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Abstract: We describe the architecture of a relational 
database system that is extensible by user-defined data types 
and operations, including relation operations. The central 
concept is to use languages based on many-sorted algebra to 
represent queries as well as query execution plans. This leads 
to a simple and clean extensible system architecture, eases 
the task of an application developer by providing a uniform 
framework, and also simplifies rule-based optimization. As a 
case study the extensions needed for a geometric database 
system are considered. 

1. Introduction 

Much of the database research of recent years was aimed 
at providing a better support for non-standard applications 
such as office information systems, geographic information 
systems, CAD databases, etc. A common need of these 
applications is the representation and manipulation of more 
complex objects than those representable by a tuple of a 
relation in the traditional relational model, for example, an 
office form, a complete map or a river, say, in a geographic 
information system, or the design of a VLSI circuit. 

A fundamental choice for the representation of a complex 
object is whether its structure should be visible or hidden at 
the level of the data model. Speaking in terms of the 
relational model, for representation the question is whether 
the object should be described by a collection of tuples from 
various relations, or by a single attribute value from a 
specific domain for this kind of objects. For manipulation, 
the distinction is whether the internal .structure is accessible 
to the general facilities of the query language (selection of 
subobjects, for example) or only to domain-specific 
operations. The two ways of handling complex objects have 
been called structural and behavioural object orientation, 
respectively [Di86]. 

Both approaches are obviously needed and are appropriate 
for certain applications. For example. one should be able to 
define the internal structure of an office document within the 
data model and to access it through the query language. On 
the other hand, a river can well be represented as an atomic 
value of an abstract data type LINE with suitable operations. 
for instance, a function returning the length. 
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A lot of work has been done to support the modeling of 
visible object structures. Enhancements to the relational 
model have been proposed by linking together tuples to 
represent an object either explicitly [Co79. HaL82] or 
implicitly, through the use of nested relations [ScS86]. Most 
of the more recent data models and system proposals do also 
support structural object orientation, for example [MaD86, 
CaDV88, PiT86]. 

The idea of allowing application-specific abstract data 
types as base types, or attribute domains, of a database 
system was perhaps fist put forward in [StRG83]. Since base 
types need to be implemented in a programming language 
and because they are application-specific, a user must be able 
to implement such a type and to add it to a database system. 
Thii observation has led to efforts by several groups to 
wnstruct extensible database systems. Two directions can be 
distinguished. One is to select a data model and to implement 
for this data model a system with well-defined interfaces for 
user extensions. This is the approach chosen by the 
POSTGRES [StR86] and Starburst [Schw86] projects, based 
on the relational model, and withii the PROBE project 
[Daya87] for an extended functional data model. A different 
view is taken in the EXODUS [Care861 and GENESIS 
[Bato86] projects where a collection of powerful tools for 
building a database system is provided. In this case an 
application developer (“users” providing extensions have 
also been called “database implementor” [Care861 or 
“database customizer” [Lo88]) implements the whole database 
system, aided by the tools. With this approach there is more 
flexibility for the application even to select a specific data 
model. 

In this paper we describe an (implemented and running) 
relational database system, called Grail, extensible by user- 
defined data types and operations. This means that an 
application developer (AD) can 
- add data types and operations to the query language, 
- add the representation of a type to the system, 
- add new relation representations or index structures to 
support type-specific storage or searching, 
- add the implementation of type-specific operations, and 
- add rules to the system to describe the implementation of 
a new query language operation and to support optimization 
for this operation. 

The key concept embodied in Gral, which distiguishes it 
from other work, is many-sorted algebra. Gral uses many- 
sorted algebra as a query language and also as an executable 
language to describe query plans (access plans). The whole 
system is centered around this formal concept and we show 
that this leads to a very simple and clean extensible system 

1 Gral stands for “Gee-Relational Algebra” which is the 
query language of the Gral system. 
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architecture. For example, there is a layer in the system 
corresponding to the sorts of the executable algebra and 
another layer corresponding to the operators. 

Algebraic query languages have been used before [Gr84] 
and are perhaps now viewed as old-fashioned. However, they 
have clear advantages for the use in an extensible system, 
because they are inherently modular and extensible. SQL- or 
QUEL-like languages accomodate easily new functions or 
predicates for new atomic types (e.g. in where-clauses). Yet 
it is awkward to add new relation operators to such 
languages. As we shall see, non-standard applications do 
require special relation operations (see also [OsH86]). Many- 
sorted algebra and the Gral system allow to add any kind of 
user-defined relation mapping. The particular kind of algebra 
that we use includes very powerful retrieval operations such 
as selection or join with an arbitrary algebra expression as 
condition and the embedding of derived values (described by 
algebra expressions) into relations. 

The optimizer translates query language expressions to 
query execution plans. In Gral both are algebraic languages 
with the same structure. This eases considerably the 
application developer’s task who needs to be familiar with 
both language levels. In particular it makes it relatively easy 
to formulate the rules driving the query optimizer. 

The Gral project started with the goal of building an 
efficient database system for geometric applications. While 
this is still our goal, the need for extensibility was soon 
recognized and the focus shifted initially to provide a clean 
and simple extensible architecture. We End that having in 
mind a specific application is quite helpful to see clearly 
what kind of extensibility is required. 

We consider an extensible system to have a model and a 
system part and, orthogonally, an application-independent 
and an application-specific part. We use the following 
terminology. The application-independent parts are called the 
Gral model frame and the Gral kernel system. Speaking of 
application extensions in general we use the terms Graf 
application model and Gral application (system). Finally, the 
running Gral prototype is one specific application; its data 
model is geo-relational algebra and we call it the Gral 
system. The following three sections describe Gral’s query 
language, its executable language, and the system 
architecture. Related work is mentioned in Section 5. 

2. An Extensible Data Model and Query Language 

Basically Gral uses an extended relational algebra as a 
query language. More precisely, Gral’s data model and query 
language are based on the formal concept of a many-sorted 
algebra. A many-sorted algebra is a collection of sets and 
functions between these sets; it is described by an S-sorted 
signature I; where S is a set of sorts (names for the sets) and 
Z a family of sets Z,,, of operator symbols (names for the 

functions), where w E S* and s E S describe the functionality 
of operators in Z,,, [GoTW78]. For Gral, this algebra has 
one sort for relations and further sorts for atomic data types; 
the operations include relational operators such as selection 
or join and operations on atomic data types such as integer 
multiplication or a test whether two polygons intersect. 
More precisely. again, the structured data objects in Gral are 
not relations (sets of tuples) but sequences of tuples, or 

ordered relations. This allows, for example, to include 
sequence and sorting operators in the algebra. 

Since Gral is an extensible database system together with 
one specific extension we can distinguish between the 
application-independent model frame and the application- 
specific data model called geo-relational algebra. The model 
frame describes any application as a many-sorted algebra; it 
defines the application-independent sorts and operators and 
is abstract with respect to the application-specific sorts and 
operators. The set of sorts is S = (sl. . . . , sn) with 
sl=REL and s2= BOOL. The collection of operators 
(signature) of the model frame is I: = EG U EA (G for 

“general”, A for “application-specific”) of which EG is 
defined within the model frame. Some operators 
shown in the following table. 

Of ZG me. 

REL x REL 

REL 

+REL union, product, 
Join. concat 

+REL select, project, 
-- # 

extend, ord, head _ # 
REL + ATOM extract (-#) 
BOOLxBOOL +BOOL and, or (-#-I 
BOOL +BOOL not #(-I 

The model frame contains sorts for relations (sequences 
of tuples) and Boolean values and their associated 
operations. The rightmost column shows the syntax for 
using an operator within an expression (a query); “-” denotes 
an operand and V#” the operator, parentheses are to be used 
as indicated, For example “rell rel2 union” and “(x and (y 
or z))ll are well-formed expressions. Some operators take 
parameters which appear in square brackets behind the 
operator symbol, as, for example, in “cities select [cpop > 
500000] proJect [cname, cpop]“, for a “cities*’ relation 
with attributes for city name and population. 

The set of sorts S has a subset ATOM = (~2, . . . , gn) 
which contains the atomic data types. The ,model frame 
provides also a set ORD E ATOM containing the atomic data 
types that are one-dimensional ordered domains so that a 
relation can be sorted by attributes of such a type. 

Any application-speciftc database system must specify its 
atomic data types and may provide within EA any operations 
on these atomic types, but also operations involving 
relations. Standard types such as integer, real, and string 
with suitable operations are likely to occur in most 
applications. Sorts INT. REAL, and STR are also part of the 
geo-relational algebra together with the following 
operations: 

STDi X STDi +BOOL =. f, <, 5;. 2, > (-#-) 
llwxllw +INT +. -. *, div,mod (-#I-) 
INTXlNT *REAL / (-#-) 
REALXNUM +REAL +,-,*,/ (-#-) 
NUMxRFiAL 4REA.L 
REL +INT count (-#I 
NuM+ +REAL avg (-#I 
NUMi* + NUMi sum, mln, max (-NJ 
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In this listing some abbreviations are used. STD and 
NUM denote sets of sorts, namely, STD = (INT, REAL, STR) 
and NUM = (INT, REAL). The notation Xi with such a set 
identifier means that Xi is to be consistently replaced by the 
same element of set X. So the first line allows comparisons 
of any two operands of equal type. The notation X* denotes 
a relation operand where an attribute of type X is specified. 
or, intuitively, a set of X values. The attribute is given as a 
parameter of the operator, for example, “(cities avg [cpop])” 
returns the average population of cities (within the cities 
relation) as a real number. The last line is also an 
abbreviation for two lines with the functionalities 
INT* + INT and REAL* + REAL. 

We can now illustrate the operators of the model frame 
by a few examples. 
(1) Determine the five cities with the highest population 
numbers. 

cities ord [cpop -1 head [5] 
The ord operator sorts cities descending by population; from 
the resulting sequence head returns the first five tuples. 
(2) Add to each city tuple an attribute giving its population 
in percent of the maximal population. 

cities 
extend [(cpop/(cities max [cpop]))*lOO (percent)] 

The extend operator takes a list of algebra expressions as 
parameters, each expression is followed by a new attribute 
name. For each expression, the relation will have a new 
attribute whose value is determined for each tuple by 
evaluating the expression. 
(3) Find pairs of cities whose population number differs by 
less than 50000. 

cities cities (*->*2) join [(cpop - cpop2) < SOOOO] 
For the second operand relation, the attributes are first 
renamed (appending a suffix “2”) before the join operator is 
applied. Note that the select as well as the Joln operator 
take arbitrary algebra expressions with Boolean result as 
parameters. 
(4) How many people live in Dortmund, in thousands? 

(cities extract [cmtme=“Dortmund”; cpop]) div 1000 
The extract operator allows one to extract from a relation a 
single atomic value which is then available for further 
operations. Parameters of extract are an algebra expression 
(as a selection condition which must return exactly one 
tuple) and an attribute name. 

An application may decide to choose the collection of 
standard types and operators shown here “from the shelf’. 
However, since all atomic types, except for BOOL. are 
considered application-specific, it may instead also use very 
long integers, text fields containing formatting instructions, 
etc. 

An application will then introduce its own more specific 
data types. Gral’s data model, the geo-relational algebra, is 
designed to support geometric applications in the plane, 
perhaps with a bias towards supporting geographic 
information systems. Gral has therefore types for points, 
lines, and regions in the plane. A line is conceptually a 
finite sequence of straight line segments. A region is a hole- 
free, non-selfintersecting polygon. Actually there are two 
types of regions called PGON and AREA, for type AREA the 
restriction holds that no two polygons that are attribute 
values of the same relation may intersect. Type AREA is used 
to model subdivisions of the plane as they often occur in 

maps. So the complete set of sorts of the geo-relational 
algebra is S = (REL, BOOL, INT, RBAL, STR. POINT. LINE. 
PGON. AREA). To simplify the signature there is also a 
hierarchy within the geometric types: REG = (ICON, AREA) 
(regions), EXT = (LINE) u REG (extended objects), and GBO 
= (POINT) u EXT (any geometric object). A selection of the 
operators is shown below: 

GE0 x REG 
EXTXEXT 

LINE*xLDJE* 

LINE* x REG* 
PGON* x REG* 
POINT* x POINT 
PORWXFOINT 

Rlxi 

+BOOL 
+BOOL 
+ FoxNT* 
+LINE* 
+ PGON* 
+ REL 
+REAL 
+REAL 
+REAL 

inside (-#-I 
intersects (-#-) 
intersection _ _ # 

closest # 
dist K._, 
length #(-I 
perimeter, 
area #(-I 

The inside operator tests whether any kind of geometric 
object is wholly contained within a region. The intersects 
operator checks extended objects for intersection. The 
intersection operator (with functionality LINE* X LINE* 
+ POINT*) is applied to two relation operands; for each 
operand an attribute of type LINE is specified. It returns a 
relation which “looks like” the Cartesian product of the 
operand relations extended by a POINT attribute. To be 
precise, the result relation contains one tuple for each 
intersection point of a line of the first operand with a line of 
the second operand. This tuple consists of all attributes of 
the (tuple with the) first line, all attributes of the second 
line, and the intersection point. Intuitively. the functionality 
should be read ‘The intersection of two sets of lines is a set 
of points”. Forming the intersection of lines is embedded in 
this way into a relation operation because even the 
intersection of two single lines is generally a set of points, 
so one cannot define an atomic operator with functionality 
LINE x LINE + POINT. The intersection operator can be 
applied similarly to a set of lines and a set of regions, or 
two sets of regions. The closest operator is given a 
relation with a point attribute specified, and a (query) point; 
it returns the tuple (or those tuples) of the operand relation 
whose point attribute has minimal distance to the query 
point. Finally, our selection shows operators to compute the 
distance between two points, the length of a line, and 
perimeter and area of a region. Some example queries, based 
on relations representing cities, states, rivers, and highways 
of West Germany, illustrate the use of these operators. 

cities cname center cPoP 
STR FaNTINr 

states mime region sPoP 
STR AREA INr 

rivers mame IOUte 

STR UNE 

highways hname way 
STR IJNE 
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(5) Associate with each city the state containing it. 
cities states Join [center inside region] 

project [cname. sname] 
(6) Find rivers passing through the state of Bayern 
(Bavaria). 

states select [sname=“Bayem”] rivers Join [route 
intersects region] project [mame] 

(7) Which city with more than 100000 inhabitants is 
closest to the point where highway Al passes the Rhine? 

(rivers select [mame=“Rhein”] 
highways select &name=“Al”] 
intersection [route, way. (crossing)] 
extract [true; crossing]) (crosspoint); 

cities select [cpop > lOOOOO] crosspoint 
closest [center] 

The query consists of two steps. In the first step the 
intersection Point of river Rhine and highway Al is 
computed and made available as a POINT object named 
“crosspoint”. In the second step the closest operator is 
applied to the cities with more than 100000 inhabitants, and 
the point “crosspoint”. 
(8) Sort cities by distance from Mttnchen (Munich). 

(cities extract [sname=“Muenchen”; center]) 
(Munich); 

cities extend [dlst (center, Munich) (MunDist)] 
ord [MunDist +] 

By a data model we mean a mathematical model for data 
and operations on data. In this sense, the Gral mode1 frame 
is a data model; its structured objects (sequences of tuples) 
and operations have been formally defined in [GU88b]. The 
essential part of the semantics definition is the treatment of 
nested algebra expressions (since an operator. for example 
select. Join, extend may have an algebra expression as a 
parameter); this and most of the operator definitions can also 
be found in [GUZCSS]. For the application-specific extension 
geo-relational algebra semantics have also been formally 
defined in [Gtt88b]. that is, a mode1 for LINE and PGON 
objects is given and the operations shown above (as well as 
the remaining operators) have been de-fmed in terms of these 
object models. Geo-relational algebra as such is discussed in 
more detail and illustrated by examples in [Gtt88a]. 

The Gral mode1 frame is extensible in that new sorts for 
atomic data objects as well as new operators involving old 
or new atomic data types and relations can be added. To 
perform such a data mode1 extension an application 
developer should provide a mathematical mode1 for a new 
data type. For operators the functionality and allowed 
parameters must be specified and the mapping associated 
with the operator be defined. This corresponds to a formal 
specification of a program to be implemented. In many cases 
application developers will omit the specification of 
extensions at the level of the formal data model and just 
implement new types and operators. However, in case of 
more complex data types, and to be able to check the 
correctness of the implementation, it is advisable to also 
extend the formal model. 

We have seen that the algebra is used rather directly as a 
query language. To extend the query language, besides 
introducing new types and operators, one needs to specify 
syntactical aspects such as a pattern for using the new 
operator, e.g. “( _ # _ )“, and the structure of the parameter 
list, if the operator has parameters. To make the query 
language somewhat homogeneous and to allow the Gral 

system parser to analyze expressions, certain rules have to 
be followed: 
(A) Use postfix notation whenever an operator takes at 
least one relation as an operand. 
(B) Put parentheses if and only if the resulting object is 
atomic. 

There is e lot of flexibility in the allowed syntactical 
patterns: 
(1) Prefu outside parentheses % ( _ ), # ( _ , _ ). . . . 
(2) Prefm or infix in parentheses ( # - 1. ( # - - 1. -*. 

I-i-’ --n-1. . . . 
(3) Postfix in parentheses 
(4) Postfix without parentheses 

c#i+. .-- 
# 

Parameter lists may also have a fa& ~e&~&ucture, 
basically a parameter list may consist of several sublists, 
separated by semicolons, where each list may have a fixed or 
variable number of items, separated by commas. How 
syntactical patterns and the structure of parameter lists are 
made known to the parser is discussed in Section 43. 

3. Descriptive and Executable Algebra 

Before describing the Gral system architecture it is 
important to introduce the distinction between descriptive 
and executable algebra. In any Gral application a query is 
formulated as an expression of the application-defined many- 
sorted algebra. It should be clear that such a query is to be 
understood as the user’s specification of some data object 
(relation or atomic object) that the system should return; this 
data object is described by a hypothetical series of 
applications of operators to the stored objects. It is the task 
of the optimii to translate this query to an executable query 
plan and. in fact, to select among many available query 
plans the most efficient one. 

In an extensible database system it is necessary that the 
application developer understands this “language of query 
plans” since obviously it must also be extensible. A central 
idea of the Gral system is that the language of query plans 
should also be an algebra. with the same syntactical 
structure, although with different sorts and operators, as the 
query language algebra. This simplifies the task of the 
application developer since he/she needs to understand only 
a single formalism; it is surely preferable to introducing a 
quite different way of describing query plans. The 
optimization process can then be understood (and partially 
be formulated) by the application developer as a translation 
from one algebra expression to another one. To distinguish, 
we call the query language algebra the. descriptive and the 
Qnguage of query plans” the aecutuble algebra 

Whereas for the descriptive algebra the foremost design 
goals are expressive power and simplicity. and efficiency 
plays no role at all, the major issue in the design of an 
executable algebra is efficiency. On the other hand, because, 
of the requirement of extensibility the executable algebra 
should still be as simple as possible, so a reasonable 
balance between efficiency and simplicity must be found. 

Some important ideas to achieve efficiency at the level of 
the executable algebra are the following: 

- Use index structures (access paths). 
- Support processing in %rple mode”. that is, as far as 

possible perform a series of operations on a single tuple 
instead of copying the relation for each operation. 
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- Use complex operators. That means, whenever an 
operator needs to process a relation, it should do as much as 
possible during this access. For example, a sorting operator 
should include a selection condition to eliminate tuples 
before sorting, and allow to process each tuple further after 
sorting. 

These are well-known strategies for the implementation 
of relational database systems. We show how they can be 
incorporated into the design of an executable algebra. 

In the descriptive algebra a sort is associated with a set 
of objects and an operator with a function; neither is a 
representation specified for the objects nor an algorithm for 
computing the function. In contrast, in the executable 
algebra a sort corresponds to a specific object representation 
within the system and each operator has associated a fixed 
algorithm or procedure in the system. Generally for a Gral 
application system the set 3f sorts will consist of the 
following subsets and specific sorts: 

- REL - each sort in REL describes one kind of physical 
representation (primary index) of a relation. 

- INDEX - each sort describes one specific secondary 
index structure. 

- TUPLE - a sort describing a tuple in memory. 
- TIDSEQ - a sort describing a collection of tuple 

identifiers (through which tuples represented in one of the 
REL representations can be accessed). 

- ATOM - these are the sorts for atomic objects that are 
also present in the descriptive algebra. 

In the currently running Gral prototype there is only a 
single sort SREL in REL corresponding to a simple 
sequential representation of a relation. Priiary and secondary 
index structures will be added soon. To illustrate the general 

approach we describe an executable algebra already 
containing index structures. In this design we have 

REL = (SREL, STIDREL, BTREE) 
SREL is a sequential representation used, for, example, for 
temporary relations during the processing of a query. 
STIDREL is a permanent representation providing tuple 
identifiers; a relation represented in this way can be 
accessed sequentially or through a secondary index. 
BTREE is a B*-tree representation ordered by one of the 
attributes. It can be accessed through the primary index, 
through a secondary index, or sequentially. Let TIDREL = 
(STIDREL, BTREE) be the structures accessible through a 
secondary index. 

INDEX = (SBTREE, SGRID, SMLGRID) 
All of these structures allow to obtain a collection of 
tuple identifiers. SBTREE is a B*-tree used as a secondary 
index, SGRID a grid file [NiHS84]. supporting geometric 
searches on a set of points in the plane, SMLGRID a 
multi-layer grid file [SiWSS] supporting searches on a set 
of rectangles in the plane. The stored rectangles in an 
SMLGRID index are the bounding boxes of extended 
objects such as lines or polygons. 

Sorts TUPLE and TIDSEQ are also present and we have 
ATOM = (BOOL, INT. REAL, STR, POINT, LINE, PGON, 

Rm) 
The executable algebra has an additional sort for 
rectangles which are needed as bounding boxes of LINE 
and PGON objects. 

The set of atomic types with ordered domains is ORD = 
(BOOL, INT, REAL STR). 

A subset of the operators of the current Gral executable 
algebra extended by some operators for index structures is 
shown in Figure 3-l. 

REL + SREL 
REL x REL + SREL 
REL + ATOM 
TuPlJz -+TuPLE 
BTREE(ORDi) X ORDi + SREL 
BTREE(ORDi) X ORDi X ORDi + SREL 
SGRID(F’OINT) x RECT +TIDsEQ 
SMLGRID(RECT) x RECT +TIJxEQ 
TIDSEQ x TIDREL -+ SREL 
Exr +REC!T 
POlNTxPGON -P BOOL 

scan, sort 
product, smjoin. insideJoin 
extract 
sel. proj. extend 
exactmatch 
rangescan 
gco-range-search 
geo~irtersection~search 
tidscan 
bbor 
pr-inside 

-# 
# 

G.) 
-# 

# -- 
# --- 

# -- 
# -- 
# 

I;-, 
(-#-I 

Figure 3-l: Operators of the Executable Algebra 

The executable algebra contains also atomic operations 
on standard types; these are as in the descriptive algebra. 
Also operators for SBTREEs have been omitted, they are 
similar to those on primary BTREEs but return sets of tuple 
identifiers. 

The scan operator has a parameter list of the form 
[El; E2] where El is an algebra expression of result type 
BOOL and E2 an expression of result type TUPLE. This 
operator scans a relation given in any of the REL 
representations. El is ajilter expression which is evaluated 
for each tuple of the operand relation; those tuples passing 

the filter are then made available to the second expression 
E3 by the keyword tuple to which tuple operators can be 
applied. So E2 allows processing in “tuple mode”. For 
example, the query “List the names of big cities” looks in 
descriptive (D) and executable (E) algebra as follows: 

D cities select [cpop > 5CMlOOO] project [cnamel 
E cities scan [cpop a 5OOOOfk tuple pro] [cnamell 

The sort operator realizes the ord operator of the 
descriptive algebra but has also an input filter expression 
and a tuple expression applicable to tuples after sorting. 
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Similarly the binary relation operators have two input filter 
expressions and a tuple expression to be applied to the 
concatenated tuples resulting from the operation. For 
example, the product operator computes the Cartesian 
product of the operand relations and has a parameter list of 
the form [El. %; E31 where El and E2 are the filter 
expressions and E8 is the tuple expression. It can be used to 
answer query (5) from Section 2 “Associate with each city 
the state containing it”: 

D cities states Join [center inside region] 
proJect [cname, sname] 

E cities states product [true. true; tuple se1 [center 
pr-inside region] proj [cname. sname]] 

The selection operator on tuples se2 either returns the 
operand tuple or a special object called notuple; any tuple 
operator receiving notuple as an operand also returns 
notuple. The same query could also have been realized 
using the insidejoin operator. This operator can be 
applied to (a relation with) a set of points and (a relation 
with) a set of regions; it performs a plane-sweep [PrS85] to 
join tuples of the two operand relations where the point is 
contained in the region. We consider a slightly more 
complicated example query with this operator “List for big 
cities their population number as a percentage of their state’s 
population”: 

D cities select [cpop > 500000] states 
Join [center inside region] 
extend [(cpop/spop)*lOO (percent)] 
proJect [cname, percent] 

E cities states insidejoin [cpop > 500000. true; 
center, region; 
tuple extend [(cpop/spop)*lOO (percent)] 

proj [cname. percent]] 

The smjoin operator performs a sort/merge join. Its 
parameter list has the form [El. E2; E8 cop Ed; Es]. El, E2 
and E5 are filter and tuple expressions, as before. ES and Ed 
are expressions involving only attributes of the first and 
second operand relation, respectively, and cop is one of the 
comparison operators (<. 1. =, >. 2). The two operand 
relations are first sorted by the value of their respective 
expression E3 or Ed and then merged according to the 
comparison operator. - The extract operator of the 
executable algebra has no parameters; it can be applied to a 
relation with a single tuple and a single attribute and returns 
the attribute value as an atomic object of the attribute’s type 
(see the example below). 

Access to primary or secondary index structures is also 
realized by executable operators. A BTREE is organized by 
attribute values of one of the ordered data types and can be 
accessed with a single value of the same type or a range of 
such values through the exactmatch and rangescan 
operators. These operators also have filter and tuple 
expressions like the scan operator to impose additional 
restrictions on the returned tuples and to process these tuples 
further. For the following examples we assume that relations 
and index structures are organized as follows: 

cities: BTREE(STR) ordered by the cname 
attribute 

cpop-index: SBTREE(INT) on the cpop attribute 
center-index: SGRID(PGINT) on the center attribute 

states: BTREE(STR) ordered by the sname 
attribute 

region-index: SMLGRID(RECT) on the region 
attribute 

The query “Retrieve the tuple representing the city Essen” 
can then be formulated as: 

D cities select [cname = “Essen”] 
E cities “Essen” exacfmotch [true; tuple] 

An SGRID index stores a set of points; the 
geo~rarge~search operator returns the tuple identifiers 
belonging to points inside a search rectangle given as the 
second operand. Similarly an SMLGRID index stores a set of 
rectangles; the gee-lnfersectior search operator 
returns the tuple identifiers belonging to rectangles 
intersecting a. search rectangle. The returned tuple identifiers 
can be processed further through the tidseon operator which 
accesses the original relation and allows to filter and process 
tuples. As an example we consider the query “Find cities in 
Bayem!? 

D (states extract [sname = “Bayem”; region]) 
UM-4; 

cities select [center inside Bayem] 
E (states “Bayem” exactmatch [true; 

tuple proj [region]] extract) (Bayem); 
center&iex bbox (Bayem) geo~range~searrh 

states tidscon [center pr-inside Bayem; tuple] 

Let us reconsider the executable algebra from the point of 
view of extensibility. The Gral kernel system will contain 
generally useful relation representations such as those given 
above in REL and, say, SBTREEs as a secondary index 
structure, as well as sorts TUPLE. TIDSEQ, and BGGL. It will 
have executable operators needed to implement the 
descriptive operators of the model frame. for example scan, 
sort, smjoin, product, extruct, exactmatch, 
tidscan, etc. Standard types such aa INT. REAL, STR 
together with their operations will be available as a module. 
A Gral application system may then add its own special 
types such aa POINT, LINE, PGON. and provide operators for 
these types as well as special index structures such as 
SGRID. SMLGRID with suitable operators for searching these 
structures. 

This distinction between Gral kernel system and Gral 
application system arises from a practical point of view. 
Note, however, that the Gral architecture to be described next 
is absolutely uniform with respect to all sorts and operators. 
For example, scan and smjoir are brought into the system 
through the same extension mechanism as any other operator 
and they might as well be application-defined. Parser, query 
evaluator, and optimizer handle these operators in the same 
way as any application-defined operator. We believe that 
only in this way a clean architecture can be achieved. 

4. An Extensible System Architecture 

4.1. Survey 

The Gral system prototype has been implemented during 
the last two years in a project at the University of Dortmund. 
The implementation language is Modula-2; the system runs 
on Sun workstations under UNIX. The interactive interface 
uses SunWindows and SunCGI for window management and 
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graphic representation of geometric objects; this interface is occurring as attribute values of the displayed relation are 
mostly written in C. The system currently offers the visible as far as they intersect this section. It is possible to 
following functionality: overlay the graphical representations of several relations. 

- Database operations: create, destroy, open, close, 
save a database, that is, a collection of relations. 

- Relation operations: create, destroy a relation; insert 
a tuple into a relation. 

- Query: enter a query either in descriptive or in 
executable algebra. The resulting relation or atomic object is 
then displayed. The descriptive algebra implemented so far is 
a subset of the geo-relational algebra described in [GW!a]. 

- Load/unload: move a relation out of the system into a 
UNIX text file and load it from such a text file. This is 
currently the only way to change the contents of a relation 
(through a standard text editor). 

- Show: display the contents of a relation. Attribute 
types that are textually representable are shown in a text 
window; types that are graphically representable (such as 
geometric types) are shown in a graphics window. The text 
window shows tuples and their attributes sequentially; one 
can scroll forward or backward or access directly any 
position within this textual representation of the relation. 
The graphics window shows a section of the real cartesian 
plane which can be selected by the user; geometric objects 

Note that the interactive interface offering this 
functionality is entirely data type independent. For example, 
the program that displays a relation does not know how to 
display any attribute value. Instead, it calls through the type 
manager a type-specific procedure to display a value of this 
type which was provided by the implementor of this type. 
So this program is prepared to handle any attribute type that 
will be added to the system in the future. According to the 
philosophy of the Gral model frame the only object type 
built into the system is that of relations. 

In this section we focus on the layered architecture for 
query evaluation and emphasize and explain extensibility at 
the various layers. This architecture is shown in Figure 4-l. 

Descriptive Algebra 

I Optimizer/Query-Compiler I 
I 1 

Executable Algebra 

Parser/Query-Evaluator 

Operator Implementations 

Operators Frimitive Operations 
on Relations and 
Index Structures 

I Storage and 
Buffer Management I 

Figure 4-1: Architecture for Query Evaluation 

Although query processing proceeds top-down, the 
architecture of the system is best explained bottom-up. The 
bottom layer provides rather traditional storage and buffer 
management except that page sequences are available to hold 
data objects occurring as attribute values (it is generally 
assumed that “atomic” data objects may have arbitrary size) 
and facilities for fixing page sequences in the buffer. 
Currently we see no need for this layer to be extensible. The 
second layer provides representations for the sorts of the 
executable algebra; the implementation of relation 
representations and index structures uses the functions offered 
by the storage management layer. The second layer provides 
also a higher level representation of a tuple in memory with 
suitable operations and a scan component offering uniform 
scanning operations for all relation representations. This 

layer is extensible by atomic data types, index structures, 
and relation representations. 

The third layer consists of implementations of executable 
operators. These are based on the primitive access operations 
offered by relations or index structures and the representation 
of atomic types realized by the layer below. For example, 
the scorr operator of the executable algebra uses the scan 
component of the representation layer. A “point inside 
polygon” test operator @r-inside) accesses the 
representations of point and Polygon objects implemented in 
that layer. Each executable operator is implemented by two 
procedures. tie of these describes the schema transformation 
(ST) performed by the operator (for example, the product 
operator creates a new relation schema by concatenating the 
two operand schemas). The second Procedure implements the 
occurrence transformation (OT), that is, the mapping of the 

- 39 - 



relation instances or atomic data objects. There are two 
separate procedures because the ST procedure is already called 
during the parsing of an executable algebra expression 
whereas the OT procedure is called during query evaluation, 
after parsing is completed. This layer is, of course, 
extensible by operator implementations. 

The next layer contains the parser and query evaluation 
components. Given an executable algebra expression, the 
parser produces an operator tree representation in memory. 
For this purpose it accesses information in the system 
catalog, in particular the “Operators” table which contains 
for each operator its name (or symbol). the functionality, 
and a description of the parameter list structure, if there is 
one. As mentioned before. the parser also calls an operator’s 
ST procedure to apply the operator to an operand schema 
(which may in turn be the result of parsing a subexpression). 
The parser has no built-in knowledge of any operator. The 
same is true for the query evaluator. This component 
“understands”. however, the structure of the operator trees 
which the parser builds. The query evaluator traverses the 
operator tree, computes bindings for the leaves, representing 
objects, and calls for each operator represented by an 
internal node the corresponding OT procedure. The query 
evaluator takes (references to) the operand objects from the 
tree and passes them to the procedure as parameters; it 
receives the resulting object from the procedure and links it 
into the tree. This layer is extensible by operator 
descriptions being entered into the system catalog. 

Up to this layer we have a complete system capable to 
evaluate queries in executable algebra. As mentioned before, 
in the Gral system this capability is present at the user 
interface, that is, a user can enter queries in executable 
algebra. It is necessary to expose this interface to an 
application developer so that he/she can test new operator 
implementations in queries for correcmess and performance. 
The knowledge gamed in performance tests can subsequently 
be built into optimization rules. 

The top layer consists of the optimizer/query compiler 
component. The optimizer calls the parser of the layer below 
to analyze a given descriptive algebra expression and to 
produce an internal tree representation: the parser again 
receives the necessary information from the “Operators” 
table in the system catalog. The same parser can be used 
because descriptive and executable algebra have the same 
syntactical structure. The information needed for 
optimization and query translation itself comes from a text 
file “OptimizationRules”. This file contains various classes 
of optimization/translation rules in a specific syntax and 
order. When the Gral system is started the contents of the 
file are analyzed and represented by internal data structures so 
that patterns occurring in rules can be matched efficiently 
against parts of the tree representing the query. How the 
optimizer works is described in some more detail in Section 
4.4. The result is an expression in executable algebra which 
can be. shown in text form to the user, if desired. For further 
processing of the query, however, it is passed to the query 
evaluator directly in internal form, so it need not be parsed 
again. The top layer is extensible by descriptive operators 
and optimization/translation rules. 

In the following three subsections extensibility by data 
types, executable operators, and descriptive operators is 
discussed in a little more detail. 

4.2. Extensibility by Data Types 

The implementation of a data type. in Gral consists OE 
(1) A Modula-2 type, usually opaque, together with 
operations for building an object accossiated with a variable 
of this type, and operations to access the components of an 
object. This part constitutes the Modula-2 implementation of 
an abstract data type. 
(2) Three classes of pro03dures: 

I Procedures for storing and loading an object. These 
convert the object representation in a variable to a 
bytestring and store the object as an attribute value in a 
relation and vice-versa. Whenever possible the bytestring 
representation produced by the Modula-2 compiler is used so 
that no conversion is necessary. Optionally there may be 
procedures to load an object only partially. 

II Procedures for interactive input/output. For example, a 
procedure to read a string value from the keyboard or a 
procedure to display a polygon on the. graphics screen. 

m Procedures to convert from/to textual form. 

There exist two different kinds of programs using a data 
type: programs written before the type was implemented and 
that do not “how” the type, and programs written afterwards 
with knowledge about the type. An example of the fist class 
is the program displaying a relation at the screen. An 
example of the second class is a program testing two 
polygons for intersection. Programs of the first class access 
a type through the type manager. This module provides a 
generic procedure for each task within classes I - III above; 
the generic procedure just switches to the type-specific 
Procedure provided by the type implementation. The generic 
procedure is implemented in Modula-2 by an array of 
procedure indexed by the type. 

Hence, to add a data type to the Gral system, an AD 
implements the type as descriibed under (1) and (2) above, 
usually in a module for the type. Then the type manager 
module is extended: the procedures in the type module are 
imported and for each generic procedure in the type manager 
the corresponding component of its array of procedure is 
assigned the type’s procedure. Finally a procedure 
“InsertType” is called to enter the name of the type and some 
other information (e.g. whether the type is sortable, can be 
displayed textually, graphically, etc.) into the system 
catalog and the system relation about types. 

Similar ideas for providing type extensions have been 
reported in [StRG83, Ong84. OsH86] although the details 
differ. For example, in Gral types are not defmed within the 
system’s data definition language to avoid inconsistencies 
with the source code which must be present in the system 
anyway. What is perhaps new about our treatment of types is 
the possibility of partial loading. Since we generally assume 
that objects may be arbitrarily large it is useful to allow to 
load only some part of an object into memory. For example, 
a polygon is represented by a record with fields for the 
bounding box, the area, the perimeter, and the vertices 
(given as an array). An operator testing two polygons for 
intersection may initially only load the bounding boxes and 
only load the vertices later if the bounding boxes intersect. 
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4.3. Extensibility by Executable Operators 

Adding an executable operator to the system consists of 
three steps. First, one implements its schema and occurrence 
transformation procedures, using the primitives of the 
representation layer. (That layer contains also a module 
“SchemaTransformations” providing a data structure to 
represent a schema and operations on schemas such as 
concatenating schemas, adding an attrribute. etc.). The new 
operator then needs to be linked into the “OpManager” 
module. The OpManager has separate arrays of procedure for 
ST and OT procedures, one array for each arity of an 
operator. So the second step is to assign the new procedures 
to appropriate array components. Through the OpManager 
these procedures can then be called by parser and query 
evaluator. 

The third step in adding an operator is to make its name, 
functionality. syntax, and parameter list structure known in 
the system catalog where this information is then available 
for the parser. Similar as for types this is achieved by 
calling a procedure “InsertOp” with text parameters 
containing corresponding descriptions. The system catalog 
(and the system relation about operators) has four entries for 
each operator: 
(1) Operator name or symbol. 
(2) A description of functionality and syntax in the form 
pattern + result type. For example, for the stun and 
pr-inside operators the descriptions are: 

REL scan -> REL 
(POINT pr-inside PGON) -> BOOL 

(3) A description of the parameter list if there is one, 
otherwise the word ‘None”. Parameter lists may be either in 
standard form or irregular. To be in standard form means that 
a parameter list may be structured into a fixed number of 
sublists, separated by “;“, each sublist may have a fixed or 
variable number of items, separated by “,“. An item may 
have a fixed number of parts, separated by blanks or user- 
defined delimiters. Parts may be recognizable for the system 
parser or not. Recognizable parts are constants of some 
atomic type, attribute names, (re)namings, and algebra 
expressions of specified result type. In Gral these rules are 
built into a grammar which defines the allowed parameter list 
descriptions and thus the allowed parameter lists. Parameter 
list descriptions for scan and proj. for example, are as 
follows: 

scan: [Expr(BOOL); Expr(TUPLE)l 
proj: [Attrname *I 
If a parameter list is irregular, a procedure for parsing 

the parameter list must be provided by the AD with the 
operator implementation. In the current Gral system this was 
never necessary. 
(4) The last entry is either “Executable” or “Descriptive” 
since descriptive operators are described in exactly the same 
way and appear also in the operator table. 

The parser transforms a parameter list encountered in an 
algebra expression according to the description in (3) to a 
nested list data structure and connects this representation to 
the operator’s node in the operator tree. When a parameter 
list contains an algebra expression, the parser recursively 
parses this expression and builds an operator tree which it 
links into the nested list structure. In this way nested algebra 
expressions are represented in the operator tree. During query 
evaluation, the nested list representation of a parameter list 

is passed to the operator’s OT procedure.The implementor of 
this procedure (the AD) relies on the parser having built the 
right structure; thus the description (3) serves as an interface 
definition between parser and OT procedure. When an OT 
procedure has to Process an algebra expression occurring as a 
parameter it simply calls the query evaluator on the tree 
representation of this expression. This is an important 
point: A user-defined OT procedure calls the system’s query 
evaluator to handle nested algebra expressions, as they 
occur, for example, in stun or extend operators. 

4.4. Extensibility by Descriptive Operators 
and Optimization/Translation Rules 

In this section we briefly sketch how the optimizer/query 
compiler works and how rules are described and arranged in 
the file “OptimizationRules”; a detailed report is to follow 
[BeG89]. The translation of a given descriptive algebra 
expression proceeds in the following stages: 

---Descriptive multistep query--- 
1. Normalize: In a multistep query names of objects 
resulting from expressions can be replaced by these 
expressions without changing the semantics. This is 
done to obtain a single expression which can be 
optimized further as a whole. 

---Descriptive expression--- 
2. Decompose: Certain operators, such as selection, 
join, extend, are decomposable. For example, a selection 
with several and-connected conditions can be transformed 
into several selections with simple conditions. 
Decomposable operators are taken apart, so that their 
parts (e.g. simple selections) can move freely. 
3. Improve: Change the order of operators according to 
heuristics (classical algebraic optimization). 
4. Compose: Put subsequent operators together (for 
example, a series of selections). 
5. Eliminate constant and common subexpressions. 

---Final descriptive multistep query--- 

For each expression in the multistep query: 
---Descriptive expression--- 

6. Translate descriptive subexpressions to executable 
subexpressions. (During this stage, the optimizer works 
on a mixed descriptive and executable exPression.) 

---Executable expression--- 
7. Combine sequences of executable operators into a 
single operator. 

---Final executable expression (and multistep query)--- 

All stages except 1 and 4 are supported by rules; these 
are given in the file OptimizationRules which is structured 
roughly according to the stages into sections. In the first 
stage a query formulated by a user in several steps is 
transformed (by embedding expressions for names) into a 
single expression (normal firm) so that optimization of the 
whole query is possible. The steps selected by the user might 
otherwise prevent certain optimizations. Stage 2 
(Decompose) is supported by a corresponding section in 
OptimizationRules: 
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DECOMPOSING RULES 
. . . 
RULE 

REL-1 select [BOOL-1 and BOOL-2) 
-> REL-1 select [BOOL-l] select [B0042]. 

RULE 
REL-1 REL-2 join [BOOL-11 
-> REL-1 select [BOOL-11 REL-2 product 

if BOOL-l.attr c REL-l.attrnames, 
-> REL-1 REL 2 select [BOOL-11 product 

if BOOL-lyattr c REL-2.attrnames. 
. . . 
END 

A rule consists in general of a pattern followed by one or 
more replacement patterns each of which may have an 
associated condition. The condition may involve properties 
of the expression, such as the attribute names occurring, and 
properties of the involved objects, such as the number of 
tuples in an operand relation or the physical sizes of 
attributes or atomic objects, etc. A rule may be preceded by a 
specification part to simplify notation within the rule. Each 
rule described in this way can be viewed as a collection of 
rules of a production system [Ni80]. For most stages an 
irrevocable control strategy is used and rules are applied until 
no further rule is applicable. In these stages the first 
replacement pattern whose condition is fulfilled is selected to 
replace the original pattern in the expression. Different 
control strategies which explore alternatives are used in 
stages 3 and 6. 

The goal of stage 3 is to arrange operators in an order 
which is “good” according to heuristics. For this purpose it 
is possible to specify a partial order on descriptive operators 
to indicate a desired order of operators in the expression - 
whether that order can be achieved is another matter. This is 
a general facility to formulate such familiar heuristics as 
“selection and projection should be done as early as 
possible”. The partial order is given by a section 
“OPERATOR ORDER”. How operators may actually be. 
exchanged to achieve a good order is described in the section 
“IMPROVING RULES”. one example is shown: 

SPEC 
op-1 in (select, project, ord]; 

RULE 
REL-1 op-1 [Param-l] select [BOOL-11 
-> REL-1 select [BOOL-11 op-1 [Param-11. 

The control strategy for stage 3 attempts to arrange 
operators according to the partial order in such a way that 
the number of “runs” (ordered subsequences) is minimized. By 
a suitable definition of operator order and rules, one can let a 
run correspond to a single operator of the executable algebra 
and so minimize the number of executable operators needed. 
The section “COMPOSING RULES” contains rules for stage 4 
(no example is shown). Together. stages 2 - 4 realize the 
classical algebraic optimization. 

No rules are necessary to support stage 5 (Eliminate). A 
constant subexpression is one that is evaluated once for each 
tuple of a relation but does not depend on the tuple’s 
attribute values. In query (2) of Section 2 “(cities m ax 
[cpop])” is a constant subexpression. Stage 4 translates this 

to a two-step query where the constant subexpression is 
evaluated only once initially: 

(cities max [cpop]) (Constant~l ); 
cities extend [cpop/ConstantJ (percent)] 

The next section contains rules for the translation of 
descriptive to executable subexpressions. This. is the point 
where descriptive operators are associated with their 
executable wunterparts. 

TRANSLATING RULES 
. . . 
RULE 

REL-1 select [Attrname-1 = Const-11 
-> REL-1 Const-1 exactmatch [true; tuple] 

if ReprIs (REL-1, Attrname-1, BTREE), 
-> Index (REL-1, Attrname-1) Const_l 

indexexactmatch REL-1 tidscan [true; tuple] 
if ExistsIndex (REL-1, Attrname-1, SBTREE], 

-> REL-1 scan [Attrname-1 = Const-1; tuple]. 

RULE 
REL-1 REL-2 join[Attrname-1 inside Attrname-21 
-> REL-1 REL-2 inside-join [true, true: 

Attrname-1, Attrname-2; tuple] 
if Attrname-1 in REL-l.attrnames and 

Attrname-2 in REL-Z.attrnames and 
REL-l.size > 100, 

-> REL-1 REL-2 product [true, true; tuple se1 
[Attrname-1 pr-inside Attrname-21 I. 

. . . 
END 

The first rule describes how a simple selection can be 
implemented either by access through primary or secondary 
index structures, if present. or otherwise by a relation scan. 
The second rule shows how the Inside operator of the 
descriptive algebra, defined on atomic objects, can actually 
be implemented by a plane-sweep algorithm which is (under 
certain conditions) the most effkient way to realize this hind 
of geometric join. This example shows how the system 
architecture does indeed support the efficient processing of 
geometric queries, which was one of the initial goals of the 
Gral development. The rule is also a simple example of how 
the optimizer can switch between various implementations: 
for small sets of points (here up to 100 points) forming the 
cartesian product with subsequent selection is preferable. 

The last section “COMBINING RULES” of the file 
OptimizationRules wntains rules for combining executable 
operators. The previous translation stage which replaces 
descriptive operators independently of each other by 
executable operators may, for example, have produced series 
of scan operators, or scan followed by product, etc., 
which can now be wmbmed into one: 

RULE 
REL-1 REL-2 product [BOOL-1, BOOL-2; TUPLE-11 

scan [BOOL-3; tuplel 
-> REL-1 REL-2 product [BOOL-1, BOOL-2; 

TUPLE-1 se1 [BOOL-311. 

We have given here only a rough survey of the Gral 
extensible optimizer; most details and the more sophisticated 
techniques have been left out. For example, the optimizer 
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can be advised by rules to search systematically all 
permutations of n and-connected simple conditions, within a 
selection or join, say, and for the translation stage (6) each 
replacement pattern in a rule can be assigned a numeric 
expression. The replacement pattern can then be selected 
according to the value of that expression. These facilities 
allow one to search the possibilities for implementing a 
single operator, such as a complex selection, exhaustively. 
and to make a good choice among these. For example, a 
simple condition supported by an index structure will be 
evaluated first. These techniques are described in more detail 
in [BeG89]. 

It is now obvious how a descriptive operator is added to 
the system: Its name, functionality and syntax, and 
parameter list structure are entered into the system catalog as 
for executable operators. The descriptive operator is then 
“implemented” by a collection of rules in the file 
OptimizationRules. Of course, rules can be added to or 
removed from the file at any time independently from adding 
operators. 

5. Related Work 

We have described the query processing architecture of an 
extensible relational database system based on many-sorted 
algebra and shown some of the specific extension 
mechanisms used in the Gral system. Obviously much of the 
previous work on extensible database systems is related in 
some way; some of it can be associated with specific layers 
of our architecture. Extensibility by relation representations 
and index structures and in particular the interaction between 
these two in update processing have been studied in 
[LiMP87]; their work fits nicely into our representation 
layer. Methods for adding atomic types, functions, and 
predicates have been studied in [StRG83. OsH86]. The RAD 
system [OsH86] uses also a query language based on 
relational algebra and in principle allows relation mappings 
(called “transformations”). However, these have not been. 
implemented and no extension mechanisms are described. 
Techniques for adding operator implementations have also 
been studied in [St86, GrD87]. In contrast to our approach, 
in the INGRES [St861 or POSTGRES [StR86] project the 
architecture of the database system is not affected as a whole 
by extensibility. That is, there is a collection of built-in 
types which are treated differently from user-defined types; 
also all the standard parts of the query language are 
implemented in a traditional way and user-defined operations 
are handled separately. These are essentially restricted to 
simple functions on atomic types; relation mappings are not 
foreseen. The approach of adding interfaces to a traditional 
architecture shows in the way how user-dermed operations 
need to specify whether certain methods of the fixed part of 
the system are applicable, e.g. whether hash-join is feasible 
for this operator. In Gral, hash-join could in principle as 
well be a user-defined operation. 

Rule-based optimization has also been studied by Freytag 
[Fr87] and in the EXODUS project [GrD87]. Our techniques 
have some similarity to Freytag’s proposal. Differences are 
that he describes only the translation stage, so there is no 
algebraic optimization before or after translation, and that 
his rules describe how to generate all possible query 
execution plans but no strategy for selecting a good one. 
Gral contains a complete extensible optimizer which actually 

produces a good query plan. Generally one could say that we 
have filled in many details to his Proposal and implemented 
a relatively complete query language including aggregate 
functions, sorting, and geometric operators. Freytag 
considers essentially only selection and join. Graefe and 
Dewitt [GrD87] focus on the aspect of heuristically 
searching the space of query plans to find -a good one 
quickly. In their relational test implementation they also 
consider only selection and join. Another approach to 
extensible query optimization using the rules of a grammar 
to construct query plans is described in [Lo88]. - We shall 
compare the methods for extensible optimization in more 
detail in [BeG89]. 
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