A Family of Incomplete Relational Database Models'

Adegbemiga Ola* and Gultekin Ozsoyoglu

Department of Computer Engineering and Science, Case Western Reserve University

ABSTRACT

In this paper, we utilize intervals for unknown values in
incomplete relational databases. We use tables to represent unk-
nown relations. First, we define three partial tuple types in a
table to specify incompleteness relationships among tuples of
the same table. For tuples of different tables, we distinguish
between the cases where incompleteness are introduced at the
relation level, tuple level or attribute-value level. And, based on
these relationships among tuples in different tables, we present
a family of incomplete relational database models.

For each of the models, the query evaluation is sound
(i.e., no incorrect results are derivable). None of the models is
complete (i.e., all valid conclusions are derivable). We briefly
compare two of the models in the family with other
approaches.

Considering each table tuple as a set of d-dimensional
cubes, each model in the family of models presented in this
paper can be considered as a geometric database model. We are
presently implementing a version of one of the models. We
briefly summarize the geometric operations and the primitive
update semantics being utilized in the implementation.

1. Introduction

Null values and incomplete information in databases
have received much attention in recent years, for instance see
{Codd 79, Vass 79, Lips 79, Gran 79, Gran 80, Bisk 81, Bisk
83, Imil. 84, Zani 84, AbKG 87]. Partial information in data-
bases in the form of possible values is allowed in [Lips 79} and
[Gran 80]. Imilienski and Lipski [ImiL 84] give conditions that
ensure soundness and completeness of query evaluation in a
certain sense, as opposed to the correctness of individual opera-
tors.

In this paper, we introduce a family of incomplete infor-
mation models for the relational model. The main characteristic
of all the models in this family is that the partial knowledge
about an unknown value is specified as possible values in a set
of intervals rather than an arbitrary set. For example, the unk-
nown tuple t=(5, 9) is represented by the tuple, say, ([1,10], 9),
in which the first component is the interval [1,10] containing
the unknown value 5 in tuple t. Figure 1 illustrates tuples
p1=(3,5), [8,10), [3,5)) and p,=({10,12], {[13,15],[20,22]},
[8,10]) of table U with scheme U(A;, A,, A3). The points or

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the Fifteenth International
Conference on Very Large Data Bases

-923-

tuples in the set of cubes (also called d-rectangles) are called
candidate tuples for the unknown tuple t, and exactly one of
the points is the unknown tuple. This approach allows database
operations to be transformed into operations in Computational
Geometry, leading to efficient operator evaluations [OlaO 88a].

Following [ImiL 84] we use the terminology that a table
in the incomplete database environment represents a relation
some tuples of which are unknown. Tables contain partial
tuples (i.e., tuples with incomplete components) as well as total
tuples (ie., tuples whose components are all known).

£} SRS TR,
[} SR P T

n
Figure 1. Geometric View of Partial Tuples

Table Tuple Type Semantics of the
Represented Relation tple
type 0 Total tuple
" typel Exists and Is-uniquely-represented
type 2 Exists and May-be-represented-already
type 3 May-not-exist

Figure 2. Semantics of Tuple Types

We now define new tuple types. A partial tuple consists
of two or more tuples, exactly one of which is the unknown
tuple. Let a table U represent a relation r, then the following
tuple types are allowed in U.

(a) a type 0 total tuple is the usual relation tuple without unk-
nown values.

(b) a type 1 partial tuple in U represents an unknown tuple t
which exists, and no other tuple in U represents t.

(c) a type 2 partial tuple p in U represents an unknown tuple t
of r which is known to exist. However, another tuple p* of U,
physically distinct than p, may also represent t. That is, p may
represent a tuple in r which is already represented by some .
other tuple in U.

(d) a type 3 partial tuple p in U represents an unknown wple
in r that may exist (i.e., a maybe tuple); the set of possible
tuples for p includes the null tuple (a special tuple & denoting

+ This research is supported by the National Science Foundation under Grants
DCR-8605554 and IRI-8811057.

The present address of A. Ola is Dep
of Dayton, Dayton, OH 45469.

of C P . Uni ity

' 4

Amsterdam, 1989

the nonexistent tuple).
Figure 2 summarizes the different tuple types. We give an
example.

Example 1: Let us consider relation r in figure 3, consisting of
four tuples ¢, ¢5, t3 and 2. If the last digits of the second com-
ponents in ¢y, ¢; and t, are unknown then r is represented by
table U. The partial tuples in U are type 1 because they
represent tuples which are known to be distinct. Table V is the
projection on atiribute A, of U. The tuples p,” and p,’ are type
1 in the projection because the unknown tuples represented by
p1 and p, of U must have distinct A, values. Tuple p3’ is of
type 2 because the A, value of the unknown tuple represented
by p3; may be the same as that of tuple ¢;. Table W is the
result of applying a selection formula A, > 55 to table V; both
tuples py’ and p,” have a chance of satisfying the formula, and
are therefore included in W as type 3.

r A laA, U Al A, |TYPE
NERE Py | 4 | 5059 | 1
,]| 4|56 Py | 4 | [5059]) 1
yls |4 yils 4 0
NEAE Py | 3 [049 | 1
v A, {TYPE|] W] A, |TYPE
p | 150591 | 1 (50591 | 3
Py | [s0591] 1 15059)
vl o4 0
py | [M049) | 2

Figure 3. Relation r, Table U, and Operations on Tables.

Clearly, as the type of a table tuple increases from 0 to
3, it becomes less informative. For example, a type 1 wple is
more informative than a type 3 tuple. In a practical environ-
ment, users may perhaps be interested in only type 0 and type
1 tuples. However, even if the base tables in a relational data-
base contains only type 0 and type 1 tuples, the relational alge-
bra operators introduce type 2 and type 3 tuples.

The semantic difference between type 2 and type 3
tuples is as follows. Consider a type 1 tuple p of a table U.
When a set union of U with another table is performed, p in
the resulting table may represent the same unknown relation
tuple (i.e., p becomes type 2); but p will not become a type 3
(i.e., a maybe) tuple. On the other hand, as illustrated in exam-
ple 1, when a selection on U is performed, the unknown tuple
represented by p may or may not be selected in which case p
becomes a type 3 (i.e., a maybe) tuple. Also, n number of type
2 tuples in a table represent at least one tuple in the
corresponding unknown relation whereas n number of type 3
tuples may not represent any tuples in the corresponding rela-
tion.

By taking into consideration the known relationships
among tuples from different tables of the database one can
derive more information in query responses. Such relationships
vary from one environment to the other. In this paper, we iden-
tify various assumptions about relationships among tuples in

different tables. Then, a family of extended models (M-1, M-2,
M-3, and M4) based on these assumptions is introduced. This
approach, we believe, is practical because we are able to put at
the users’ disposal the variety of models, one of which possibly
meets the users’ assumptions. We now describe the family of
models.

In model M-I, we model an environment where errors or
incompleteness are introduced at the relation level meaning
that the same unknown tuple may be represented by different
tuples in different tables. Thus, within the database, different
errors may occur in different occurrences of a given tuple in
different relations.

Basic Assumption in Model M-1 (Relation Level):

Consider two wples z; and z, occurring in different tables. If
the candidate tuples of z, and z, do not intersect then z; and z,
represent different (relation) tuples, otherwise they may
represent the same (relation) tuple.

Example 2: In figure 4, relation r, with tple ¢, contains no
errors, and is represented "as-is” as a table (with the addition of
the TYPE column). On the other hand, the first digit of the
second component of tuple ¢, of r; is unknown, and r, is
represented by table U. Tuple ¢, of 7, is represented by the
partial wple p; in U. But the occurrence of t; in r, is total.
The inference we can make is that two tuples from different
tables do not represent the same relation tuple if at least one of
their tuple components do not intersect.

n A LA, UiAa] A, |TYRE
14181 pi]4 oz
L4] 2] 4 56 0

I, A LA,

Yy 4 {53
4y 4 155

Figure 4. Teble Interpretations in Model M-I

M-2 models an environment where errors or incomplete-
ness are introduced at the level of attribute values at a source,
before the tuples are inserted into different tables in the data-
base. Hence the same identifier can be attached to the same
unknown value wherever it occurs in the database.

Basic Assumption in Model M-2 (Attribute Value Level):

An unknown value has a unique identifier. Different
occurrences of the same unknown value in the database have
the same identifier and the same range value. If two identifiers
for two unknown values T, and T, are the same then T, = Ty
otherwise T, may or may not be equal to T,.

In M-2, we have the advantage that duplicate unknown
tuples can be identified in base tables using identifiers, resulting
in inexpensive Union and Difference operations. Clearly, in
such an environment, the base tables of the database contain
only total and type 1 tuples.

In M-3, errors are introduced at the attribute-value level
as in M-2, but any two different identifiers are known to

- 24 -

represent different values.

Basic Assumption in Model M-3 (Attribute Value Level):
Two identifiers for two unknown values T; and 1, are the same
iff T = Ta

M-4 models an environment where errors are introduced
at the tuple level before tuple insertions are made into the vari-
ous tables of the database. A given tuple with unknown values
is represented across the database by the same partial tuple.
However, identifiers are not attached to unknown attribute
values appearing in relations with different schemes. Rather,
identifiers are attached to tuples.

Basic Assumption in Model M4 (Tuple Level):
Two table tuples in different tables represent the same unknown
(relation) tuple iff they have the same identifiers.

In each of the models, we extend the five basic relational
algebra (RA) operators. As a rule, we retain the semantics of
the regular RA operators for total tuples, and extend them for
partial tuples. All of the extended operators in our models are
faithful [Maie 83] in the sense that they reduce to the usual RA
operators when the tables consist of only total tuples. We
show for each of the models that our extension is sound (i.e.,
no incorrect results are derivable when an RA expression is
evaluated) in the Imilienski-Lipski sense [ImiL 84]. However,
query evaluation is not always complete; that is, some valid
conclusions may not be derivable. In [OlaO 88b], we present a
version of the model M-2 in which RA operators are restricted
to the cases where the query evaluation is sound and complete.

The rest of the paper is arranged as follows. Section 2
gives the terminology and definitions. Section 3 discusses the
correctness notions for the extended models. In section 4,
models M-1 and M-2 are presented. In section 5, we compare
models M-I and M-2 in our family of models with other
approaches. Section 6 discusses the common geometric opera-
tions needed in RA operator implementations of all the models
in the family. We are presently implementing a version of
model M-1 in a main-memory database system [OlaO 88a, She
88]. Section 7 briefly discusses the parameters being measured
in the implementation.

2. Terminology and Definitions

Let tuples (p) denote the set of total ples contained in a
partial tuple p, and tp be the unknown tuple represented by p.

tp- represented by a type 1 tuple p; is different from any total
tuple or 'p-' i#j, for p j in the same table. Relational algebra
j
operators for tables (as opposed to relations) are superscripted
by *.
Tables are denoted as U .’s, and relations are denoted as
r j ’s. The letters t and p, with or without subscripts, denote total

and partial tuples, respectively. The letter z is used to refer to
either total or partial tuples. And, the predicate that the tuple z

is in table U is writen as TV @), T, @), T,V @ or T3V @)
when z is total, type 1, type 2 or type 3, respectively. Ur,
UTl' UT;' UT;’ respectively, denote the collection of total,
type 1, type 2 or type 3 tuples in table U. Different

combinations of the numbers 0, 1, 2 and 3 as subscripts of T
refer to a combination of tuple types; for instance, UT(m

denotes total, or type 2 or type 3 tuples in U.
UTl’ UTz' UT3 are multisets (i.e., sets with duplicates).

Therefore, we use the predicate that two tuples z; and z; in a
table U with possibly identical tuple components are both "phy-
sically” kept in U, written as z; #, z2. The usual equality
predicate, =, holds (does not hold) between any two distinct
tuples with identical (nonidentical) tuple components.

2[Y], the projection of a type 1 or type 2 tuple z on a set
of attributes Y, is total, written as T(z[Y]), if there are no unk-
nown values in the Y-values of z. However, z[Y] for a type 3
tuple z is always type 3.

The intersection of two tuples z, and z,, written as z; N
z,, consists of those tuples occurring in both fuples(z,) and
tuples(z;). z; and z, are said to intersect if z, N 2z, # .
Given a type 1 tuple p; in U, the candidate tuples for 'p con-

1

sists of tuples in tuples(p,) that are not in UT'

Given tables U and V, the effective intersection, written
as p; A pa between a type 1 tuple p; in U
(a) and a type 1 tuple p, in V is the intersection of the candi-
date tuples of p; and p,,
(b) and a type 2 or type 3 tuple p, in V consists of the tuples
in tuples(p1) N tuples (p») that are not in UT'
(c) and a total tuple tin Vis tif t € tuples(p,) and t is not in
UT' otherwise the effective intersection is empty.
The effective intersection of tuples z, and z, has the effect of
eliminating from the intersection (z,Nz;) those tuples that can
not possibly be ¢ 2, O t ;

The information content of a table is defined [ImiL 84]
by the mapping rep which maps a table U to rep (U), the set of
possible relations for the unknown relation represented by U.
An example of the rep mapping for the model M-I is given in
example 4. Notions similar to rep are also used in [Gran 80]
and [Bisk 83]. Let r be a relation in rep (U) of table U; a tuple
z in U has a corresponding tuple, denoted as (tz)r, in 1. We call

(tz)r the representative tuple of z in r, or z is said to be
mapped in r to ,.

3. Correctness Notion

For each of the models in section 4, the soundness and
completeness of a query is examined using revised versions of
concepts from [ImiL 84].

Definition 1 : Let U, and U, be two tables. Let ot and 0 be
unary and binary operators, respectively, ie., @ € (%, 6} and 0
€ {- U, ix)}. Let a* and 8* be the extended versions of a and
0, respectively.

(a) An extended model is sound if, for every relation r in
(rep(Uy) 0 rep(Uy) or o (rep(U,)), there is a relation s in
rep(U, 8* U,) or rep (a* (U,)), respectively, such that s Cr.
() An extended model is complete if, for every relation s in
rep(U, 8* U,) or rep(a* (U))), there is a relation r in
(rep (U,) @ rep(Uy) or o (rep(U))), respectively, such that r

- 925 -

cs.
rep(U,) 8 rep(U)) is understood to be {r, @ ry 1 ry € rep(U,)
and 7, € rep (U3)), while a(rep (U)) = {or) | r € rep (U)}.

Clearly, in definition 1, rep (U, 6* U,) is the "imper-
fect” representation that attempts to capture the “ideal”
representation rep(U,) O rep(U;). One may also think of
alternative soundness criteria. Let us look at one.

Definition 2 : An extended model is sound* if, for every rela-
tion s in rep (U, 0* U,) or rep (a*(U,)), there is a relation r
in (rep (U,) 8 rep(U,)) or a (rep (U,)), respectively, such that
sCr.

Definition 2, however, is not acceptable. We give an example.
Example 3: Let a given & and a* be such that a(rep (U)) and
rep (a*(U)) consist of the relation sets {r;, 72} and {s;, s2, 53}
in figure S and figure 6, respectively.

1 |AlA, A A

1 2 1

3] 4 415

5 6

6 7

Figure S. An Example a(rep (U))

81 LA 5o LA | A 53 LA A

! 1 1| 2

3 5 3|4

3 6|7

Figure 6. An Example rep (a*(U))

The (rep (U)) and rep (a* (U)) definitions in figures 5 and 6
do satisfy definition 2. One can also observe that when the unk-
nown relation represented by U is r,, all three "imperfect” rela-
tions s, 53, and s3 are contained in the unknown relation r,,
which is desirable. However, when the unknown relation
represented by U is r,, then none of s,, 55, and s, is contained
in r,, and definition 2 does not detect this problem. In contrast,
the soundness criteria of definition 1 is violated in this exam-
Ple.

The condition (a) in definiion 1 when considered
separately from (b) ensures the soundness of query evaluation.
However, consider the case in which rep (U, 6* U,) or rep(
a* (U)) contain an empty relation (This may occur, for exam-
Ple, in a set difference operation). In such a case, the sound-
ness criterion of definition 1 will be trivially satisfied. Thus,
whenever condition (a) is satisfied for a given extended opera-
tor, we have to see to it that the operator definition ensures a
nontrivial soundness. Therefore, in the rest of the paper, we
use the following definition of soundness.

Definition 3: An extended model is sound if, for every relation
1 in (rep(U,) 0 rep (Uy)) or a (rep (U,)), there is a relation s in
rep(U, 6* U)) or rep(a* (U,)), respectively, such that s =r.
That is, rep(@*(U)) 2 ofrep(U)) and rep(U, 6* U,) 2

rep(Uy) O rep(U»).

An operation o* that satisfies definition 3 is said to be
adequate for o [Maie 83]. Therefore, if each of the extended
operator of a given model is adequate, we have a nontrivial
soundness (for the query). Thus, we would like every extended
operator in our models to be adequate. We can also observe
that definition 3 implies condition (a) of definition 1. Let us
denote the condition (b) of definition 1 by rep (U,) 0 rep(U>)
c* rep(U, 6* U)).

In the next section, for each binary operator 6 , we
examine the relationship that holds between rep (U, 8* U,) and
rep(U,) @ rep (U,) with respect to definition 3 and condition
(b) of definition 1. Similarly, for each unary operator a, the
relationship between rep (0*(U)) and a(rep (U)) is examined.

4. Family of Extended Models

Based on the basic assumptions, we now define the
extended model M-I. Due to space considerations, we briefly
describe M-2, and omit the discussions of models M-3 and M-
4. The basic assumptions define the rep mapping; the map-
pings in models M-1 and M-2 are denoted as rep; and rep,,
respectively. In defining a rep, we use the following version of
Reiter’s [Reit 78] Closed World Assumption in [Bisk 83): If a
totalmpletisnotinUT and there is no partial wple p in U
and relation r in rep (U) such that (5,)r = t, then t is not in the
unknown relation represented by U.

4.1. The Model M-1

In model M-I we can not always recognize different
occurrences of the same tuple in different tables. The relation-
ship between any two tuples is defined solely by the intersec-
tion of their candidate tuples.

Definition (rep in M-1):
repyU) = (r I (MTV @) > te »

ATV @) > X € mples@) Aty 1A
(VeXz e UA 2% p) - 11%(,))

ATV () » Tty € wplesy A 1y € 1)

A VXTU (p) » @nXr € tuples) Aty € 1)

V=B At ¢n))

repy(U) for a table U is defined independent of other
tables in the database. Also, rep,(U) consists of a finite
number of relations because (a) the set of candidate tuples for
an unknown tuple is finite, and (b) the Closed World Assump-
tion is used.

Example 4: In figure 7, rep,(U) = {ry, r2, r3}. In both rela-
tions r; and rj, the type 3 tuple in U is mapped either to the
null tuple or to tuple (1, 2).

In order to define the Union and Difference operators of
the extended relational algebra, we have to answer the question

of when a tuple in one table is a duplicate in another one. The
following type-based membership rules are used for that

- 26 -

UlA | A | TYeE r, []

1 2 0 1 2

1 [2.4) 1 1 3

1 2,3) 3
Ty LA [A 13 [A A

1 2 1

1 4 1

1 3

Figure 7. Mustration of rep,(U)

purpose.

Rule I: Given a table U, a total tuple t in table V is

(a) a duplicate in U if there is a t’ in UT such that t=t’,

(b) not a duplicate in U if there is no tuple z in U such that
ZNt=t,

(c) may be a duplicate in U if (a) and (b) do not hold.

Rule 2: Given a table U and a type 1 wple p in table V, the
unknown tuple tp represented by p is

(a) a duplicate in U if all the candidates for tp are total tuples
in U,

(b) not a duplicate in U if for all tuples zin U, p A 2=,

(c) may be a duplicate in U if (a) and (b) do not hold.

Rule 3: Given a table U and a (type 2 or type 3) tuple p in V,
the unknown tuple ‘p represented by p is

(a) a duplicate in U if all the tuples in tuples(p) are in either
UT or V..,

(b) may be a duplicate in U if there is a tuple in tuples(p) that
is not a total tuple in either U or V.

We now discuss the extended versions of the relational algebra

operators in the model M-1. Formal definitions are given in
[O1a0 88b).

A. Union

The union of two tables U and V, denoted as U W * V,
consists of
(a) the set of total tuples in either V or U,
(b) type 1 wples p such that
(i) T,U (p) holds, and 1, is not a duplicate in V, or
i) 71" (p) holds, and 1, is not a duplicate in U,
(c) type 2 tuples p such that
@ T,V) or T,V (p) hold, and ¢ , may be a duplicate in V.
Gi) T,Y (p) or T2 (p) hold, and t, may be a duplicate in U,
(@) type 3 tuples p such that TsU (p) or TV (p) hold, and ',
may be a duplicate in V or U, respectively.
Please note that the union operator in M-I does not migrate
tuples into the type 3 class. That is, if a tuple of U or V is not

type 3 then it will not be converted into a type 3 tuple in the
union.

Example 5: Figure 8 illustrates the union operation. In the
union, each of the three partial tuples in U and V is changed to

may
3

but not both. This information loss

a type 2 tuple because we can not express the fact that tp

ort
1 2

is one source of incompleteness in query evaluation in model
M-1.

be equal to either tp

u Ay | A, | TYPE |y A | oA, | TYeE
Py | 2 | 18] 1 4 0
ppl2[R6] 1 psl2|Beaj 1

2| 4 0

uwv | A | A | TYE s|a [a,
2| 4 0 4
2 s | 2 3
2 |26 | 2
2 |38 | 2

Figure 8. The Extended Union

Remark: There exist tables U and V such that rep;(U) U
repi(V) ¢* rep,(U U* V),
Proof: Using the tables in figure 8, relation s is in rep,(U U*
V), but there are no relations r; € rep,(U) and r, € rep (V)
such that s O r, U r, because there are at least three tuples in
anyr € rep,(U). QED.

Union fails to satisfy the completeness because we can
not identify those type 1 tuples that originate from the same
table and are changed to type 2 in the union.

B. Difference

The difference of tables U and V, denoted as U —* V,
consists of
(a) the set of total tuples t in U such that t is not a duplicate in
v’
(b) type 1 tuples p such that T,U(p) holds, and ’p is not a
duplicate in V,
(c) type 2 tuples p such that T2U (p) holds, and, for all tuples z
mV,znp=9.
(d) type 3 tuples z such that TV 4;35(z) holds, and t, may be a
duplicate in V.
Please note that some tuples of U that are not type 3 may
become type 3 in the difference. That is, difference operation
may create a migration of tuples into the type 3 class of tuples.

Example 6: Figure 9 illustrates the difference. Again, we do
not have any way of specifying that at most one of the two
type 1 tuples in U can represent the same unknown tuple as the
type 1 tuple in V. Hence both type 1 tuples in U are changed
to type 3 in the difference. This example also illustrates the
semantic difference between type 2 and type 3 tuples: the type
3 tuples in the difference may not exist; thus, they cannot pos-
sibly be type 2 tuples in the difference.

Remark: There exist tables U and V such that rep;(U) —
repy(V) ¢*rep (U —* V).

- 27 -

ula | A [TYeE via | A | TYEE
1] 2 0 2 ([pa] 1
2 (pay] 1
2 (ea) 1
1|26 2
u-*via | a |TYeE
1| 2 0
2 lpa| 3
2 1p6l| 3
1 (ral| 2

Figure 9. The Extended Difference
C. Projection
The tables in figure 10 illustrate the projection operation.

U A | A [TYPE]| =00 | A | TYPE
23 | 23 1 231§ 2
23| @3] 1 23] 2
23] | 23] 1 R3] 2
5 | v 1 “4.7] 1
5 | 58] 3 [5.8]) 3

Figure 10. The Extended Projection

plA;], the projection of a type 1 tuple p in table U remains as
type 1 in 7% (U) if p[A,]nz[A,] = @ for all the tuples z in U
or wheneve%[A 2Nz[A ;] # D, p and z have equal nonnull A,
values. In figure 10, only the tuple (5, [4,7]) satisfies this con-
dition. The intervals [4,7] and [5,8] intersect, but the unknown
tuples represented by tuples (5, [4,7]) and (5 , [5,8]) -if they
exist- can only have A, value of 5, and thus different A,
values. Projection on type 2 and type 3 tuples remain as the
same type. We now formalize these observations.

Let R(Z) be the scheme for table U such that X < Z.
We say that two tuples z; and z, are X-indistinguishable if
tuples (z,[X]) = tuples (2,[X]) and tuples(z,[X]) has a cardinal-
ity of 1.

Please note that a tuple z, and a type 3 tuple z; can be
X-indistinguishable even though z,[X] is a type 3 tuple (not a
total tuple). Also please note that z[Y], the projection of tuple
z on the Y attributes, is total (written as T(z[Y])) if z is either
total, type 1 or type 2, and z[Y] does not contain unknown
values. However, a projection on a type 3 tuple cannot be
total.

Let X = (Attributes of U — Y), then the extended projec-
tion of U on Y, denoted as n;(U), consists of
(a) total tuples z{Y] such that T(z[Y]) holds - z can be total,
type 1 or type 2,

(b) type 1 tuples z{Y] such that TIU(z) holds and whenever
2,[Ylnz[Y] # &, z, € U, z and z, are X-indistinguishable,
(c) type 2 types z[Y] such that

@) Tlv(z) holds, z[Y]nz,[Y] # &, and z and z; are not X-
indistinguishable, for a tuple z, in U, or

(ii) T;U (2) holds, and there is a tuple in z[Y] which is not in
()
(d) type 3 tuples z[Y] such that TsU (z) holds, and there is a
tuple in z[Y] which is not in (n’;(U))r .

Remark: There exists a table U such that rep,(U)™ ¢+
’epl(ﬂ’;(U)), where rep l(U)”" = {r |l r, is a relation in rep,(U)
and r = 7ty (r4)}.

The information loss in the projection operation of M-
occurs because the combinatorial implications arising from hav-
ing finite candidate values for an unknown value are too expen-
sive to be incorporated into the definition of projection opera-
tion.

D. Equi-join
The equi-join is illustrated in figure 11.

Ut A | A, | TYPE \ A, | TvPE
3 @RS 1 2 [pef 1
2 2 0 6 1561 2
691] 6 6
up'v A A] A |TveE
3 |2 (241 3 s|A A]A
3 |21 6 3 3122
2 |2 4| 1 2213
2 (2] 6 0 6|6 |5
691 | 6 | (561 | 2 212]¢e

»
Figure 11. The Extended Equi-Join

In general, let R{(XY) and R,(XZ), XnY=D and XnZ=D, be
the schemes for tables U and V, respectively. For any two
tuples z; in U and z, in V such that T(z,[X]) and z,{X]=z,[X]
hold, the equi-join U pq* V contains z; concatenated by z,.
And whenever z,[X]Nz,[X]#@ and at least one of z,[X] and
z5[X] is partial, there is a possibility that tzl and tzz are "join-

able".

Let zy be in U and z, be in V. The equi-join of U and
V, denoted as U pq* V, is defined using z; and z, as follows:
(a) If T(z4[X]) holds and z,[X]=2z,[X], a concatenation of z,
and z, is made; the resulting tuple of the equi-join is
(i) total if both z, and z, are total,
(ii) type 1 if one of z; and 2, is type 1, and the other is total or
type 1,
(iii) type 2 if either of z; or 2, is type 2.
(b) If at least one of z,[X] and z,[X] is partial (i.e., contains an
unknown value) and. z,[X]Nz [X]#J; the resulting tuple of the
equi-join is type 3.

Remark: There exist tables U and V such that rep,(U) i

rep (V) ¢&* rep (Upg* V).

Proof: In figure 11, relation s is in rep,(Upg* V), but there are
no relations r, € rep,(U) and r, € rep,(V) such that r1 g ra
s. Q.ED.

- 928 -

E. Selection

The resulting table when a selection formula F is applied
to a table U, denoted as c*F(U), consists of
(a) total tuples t such that TU (Dholds, and F(t) holds,
(b) type 1 tples p such that T,U (p) holds, and all the candi-
date tuples of p satisfy F,
(c) type 2 tuples p such that T2U (p) holds, and all the tuples in
tuples (p) satisfy F,
(d) type 3 wples p such that TmU (p)holds, and at least one t,,
t) € tuples(p), satisfies F, and there is a t5 € tuples(p) that
does not satisfy F.
Figure 12 illustrates the extended selection operation.

Figure 12. The Extended Selection

Remark: There exists a table U such that GF(repl(U)) ¢*
repy(c*_(U)).

Proof: h figure 12, relation s is in rep;(c* (U)), and there is
no relation r in rep ;(U) such that OF(r) cs. QEFED,.

o Correctness of Query Evaluation in M-1

Lemma 1: Let U and V be two tables, and o and 0 be any
unary and binary RA operators, respectively, ie., o € {m, 0}
and 8 € {-, U, M}. Let a* and 0* be the extended versions of
o and 0 in M—1, respectively.

(a) rep,(U 0* V) 2 rep,(U) 0 rep,(V), and

(®)rep,(a* (U)) 2 a (rep1(V))

Theorem 1: Query evaluation in the extended model M-I is
sound.

Proof: Follows from lemma 1, and a straightforward induction
on the number of operators of an RA expression.

4.2 The Model M-2

In M-2, the base tables of the database contain only total
and type 1 tuples. However, the projection operation intro-
duces type 2 tuples in model M-2. In other words, tuples can
not be uniquely identified in intermediate tables resulting from
a projection operation (on a base or intermediate table). Selec-
tion is defined as in M-I; hence type 3 tuples are also intro-
duced in model M-2.

The identifier of a tuple z in a table with scheme U(A,,
Az, .., Ag), denoted by id(z), is the wple (i, ..., iy) where i; is
z[A;] if z[A;] is a known value, otherwise i; is the identifier for
the unknown value z[A;].

rep,, the rep mapping for M-2, is similar to rep, except
that the same unknown-value identifier, wherever it occurs in

U | A A, | TYPE "sz(u) A, A, |TYPE | s | A (A
1 2 (1] 1 34} 1 1|3
1 34] 1 2 2,4} 3 2 3
2 | 24 1 2 | 25] 3
2 2,51 1 [25] 3 2
[25] 3 2

the database, must be mapped to the same value. Hence
rep,(U) is defined relative to the other tables in the database D
of tables. Please note that a partial tuple can appear in inter-
mediate tables as a different type tuple; when this is the case, a
type 3 wple in an intermediate relation obtained from a type 1
tuple, for instance, can be mapped to the null tuple. D
represents the database of tables.

Definition (rep in M-2):

rep,(U)D = {1l (re rep,(U) A

MDYV VNV 1D A 7y € rep,(Uy)
A z,;e U, A ze U A id(z,[A;]) = id(z[A;])

= (@ r)lA] = ()AL V ¢ r =D v @) = D))
)

The RA operators of M-2 are similar to the RA operators
of M-1, except that we now recognize tuples of any type with
the same identifier, and keep only one copy of such tuples in
the resulting table. Definitions of the RA operators of M-2 are
in [OlaO 88b}.

After substituting "M-2" for "M-1", lemma 1 and
theorem 1 still hold. That is, similar to M-I, query evaluation
in M-2 is sound, but not complete. A special case of M-2 for.
which query evaluation is sound and complete is given in
[O1aO 88b].

5. Comparison of Models M-1 and M-2 with Other Models

M-1 is unique in the sense that it models incomplete data
environments that can not be handled by models based on Codd
tables [Codd 79 and Bisk 83] where unknown values are
denoted by a special null symbol, or the models: based on V-
tables [Imil. 84] where unknown values are represented by
variables.

Let us consider relation r in figure 13. In M-1, r is
represented as table U if the last digit of the A, value of the
tuples in r are unknown.

A |a, ula | A [TE|V] A
4 |s3 4 [15059 | 1 (50,59}
4 |56 4 [s0s91| 1 (50.59)
s |4 5 | Moo | 1 [40,49]
3 (& 3 | @odo [1 40,49)

Figure 13. Duplicate Partial Tuples in [Gran 80]

The incomplete relation would be represented in {Codd 79 and
Bisk 83] by table R in figure 14, where "STATUS=d" denotes
definite tuples, and @ is the null symbol. Only one occurrence
of tuple (4 , ©) is stored because one stored tuple represents
several, but unspecified, number of model (unknown) tuples.
In R, we are not able to represent the fact that there are exactly
four unknown tuples. This has significant implications, espe-
cially when the COUNT of the tuples satisfying a given query
is important. In M-I, using the tuple types, we are able to pro-
vide a tighter range for COUNT.

-929 -

R | A | A, | STATUS U A |A, s|A | A,
4 o d 4) 4 50
5 (] d 4 |x s |4
3|0 d 5 | x, 3 |4

3 Xq

Figure 14. V-Tables and Codd Tables

{Gran 80] allows duplicate partial tuples as in M-1.
Thus, the incomplete relation r in figure 13 is represented by
table U as in M-I. However, in [Gran 80}, the relationship
among the tples of an intermediate table can not be specified.
For example, in figure 13, table V represents the projection of
U on attribute A, in {Gran 80). There is no way of stating the
fact that the two occurrences of tuple ([50,59]) represent
different unknown values, while the two occurrences of tuple
((40,49]) may denote the same value.

The model M-2 is similar to the model based on V-
tables in [Imil. 84], where unknown values are represented by
distinct variables which take values from infinite domains. In
comparison, in M-2, the range of an unknown value is finite
and the tuple types (in a projection, for instance) distinguish
variables that are known to take different values (type 1°s) and
those that may take the same value (type 2’s).

Both Codd tables and V-tables can be used to model the
M-2 environment. Using Codd tables, every unknown value is
denoted by a null symbol; but, as stated above, duplicate partial
tuples are not allowed. In V-tables, the unknown values are
represented by variables. An unknown value takes the same
variable name wherever it occurs in the database. For instance,
the incomplete relation in figure 13 is represented by the V-
table U in figure 14. However, a V-table is not quite the same
as a table in M-2. The interpretation of a V-table is such that a
variable may take any value from an appropriate domain;
different variables may take the same value. For example, rela-
tion s in figure 14, consisting of only three tuples, is in the set
of relations represented by the V-table U.

6. Geometric Operations on d-rectangles

We now briefly discuss the geometric operations needed
to implement the RA operators of model M-1 (and, also, the
models M-2, M-3 and M-4).

A d-dimensional rectilinearly-oriented rectangle (d-
rectangle) is the cartesian product of d closed intervals, one on
each coordinate axis. A partial tuple p in a table of degree d is
a set of disjoint d-rectangles in d-space. The candidate tuples
of p is the set of total tuples contained in p.

Efficient manipulation of d-rectangles in the geometric
model is central to the query evaluation process. Geometric
operations that have to be performed include
(a) Finding the intersection of d-rectangles (used in all the five
basic RA operations).

(b) Finding the complement of a set of d-rectangles (used in the
projection operation).

(c) Testing for the containment of a d-rectangle in a union of
d-rectangles (used in the selection operation).

Below we discuss these operations.

6.1, Intersection of d-rectangles

The intersection of two partial tuples is obtained by
intersecting the corresponding d ordered sets (one per tuple
component), each of which may have up to f intervals. Since
the intersection of two ordered sets of intervals can be deter-
mined by comparing the two sets sequentially in 0(f) time, the
intersection of two partial tuples is performed in 0(df) time.

Given a partial tuple p, finding all partial tuples of a

table U which intersect with p is also needed in all five RA
operators. The most straightforward approach is to intersect p
sequentially with each partial tuple of U, which takes O(ndf)
time. Using the following result from [EdeM 81, Edel 83], one
can give a different time complexity for this task as
O(f log?nf + kf) where k is the number of partial tuples of U
that intersect with p.
Let S be an arbitrary collection of n d-rectangles. Then, there exists a
data structure which repons in 0(log“n + k) time the k d-rectangles
intersecting a given d-rectangle. The data structure is a combination of
segment trees and range trees(i.e, a tree-of-trees structure). The con-
struction of the data structure requires O(nlog® 'n) space and O(nlog?n)
time. An insertion and deletion of a d-rectangle from S can be accom-
plished in O(log?n).

The disadvantage of the approach in [EdeM 81, Edel 83]
is that a complex tree-of-trees structure has to be constructed
and maintained separately, which is expensive.

Another question that arises in union, difference and pro-
jection operations is to find whether any of the total tuples of a
relation (or the candidate tuples of a partial tuple) intersects
with (i.e. are contained in) a given partial tuple. The following
lemma gives the complexity of such a task.

Lemma 2: Whether there is a total tuple in a d-degree relation
of size n, sorted on an attribute A;, that intersects with k; of a
partial tuple p = kyxkyX ... xk; can be determined in O(f logn)
comparisons, where f is the degree of fragmentation.

The RA operator evaluations also utilize the counting
problem of finding the number of candidate tuples of a partial
tuple that intersect with the total tuples of a table. This opera-
tion can be implemented using the intersection operation of
lemma 2.

6.2. Finding the Complement of a d-rectangle

We define the complement C’ of a given rectangle C as
the set of rectangles that contains all the points in (Dﬁ' D, 2
ey Dy 4) except those in C. The complement C,' of the region
defined by a partial tuple p can in general result in a set with
disjoint (2f+1)? - f¢ d-rectangles. However, lemma 3 states
that C,,' can be represented by at most (f+1)d d-rectangles.

Lemma 3: Given a partial tuple represented by a set of d-
rectangles C,, the complement C,” of C, can be represented by
the union of at most (f+1)d d-rectangles which are not neces-
sarily disjoint.

6.3. Testing for Containment

- 30 -

In order to determine if a partial tuple p satisfies a selec-
tion formula Q, we test for the containment of C,, the region
defined by p, in Cy, the query region defined by Q. For this
test, one can use the concept of d-measure [Guy 77]. The d-
measure of a single rectangle is a numerical value of the pro-
duct of its intervals. For d=2 and d=3, this comresponds to area
and volume, respectively. In finding the measure of a union of
rectangles, points appearing in two or more rectangles are
“counted” once. Thus, C, = C, n Cg, and hence C, c Cy
bolds only if the measure of C, is the same as the measure of
C, N Cy. However, the query region of Q, and consequently
Cp, N Cg, may consist of a union of arbitrary d-rectangles.
Finding the measure of n d-rectangles may take up to 0(n?™)
time [LeeW 81]; this is quite expensive for large d.

For tables with large degrees, Q may be transformed into
the Conjunctive Normal Form, and p may be tested iteratively
against every conjunct. The details of this approach are in
[OlaO 88].

7. Implementation Effort

There are two parameters that directly effect the perfor-
mance of any of the gemetric incomplete database models
given in this paper. The first is the degree of fragmentation f,
i.e., the maximum number of intervals allowed in a tuple com-
ponent. Clearly, there is a tradeoff between the number of
intervals for an unknown value and the cost of operator evalua-
tion. The second parameter is the percentage of partial tuples
in tables.

In [OlaO88a], for each of the extended operators, an
evaluation algorithm is given. The worst-case time costs of the
algorithms are analyzed in contrast with the costs of evaluating
the usual RA operators in a particalar DBMS. For more accu-
rate time cost estimates, the distribution of nulls in partial
tuples and the degree of fragmentation must be taken into con-
sideration. We have come to the conclusion that a prototype
development is needed to provide a better understanding of the
feasibility of the models proposed in this paper.

As a first step in evaluating the performance of the
models in this paper, we are implementing a version of model
M-1 within a main-memory-only DBMS [She 88]. In our
implementation, we are using the basic assumption of model
M-1, and its type O and 1 tuple types. Type 2 and type 3
tuples of M -1 are merged into a single tuple type of type 2'.
This change simplifies the RA operator definitions of M-1
significantly, and allows for a more efficient implementation.
The goals of the implementation are
(a) to obtain empirical information about the effects of the
parameters

(i) the degree of fragmentation, and

(ii) the proportion of partial tuples in tables, on the perfor-
mance of the system, and
(b) to evaluate the feasibility of the models proposed in this
paper.
We directly use in the implementation the geometric operations
of section 6.

8. References
[AbKG 87] Abiteboul, S., Kanellakis, P. and Grahne, G., "On

the Representation and Querying of Sets of Possible Worlds",
proc. ACM-SIGMOD conf., 1981.

{Bisk 81] Biskup, J,, "A Formal Approach to Null Values in
Database Relations", in Advances in Database Theory (H. Gal-
laire, J. Minker and J.M. Nicolas, Eds), vol 1, 1981, pp. 299-
341.

[Bisk 83] Biskup, J, "Foundations of Codd’s Relational
Maybe Operations”, ACM TODS vol 8(4) 1983, pp. 608-636.
[Codd 79] Codd, E.F., "Extending the Database Relational
Model to Capture More Meaning”, ACM TODS, vol 4(4) 1979,
pp. 397-434,

[EdeM 81] Edelsbrunner, H. and Maurer, H.A., "On the Inter-
section of Orthogonal Objects”, Inf. Proc. Letters, 13, 1981, pp
177-181.

[Edel 83] Edelsbrunner, H.,, "A New Approach to Rectangle
Intersections”, Int. J. of Computer Math., vol 13, 1983, pp
209-219.

[Gran 79] Grant, J.,, "Partial Values in Tabular Database
Model", Inf. Proc. letters, 9, 3, 1979, pp. 97-99.

[Gran 80) Grant, J., "Incomplete Information in a Relational
Database", Fundamenta Informaticae I11.3 (1980), pp. 363-378.
[Guy 77] Guy, R., "Research Problems”, in American Math.
Monthly, 84(4), 1977, pp. 284-285.

[ImiL 84] Imielinski, T. and Lipski, W., "Incomplete Informa-
tion in Relational Databases”, JACM vol 31(4) 1984, pp. 761-
91.

[LeeW 81] Leeuwen, J and Wood, D., "The measure problem
for rectangular ranges in d-space”, Journal of Algorithms, 2,
1981, pp.282-300.

[Lips 79] Lipski, W., "On semantic Issues Comnected with
Incomplete Information”, ACM TODS Sept. 1979, pp. 262-296.
[Maie 83] Maier, D., The Theory of Relational Databases,
Computer Science Press, 1983.

[OlaO 88a] Ola, A. and Ozsoyoglu, G., "Geometric Modeling
of Incomplete Relational Databases”, Tech. Report, CWRU,
May 1988.

[O1aO 88b) Ola, A. and Ozsoyoglu, G., "A Family of Incom-
plete Relational Database Models", Tech. Report, CWRU, Aug.
1988.

[Reit 78] Reiter, R., "On Closed World Databases" in Logic
and Databases (Gallaire and Minker, Eds), Plenum Press, 1978,
pp.55-76.

{She 88] Shen, Jun, "A Main-Memory Incomplete Information
DBMS and its Performance”, MS thesis, CWRU, in progress,
1988.

[SixW 82] Six, H.W. and Wood, D., "Counting and Reporting
Intersections of d_Ranges”, JEEE TC, vol C-31, 3, 1982, pp
181-187.

[Vass 79] Vassilion, Y., "Null Values in Database Manage-
ment: A Denotational Semantics Approach”, ACM-SIGMOD
1979, pp. 162-169.

(Zani 84] Zaniolo, C., "Database Systems With Null Values",
JCSS, 1984.

-31-

-39-

