
Gral: An Extensible Relational Database System for Geometric Applications

Ralf Hartmut Giiting

Fachbereich Informatik, Universitit Dortmund
D-4600 Dortmund 50, West Germany

Abstract: We describe the architecture of a relational
database system that is extensible by user-defined data types
and operations, including relation operations. The central
concept is to use languages based on many-sorted algebra to
represent queries as well as query execution plans. This leads
to a simple and clean extensible system architecture, eases
the task of an application developer by providing a uniform
framework, and also simplifies rule-based optimization. As a
case study the extensions needed for a geometric database
system are considered.

1. Introduction

Much of the database research of recent years was aimed
at providing a better support for non-standard applications
such as office information systems, geographic information
systems, CAD databases, etc. A common need of these
applications is the representation and manipulation of more
complex objects than those representable by a tuple of a
relation in the traditional relational model, for example, an
office form, a complete map or a river, say, in a geographic
information system, or the design of a VLSI circuit.

A fundamental choice for the representation of a complex
object is whether its structure should be visible or hidden at
the level of the data model. Speaking in terms of the
relational model, for representation the question is whether
the object should be described by a collection of tuples from
various relations, or by a single attribute value from a
specific domain for this kind of objects. For manipulation,
the distinction is whether the internal .structure is accessible
to the general facilities of the query language (selection of
subobjects, for example) or only to domain-specific
operations. The two ways of handling complex objects have
been called structural and behavioural object orientation,
respectively [Di86].

Both approaches are obviously needed and are appropriate
for certain applications. For example. one should be able to
define the internal structure of an office document within the
data model and to access it through the query language. On
the other hand, a river can well be represented as an atomic
value of an abstract data type LINE with suitable operations.
for instance, a function returning the length.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or rpecial permission from the Endowment.

Proceedings of the Fifteenth International
Conference on Very Large Data Bases

A lot of work has been done to support the modeling of
visible object structures. Enhancements to the relational
model have been proposed by linking together tuples to
represent an object either explicitly [Co79. HaL82] or
implicitly, through the use of nested relations [ScS86]. Most
of the more recent data models and system proposals do also
support structural object orientation, for example [MaD86,
CaDV88, PiT86].

The idea of allowing application-specific abstract data
types as base types, or attribute domains, of a database
system was perhaps fist put forward in [StRG83]. Since base
types need to be implemented in a programming language
and because they are application-specific, a user must be able
to implement such a type and to add it to a database system.
Thii observation has led to efforts by several groups to
wnstruct extensible database systems. Two directions can be
distinguished. One is to select a data model and to implement
for this data model a system with well-defined interfaces for
user extensions. This is the approach chosen by the
POSTGRES [StR86] and Starburst [Schw86] projects, based
on the relational model, and withii the PROBE project
[Daya87] for an extended functional data model. A different
view is taken in the EXODUS [Care861 and GENESIS
[Bato86] projects where a collection of powerful tools for
building a database system is provided. In this case an
application developer (“users” providing extensions have
also been called “database implementor” [Care861 or
“database customizer” [Lo88]) implements the whole database
system, aided by the tools. With this approach there is more
flexibility for the application even to select a specific data
model.

In this paper we describe an (implemented and running)
relational database system, called Grail, extensible by user-
defined data types and operations. This means that an
application developer (AD) can
- add data types and operations to the query language,
- add the representation of a type to the system,
- add new relation representations or index structures to
support type-specific storage or searching,
- add the implementation of type-specific operations, and
- add rules to the system to describe the implementation of
a new query language operation and to support optimization
for this operation.

The key concept embodied in Gral, which distiguishes it
from other work, is many-sorted algebra. Gral uses many-
sorted algebra as a query language and also as an executable
language to describe query plans (access plans). The whole
system is centered around this formal concept and we show
that this leads to a very simple and clean extensible system

1 Gral stands for “Gee-Relational Algebra” which is the
query language of the Gral system.

Amsterdam, 1989

- 33 -

architecture. For example, there is a layer in the system
corresponding to the sorts of the executable algebra and
another layer corresponding to the operators.

Algebraic query languages have been used before [Gr84]
and are perhaps now viewed as old-fashioned. However, they
have clear advantages for the use in an extensible system,
because they are inherently modular and extensible. SQL- or
QUEL-like languages accomodate easily new functions or
predicates for new atomic types (e.g. in where-clauses). Yet
it is awkward to add new relation operators to such
languages. As we shall see, non-standard applications do
require special relation operations (see also [OsH86]). Many-
sorted algebra and the Gral system allow to add any kind of
user-defined relation mapping. The particular kind of algebra
that we use includes very powerful retrieval operations such
as selection or join with an arbitrary algebra expression as
condition and the embedding of derived values (described by
algebra expressions) into relations.

The optimizer translates query language expressions to
query execution plans. In Gral both are algebraic languages
with the same structure. This eases considerably the
application developer’s task who needs to be familiar with
both language levels. In particular it makes it relatively easy
to formulate the rules driving the query optimizer.

The Gral project started with the goal of building an
efficient database system for geometric applications. While
this is still our goal, the need for extensibility was soon
recognized and the focus shifted initially to provide a clean
and simple extensible architecture. We End that having in
mind a specific application is quite helpful to see clearly
what kind of extensibility is required.

We consider an extensible system to have a model and a
system part and, orthogonally, an application-independent
and an application-specific part. We use the following
terminology. The application-independent parts are called the
Gral model frame and the Gral kernel system. Speaking of
application extensions in general we use the terms Graf
application model and Gral application (system). Finally, the
running Gral prototype is one specific application; its data
model is geo-relational algebra and we call it the Gral
system. The following three sections describe Gral’s query
language, its executable language, and the system
architecture. Related work is mentioned in Section 5.

2. An Extensible Data Model and Query Language

Basically Gral uses an extended relational algebra as a
query language. More precisely, Gral’s data model and query
language are based on the formal concept of a many-sorted
algebra. A many-sorted algebra is a collection of sets and
functions between these sets; it is described by an S-sorted
signature I; where S is a set of sorts (names for the sets) and
Z a family of sets Z,,, of operator symbols (names for the

functions), where w E S* and s E S describe the functionality
of operators in Z,,, [GoTW78]. For Gral, this algebra has
one sort for relations and further sorts for atomic data types;
the operations include relational operators such as selection
or join and operations on atomic data types such as integer
multiplication or a test whether two polygons intersect.
More precisely. again, the structured data objects in Gral are
not relations (sets of tuples) but sequences of tuples, or

ordered relations. This allows, for example, to include
sequence and sorting operators in the algebra.

Since Gral is an extensible database system together with
one specific extension we can distinguish between the
application-independent model frame and the application-
specific data model called geo-relational algebra. The model
frame describes any application as a many-sorted algebra; it
defines the application-independent sorts and operators and
is abstract with respect to the application-specific sorts and
operators. The set of sorts is S = (sl. . . . , sn) with
sl=REL and s2= BOOL. The collection of operators
(signature) of the model frame is I: = EG U EA (G for

“general”, A for “application-specific”) of which EG is
defined within the model frame. Some operators
shown in the following table.

Of ZG me.

REL x REL

REL

+REL union, product,
Join. concat

+REL select, project,
-- #

extend, ord, head _ #
REL + ATOM extract (-#)
BOOLxBOOL +BOOL and, or (-#-I
BOOL +BOOL not #(-I

The model frame contains sorts for relations (sequences
of tuples) and Boolean values and their associated
operations. The rightmost column shows the syntax for
using an operator within an expression (a query); “-” denotes
an operand and V#” the operator, parentheses are to be used
as indicated, For example “rell rel2 union” and “(x and (y
or z))ll are well-formed expressions. Some operators take
parameters which appear in square brackets behind the
operator symbol, as, for example, in “cities select [cpop >
500000] proJect [cname, cpop]“, for a “cities*’ relation
with attributes for city name and population.

The set of sorts S has a subset ATOM = (~2, . . . , gn)
which contains the atomic data types. The ,model frame
provides also a set ORD E ATOM containing the atomic data
types that are one-dimensional ordered domains so that a
relation can be sorted by attributes of such a type.

Any application-speciftc database system must specify its
atomic data types and may provide within EA any operations
on these atomic types, but also operations involving
relations. Standard types such as integer, real, and string
with suitable operations are likely to occur in most
applications. Sorts INT. REAL, and STR are also part of the
geo-relational algebra together with the following
operations:

STDi X STDi +BOOL =. f, <, 5;. 2, > (-#-)
llwxllw +INT +. -. *, div,mod (-#I-)
INTXlNT *REAL / (-#-)
REALXNUM +REAL +,-,*,/ (-#-)
NUMxRFiAL 4REA.L
REL +INT count (-#I
NuM+ +REAL avg (-#I
NUMi* + NUMi sum, mln, max (-NJ

- 34 -

In this listing some abbreviations are used. STD and
NUM denote sets of sorts, namely, STD = (INT, REAL, STR)
and NUM = (INT, REAL). The notation Xi with such a set
identifier means that Xi is to be consistently replaced by the
same element of set X. So the first line allows comparisons
of any two operands of equal type. The notation X* denotes
a relation operand where an attribute of type X is specified.
or, intuitively, a set of X values. The attribute is given as a
parameter of the operator, for example, “(cities avg [cpop])”
returns the average population of cities (within the cities
relation) as a real number. The last line is also an
abbreviation for two lines with the functionalities
INT* + INT and REAL* + REAL.

We can now illustrate the operators of the model frame
by a few examples.
(1) Determine the five cities with the highest population
numbers.

cities ord [cpop -1 head [5]
The ord operator sorts cities descending by population; from
the resulting sequence head returns the first five tuples.
(2) Add to each city tuple an attribute giving its population
in percent of the maximal population.

cities
extend [(cpop/(cities max [cpop]))*lOO (percent)]

The extend operator takes a list of algebra expressions as
parameters, each expression is followed by a new attribute
name. For each expression, the relation will have a new
attribute whose value is determined for each tuple by
evaluating the expression.
(3) Find pairs of cities whose population number differs by
less than 50000.

cities cities (*->*2) join [(cpop - cpop2) < SOOOO]
For the second operand relation, the attributes are first
renamed (appending a suffix “2”) before the join operator is
applied. Note that the select as well as the Joln operator
take arbitrary algebra expressions with Boolean result as
parameters.
(4) How many people live in Dortmund, in thousands?

(cities extract [cmtme=“Dortmund”; cpop]) div 1000
The extract operator allows one to extract from a relation a
single atomic value which is then available for further
operations. Parameters of extract are an algebra expression
(as a selection condition which must return exactly one
tuple) and an attribute name.

An application may decide to choose the collection of
standard types and operators shown here “from the shelf’.
However, since all atomic types, except for BOOL. are
considered application-specific, it may instead also use very
long integers, text fields containing formatting instructions,
etc.

An application will then introduce its own more specific
data types. Gral’s data model, the geo-relational algebra, is
designed to support geometric applications in the plane,
perhaps with a bias towards supporting geographic
information systems. Gral has therefore types for points,
lines, and regions in the plane. A line is conceptually a
finite sequence of straight line segments. A region is a hole-
free, non-selfintersecting polygon. Actually there are two
types of regions called PGON and AREA, for type AREA the
restriction holds that no two polygons that are attribute
values of the same relation may intersect. Type AREA is used
to model subdivisions of the plane as they often occur in

maps. So the complete set of sorts of the geo-relational
algebra is S = (REL, BOOL, INT, RBAL, STR. POINT. LINE.
PGON. AREA). To simplify the signature there is also a
hierarchy within the geometric types: REG = (ICON, AREA)
(regions), EXT = (LINE) u REG (extended objects), and GBO
= (POINT) u EXT (any geometric object). A selection of the
operators is shown below:

GE0 x REG
EXTXEXT

LINE*xLDJE*

LINE* x REG*
PGON* x REG*
POINT* x POINT
PORWXFOINT

Rlxi

+BOOL
+BOOL
+ FoxNT*
+LINE*
+ PGON*
+ REL
+REAL
+REAL
+REAL

inside (-#-I
intersects (-#-)
intersection _ _ #

closest #
dist K._,
length #(-I
perimeter,
area #(-I

The inside operator tests whether any kind of geometric
object is wholly contained within a region. The intersects
operator checks extended objects for intersection. The
intersection operator (with functionality LINE* X LINE*
+ POINT*) is applied to two relation operands; for each
operand an attribute of type LINE is specified. It returns a
relation which “looks like” the Cartesian product of the
operand relations extended by a POINT attribute. To be
precise, the result relation contains one tuple for each
intersection point of a line of the first operand with a line of
the second operand. This tuple consists of all attributes of
the (tuple with the) first line, all attributes of the second
line, and the intersection point. Intuitively. the functionality
should be read ‘The intersection of two sets of lines is a set
of points”. Forming the intersection of lines is embedded in
this way into a relation operation because even the
intersection of two single lines is generally a set of points,
so one cannot define an atomic operator with functionality
LINE x LINE + POINT. The intersection operator can be
applied similarly to a set of lines and a set of regions, or
two sets of regions. The closest operator is given a
relation with a point attribute specified, and a (query) point;
it returns the tuple (or those tuples) of the operand relation
whose point attribute has minimal distance to the query
point. Finally, our selection shows operators to compute the
distance between two points, the length of a line, and
perimeter and area of a region. Some example queries, based
on relations representing cities, states, rivers, and highways
of West Germany, illustrate the use of these operators.

cities cname center cPoP
STR FaNTINr

states mime region sPoP
STR AREA INr

rivers mame IOUte

STR UNE

highways hname way
STR IJNE

- 35 -

(5) Associate with each city the state containing it.
cities states Join [center inside region]

project [cname. sname]
(6) Find rivers passing through the state of Bayern
(Bavaria).

states select [sname=“Bayem”] rivers Join [route
intersects region] project [mame]

(7) Which city with more than 100000 inhabitants is
closest to the point where highway Al passes the Rhine?

(rivers select [mame=“Rhein”]
highways select &name=“Al”]
intersection [route, way. (crossing)]
extract [true; crossing]) (crosspoint);

cities select [cpop > lOOOOO] crosspoint
closest [center]

The query consists of two steps. In the first step the
intersection Point of river Rhine and highway Al is
computed and made available as a POINT object named
“crosspoint”. In the second step the closest operator is
applied to the cities with more than 100000 inhabitants, and
the point “crosspoint”.
(8) Sort cities by distance from Mttnchen (Munich).

(cities extract [sname=“Muenchen”; center])
(Munich);

cities extend [dlst (center, Munich) (MunDist)]
ord [MunDist +]

By a data model we mean a mathematical model for data
and operations on data. In this sense, the Gral mode1 frame
is a data model; its structured objects (sequences of tuples)
and operations have been formally defined in [GU88b]. The
essential part of the semantics definition is the treatment of
nested algebra expressions (since an operator. for example
select. Join, extend may have an algebra expression as a
parameter); this and most of the operator definitions can also
be found in [GUZCSS]. For the application-specific extension
geo-relational algebra semantics have also been formally
defined in [Gtt88b]. that is, a mode1 for LINE and PGON
objects is given and the operations shown above (as well as
the remaining operators) have been de-fmed in terms of these
object models. Geo-relational algebra as such is discussed in
more detail and illustrated by examples in [Gtt88a].

The Gral mode1 frame is extensible in that new sorts for
atomic data objects as well as new operators involving old
or new atomic data types and relations can be added. To
perform such a data mode1 extension an application
developer should provide a mathematical mode1 for a new
data type. For operators the functionality and allowed
parameters must be specified and the mapping associated
with the operator be defined. This corresponds to a formal
specification of a program to be implemented. In many cases
application developers will omit the specification of
extensions at the level of the formal data model and just
implement new types and operators. However, in case of
more complex data types, and to be able to check the
correctness of the implementation, it is advisable to also
extend the formal model.

We have seen that the algebra is used rather directly as a
query language. To extend the query language, besides
introducing new types and operators, one needs to specify
syntactical aspects such as a pattern for using the new
operator, e.g. “(_ # _)“, and the structure of the parameter
list, if the operator has parameters. To make the query
language somewhat homogeneous and to allow the Gral

system parser to analyze expressions, certain rules have to
be followed:
(A) Use postfix notation whenever an operator takes at
least one relation as an operand.
(B) Put parentheses if and only if the resulting object is
atomic.

There is e lot of flexibility in the allowed syntactical
patterns:
(1) Prefu outside parentheses % (_), # (_ , _). . . .
(2) Prefm or infix in parentheses (# - 1. (# - - 1. -*.

I-i-’ --n-1. . . .
(3) Postfix in parentheses
(4) Postfix without parentheses

c#i+. .--

Parameter lists may also have a fa& ~e&~&ucture,
basically a parameter list may consist of several sublists,
separated by semicolons, where each list may have a fixed or
variable number of items, separated by commas. How
syntactical patterns and the structure of parameter lists are
made known to the parser is discussed in Section 43.

3. Descriptive and Executable Algebra

Before describing the Gral system architecture it is
important to introduce the distinction between descriptive
and executable algebra. In any Gral application a query is
formulated as an expression of the application-defined many-
sorted algebra. It should be clear that such a query is to be
understood as the user’s specification of some data object
(relation or atomic object) that the system should return; this
data object is described by a hypothetical series of
applications of operators to the stored objects. It is the task
of the optimii to translate this query to an executable query
plan and. in fact, to select among many available query
plans the most efficient one.

In an extensible database system it is necessary that the
application developer understands this “language of query
plans” since obviously it must also be extensible. A central
idea of the Gral system is that the language of query plans
should also be an algebra. with the same syntactical
structure, although with different sorts and operators, as the
query language algebra. This simplifies the task of the
application developer since he/she needs to understand only
a single formalism; it is surely preferable to introducing a
quite different way of describing query plans. The
optimization process can then be understood (and partially
be formulated) by the application developer as a translation
from one algebra expression to another one. To distinguish,
we call the query language algebra the. descriptive and the
Qnguage of query plans” the aecutuble algebra

Whereas for the descriptive algebra the foremost design
goals are expressive power and simplicity. and efficiency
plays no role at all, the major issue in the design of an
executable algebra is efficiency. On the other hand, because,
of the requirement of extensibility the executable algebra
should still be as simple as possible, so a reasonable
balance between efficiency and simplicity must be found.

Some important ideas to achieve efficiency at the level of
the executable algebra are the following:

- Use index structures (access paths).
- Support processing in %rple mode”. that is, as far as

possible perform a series of operations on a single tuple
instead of copying the relation for each operation.

- 36 -

- Use complex operators. That means, whenever an
operator needs to process a relation, it should do as much as
possible during this access. For example, a sorting operator
should include a selection condition to eliminate tuples
before sorting, and allow to process each tuple further after
sorting.

These are well-known strategies for the implementation
of relational database systems. We show how they can be
incorporated into the design of an executable algebra.

In the descriptive algebra a sort is associated with a set
of objects and an operator with a function; neither is a
representation specified for the objects nor an algorithm for
computing the function. In contrast, in the executable
algebra a sort corresponds to a specific object representation
within the system and each operator has associated a fixed
algorithm or procedure in the system. Generally for a Gral
application system the set 3f sorts will consist of the
following subsets and specific sorts:

- REL - each sort in REL describes one kind of physical
representation (primary index) of a relation.

- INDEX - each sort describes one specific secondary
index structure.

- TUPLE - a sort describing a tuple in memory.
- TIDSEQ - a sort describing a collection of tuple

identifiers (through which tuples represented in one of the
REL representations can be accessed).

- ATOM - these are the sorts for atomic objects that are
also present in the descriptive algebra.

In the currently running Gral prototype there is only a
single sort SREL in REL corresponding to a simple
sequential representation of a relation. Priiary and secondary
index structures will be added soon. To illustrate the general

approach we describe an executable algebra already
containing index structures. In this design we have

REL = (SREL, STIDREL, BTREE)
SREL is a sequential representation used, for, example, for
temporary relations during the processing of a query.
STIDREL is a permanent representation providing tuple
identifiers; a relation represented in this way can be
accessed sequentially or through a secondary index.
BTREE is a B*-tree representation ordered by one of the
attributes. It can be accessed through the primary index,
through a secondary index, or sequentially. Let TIDREL =
(STIDREL, BTREE) be the structures accessible through a
secondary index.

INDEX = (SBTREE, SGRID, SMLGRID)
All of these structures allow to obtain a collection of
tuple identifiers. SBTREE is a B*-tree used as a secondary
index, SGRID a grid file [NiHS84]. supporting geometric
searches on a set of points in the plane, SMLGRID a
multi-layer grid file [SiWSS] supporting searches on a set
of rectangles in the plane. The stored rectangles in an
SMLGRID index are the bounding boxes of extended
objects such as lines or polygons.

Sorts TUPLE and TIDSEQ are also present and we have
ATOM = (BOOL, INT. REAL, STR, POINT, LINE, PGON,

Rm)
The executable algebra has an additional sort for
rectangles which are needed as bounding boxes of LINE
and PGON objects.

The set of atomic types with ordered domains is ORD =
(BOOL, INT, REAL STR).

A subset of the operators of the current Gral executable
algebra extended by some operators for index structures is
shown in Figure 3-l.

REL + SREL
REL x REL + SREL
REL + ATOM
TuPlJz -+TuPLE
BTREE(ORDi) X ORDi + SREL
BTREE(ORDi) X ORDi X ORDi + SREL
SGRID(F’OINT) x RECT +TIDsEQ
SMLGRID(RECT) x RECT +TIJxEQ
TIDSEQ x TIDREL -+ SREL
Exr +REC!T
POlNTxPGON -P BOOL

scan, sort
product, smjoin. insideJoin
extract
sel. proj. extend
exactmatch
rangescan
gco-range-search
geo~irtersection~search
tidscan
bbor
pr-inside

-#

G.)
-#

--

--
--

I;-,
(-#-I

Figure 3-l: Operators of the Executable Algebra

The executable algebra contains also atomic operations
on standard types; these are as in the descriptive algebra.
Also operators for SBTREEs have been omitted, they are
similar to those on primary BTREEs but return sets of tuple
identifiers.

The scan operator has a parameter list of the form
[El; E2] where El is an algebra expression of result type
BOOL and E2 an expression of result type TUPLE. This
operator scans a relation given in any of the REL
representations. El is ajilter expression which is evaluated
for each tuple of the operand relation; those tuples passing

the filter are then made available to the second expression
E3 by the keyword tuple to which tuple operators can be
applied. So E2 allows processing in “tuple mode”. For
example, the query “List the names of big cities” looks in
descriptive (D) and executable (E) algebra as follows:

D cities select [cpop > 5CMlOOO] project [cnamel
E cities scan [cpop a 5OOOOfk tuple pro] [cnamell

The sort operator realizes the ord operator of the
descriptive algebra but has also an input filter expression
and a tuple expression applicable to tuples after sorting.

- 37 -

Similarly the binary relation operators have two input filter
expressions and a tuple expression to be applied to the
concatenated tuples resulting from the operation. For
example, the product operator computes the Cartesian
product of the operand relations and has a parameter list of
the form [El. %; E31 where El and E2 are the filter
expressions and E8 is the tuple expression. It can be used to
answer query (5) from Section 2 “Associate with each city
the state containing it”:

D cities states Join [center inside region]
proJect [cname, sname]

E cities states product [true. true; tuple se1 [center
pr-inside region] proj [cname. sname]]

The selection operator on tuples se2 either returns the
operand tuple or a special object called notuple; any tuple
operator receiving notuple as an operand also returns
notuple. The same query could also have been realized
using the insidejoin operator. This operator can be
applied to (a relation with) a set of points and (a relation
with) a set of regions; it performs a plane-sweep [PrS85] to
join tuples of the two operand relations where the point is
contained in the region. We consider a slightly more
complicated example query with this operator “List for big
cities their population number as a percentage of their state’s
population”:

D cities select [cpop > 500000] states
Join [center inside region]
extend [(cpop/spop)*lOO (percent)]
proJect [cname, percent]

E cities states insidejoin [cpop > 500000. true;
center, region;
tuple extend [(cpop/spop)*lOO (percent)]

proj [cname. percent]]

The smjoin operator performs a sort/merge join. Its
parameter list has the form [El. E2; E8 cop Ed; Es]. El, E2
and E5 are filter and tuple expressions, as before. ES and Ed
are expressions involving only attributes of the first and
second operand relation, respectively, and cop is one of the
comparison operators (<. 1. =, >. 2). The two operand
relations are first sorted by the value of their respective
expression E3 or Ed and then merged according to the
comparison operator. - The extract operator of the
executable algebra has no parameters; it can be applied to a
relation with a single tuple and a single attribute and returns
the attribute value as an atomic object of the attribute’s type
(see the example below).

Access to primary or secondary index structures is also
realized by executable operators. A BTREE is organized by
attribute values of one of the ordered data types and can be
accessed with a single value of the same type or a range of
such values through the exactmatch and rangescan
operators. These operators also have filter and tuple
expressions like the scan operator to impose additional
restrictions on the returned tuples and to process these tuples
further. For the following examples we assume that relations
and index structures are organized as follows:

cities: BTREE(STR) ordered by the cname
attribute

cpop-index: SBTREE(INT) on the cpop attribute
center-index: SGRID(PGINT) on the center attribute

states: BTREE(STR) ordered by the sname
attribute

region-index: SMLGRID(RECT) on the region
attribute

The query “Retrieve the tuple representing the city Essen”
can then be formulated as:

D cities select [cname = “Essen”]
E cities “Essen” exacfmotch [true; tuple]

An SGRID index stores a set of points; the
geo~rarge~search operator returns the tuple identifiers
belonging to points inside a search rectangle given as the
second operand. Similarly an SMLGRID index stores a set of
rectangles; the gee-lnfersectior search operator
returns the tuple identifiers belonging to rectangles
intersecting a. search rectangle. The returned tuple identifiers
can be processed further through the tidseon operator which
accesses the original relation and allows to filter and process
tuples. As an example we consider the query “Find cities in
Bayem!?

D (states extract [sname = “Bayem”; region])
UM-4;

cities select [center inside Bayem]
E (states “Bayem” exactmatch [true;

tuple proj [region]] extract) (Bayem);
center&iex bbox (Bayem) geo~range~searrh

states tidscon [center pr-inside Bayem; tuple]

Let us reconsider the executable algebra from the point of
view of extensibility. The Gral kernel system will contain
generally useful relation representations such as those given
above in REL and, say, SBTREEs as a secondary index
structure, as well as sorts TUPLE. TIDSEQ, and BGGL. It will
have executable operators needed to implement the
descriptive operators of the model frame. for example scan,
sort, smjoin, product, extruct, exactmatch,
tidscan, etc. Standard types such aa INT. REAL, STR
together with their operations will be available as a module.
A Gral application system may then add its own special
types such aa POINT, LINE, PGON. and provide operators for
these types as well as special index structures such as
SGRID. SMLGRID with suitable operators for searching these
structures.

This distinction between Gral kernel system and Gral
application system arises from a practical point of view.
Note, however, that the Gral architecture to be described next
is absolutely uniform with respect to all sorts and operators.
For example, scan and smjoir are brought into the system
through the same extension mechanism as any other operator
and they might as well be application-defined. Parser, query
evaluator, and optimizer handle these operators in the same
way as any application-defined operator. We believe that
only in this way a clean architecture can be achieved.

4. An Extensible System Architecture

4.1. Survey

The Gral system prototype has been implemented during
the last two years in a project at the University of Dortmund.
The implementation language is Modula-2; the system runs
on Sun workstations under UNIX. The interactive interface
uses SunWindows and SunCGI for window management and

- 38 -

graphic representation of geometric objects; this interface is occurring as attribute values of the displayed relation are
mostly written in C. The system currently offers the visible as far as they intersect this section. It is possible to
following functionality: overlay the graphical representations of several relations.

- Database operations: create, destroy, open, close,
save a database, that is, a collection of relations.

- Relation operations: create, destroy a relation; insert
a tuple into a relation.

- Query: enter a query either in descriptive or in
executable algebra. The resulting relation or atomic object is
then displayed. The descriptive algebra implemented so far is
a subset of the geo-relational algebra described in [GW!a].

- Load/unload: move a relation out of the system into a
UNIX text file and load it from such a text file. This is
currently the only way to change the contents of a relation
(through a standard text editor).

- Show: display the contents of a relation. Attribute
types that are textually representable are shown in a text
window; types that are graphically representable (such as
geometric types) are shown in a graphics window. The text
window shows tuples and their attributes sequentially; one
can scroll forward or backward or access directly any
position within this textual representation of the relation.
The graphics window shows a section of the real cartesian
plane which can be selected by the user; geometric objects

Note that the interactive interface offering this
functionality is entirely data type independent. For example,
the program that displays a relation does not know how to
display any attribute value. Instead, it calls through the type
manager a type-specific procedure to display a value of this
type which was provided by the implementor of this type.
So this program is prepared to handle any attribute type that
will be added to the system in the future. According to the
philosophy of the Gral model frame the only object type
built into the system is that of relations.

In this section we focus on the layered architecture for
query evaluation and emphasize and explain extensibility at
the various layers. This architecture is shown in Figure 4-l.

Descriptive Algebra

I Optimizer/Query-Compiler I
I 1

Executable Algebra

Parser/Query-Evaluator

Operator Implementations

Operators Frimitive Operations
on Relations and
Index Structures

I Storage and
Buffer Management I

Figure 4-1: Architecture for Query Evaluation

Although query processing proceeds top-down, the
architecture of the system is best explained bottom-up. The
bottom layer provides rather traditional storage and buffer
management except that page sequences are available to hold
data objects occurring as attribute values (it is generally
assumed that “atomic” data objects may have arbitrary size)
and facilities for fixing page sequences in the buffer.
Currently we see no need for this layer to be extensible. The
second layer provides representations for the sorts of the
executable algebra; the implementation of relation
representations and index structures uses the functions offered
by the storage management layer. The second layer provides
also a higher level representation of a tuple in memory with
suitable operations and a scan component offering uniform
scanning operations for all relation representations. This

layer is extensible by atomic data types, index structures,
and relation representations.

The third layer consists of implementations of executable
operators. These are based on the primitive access operations
offered by relations or index structures and the representation
of atomic types realized by the layer below. For example,
the scorr operator of the executable algebra uses the scan
component of the representation layer. A “point inside
polygon” test operator @r-inside) accesses the
representations of point and Polygon objects implemented in
that layer. Each executable operator is implemented by two
procedures. tie of these describes the schema transformation
(ST) performed by the operator (for example, the product
operator creates a new relation schema by concatenating the
two operand schemas). The second Procedure implements the
occurrence transformation (OT), that is, the mapping of the

- 39 -

relation instances or atomic data objects. There are two
separate procedures because the ST procedure is already called
during the parsing of an executable algebra expression
whereas the OT procedure is called during query evaluation,
after parsing is completed. This layer is, of course,
extensible by operator implementations.

The next layer contains the parser and query evaluation
components. Given an executable algebra expression, the
parser produces an operator tree representation in memory.
For this purpose it accesses information in the system
catalog, in particular the “Operators” table which contains
for each operator its name (or symbol). the functionality,
and a description of the parameter list structure, if there is
one. As mentioned before. the parser also calls an operator’s
ST procedure to apply the operator to an operand schema
(which may in turn be the result of parsing a subexpression).
The parser has no built-in knowledge of any operator. The
same is true for the query evaluator. This component
“understands”. however, the structure of the operator trees
which the parser builds. The query evaluator traverses the
operator tree, computes bindings for the leaves, representing
objects, and calls for each operator represented by an
internal node the corresponding OT procedure. The query
evaluator takes (references to) the operand objects from the
tree and passes them to the procedure as parameters; it
receives the resulting object from the procedure and links it
into the tree. This layer is extensible by operator
descriptions being entered into the system catalog.

Up to this layer we have a complete system capable to
evaluate queries in executable algebra. As mentioned before,
in the Gral system this capability is present at the user
interface, that is, a user can enter queries in executable
algebra. It is necessary to expose this interface to an
application developer so that he/she can test new operator
implementations in queries for correcmess and performance.
The knowledge gamed in performance tests can subsequently
be built into optimization rules.

The top layer consists of the optimizer/query compiler
component. The optimizer calls the parser of the layer below
to analyze a given descriptive algebra expression and to
produce an internal tree representation: the parser again
receives the necessary information from the “Operators”
table in the system catalog. The same parser can be used
because descriptive and executable algebra have the same
syntactical structure. The information needed for
optimization and query translation itself comes from a text
file “OptimizationRules”. This file contains various classes
of optimization/translation rules in a specific syntax and
order. When the Gral system is started the contents of the
file are analyzed and represented by internal data structures so
that patterns occurring in rules can be matched efficiently
against parts of the tree representing the query. How the
optimizer works is described in some more detail in Section
4.4. The result is an expression in executable algebra which
can be. shown in text form to the user, if desired. For further
processing of the query, however, it is passed to the query
evaluator directly in internal form, so it need not be parsed
again. The top layer is extensible by descriptive operators
and optimization/translation rules.

In the following three subsections extensibility by data
types, executable operators, and descriptive operators is
discussed in a little more detail.

4.2. Extensibility by Data Types

The implementation of a data type. in Gral consists OE
(1) A Modula-2 type, usually opaque, together with
operations for building an object accossiated with a variable
of this type, and operations to access the components of an
object. This part constitutes the Modula-2 implementation of
an abstract data type.
(2) Three classes of pro03dures:

I Procedures for storing and loading an object. These
convert the object representation in a variable to a
bytestring and store the object as an attribute value in a
relation and vice-versa. Whenever possible the bytestring
representation produced by the Modula-2 compiler is used so
that no conversion is necessary. Optionally there may be
procedures to load an object only partially.

II Procedures for interactive input/output. For example, a
procedure to read a string value from the keyboard or a
procedure to display a polygon on the. graphics screen.

m Procedures to convert from/to textual form.

There exist two different kinds of programs using a data
type: programs written before the type was implemented and
that do not “how” the type, and programs written afterwards
with knowledge about the type. An example of the fist class
is the program displaying a relation at the screen. An
example of the second class is a program testing two
polygons for intersection. Programs of the first class access
a type through the type manager. This module provides a
generic procedure for each task within classes I - III above;
the generic procedure just switches to the type-specific
Procedure provided by the type implementation. The generic
procedure is implemented in Modula-2 by an array of
procedure indexed by the type.

Hence, to add a data type to the Gral system, an AD
implements the type as descriibed under (1) and (2) above,
usually in a module for the type. Then the type manager
module is extended: the procedures in the type module are
imported and for each generic procedure in the type manager
the corresponding component of its array of procedure is
assigned the type’s procedure. Finally a procedure
“InsertType” is called to enter the name of the type and some
other information (e.g. whether the type is sortable, can be
displayed textually, graphically, etc.) into the system
catalog and the system relation about types.

Similar ideas for providing type extensions have been
reported in [StRG83, Ong84. OsH86] although the details
differ. For example, in Gral types are not defmed within the
system’s data definition language to avoid inconsistencies
with the source code which must be present in the system
anyway. What is perhaps new about our treatment of types is
the possibility of partial loading. Since we generally assume
that objects may be arbitrarily large it is useful to allow to
load only some part of an object into memory. For example,
a polygon is represented by a record with fields for the
bounding box, the area, the perimeter, and the vertices
(given as an array). An operator testing two polygons for
intersection may initially only load the bounding boxes and
only load the vertices later if the bounding boxes intersect.

- 40 -

4.3. Extensibility by Executable Operators

Adding an executable operator to the system consists of
three steps. First, one implements its schema and occurrence
transformation procedures, using the primitives of the
representation layer. (That layer contains also a module
“SchemaTransformations” providing a data structure to
represent a schema and operations on schemas such as
concatenating schemas, adding an attrribute. etc.). The new
operator then needs to be linked into the “OpManager”
module. The OpManager has separate arrays of procedure for
ST and OT procedures, one array for each arity of an
operator. So the second step is to assign the new procedures
to appropriate array components. Through the OpManager
these procedures can then be called by parser and query
evaluator.

The third step in adding an operator is to make its name,
functionality. syntax, and parameter list structure known in
the system catalog where this information is then available
for the parser. Similar as for types this is achieved by
calling a procedure “InsertOp” with text parameters
containing corresponding descriptions. The system catalog
(and the system relation about operators) has four entries for
each operator:
(1) Operator name or symbol.
(2) A description of functionality and syntax in the form
pattern + result type. For example, for the stun and
pr-inside operators the descriptions are:

REL scan -> REL
(POINT pr-inside PGON) -> BOOL

(3) A description of the parameter list if there is one,
otherwise the word ‘None”. Parameter lists may be either in
standard form or irregular. To be in standard form means that
a parameter list may be structured into a fixed number of
sublists, separated by “;“, each sublist may have a fixed or
variable number of items, separated by “,“. An item may
have a fixed number of parts, separated by blanks or user-
defined delimiters. Parts may be recognizable for the system
parser or not. Recognizable parts are constants of some
atomic type, attribute names, (re)namings, and algebra
expressions of specified result type. In Gral these rules are
built into a grammar which defines the allowed parameter list
descriptions and thus the allowed parameter lists. Parameter
list descriptions for scan and proj. for example, are as
follows:

scan: [Expr(BOOL); Expr(TUPLE)l
proj: [Attrname *I
If a parameter list is irregular, a procedure for parsing

the parameter list must be provided by the AD with the
operator implementation. In the current Gral system this was
never necessary.
(4) The last entry is either “Executable” or “Descriptive”
since descriptive operators are described in exactly the same
way and appear also in the operator table.

The parser transforms a parameter list encountered in an
algebra expression according to the description in (3) to a
nested list data structure and connects this representation to
the operator’s node in the operator tree. When a parameter
list contains an algebra expression, the parser recursively
parses this expression and builds an operator tree which it
links into the nested list structure. In this way nested algebra
expressions are represented in the operator tree. During query
evaluation, the nested list representation of a parameter list

is passed to the operator’s OT procedure.The implementor of
this procedure (the AD) relies on the parser having built the
right structure; thus the description (3) serves as an interface
definition between parser and OT procedure. When an OT
procedure has to Process an algebra expression occurring as a
parameter it simply calls the query evaluator on the tree
representation of this expression. This is an important
point: A user-defined OT procedure calls the system’s query
evaluator to handle nested algebra expressions, as they
occur, for example, in stun or extend operators.

4.4. Extensibility by Descriptive Operators
and Optimization/Translation Rules

In this section we briefly sketch how the optimizer/query
compiler works and how rules are described and arranged in
the file “OptimizationRules”; a detailed report is to follow
[BeG89]. The translation of a given descriptive algebra
expression proceeds in the following stages:

---Descriptive multistep query---
1. Normalize: In a multistep query names of objects
resulting from expressions can be replaced by these
expressions without changing the semantics. This is
done to obtain a single expression which can be
optimized further as a whole.

---Descriptive expression---
2. Decompose: Certain operators, such as selection,
join, extend, are decomposable. For example, a selection
with several and-connected conditions can be transformed
into several selections with simple conditions.
Decomposable operators are taken apart, so that their
parts (e.g. simple selections) can move freely.
3. Improve: Change the order of operators according to
heuristics (classical algebraic optimization).
4. Compose: Put subsequent operators together (for
example, a series of selections).
5. Eliminate constant and common subexpressions.

---Final descriptive multistep query---

For each expression in the multistep query:
---Descriptive expression---

6. Translate descriptive subexpressions to executable
subexpressions. (During this stage, the optimizer works
on a mixed descriptive and executable exPression.)

---Executable expression---
7. Combine sequences of executable operators into a
single operator.

---Final executable expression (and multistep query)---

All stages except 1 and 4 are supported by rules; these
are given in the file OptimizationRules which is structured
roughly according to the stages into sections. In the first
stage a query formulated by a user in several steps is
transformed (by embedding expressions for names) into a
single expression (normal firm) so that optimization of the
whole query is possible. The steps selected by the user might
otherwise prevent certain optimizations. Stage 2
(Decompose) is supported by a corresponding section in
OptimizationRules:

- 41 -

DECOMPOSING RULES
. . .
RULE

REL-1 select [BOOL-1 and BOOL-2)
-> REL-1 select [BOOL-l] select [B0042].

RULE
REL-1 REL-2 join [BOOL-11
-> REL-1 select [BOOL-11 REL-2 product

if BOOL-l.attr c REL-l.attrnames,
-> REL-1 REL 2 select [BOOL-11 product

if BOOL-lyattr c REL-2.attrnames.
. . .
END

A rule consists in general of a pattern followed by one or
more replacement patterns each of which may have an
associated condition. The condition may involve properties
of the expression, such as the attribute names occurring, and
properties of the involved objects, such as the number of
tuples in an operand relation or the physical sizes of
attributes or atomic objects, etc. A rule may be preceded by a
specification part to simplify notation within the rule. Each
rule described in this way can be viewed as a collection of
rules of a production system [Ni80]. For most stages an
irrevocable control strategy is used and rules are applied until
no further rule is applicable. In these stages the first
replacement pattern whose condition is fulfilled is selected to
replace the original pattern in the expression. Different
control strategies which explore alternatives are used in
stages 3 and 6.

The goal of stage 3 is to arrange operators in an order
which is “good” according to heuristics. For this purpose it
is possible to specify a partial order on descriptive operators
to indicate a desired order of operators in the expression -
whether that order can be achieved is another matter. This is
a general facility to formulate such familiar heuristics as
“selection and projection should be done as early as
possible”. The partial order is given by a section
“OPERATOR ORDER”. How operators may actually be.
exchanged to achieve a good order is described in the section
“IMPROVING RULES”. one example is shown:

SPEC
op-1 in (select, project, ord];

RULE
REL-1 op-1 [Param-l] select [BOOL-11
-> REL-1 select [BOOL-11 op-1 [Param-11.

The control strategy for stage 3 attempts to arrange
operators according to the partial order in such a way that
the number of “runs” (ordered subsequences) is minimized. By
a suitable definition of operator order and rules, one can let a
run correspond to a single operator of the executable algebra
and so minimize the number of executable operators needed.
The section “COMPOSING RULES” contains rules for stage 4
(no example is shown). Together. stages 2 - 4 realize the
classical algebraic optimization.

No rules are necessary to support stage 5 (Eliminate). A
constant subexpression is one that is evaluated once for each
tuple of a relation but does not depend on the tuple’s
attribute values. In query (2) of Section 2 “(cities m ax
[cpop])” is a constant subexpression. Stage 4 translates this

to a two-step query where the constant subexpression is
evaluated only once initially:

(cities max [cpop]) (Constant~l);
cities extend [cpop/ConstantJ (percent)]

The next section contains rules for the translation of
descriptive to executable subexpressions. This. is the point
where descriptive operators are associated with their
executable wunterparts.

TRANSLATING RULES
. . .
RULE

REL-1 select [Attrname-1 = Const-11
-> REL-1 Const-1 exactmatch [true; tuple]

if ReprIs (REL-1, Attrname-1, BTREE),
-> Index (REL-1, Attrname-1) Const_l

indexexactmatch REL-1 tidscan [true; tuple]
if ExistsIndex (REL-1, Attrname-1, SBTREE],

-> REL-1 scan [Attrname-1 = Const-1; tuple].

RULE
REL-1 REL-2 join[Attrname-1 inside Attrname-21
-> REL-1 REL-2 inside-join [true, true:

Attrname-1, Attrname-2; tuple]
if Attrname-1 in REL-l.attrnames and

Attrname-2 in REL-Z.attrnames and
REL-l.size > 100,

-> REL-1 REL-2 product [true, true; tuple se1
[Attrname-1 pr-inside Attrname-21 I.

. . .
END

The first rule describes how a simple selection can be
implemented either by access through primary or secondary
index structures, if present. or otherwise by a relation scan.
The second rule shows how the Inside operator of the
descriptive algebra, defined on atomic objects, can actually
be implemented by a plane-sweep algorithm which is (under
certain conditions) the most effkient way to realize this hind
of geometric join. This example shows how the system
architecture does indeed support the efficient processing of
geometric queries, which was one of the initial goals of the
Gral development. The rule is also a simple example of how
the optimizer can switch between various implementations:
for small sets of points (here up to 100 points) forming the
cartesian product with subsequent selection is preferable.

The last section “COMBINING RULES” of the file
OptimizationRules wntains rules for combining executable
operators. The previous translation stage which replaces
descriptive operators independently of each other by
executable operators may, for example, have produced series
of scan operators, or scan followed by product, etc.,
which can now be wmbmed into one:

RULE
REL-1 REL-2 product [BOOL-1, BOOL-2; TUPLE-11

scan [BOOL-3; tuplel
-> REL-1 REL-2 product [BOOL-1, BOOL-2;

TUPLE-1 se1 [BOOL-311.

We have given here only a rough survey of the Gral
extensible optimizer; most details and the more sophisticated
techniques have been left out. For example, the optimizer

- 42 -

can be advised by rules to search systematically all
permutations of n and-connected simple conditions, within a
selection or join, say, and for the translation stage (6) each
replacement pattern in a rule can be assigned a numeric
expression. The replacement pattern can then be selected
according to the value of that expression. These facilities
allow one to search the possibilities for implementing a
single operator, such as a complex selection, exhaustively.
and to make a good choice among these. For example, a
simple condition supported by an index structure will be
evaluated first. These techniques are described in more detail
in [BeG89].

It is now obvious how a descriptive operator is added to
the system: Its name, functionality and syntax, and
parameter list structure are entered into the system catalog as
for executable operators. The descriptive operator is then
“implemented” by a collection of rules in the file
OptimizationRules. Of course, rules can be added to or
removed from the file at any time independently from adding
operators.

5. Related Work

We have described the query processing architecture of an
extensible relational database system based on many-sorted
algebra and shown some of the specific extension
mechanisms used in the Gral system. Obviously much of the
previous work on extensible database systems is related in
some way; some of it can be associated with specific layers
of our architecture. Extensibility by relation representations
and index structures and in particular the interaction between
these two in update processing have been studied in
[LiMP87]; their work fits nicely into our representation
layer. Methods for adding atomic types, functions, and
predicates have been studied in [StRG83. OsH86]. The RAD
system [OsH86] uses also a query language based on
relational algebra and in principle allows relation mappings
(called “transformations”). However, these have not been.
implemented and no extension mechanisms are described.
Techniques for adding operator implementations have also
been studied in [St86, GrD87]. In contrast to our approach,
in the INGRES [St861 or POSTGRES [StR86] project the
architecture of the database system is not affected as a whole
by extensibility. That is, there is a collection of built-in
types which are treated differently from user-defined types;
also all the standard parts of the query language are
implemented in a traditional way and user-defined operations
are handled separately. These are essentially restricted to
simple functions on atomic types; relation mappings are not
foreseen. The approach of adding interfaces to a traditional
architecture shows in the way how user-dermed operations
need to specify whether certain methods of the fixed part of
the system are applicable, e.g. whether hash-join is feasible
for this operator. In Gral, hash-join could in principle as
well be a user-defined operation.

Rule-based optimization has also been studied by Freytag
[Fr87] and in the EXODUS project [GrD87]. Our techniques
have some similarity to Freytag’s proposal. Differences are
that he describes only the translation stage, so there is no
algebraic optimization before or after translation, and that
his rules describe how to generate all possible query
execution plans but no strategy for selecting a good one.
Gral contains a complete extensible optimizer which actually

produces a good query plan. Generally one could say that we
have filled in many details to his Proposal and implemented
a relatively complete query language including aggregate
functions, sorting, and geometric operators. Freytag
considers essentially only selection and join. Graefe and
Dewitt [GrD87] focus on the aspect of heuristically
searching the space of query plans to find -a good one
quickly. In their relational test implementation they also
consider only selection and join. Another approach to
extensible query optimization using the rules of a grammar
to construct query plans is described in [Lo88]. - We shall
compare the methods for extensible optimization in more
detail in [BeG89].

Acknowledgment

Past and present members of the Gral development team
are Ludger Becker, Thaddtlus Behnke, Anja Huesmatm, Dirk
Markert, Rainer Matenia, Stefan Pelt, Markus Schneider,
Norbert Suchhart, Jacqueline Teschner, Reinhilde Uphaus.
Bemd Vielhauer and Leonhard Wawrzinek. Their contribution
to the design and implementation of the Gral prototype is
gratefully acknowledged.

References

[Bat0861 Batory, D., J. Bamett. J. Garza, K. Smith, K.
Tsukuda, C. Twichell, and T. Wise, GENESIS: A
Rewnfigurable Database Management System. University of
Texas at Austin, Dept. of Computer Science, Report TR-86-
07, 1986.

peG89] Becker, L.. and R.H. Gliting, An Optimizer for an
Extensible Geometric Database System. Universitit
Dortmund, Faohbereich Informatik. Manuscript, 1989.

[Care861 Carey, JM., D.J. Dewitt, D. Frank, G. Graefe, M.
Muralikrishna, J.E. Richardson, and E.J. Shekita, The
Ehiecture of the EXODUS Extensible DBMS. In [Di86],

- .

[CaDV88] Carey, J.M., D.J. Dewitt, and S.L.
Vandenberg, A Data Model and Query Language for EXODUS.
Proc. ACM SIGMOD 1988, 413-423.

[Co791 Codd, E.F., Extending the Database Relational
Model to Capture More Meaning. ACM Transactions on
Database Systems 4 (1979). 397-434.

[Daya87] Dayal. U.. F. Manola. A. Buchman. U.
Chakravarthy, D. Goldhirsch. S. Heiler. J. Orenstein, and A.
Rosenthal, Simplifying Complex Objects: The PROBE
Approach to Modelling and Querying Them. In: H.J. Schek
and G. Schlageter (eds.), Proc. BTW 87, Springer 1987, 17-
37.

[Di86] D&rich, K.R.. Object-Oriented Database Systems:
the Notion and the Issues. Proc. of the IEEE/ACM
International Workshop on Object-Oriented Database
Systems, Pacific Grove, California (September 1986). 2-4.

- 43 -

[Fr87] Freytag, J.C., A Rule-Based View of Query
Optimization. hoc. ACM SIGMOD 1987. 173-180.

[GoW8] Goguen. J.A., J.W. Thatcher, and E.G.
Wagner, An Initial Algebra Approach to the Specification,
Correctness, and Implementation of Abstract Data Types. In:
R. Yeh (Ed.), Current Trends in Programming Methodology,
Vol. IV, Prentice-Hall 1978, 80-149.

[GrD87] Graefe, G., and D.J. Dewitt. The EXODUS
Optimizer Generator. Proc. ACM SIGMOD 1987, 160-172.

[Gr84] Gray, P.M.D., Logic, Algebra, and Databases.
Ellis Horwood Ltd., Chichester. 1984.

[Gti88a] Guting, RI-i.. Geo-Relational Algebra: A Model
and Query Language for Geometric Database Systems. In:
J.W. Schmidt. S. Ceri. M. Missikoff (eds.), Proc. EDBT
1988. 506-527.

[Gii88b] Gtiting. R.H.. Modeling Non-Standard Database
Systems by Many-Sorted Algebras. Universitllt Dortmund.
Fachbereich Informatilc, Report 255. 1988.

[Giizc88] Guting. R.H., R. Zicari, and D.M. Choy, An
Algebra for Structured Office Documents. Universitat
Dortmund, Fachbereich Informatik, Report 254, 1988, to
appear in ACM Transactions on Office Information Systems
(Jan. 1989).

[HaL82] Haskm. R.L.. and R.A. Lorie. Gn Extending the
Functions of a Relational Database System. Proc. ACM
SIGMOD 1982, 207-212.

[LiMP87] Lindsay, B.. I. McPherson, and H. Pirahesh, A
Data Management Extension Architecture. Proc. ACM
SIGMOD 1987, 220-226.

U-43881 Lohman, G.M., Grammar-like Functional Rules for
Representing Query Optimization Alternatives. Proc. ACM
SIGMOD 1988, 18-27.

[MaD86] Manola, F., and U. Dayal. PDM: An Object-
Oriented Data Model. In [Di86]. 18-25.

[NiHS84] Nievergelt. I.. H. Hinterberger. and K.C. Sevcik.
The Grid File: An Adaptable, Symmetric Multikey File
Structure. ACM Transactions on Database Systems 9 (1984),
38-71.

[Ni80] Nilsson, N.J.. Principles of Artificial Intelligence..
Tioga Publ. Company, Palo Alto, CA, 1980.

[Gng84] Ong. J., D. Fogg, and M. Stonebraker,
Implementation of Data Abstraction in the Relational System
INGRES. ACM SIGMOD Record 14. No. 1 (March 1984). l-
14.

Domains. ACM Transactions on Database Systems II
(1986). 357-373.

[ET861 Pistor, P.. and R. TraunmUller. A Database
Language for Sets, Lists, and Tables. Injormation Systems
11 (1986). 323-336.

[PtS85] Preparata, F.P.. and MI. Shamos. Computational
Geometry: An Introduction. Springer 1985.

[ScS86] Schek. H.J., and M.H. Scholl, The Relational
Model with Relation-Valued Attributes. Iqformation Systems
II (1986). 137-147.

[SiWSS] Six, H.W., and P. Widmayer. Spatial Searching in
Geometric Databases. Proc. IEEE Data Engineering Conf.
1988, 496503.

[SW Stonebraker, M.. Inclusion of New Types in
Relational Data Base Systems. Proc. 2nd Intl. Conf. on Data
Engineering (Los Angeles, CA, February 1986). 262-269.

[StR86] Stonebraker, M., and L.A. Rowe, The Design of
PGSTGRES. Proc. of the 1986 SIGMOD Conf. .(Washington,
DC, May 1986). 340-355.

[StRG83] Stonebraker, M.. B. Rubenstein, and A. Guttmann,
Application of Abstract Data Types and Abstract Indices to
CAD Databases. Proc. 1983 ACM Engineering Design
Applications, 107-l 14.

[Schw86] Schwarz, P., W. Chang. J.C. Freytag. G. L&man,
J. McPherson, C. Mohan, and H. Pirahesh. Extensibility in
the Starburst Database System. In [Di86], 85-92.

[OsH86] Osbom. S.L.. and T.E. Heaven, The Design of a
Relational Database System with Abstract Data Types for

- 44 -

