allows us to make this distinction. During
the process of the algorithm, the elements of the stack
are lists of successors of nodes in some nontrivial
strongly connected component. If we discover that
sane of these (potentially distinct) “components” are
in fact part of the same component, then elements of
the stack are merged to reflect this. + ‘Ihe array visited
contains integer elements in this algorithm. The nota-

+ -l-he me OIhef tranritive cloaufe 8lgaithma lhat we mcka (e.g..
[S&nits 83. Agmwal and Jagadisb 881). Our use of the at& how-
ever,iruniqucin~itit~~of~lorlirtrofnoderinnoa-
trivhlatKmgcomponalta.~aopporedto~Ndrdwdea.

384

tionL~:=L~oL~isusedtoindicatethatlistL~iscon-
catenated to list L 1 by switching a pointer, at O(l) cost.
For the special case when LI is d (that is, when list L2
is to be assigned to the empty lit Ll) we use the ma-
tion L1 := l Lz. In contrast, the notation LI := LI u L2
isusedtodenotethatacopyofL2isinsertedintoL~.

proc Global-DFTC (G)
Input: A graph G represented by successor sets Ei .

Output: Sl , i = 1 to n, denoting G’.

1
r r~r,fl root of the str. camp. of stack frame f . */

P li.dIfl amessow of nodes in the str. camp. of *I

r stack frame f . +I
Pn0desI.U nodes in the str. camp. of stack frame f . */

Pptrtil pointer to the stack frame of the strong */

r component where i belongs. *I
r top pointer to the top of the stack. +/
r vLiZed[i] order in which visit (i) is called. +I
rbor temporary variable used when collapsing */

r multiple potfmtial str. camp. into one. ‘V

vis := 1; top := 0,
fori :=ltondo

visited[i] :=popped[i] := root [i] := 0;
ph.[i]:=n+l;Zti[i]:=nodes[i]:=S~ :=nil

od
while there is some i s.t. visited[i]=O do visit(i) od

1

proc visit (i)

(visited [i] :=vis;vis :=vis +l;
while there is j E &-Si-(i) do

if visited fj] = 0 then visit(j);
lfpopped~]>Oandptr~]=n+l

/* i j in different strong component. */
thenSi:=SiuS,u(j);

Upoppedfj]>Oandptr~]#n+l
rij insamestr.comp.but(ij)notabackarc.*/

tllen (
bot := min (top gtr [i]ptr b]);
r merge multiple potential str. camp. into one. +/
while top > bot do

ht[&?p-1] := list [top-l] l fist[top];
?d?s[top-l] := ndes[top-l] l odes[top];
if visited [root [top]] c visited [rout [top -111

then root[top-l] := root[top];
top :=top - 1;

od
Yp~[i]=n+lI+(ij)isabackarc. *I

p New stack frame is created. */
then Zi~t[t~p] := lkt[top] l Si;

ptl [i] := top ; Si :=: 0 list [COP]

1;

if popped fj] = 0
then(top:=tq+l;rout[top]:=j;

list[top] :=*si;

od
nodes[top] := nil;ptr[i] := top)

if i = root [top I r Propagate successors of root to the rest */
r of the nodes in a strong component. */

then(foreachjEnodes[top]u(i)
do S, := Zist[top] u (i);ptrb] :=n+l od;

toP :=top - 1)
ek4fptr [i] # n+l /* Insert i into the strong component */

P where it belongs. *I
then (list@f[i]] :=list[ptf[i]] U (i);

no&Iptf[i]J :=no&s(ptf[i]J u (i));
popped [i] := 1

I

Theorem 33: Algorithm Gbbal_DFTC correctly
computes the transitive closure of G .

The key point in the algorithm is the following
invariant: If ptr[i] = n , and m = min (n , rap), then
every node in the set list [ml u nodes [ml is reachable
from i, and node i is reachable from every node in the
set nodes [ml. The node root [m] is the earliest visited
node which can be reached from some node in the set
nodes [top]. This underlies the collapsing of multiple
potential strong components into one.

Duplication of effort is avoided by distributing
the work associated with a nontrivial strong component
between the iirst and the second pass. In component
(u ,b ,d) of Figure 3.1, as successors are generated,
they are put into the appropriate list of the global stack.
When the root a has been processed, that list contains
the successom of u, which have been generated once
for every independent path of some node in the com-
ponent. Nodes e and f may have been generated as
successors of d originally, but when the algorithm
recognizes that d belongs‘ to a nontrivial strong com-
ponent, these successors are movtxl to the appropriate.
list of the global stack in O(1) time (by list concatena-
tion). Hence, all of these inferences can be attributed to
u , so that when in the second phase we make the list of
u list of b and d also, this effort has not been
accounted before.

We want to illustrate two points about the opera-
tion of the global stack of lists. ‘Ibe first is concerned
with sepamte strong components. In Figure 3.1,
assume that (dp) is traversed before (dp). When
(d da) is traversed, an empty list is pushed on the stack.
Later, when (f .e) is traversed and the second com-
ponent is discovered, another empty list is pushed on
the stack. When we pop up to e again, the list of the
top of the stack contains e and f , the fact that the visit
to the top strong component is completed is recognized

385

and after the second pass, the top of the stack is
removed. Thus, when we continue popping up from d,
the lower strong component does not appear as such in
the stack, and so no undesirable interference occurs.

The second point we want to illustrate is con-
cerned with a single strong component which is
discovered in a piecemeal fashion. Figure 3.2 will
serve as the working example.

. b E p f

Figure i.2: A strongly corm&ted graph.

The whole graph is one strong component. Assume
thatthenodesarevisitedintheordeta,b,c,h,d,e,
g, and f. Thus the back am (hb) and (84) are
discovered before (fp) is. Ibis results in two poten-
tially independent components to be pushed on the
stack, namely, (b,c,h) and (d,e,g) After (fp) is
discovered, a third level is added to the stack, because
there is no way of knowing that all of the nodes belong
to the same component. This is discovered when we
pop up back to e again, the second if-statement in the
algorithm case is triggered, and the two lists at the top
(corresponding to u and d respectively) are merged
into one in O(1) time by simply changing some
pointers. When c is reached, similar actions are taken,
so that when a, the root, is reached, all its successors
ate correctly found in the top list.

4. Analysis of the Algorithms

We now present an analysis of the complexity of
all the above algorithms. For each algorithm, we Grst
analyze its time complexity assuming that everything
fits in main memory. We then analyxe its I/O complex-
ity assuming that data has to be moved back and forth
between main memory and disk. For the second case,
the 6rst analysis represents the expected CPU time. In
addition, in Section 6, we will present an analysis of the
Seminaive algorithm [Bancilhon 853, Warren’s algo-
rithm warren 751, and an algorithm by Sclunitz
[Schmitz 831, and we will compare their performance
with that of our algorithms.

The forthcoming analysis assumes that all algo-
rithms use the appropriate structures (combination of
list representation and bit representation of a graph) so
that duplicate elimination can be done in constant time.
This can be achieved as follows: Whenever an arc (i j)
is to be added to a list we check the ij bit of the adja-
cency matrix. If it is 1, we don’t dn anything. If it is 0,
wemakeitlandaddtbeaminthesuccessorlist. All
this is of cost O(1). We could have duplicate elimina-

tion done in O(1) time even if we used the adjacency
matrix representation alone, but then we would not be
able to search only existing arcs; we would have to scan
the O’s of the matrix as well. This would increase the
time complexities of all the algorithms.

Analyzing the ID performance of tbe algorithms
is very hard when taking into account the effect of
buffering. For several of the algorithms concerned, the
appropriate buffering strategy is not obvious. We felt
that unless the algorithms are implemented and tested,
the comparison may be unfair if we uniformly assume
the same buffering strategy. Hence, in the forthcoming
analysis we assumed minimal amount of buffering, i.e.,
we assume that the size of main memory is O(n).
Also, to simplify the analysis, we used a successor set
as the unit of transfer between main memory and disk.
Although successor sets may be very different in size
anddataisreadEromandwrittenbacktodisLonepage
at a time, we believe that the number of successor set
reads and writes gives an excellent indication of the
actual I/O cost. For our analysis we will use the fol-
lowing parameters. (In the sequel, “strong component”
refers to a nontrivial one.)

number of no&s in the graph
number of arcs in the graph
mmber of arcs in the condensation graph
of a given graph
mm~ber of nodes in a stnmg component c
number of arcs in a strong component c
number of an23 emfmating !knn nodes in a strong
mponentc (=

F
4)

Y 6
mm&x of arcs in the tfsnsitive closure
numberofmxlesmachablefromnodev
number of nodes reachable from (any node of) a stmng

compormt c
oiArdegree of v

We will also use the following notation for various necessary

V
E
&am
EC
T
see

set of nodes in the graph
setofarcsinthegnph
set of arcs in the condensation graph of a given graph
set of arcs in a stmng component c
set of ams in the transitive closure
setofrtrongcomponentsinthegraph

Notice that E=Eco,u
sdc

EC and that

e =e,, +
?k

e, . Finally, wywil: use the O(.) nota-

tion for G$ cp”u and I/O cost. We will retain, how-
ever, several of the constants of the various terms in the
cost so the comparison between the various algorithms

386

can be more accurate. Also, the cost will always be
broken into two parts, the search part and the inference
part. In our notation, the inference part will be put
within square brackets [. . . 1. For example, a cost of
O(x+[y]) indicates O(x) search time and O(y) infer-
ence time.

4.1. Basic-TC
The outer for-loop of Basic-TC is executed n

times. For every node v, the while-loop may be exe-
cuted tv times in the worst case (i.e., when all nodes are
reachable from v and they are all unmahedastheyare
discovered). The list manipulation inside the loop
represents the number of arcs inserted in T (these may
include duplicates). Put differently, it represents the
number of inferences performed by the algorithm.
Inserting the successors of w to the successors of v
involves & additions. In addition, the initialixation of
S, costs d, additions. We conclude that the cpu cost of
the algorithm is

cpu (Basic-TC) = 0 (n + t + [e +
(v &e P). (l) .

One can verify that in the worst case tbis is an 0 (n3)
algorithm.

We now turn to analyzing the I/O cost of
Basic TC. A node’s original successor set is brought
once into memory and t?om that point on stays there
until it is processed completely. So, the outer loop
represents n reads. The initialixation step and the list
manipulation steps require one read for each arc in T.
So the total I/O cost of the algorithm is

i-o (Basic-TC) = 0 (n + It]). (2)

4.2. Dag-DFTC
Dag-DFTC is a straightforward adaptation of the

depth-first algorithm, with an additional list manipula-
tion every time we pop up from a node. The search
part of the algorithm costs 0 (n+e) time [Aho et al.
741. This includes the calls to visit and the execution
of the for-loop inside visit. In the inference part of the
algorithm, every arc (v ,w) in T - E is inferred once for
every successor of v that can reach w. Equivalently,
this can be seen from the fact that every time we pop up
fromanarc(v,w)inE,w anditssuccessorsareadded
to the successors of v. Hence, the total complexity of
Dag-DFTC becomes

cpu (Dag-DFTC!) = 0 (n + e + [e + (” &ELI). (3)

In the worst case this can again be an 0 (n3) algorithm.
Notice, however, the improvement over Basic-TC . On
the search part, Basic-TC searches t arcs as opposed to

e arcs. On the inference part, the two terms cannot be
directly compared, but we can show that their average
over all graphs is the same.

For the I/O cost, recall that we assume only
minimal buffering (at least two successor sets, though).
In the worst case, the successor set of a node is brought
in from disk once for every call to the node and once
for every pop-up to the node from one of its successors.
The former corresponds to the search part and can
involve up to n+e calls (one for each incoming arc and
one for a possible visit to the node from the outer level
of the algorithm). The latter corresponds to the infer-
ence part and can involve up to e popups. The worst
case assumes that visits to a node from its predecessors
and pop-ups to the node from its successors are far
enough in time that the successor set of the node has
been paged out. Hence, the I/O cost of Dag-DFTC is

i-o(Dag-DFTC) = 0 (n + e + [e]).

Notice again the improvement over Basic-TC .
(4)

4.3. DFTC
The general DFTC algorithm, which can handle

cyclic graphs as well, is much more complex to analyze
in comparison to the special algorithm for dags. This is
due to the partitioning of the nodes reachable from
another node into tagged and marked so that cycles can
be identified, and due to the overhead of a second visit
to the nodes in all nontrivial strongly connected com-
ponents to adjust their sets of reachable nodes. For
nodes that do not belong to a nontrivial strongly con-
nected component, the algorithm performs exactly as
Dag-DFTC. For nodes in nontrivial strongly con-
nected components the following differences can be
identified between the two algorithms with respect to
their cost:

Bach strongly connected component is traversed
in depth-first order a second time by calls to
visit2. For a strongly connected component c,
the cost of that is ec”“. (There is no n, factor
here, because we always start from the root of the
c and all the interesting nodes are known to be
reachable from the root.)
In the first pass, some of the transitive arcs from
nodes in a strongly connected component are not
$&red. Nevertheless, in the worst case, all
those arcs will be inferred in the iirst pass too,
and the inference cost of the first pass would be
like the one for the acyclic graphs.
The nodes reachable from nodes in a strongly
connected component (except the root) are
inferred once in the second pass. Some of them
have already been inferred in the first phase, so

387

thismaympresent unnecessary work.
Incorporating all the above observations we may con-
clude that the cpu cost of DFTC is

cpu(DFTC)=O(n +e +
T!c

eew+
cc c (5)

Notice that if SCC is empty, the formula reduces to (3).
Also notice that most of the time the inferences in the
first pass will be fewer than what is implied by the tirst
summation in the inference part of the cost.

Comments similar to (a), (b), and (c) hold for the
disk-based version of the algorithm. Assuming no
buffering again, the cost of the first pass is exactly the
same as it was before (in terms of successor set
retrieval). In the second pass over a strongly connected
component the successor sets of all the nodes in it am
brought from disk once to be updated. For this we
assume that the tagged successors of a node can be
brought in separately (so that when a node has an
empty tagged successor list nothing is brought in
memory). They may need to be brought as many times
as their out-degree, however, when vi&2 pops-up to the
node. So, the extra I/O involved with the second visit
of strongly connected components is n,+e, for each
component c. The successor set of each node (except
the root) is then updated (actually, assigned a value)
once as well. This can be done, however, after we pop
uptothenodefromitslastchildandwearereadyto
pop up to the parent of the node. Hence this cost has
been already accounted as part of the search cost of the
second pass. For uniformity, however, we will remove
it from them and account it as inference cost. Given
the above, the total number of extra I/G needed for that
is n, -1 for each component c . This brings the total ID
upto

i-o(DFTC)=O(n +e +
% ec + ce c (6)

[e + Tb (wl)l). CI c

Again, if XC is empty, (6) reduces to (4).

4.4. Global_DFTC
The last algorithm that was presented for reacha-

bility (Section 3.3) was Globul_DFTC, which instead
of popping up the list of nodes reachable from a
strongly connected component to its root, it makes use
of a global “stack” of successors. Thus, the number of
inferences in the first pass over a component is minim-
ized. Specifically, we observe the following:
(a) Search time for the first pass is O(n+e). The

total cost of manipulating the stack while the

algorithm operates in a strongly connected com-
ponent c is no more than 0 (nc). This is because,
in the worst case, a new level is introduced to the
“stack” for every back arc in the graph, there can
be at most n, back arcs in a strongly connected
component, and because merging of two con-
secutive levels is of cost 0 (1).
Search time for the second pass over a strongly
connected component c is O(n,). This is
because, all the nodes of c have been collected in
asepamtelist.
In comparison to DFTC, the second pass costs
the same in terms of inferences. There is a big
win, however, over the first pass. Each node
reachable from a strongly connected component
is generated only once, unless it is outside the
component and it is reachable from nodes in the
component by two completely independent paths.
This means that the set of arcs of the condensa-
tion graph EcO,, will be used as the basis of the
inference, instead of the complete set of the arcs.
That is, the number of inferences in the first pass
will be 0 (ecor +

&
c,). In addition, each

(v.w E,
node of a strongly connected component c is
infared once during the first pass over the com-
ponent.

Adding up all the costs involved we conclude that the
cpu cost of the algorithm is

cpu (Globa_DFTC) = (7)

O(n +e +
c&nc +cePc +

[e, +
F

tw + T
nc +

(v.w EE, CE cc T CE cc Ok-lbl).

For the sake of marginally additional search time, the
inference time of Global-DFTC is signi6cantly smaller
than that of DFTC .

Since the stuck is assumed to be in main
memory, the search part of the second pass over the
strongly comrected components costs no I/O. >Fiom
the fust pass over the whole graph we have O(n+e).
In analogy to the cpu time, e, successor sets are
infd during the first pass and n, -1 during the second
pass for every strong component c. Hence, the total
I/O cost becomes

i-o (Global-DFTC) = 0 (n + e + (8)

k, + sic Ok-W. CE c

The improvement over DFTC is again noticeable.

388

5. Selections
When a selection of the form “column1 = c” is

specified, the algorithm deals with it effectively. (That
is, we want to compute all tuples of the form (c ,?) in
the transitive closure.) In fact, the algorithm becomes
much simpler. We need not do any numbering of
nodes, and so we can directly run algorithm Basic_TC.
Further, the first loop is no longer necessary. We can
simply consider the selected node c and execute the
inner loop.

On the other hand, a selection of the form
“column2 = c ” (i.e. compute all tuples of the form
(?,c)) requires us to tint generate a new representation
for the relation p , which is the set of predecessor sets.
The algorithm can then be used exactly as for the other
selection.

Finally, consider a selection of the form
“column1 = c 1 and column2 = ~2”. That is, we simply
wish to see if (c 1.c 2) is in the transitive closure. To do
this, we proceed as in the case of selection “column1 =
~1”,withthediffe~nethatwecanstopifc2isadded
to SL,l.

6. Related Work
A large body of literature exists for main-

memory based algorithms for transitive closure.
Recently, with the realization of the importance of
recursion in new database applications, transitive clo-
sure has been revisited and reexamined in a data inten-
sive environment. In this section, we will review a
significant subset of the existing algorithms comparing
them with ours. In particular, we compare
Globul_DFTC with the traditional Warshall and War-
ren algorithms [warshall 621, warren 751, [Agrawal
and Jagadish 87J, an algorithm by Schmitx [Schmitz
831, and the Seminaive algorithm [Bancilhon 851. We
also discuss some other related work on transitive clo
sure.

6.1. Schmitz
In all the relevant litemture; the algorithm by

Schmitz [Schmitx 831 is the one closest to our best
algorithm for reachability, i.e., Global DFTC. ‘It is
based on Tatjan’s algorithm for identif<ig the strong
connected components of a graph [Tarjan 721. Schmitz
showed that his algorithm had better performance than
an algorithm by Eve and Kurki-Suonio IEve and
Kurki-Suonio 771, which we wifl not discuss further, as
well as Warshall’s algorithm lW%rshall62]. The com-
mon characteristics of Schmitz’s algorithm and
Global-DFTC are that (a) they are based on a depth-
first traversal of the graph, (b) they identify the strong
connected components of the graph, and (c) they take

advantage of the fact that nodes in the same component
have exactly the same descendants and that they are
descendants of each other. On the other hand, the two
algorithms differ in that (a) Schmitz is using a stack of
nodes in the graph, whereas we use a “stack” of succes-
sor lists and (b) Schmitx is waiting for a whole strong
connected component to be identified before it starts
forming the descendant list of the nodes in the com-
ponent, whereas we do that dynamically by associating
partial descendant lists with the elements of the stack.
Due to space limitations we do not present Schmitz’s
algorithm here. We will only give the formulas for its
cost and compare them with the corresponding formu-
las of GlobuZ_DFTC. The basic idea of the algorithm
is that when Tatjan’s algorithm identifies a strong com-
ponent, its nodes are at the top of the stack. Thus,
Schmitx’s algorithm scans the successor sets of all the
elements of the component in the stack, and adds their
descendants to the descendant list of the component,

Schmitz’s algorithm (in its original form) finds
the transitive closure of the condensation graph only.
That is, it generates only one descendant list per strong
component. To compare it with Global-DFTC uni-
formly, we assume that after the descendant list of the
representative node of the component is found, it is
copied to all other members of the component as well.
With this modification the cost of Schmitz’s algorithm
is

cpu(Schmitz)=O(2n +2e +n + (11)

km, +
F

tw + n, +
(VW CE, G CE c (nc-l)tcl>.

Comparing (11) to (7) we notice that the inference time
is exactly the same: the two algorithms are identical.
The search time, however, is different. In particular,
0 Schmitx’s algorithm always manipulates the

stack, paying a cost of O(n). whereas
GZobul_DFTC manipulates the stack only when
it operates in a nontrivial strong connected com-
ponent, paying a cost of 0 (

%k
n,). Assuming

that each operation on the s:k c&s roughly the
same in the two algorithms, Global_DFTC wins.
Also,

l S&n&x’s algorithm delays the generation of the
descendant list of any node until a complete
strong connected component is found Therefore,
initssecondpassitscansallthenodesandall
their successors again, paying an additional cost
of 0 (n +e), whereas Global-DFTC simply scans
the nodes in the nontrivial comlxments, paying a
costof O(

Gc
nc). Global-DFTC outpedoms

Schmitx’s Zgorithm again.

389

A linal note on the cpu performance of the two algo-
rithms is that on acyclic graphs, the performance of
Global-DFTC is the same as that of DFTC ; no over-
heed is paid. In contrast, Schmitx’s algorithm pays the
extra overhead of a second pass and of manipulating
the stack.

Analogous comments are appropriate for the I/o
cost of the two algorithms. Assuming minimal buffer-
ing, the two major overheads for Schmitz’s algorithm
ale the following:
0 Since additions are delayed until a component is

found, every time the algorithm pops up to a
node v from a node w , v ‘s successor list will be
brought back without taking advantage of the fact
that w’s list is in memory. This accounts to an
additional O(e) in successor list reeds during
search time for Schmitz’s algorithm.

0 In the second pass over a strong connected com-
ponent, we assume that all but one of its nodes
have their successor lists on disk. Hence,
O(%)

n,
C

more lists have to be brought in dur-

ing’&s phase.
According to the above, the I/O cost of Schmitz’s algo-
rithmbecomes

i~o(sctitz)=o(n +2e +
?i nc + (12)

co c

Comparing (12) with (8) we see that the total overhead
paid by Schmitz is 0 (e +

&
nc) and is paid at

CE c
search time. Regarding the inference part, the two
algorithms are again identical. In the best case (which
happens to be when the graph is one strong com-
ponent), Gfobul_DFTC wins by almost a factor of 2 in
successor list I/O over Schmitx’s algorithm. In the
worst case (which happens when the graph is acyclic),
and assuming that e& , Global-DFTC outperforms
Schmitz’s algorithm by at least l/3.

6.2. Seminaive
The Seminaive algorithm was developed as an

algorithm to answer queries on general recursively
defined relations [Ban&on 851. We present the algo
rithm in a way that resembles the algoritlnns we have
developed in order to compare its time complexity with
theirs. In particular, the descendants of every node are
found first, before finding the descendants of any other
node. In contrast, Seminaive works in stages, and at
each stage k 6nds the descendants of all the nodes that
am R arcs away from the node. This does not affect the
cpu cost of the algorithm, whereas it should improve its

I/O cost, since the descendant list of each node is not
moved back and forth between main-memory and disk.
Considering the main memory version of Seminaive,
one realizes that it is equivalent to Busic-TC without
taking marking into account. The algorithm is shown
below.

proc Setninaive (G) (

Ittplct: A Grqh G specified using successor sets E<, i =l to n.
Output:S~,i=lton,denotingG’.

Vi :=Ei;Mi :=O
for i :=ltondo

wltllethereisj E U,-(i)
do Mi :=Mi U (j); CJi :=Ui UEi-iUi od

od

Seminaive will always perform like Basic-TC if the
latter is provided with the worst of ordering of nodes
(so that no advantage can be taken from marking).
Hence, its performance is given by the same formulas
like Basic_TC; since they represent worst-case
behavior. We would like to emphasize, however, that
on the average, even Basic-TC will do much better
than Seminaive, due to the effect of marking. 1 +

Seminaive imposes an order on how Vi is pro-
cessed. In particular, nodes are processed on a first-
come-first-served basis, which corresponds to a
breadth-first traversal of the nodes in the graph rooted
in i . Since no marking is in effect, however, the order
of processing does not affect the cpu time analysis in
any way. The formula for the cpu cost is repeated
below for ease of reference:

cpu (Seminaive) = 0 (n + t + [e +
Je rdy’)* (13)

Comparing with GZo6uZ_DFTC, we see that the infer-
ence parts are not directly comparable. We can show,
however, that on cyclic subgraphs. Global-DFTC
always wins, whereas on the acyclic part (the condensa-
tion graph) the two formulas have the same average
over all graphs, but one can be better than the other on
any specitic graph. With respect to the cost of search-
ing, the presence of t in Seminaive’s cost formula, as
opposed to c in Globul-DFTC ‘s cost formula, makes
Global-DFTC superior.

t Ill faa this ir how the algolitbms WQC oligiially culceived.
Matitiig pmvidcr a way of exploiting search o&r, aad depth-first
sacb provides a way of finding 8 good a&r. Further. focusing on
onenode~~timeaubluurtodo~~~~~withao~-
ditiod yo rime the required ml-m scta UC always in manory.
u&r the wumptia~ that u lart two seta fit into memory.

390

In terms of I/o, traditional implementations of
Seminaive work by performing a sequence of Joins of
relations (i.e., successor list blocks). Blocking, how-

ever, can be applied to alI the algorithms we have
described so far. For example, instead of getting one
node’s successor set, one can bring a block’s worth of
successor sets and proceed appropriately. We believe
that blocking affects all algorithms in this paper in the
same manner. Hence, for the sake of comparison, we
will adopt the Busic-TC I/O cost formula for Sem-
inaive as well. It is given below:

i-0 (Seminaive) = 0 (n + [t]). (14)

Comparing (14) with (8) we see that there am
some cases where Seminaive will do better. A specific
example is a graph that is fully connected, i.e., has n2
nodes. In that case (14) gives 0 (n +n2) whereas (8)
gives 0 (2n+n2). For most graphs, however,
Global-DFTC is far superior to Seminaive.

6.3. Warshall and Warren
The tmditional transitive closure algorithms are

the one proposed by Warshall LWamhall 621 and its
modification proposed by Warren warren 751. They
an3 both based on an adjacency matrix representation of
the graph, and their main difference is the order in
which they access the elements of the matrix. Both
algorithms have 0 (n 3) complexity, where the primitive
operations are bit or’s and und’s. Gn the average, how-
ever, the Warren algorithm performs better than
Warshall’s. Moreover. this is true, for the most part, in
disk-based implementations of the algorithms also
[Agrawal and Jagadish 871. Thus, we decided to dis-
cuss only the Wan-en algorithm. The Warren algorithm
can be written in the notation we have developed as fol-
lows.

Input: A Graph G specified using successor setsEi, i =l ton.
Output:&,i=lton,denotingG’.

proc Seminaive (G) (

S :=E;
for i := 1 to n do

forj :=lfOi-ldoifjES~thenS~~SiuSl;od
od
fori :=lton do

forj:=i+ltondoifjESifhenSi:=SIuSI;od
od

This is the “straightforward implementation” [Agrawal
and Jagadish 871 of the Warren algorithm written in
terms of successor lists. We assume that the if-
statement is checked while scanning over the range of j

(i.e., the successor list of i is sorted). Since the way the
algorithm will run depends on the names of (numbers
assigned to) the nodes, it is relatively difficult to come
up with a precise measure of the complexity of the
algorithm. In the worst case, the two for-loops over j
will be executed once for every descendant of i , except
itself, (i.e., all descendants are inserted in front of j).
In both loops, complete descendant lists might be
added. With this pessimistic assumption, the worst
case cpu cost of the algorithm is given by the formula

cpu(Wuwen)=O(n +t +[e + (” w& T1”l)’ (19

Comparing even against (13), (15) makes the Warren
algorithm look even worse than Seminaive. let alone
Global-DFIC. We believe, however, that on the aver-
age it will perform better than Seminaive. To get a
better feeling for the Warren algorithm let us consider
the best case. In that case, nothing happens in the
second pass, and the first pass scans only original arcs
(i.e., all descendants are inserted behind j). In that case
the best case cpu cost of the algorithm is given by

cpu(Wurren)=Q(n +e +[e + (v & jw I). (16)

This can only happen if the graph is acyclic (this is just
a necessary condition, not a sufficient one). Notice that
(16) is equal to (3). which is the running time of
Global-DFIC for the acyclic case. Although this is
simply an indication and not a proof, it seems that
Global-DFIC will never perform worse than the War-
ren algorithm, and in most cases it will perform much
better.

Similar conclusions can be drawn in terms of the
I/O performance of the Warren algorithm. Assuming
no blocking, the worst and best case performance are
given by the following formulas:

i-0 (Warren) = 0 (2n + [r]). (17)

i-0 (Warren) = &2(n + [e]). (18)

In the worst case, the Warren algorithm has worse I/O
behavior than Seminaive, whereas in the best case it
may outperform GZoimZ-DFTC by less than a factor of
2 (n+e vs. n +2e). We believe that on the average
GZobul_DFTC will perform much better than the War-
ren algorithm, but an average-case analysis and/or
implementation is needed to establish this. There is,
however, some empirical evidence in support of this
conjecture. Agrawal and Jagadish have results that
show that the IAl casts for Seminaive are 100 to 700
times more than the I/G costs for a careful implementa-
tion of Warren. This factor comes down to about 4

391

when the implementation of Seminaive is refined to
reduce the cost of duplicate elimination [Agrawal and
Jagadish 871. We remarked earlier that the behavior of
Basic TC is similar to the performance of Seminaive
(assu&ng no costs for duplicate elimination) when the
ordering of nodes is such that the marking optimization
never applies. We therefore expect that Busic-TC , and
even more so Global-DFTC, will perform better than
Seminaive by a sign&ant factor on the average. Since
the average case behavior of Seminaive is seen to be
close to that of a careful implementation of Warren, this
indicates that our algorithms will outperform Warren
on the average.

We would like to emphasize here that the above
analysis is done under the assumption of minimal
buffering and 110 blocking of successor sets on disk.
Agrawal and Jagadish’s implementation of the Warren
algorithm uses blocking extensively. Since the Warren
algorithm is quite different in nature from the algo-
rithms presented in this paper, it is hard to say whether
blocking will affect the Warren algorithm and
Global DFTC in the same way. (Of course, the
approp&e blocking and paging strategies will also
differ significantly.) Further investigation is needed in
this direction in or&r to compare the two algorithms
with blocking.

6.4. Other Work
Besides Seminaive, another popular algorithm

that has been proposed for general recursion is the
Smurr or Logurifhmic algorithm [Valduriez and Boral
86, Ioannidis 861. ‘Ihe idea behind the algorithm is to
first compute all the pairs of nodes that are a number of
arcs apart that is a power of 2, and then compute the
remaining arcs performing much fewer operations than
would otherwise be needed (i.e., if Seminaive was
used). Regarding the transitive closure of a graph, it
has been shown that Smart outperforms Seminaive for a
large class of graphs and under varying assumptions
about storage structures and join algorithms. The
power of the algorithm relies heavily on computing sets
of arcs, so it is hard to formulate it in a way that can be
directly compared with the algorithms presented in this
paper. It has been shown, however, that the straightfor-
ward implementation of the Warren algorithm some-
times performs better than Smart and sometimes worse,
whereas the blocked implementation uniformly outper-
forms Smart. We speculate that since our analysis
showed that Globul_DFTC outpe~orms the Warren
algorithm, it will outperform Smart as well.

A straightforward disk-based implementation of
Warren’s algorithm was proposed and tested against
Smart/Logarithmic [Lu, Mikkilineni, and Richardson
871. It used hashing as a basic storage structure and

employed hash-based join techniques. The cost of the
algorithm was analyzed and compared to the cost of
two versions of Smart/Logarithmic. The analysis was
much more detailed than the one presented in this paper
for the Warren algorithm, since the cost of buffering
and hashing had to be taken into account. The main
results of the analysis were that the Warren algorithm
works better than Logarithmic when there is ample
main memory available and when there is a great varia-
tion in the lengths of the various paths in the graph. As
we mentioned above, another implementation of the
Warren algorithm, much better suited to disk-based
data, was developed by Agrawal and Jagadish
[Agrawal and Jagadish 871. They used blocking to
improve the performance and provided empirical evi-
dence that the algorithm outperforms both Seminaive
and Smart/Logarithmic almost uniformly.

Lu proposed another algorithm for reachability
that uses hash-based join techniques to compute the
transitive closure of a relation [Lu 871. Its basic struc-
ture is that of Seminaive, but it employees two interest-
ing tricks that speed up computation: (a) the original
relation is dynamically reduced by eliminating tuples
that are known to be useless in the further production of
the transitive closure, and (b) as soon as a tuple is pro-
duced, if it is inserted in the same hash bucket that is
being processed, the tuple is processed also. Lu
showed that for a restricted class of graphs his algo-
rithm performs better than both Seminaive and
smart/Logarithmic.

In the context of the probe DBMS prototype,
transitive closure was identi8ed as an important class of
recursion and was generally termed traversal recursion
[Rosenthal et al. 861. Traversal recursion was formally
specified using path algebras [Carre 791, and it focused
primarily on path computation problems. The algo-
rithms proposed for traversal recursion were Seminaive
and one-puss fmversuls, i.e., algorithms that need to
traverse a graph only once. It was argued that one-pass
traversals are better than Seminaive, but no formal
argument or empirical results were provided. Under
the assumptions made in this paper, our results con&n
the above claim (at least for reachability).

7. Path Computations, One-sided Recursion, Paral-
lelism

In this paper, we have focussed on the reachabil-
ity problem, presenting a number of increasingly
sophisticated algorithms and analyzing their perfor-
mance. While this analysis shows that these algorithms
perform efficiently, they do not bring out what we con-
sider to be one of their most important assets, which is
their broad applicability and versatility. They are easily
adapted to deal with path computations, in which we

392

ask for aggregate properties such as the shortest path
between two points, and one-sided recursions, which is
a class of recursive programs that generalizes transitive
closure [Naughton 871. Some of the algorithms can be
adapted for parallel evaluation, and to take advantage
of infrequent updates. We discuss these issues briefly in
this section.

An important generalization of reachability is the
problem of path computations. Examples include
finding the shortest path between two points, bill-of-
materials, and other problems of practical significance.
A number of transitive closure algorithms cannot deal
with path computations [Schnorr78, Schmitz831. Of
the algorithms presented in this paper, only
Global-DFTC cannot be adapted to deal with path
problems, since it loses path information in processing
strongly connected components. We have adapted
DFTC to perform path computations, proved it correct,
and analyzed its performance [Ioannidis and Ramak-
rishnan 881. The adaptation is straightforward. As with
the reachability problem, selections can be dealt with
efficiently. Thus, we can effectively find the shortest
path from a given node to every other node in the
graph. (In this special case, it coincides with Dijkstra’s
algorithm for shortest paths.)

One-sided recursions form a class of recursive
programs that generalize transitive closure. They am
presented as a class of programs that permit efficient
algorithms for selection queries CNaughton 871. We
have considered how the algorithms in this paper can
be adapted to deal with onesided recursions [Ioannidis
and Ramakrishnan 881. For selections, Basic-TC , suit-
ably refined, coincides with the algorithm presented by
Naughton [Naughton 873. For computing queries that
do not involve selections, the adapted algorithm may
perform better than Seminaive (which is the algorithm
that Naughton suggests in this case).

Finally, we remark that the simplest algorithm
presented in this paper, Basic-TC, may often be the
algorithm of choice. This is for two reasons. First, con-
sider a situation in which the graph is acyclic (or close
to acyclic) and updates am inliequent We can store the
relation according to a reverse topological ordering,
and re-organize it periodically to restore this property
(which may be affected by intervening updates). If
Busic_TC is run on such a relation, it obtains much of
the improvement in DFTC, since the depth-first order
of processing (which is achieved in DFTC by the order
of calls) is achieved through the order in which the
nodes are stored (and selected for processing by
Basic-TC). DFTC improves on Basic-TC in this case
only when there are cycles. In fact, Basic-TC might
well outperfotm DFTC since it does not have the over-
head of setting up the calls to visit 1, which involves the

I/O of fetching in successor lists. An adaptation of
Basic-TC for path computations is of particular interest
since many path computations are based on the acycli-
city of the underlying graph.

The second reason for choosing Bark-TC has to
do with its potential for parallel evaluation. The addi-
tion Of successor set Sj t0 Si in the loop can be parallel-
ized. Further, the loop can simultaneously be executed
for more than one node. (In doing this, we might lose
some of the benefits of the depth-first ordering, but this
is a trade-off that can be refined.)

Space limitations prevent us from developing the
ideas in this section further. We refer the interested
reader to [Ioannidis and Ramakrishnan 881.

8. Conclusions
We have presented several closely related algo-

rithms for evaluating a broad range of queries related to
transitive closure. With the exception of Seminaive, no
other approach offers efficient performance over such a
variety of queries, including selections, single-source
and all-sources path problems, and even one-sided
recursions. Our analysis indicates that this flexibility is
not achieved at the cost of efficiency; indeed, in many
cases, the algorithms are seen to reduce to well-known
algorithms (e.g. Dijkstra’s algorithm) or to do better
than less flexible algorithms (e.g. Schmitz). The algo-
rithms are similar to the Schmitz algorithm and some
other algorithms that identify strongly connected com-
ponents and compute the transitive closure over the
condensation graph in that they exploit a topological
ordering of nodes. They differ significantly in not
separating the identification of the components from the
transitive closure phase, and in not merging all nodes in
strongly connected components a-priori. The first of
these differences offers a computational advantage,
whereas the latter allows the adaptation of these algo-
rithms to path problems.

We view this work as a first step. Our analysis,
while it indicates the promise of the algorithms
presented here, still needs to be refined and supple-
mented by a comprehensive performance evaluation
based on actual implementations of the algorithms. We
also need to explore the effect of the various heuristics
mentioned in the paper, and to study the relationship of
the more sophisticated algorithms to one-sided recur-
sions.

9, References

[Agrawal and Jagadish 871
Agrawal, R.. and H. V. Jagsdish, “Direct &orithms
for Computing the Transitive Closure of Database.

393

Relations”, Proc. of the 13th International VWB
Conference, Brighton, England, September 1987, pp.
255-266.

[Agrawal et al. 871
Agrawal, R., S. Dar, and H. V. Jagadish, ‘Transitive
Closure Algorithms Revisited: The Case for Path Com-
putations”, unpublished mamrscript, December 1987.

[Agrawal and Jagadish 881
Agrawal, R., and H. V. Jagadish. personal communica-
tion, January 1988.

[Aho et al. 741
Aho, A. V., J. E. Hopcroft, and J. D. Ulhnan, The
Design and Analysis of Computer Algaithm.
Addison-Wesley, Reading, MA, 1974.

[Bancilhon 851
Bancilhon, F., ‘Naive Evaluation of Recursively
Defined Relations”, Technical Report DB-004-85,
MCC, Austin TX, 1985.

[Cam 791
Cane, B.. Graphr a& Networks, Clarendon Press,
Oxford, England, 1979.

[Dijkstra 591
Dijlrsa E. W., “A note on two problems in co~ec-
tion with Graphs”, Numerische Mathem& Vol. 1, pp.
269-271.

[Eve and Kurki-Suonio 771
Eve, J. and R. Ku&i-Suonio, “On Computing the Tran-
sitive Closure of a Relation”. Acta Informatica, Vol. 8,
1977, pp. 303-314.

[Ioannidis 861
Ioannidis. Y. E.. “On the Computation of the Transi-
tive Closure of Relational Gperatom”, Proc. of the 12th
International VLDB Co&rrence, Kyoto. Japan, August
1986, pp. 403411.

[Iosnnidis and Ramakrishnan 881
Ioarmidis Y. E. and R. Ramakrishnan, “Efficient Tran-
sitive Closure Algorithms”, Technical Report #765,
Computer Sciences Dept., University of Wisconsin,
Madison, April 1988.

W 871
Lu H., ‘New Strategies for Computing the Transitive
Closure of a Database Relation”, Proc. of the 13th
International VLDB Conference, Brighton, England,
September 1987, pp. 267-274..

[La, Mikkilinenj and Richardson 871
Lu, H.. K. Mikkilineni, and J. P. Richardson, ‘Design
and Evaluation of Algorithms to Compute the Transi-
tive Closure of a Database Relation”, Proc. of the 3rd
International Data .??ngineering Conference. bs
Angeles, CA, February 1987, pp. 112-119.

[Naughton 871
Naughton, J. F., “One-Sided Recursions”, Proc. of the
6th ACM-PODS Conference, San Diego, CA, March
1987, pp. 340348.

[Rosenthal et al. 861
Rosenthal, A., et al., ‘Traversal Recursion: A practical
Approach to Supporting Recursive Appk&ms”,
Proc. of the 1986 ACM-SIGMOD Conference, Wash-
ington, DC, May 1986. pp. 166-176.

[Schmitz 831
Schmitx, L.. “An Improved Transitive Closure Algo-
rithm”, &?tQUtitl& vol. m,1983, pi. 359-371.

[Schnorr 781
Schnmr C. P., “An Algorithm for Transitive Closure
with Linear Expected Tie”, SIAM J. Computing,
Vol. 7, No. 2, May 1978. pp. 127-133.

mw 721
Tarjan, R. E., Depth Fit Search and Lmear Graph
&orithms”, Shihf Jour. Of CO~uting. vol. 1, No. 2,
1972. pp. 146-160.

[Valduriex and Boral86]
Valduriez, P., and H. Boral, “Evaluation of Recursive
Queries Using Join Indices”, Proc. qf the 1st Interna-
tional Expert Database System Conference, Cbka-
ton, SC, April 1986. pp. 197-208.

[warTen 751
Warren, H. S.. “A Modification of Warshall’s Algo-
rithm for the Transitive Closure of Binsry Relations”,
CACM, Vol. 18, No. 4, April 1975, pp. 218-220.

[warshall 621
Wanhall s.. “A Theorem on Boolean Matrices”,
JACU, Vol. 9, No. 1. January 1%2, pp. 11-12.

394

