
ENIAM: A More Complete Conceptual Schema Language 
Peter Greasy 

Key Centre for Software Technology 
Department of Computer Science 

University of Queensland 
St. LUcAll~ 4067 

Abstract 
The problem of knowledge representation has been 
extensively addressed in the information systems field and 
there has been a wide range of suggestions for capturing 
semantics. A number of systems and methodologies have 
been proposed. Most seem to suffer from a variety of 
problems which make representation difficult, e.g. mixing 
of type and instances, too many and complex structures. 
Representation languages which permit a graphical form 
are becoming more widely accepted under the motivation 
of being able to see the data structures which exist. However 
the semantics are somewhat limited with, for example, few 
integrity constraints being represented. In this paper we 
show how a conceptual schema language with a graphical 
form can be extended to permit a wider class of semantics 
to be represented. 

1. Introduction 

Conceptual schema languages with a graphical form have 
become increasingly significant in information systems (e.g. 
Hare1 1988) as the importance of being able to see what 
the data structures are becomes accepted. 
An essential part of any knowledge representation system 
is the representation of facts. As syntactic rules permit facts 
which are syntacticaIly valid but semantically invalid within 
the universe of discourse, we additionally need constraint 
spcdications. Correspondingly we distinguish two classes 
of data types - the fact encoding construct (a data structure 
type which is associated with a population of instances) 
and validation rules. It is the latter structures which are of 
interest in this paper. 

NIAM (Nijssen 1977,1986; Verheijn & van Bekkum 1982) 
is a methodology with an associated fact-based language 
with a graphical representation. It uses only a few validation 
constructs (e.g. mandatory role, uniqueness). While we can 
represent, what we regard as some of the more important 
constraints, there is still a large class which cannot be 

Permission to copy without fee all OT part of this material is 
granted provided that the copies are not made OT distributed for 
direct commercial advantage, the VLDB copyright notice and 
the title of the publication and its date appear, and notice is 
given that copying is by permission of the Very Large Data Base 
Endowment. To copy otherwise, or to republish, requires a jet 
and/or special permission from the Endowment. 

Proceedings of the Fifteenth International 
Conference on Very Large Data Bases 

represented. In addition subtype definitions and derivation 
rules have no formal representation. 

Most of the presentations in the integrity constraint area 
(e.g. Reiter 1988) use first order predicate logic (FOPL), a 
language unfamiliar to most analysts. Existential graphs 
(Peirce 1960; Roberts 1973) have been developed in a 
number of forms which correspond to propositional, first 
order and higher order logics. The graphs provide a very 
readable logic representation in graphical form which can 
be readily integrated with graphical knowledge 
representation languages. We discuss the fitst order form 
which is represented graphically using negation, conjunction 
and the existential quantilier. 
We use the existential graphs to extensively extend the 
power of NIAM. This provides us with ENIAM, a graphical 
first order logic language which permits the subtype 
definitions, derivation rules and constraints to be formally 
graphically represented. 
Finally, we discuss an extension to the NIAM methodology 
which guides analysts/users in the expression of constraints 
in ENIAM. 

2. NIAM 

The NIAM language is fact-based. It has a graphical 
representation which is the form generally used for 
conceptual schema design. The facts (fact type instances) 
are semantically irreducible associations between entity 
instances, with each entity instance playing a role in the 
fact (sentence). The methodology abstracts from facts to 
give fact types, the fact encoding constrnct. 
Figure 1 shows a NIAM diagram which represents people 
holding passports and visiting countries. The main constructs 
are: entity types (circles), e.g. PERSON, COUNTRY, roles 
(rectangles), e.g. visited, was-visited-by, which correspond 
to verbs of a sentence; fact types (compound rectangles), 
e.g. VISIT, HOLD; label types (dotted circles), e.g. 
person-name; and constraints. 

A relationship type between entity types is a fact type. Each 
fact or reference type consists of a number of roles. These 
describe the part (or role) each entity or label type (to which 
the role is joined) plays in the fact or reference type. For 
example the role played by PERSON in CALLED is 
“is-named”. 

Amsterdam, 1389 

- 107 - 



CALLED 
c2 __ Cl . * . . 

(country-name) 

Entities are non-lexical and are lexically identified by 
reference types (e.g. CALLED). These are special fact types 
which associate entity types with the identifying label type. 
The references can be abbreviated by writing the 
corresponding label type in parentheses following the entity. 
We have shown this for the entity type COUNTRY. 
An example of a VISIT fact type instance is dill,USA>. 
We can show such populations as in figure 1, where the 
non-lexical enitites have been represented by the 
corresponding lexical representation. This fact can be read 
as the person identified by person-name Jill visited the 
country ident#ed by country-name USA. 

Some of the constraints we can represent in NIAM are 
intrafact (and intrareference), interfact uniqueness, 
mandatory role, equality, exclusion and subset constraints. 
The arrows above the roles represent intrafact or 
intrareference uniqueness constraints which are placed on 
the instances of the role or roles. They indicate that the 
role or roles uniquely identify a single fact instance, i.e. 
they specify functional dependencies. In this case constraints 
C4 and C5 indicate person t+ passport while C3 indicates 
person, country -+ +. Constraints C 1 and C2 indicate unique 
naming for the entity type PERSON. 
The constraint C7 is a mandatory role constraint which 
indicates that if an entity (or label) takes part in any fact 
(or reference) instance then it must take part in an instance 
of the fact (or reference) type corresponding to the constraint. 
The subset constraint C8 indicates that anyone who visits 
a country must have a passport. 
The fact types can be mapped to relational structures using, 
what is essentially, a synthesis algorithm. For figure 1 the 

resulting relations are VISIT(person , country) and 
HOLD(person , passport). 
We have not mentioned all the features of the language. 
One which should be mentioned is subtyping, an important 
part of the language. An example is shown later. It should 
benotedthatitisnotnecessarytowritedownthepopulations. 
fact type names, role names or constraint names unless they 
are needed for clarification. This results in a much less 
cluttered diagram. 

3. Existential Graph 

Existential graphs were proposed by Peitce to represent 
logic and resulted from the work he did over a numbed of 
years. The graphs are simple with few concepts. They are 
one of many graphical representations for logic which have 
been proposed over the years, e.g. Venn diagrams (see 
Gardner 1983). The graphs use few operators (user symbols, 
lines and closures e.g. circles), am easy to read and write 
and offer the power of FOPL. Peirce proposed a number 
of what he called parts to the existential graphs. He called 
these the Alpha, Beta and Gamma parts. The parts of interest 
to us hem are the Alpha part (equivalent to propositional 
logic) and the Beta part (equivalent to FOPL). Roberts 
(1973) has shown completeness and consistency for 
existential graphs. In particular Roberts uses Quine’s (1955) 
ML logic system. Sowa (1984) has demonstrated the 
usefulness of existential graphs as a mechanism for 
representing FOPL. 

The Alpha part has only three basic symbols: the sheet of 
assertion, the cut and the graph. The graphs are laid out on 
the sheet of assertion (SA), an arbitrarily large area, which 
equates to a model of the universe of discourse. A graph 
instance is something which asserts a possible state in the 
universe, viz. proposition. The sheet of assertion is also 
considered to be a graph, as the blank EA expresses whatever 
initially holds in the UoD. 
Graph instances written on the SA are asserted to be true. 
By a graph is meant “any sign (symbol) which expresses 
in a proposition some state in the universe” (Roberts, p 32). 

PQ 

PA Q 
(a) 

P Q 0 
PalQ 
(c> 

PQP Peirce graphs 

PAQAP FOPL 
09 

0 pa Peirce graphs 

P*Q 
orl(P ATQ) 

FOPL 

(d) 
Figure 2: 

- 106 - 



-P Peirce graphs 

(Erx) w A @Y) @ww 
(4 0 (4 

FOPL 

P- -Q P-Q Peirce graphs 

CW’W*(~Y)Q(Y) @W’~~) AQW FOPI., 

00 (e) 

Figure 3: 

Some examples are shown in figure 2. It should be noted 
that the shape of the graphs (e.g. whether lines are straight 
or curved or the shape of the closures) is not important. 
Figure 2(a) contains two graphs which together state the 
propositions represented by Pand Q hold, i.e. the conjunction 
of these holds. Peirce distinguished graph and graph instance. 
In his terms there is strictly only one graph P of which 
there may be a number of occurrences (graph instances); 
e.g. we may have P repeated a number of times such as in 
@u-e 2(b). In the following we shall use the term graph 
rather than graph instance, except where we wish to make 
the distinction. 

A single line, with no crossings, can be drawn around a 
graph (a cut) to indicate the negation of the graph. For 
example figure 2(c) is equivalent to P A TQ. For material 
implication (e.g. P * Q, or “if P then Q”) the term “scroll” 
is used. This example is shown in figure 2(d). The graphs 
are read from the outside inwards (endoporeutic). In this 
example (figure 2(d)) reading from the outside inwards we 
have the antecedent (“if P”) and then the consequent (“then 
Q”). 
The Beta part additionally has a he of identity, used to 
represent an individual in the universe, and a spot which 
is equivalent to the FOPL predicate, e.g. P of figure 3(c). 
In the Alpha part the graph and the (propositional) symbol 
were one and the same. However in the Beta patt a graph 
may consist of a number of symbols, hence the need to 
distinguish the symbol and the graph. The line of figure 3(a) 
indicates the existence of something, e,g, (3x), while 
figure 3(b) indicates @x)@y), i.e. two individuals which 
may be the same. 

We still have the convention that two graphs drawn on the 
same SA represent the conjunction of the graphs. Thus 
figure 3(d) represents flx)P(x) A @y)Q(y). In figure 3(e) 
the line of identity between P and Q indicates that the two 
individuals represented by the ends are identical, i.e. 
C%%‘)P(x) A Q(Y) A x = Y) Or @x)@(x) A Q(x)>. This 
can be extended to n individuals. 

Just as a predicate can have more than one argument, more 
than one line may be attached to a predicate (symbol). The 

(cl 
or wGY~~ 

(4 
Figure 4: 

places of attachment am called hooks, and the meaning of 
the hooks must be understood just as the positions of the 
predicate arguments in FOPL need to be understood. 
Figure 4(a) represents someone likes someone. III this case 
we arbitrarily decided to consider the hook in front of the 
predicate to be the person doing the liking and the other 
hook to be the person liked. 

It is possible to have any nesting of cuts. Graphs are referred 
to as being evenly enclosed or oddly enclosed, depending 
on the depth of nesting. This is significant as those graphs 
evenly enclosed have been negated an even number of times 
and thus have a positive sign (no negation) in the expanded 
FOPL (or propositional logic) form, while those oddly 
enclosed have a negation sign. Anything not enclosed (i.e. 
on the SA) is considered to be evenly enclosed. 

When a line (of identity) crosses a cut the nesting of the 
cuts determines the equivalent FOPL variable scoping, with 
the outermost extremity of the line determining the position 
of the existential quantifler (the endoporeutic view). For 
example figure 4(b) is equivalent to @x)-P(x), i.e. the 
existence is at the outer level; figme 4(c) is equivalent to 
(Yx)+iy)P(y); figure 4(d), where tbe outer part of the line 
of identity is oddly enclosed and P is evenly enclosed, is 
equivalent to (-Jx)P(x), i.e. (Vx)P(x), in this case the 
existence is at level 1. 
A line of identity passing through an empty cut indicates 
the non-identity of the individuals at the extremities. For 
example figure 5(a) is equivalent to 
@d@Yxp(x) A Q(Y) A x#y). The negation of a ligature 
indicates the non-identity of the individuals denoted by the 
extremities of the ligature. 

(W@YN?(X) AQWAX # Y) O’W’CG =+ Q(x)) 
(a) 0-O 

Figure 5: 

- 109 - 



COUNTRY 
(country-name) 

. . 
Visa-needs 

(a) 0 

Figure 6: 

We shall look at some examples to introduce a methodology 
for drawing the graphs and to compare the graphs with 
FOPL. As we have seen material implication is drawn with 
what Pehce called a scroll. Thus “if something is a P then 
it is a Q” is shown in figure 5(b). In this type of structure 
the antecedent is always oddly enclosed and the consequent 
evenly enclosed. 
With only negation and conjunction we need these to 
represent disjunction. While this may appear awkward, we 
emphasize that the visual representation is important and 
one can quickly learn to recognize and draw this picture 
as a disjunction. 

Constants are not treated differently from other symbols, 
which we have so far thought of as predicates. We treat a 
constant the same as a unary predicate. If necessary, we 
can distinguish constants by enclosing them in quotes. 
However for the usage with NIAM, as we shall see, this 
is not necessary as there is no ambiguity. 

4. ENIAM 

NIAM constraints are set oriented. In tetms of sets, the 
existential graphs are “member oriented” in that we express 
in an exclusion constraint, say, that there is no element that 
is in both sets involved in the constraint This potentially 
gives greater scope for expressing constraints. For example, 
given the NIAM schema of figure 6(a), we may wish to 
express tbat one does not need a visa to visit ones own 
country. We cannot express this with NIAM’s set constraints 
as a country will generally appear in both roles, i.e. in both 
sets, and we thus can’t use the exclusion constraint However 
existential graphs do allow us to express “there cannot be 
a country which acts as a lives-in and a requires-visa-for 
in the same row”. This is shown in figure 6(b). The 
combination of the NIAM constraints and the existential 
graph constraints is thus potentially powerful and simple. 

To be useful as a constraints language the logic first needs 
to be extended by introducing “inequality” predicates (<. 
I, 2, >, #) for numeric values. We can then use these 
predicates as in figure 7, which indicates that for an active 
fright (one which we can makx a booking on) the capacity 

Figure 7: 

must be less than the bookzd seats. Bookings(flight,seats) 
and capacity(flight,seats) represent the bookings and capacity 
for an active flight. Either of the forms of figure 7 are 
acceptable. We interpret figure 7(a) as 

+@x)@y)(3z)(Activeflight(x) A Seats(y) A Seats(z) A 
Bookings(x,y) A Capacity&z) A y 5 z)). 

One of the advantages of a graphical language is allowing 
a user to see immediately the structures (e.g. relationships 
between object types). Over-complication of a diagram 
defeats this advantage; thus it is important to keep the 
number of graphical symbols to a minimum. By using 
existential graphs it permits the full power of FOPL to be 
used to express constraints with few symbols. We could 
use set constraints of JYIAM when app~@@, i.e. to express 
what we shall call our “specialty” constraints (uniqueness, 
mandatory role etc.), and existential graph constraints when 
membership constraints are required or NIAM does not 
have the appropriate symbol. 

* . 
I I I 

Visit 

Figure 8: 

- llO- 



PERSON 

‘-Q-O 
COUNTRY 

Figure 9: 

4.1. The Extended Language 

We shall use figure 8 as our example in demonstrating how 
we can expand NIAM’s constraints. As most of the examples 
don’t apply to all of figure 8 we shall only present the 
relevant sections in the examples. In figure 8 people are 
scheduled to visit countries. Each country has certain 
vaccination (immunisation) requirements and each person 
is recorded as having certain vaccinations. It is required to 
ensure that people have the necessary vaccinations to visit 
the countries they have been scheduled to visit. 

If we wish to express the constraint that there must be 
someone who has a vaccination we use the fact type 
Acquired as an existential graph predicate as in figure 9. 

As a further example suppose we have the subset constraint 
anyone visiting a country must have a have a vaccination 
we express this as the embedded existential graph in 
figure 10. However, if we use the fact types as predicates 
directly the diagmm rapidly becomes unmanageable. For 
practical reasons we are excluded from using further 
instances of the predicates. 
We thus also propose taking a “copy” or “image” of the 
relevant fact types and use those as the predicates in an 
existential graphs diagram. Thus the above constraint can 
be rewritten as in figure 11. The image A is an “image” 
of the fact population Acquired (what we have previously 
called a predicate instance). The dotted line indicates the 
image. The image is drawn in the same orientation as the 
fact type, thus the image role r is the PERSON hook. If it 
is required to draw the image in a different orientation to 

&tpJr 
Figure 10: 

l 
vls1t l 

COUNTRY 

Figure 11: 

COUNTRY 
(country-name) 

Visa-needs 
Figure 12: 

the fact type we can always attach the image by a dotted 
line from a (non-central) role to the corresponding role in 
the fact type, although it would normally be obvious from 
the types over which the roles are defined. By a “non-central” 
role we mean a role other than the middle role of an nary 
for odd n. For example we express the constraint no one 
needs a visa to visit their own country as in figure 12, 
although in this case it is not really relevant which way 
the attachment is made. 

. 

In the embedded existential graphs we shall explicitly 
represent constants. For example all visitorsfrom Australia 
have a Polio vaccination would be represented as in 
figure 13. 

PERSON Acquired 
n c-----c Y 

Figure 13: 

- lll- 



PERSON Acquired - . . 

PERSON Acquired - 

Figure 14: 

The constraint at least one UK. visitor has a smallpox 
vaccination is shown in figure 14(a), no visitor from 
Australia has an Aia’s vaccination is shown in figure 14(b). 
Often we need constraints involving more than 2 fact types, 
in particular those involving a join. For example we may 
require thatpeople visiting a country must have the necessary 
vaccinations, viz. 

(Visit * Required)[person,immunity] E; Acquired. 
Wecanex~ssthisinENIAMinamorenaausllmanner: 
if a person is visiting a country which requires vaccinations 
then the person must have those vaccinations. Using the 
scrollweexpressthisinl3JIAMasinfigure15. 
We can also use the existential graphs to represent derivation 
rules. Where rules are of the form “consequent if antecedent”, 

Visit COUNTRY Required 
. . n- 

PXN 
Acquired 

GRANDPARENT 

Figure 16: 

e.g. x is the granbparent-of 2 if x is the parent-of y and y 
is the parent-of 2 then we can use the scroll. This particular 
example is shown in figure 16. 
It would be desirable to be able to represent an element of 
an entity type, i.e. to have the equivalent of unary type 
predicates. In this case we express the image of an entity 
type as a large blob. The constraint of figure 17 indicates 
that there exists at least one person in the information base 
(which does lead to problems in not permitting us to have 
an empty infotmation base). 
Given this construct we have a representation for the 
mandatory role. We represent every person has a surname 
as in figure 18. 
We can use this construct to represent the subtype definition. 
The example of figure 19 is taken from Halpin (1988). We 
shall represent, say, the TVviewer definition as: 
if Person viewing TV for PerklRatio > 0 then TVviewer 
Using this mechanism the subtype definition of 
figure 19 can be expressed as m figure 20. 

PERSON IIa,+surname SURNAME 
- 
I I I 

Figure 17: 

PERSON Has-sumame SURNAME 

c 
Figure 18: Figure 15: 

- 112- 



PeriodRatio PeriodRatio 

TVviewer 

4 channel ~~~~- 

source 
TVviewer = Person viewing TV for PeriodRatio > 0 
NPreader = Person reading newspapers for PeriodRatio > 0 
TV&NPadult = TVviewer n NPreader having Age > 18 

Figure 19: 

4.2. The ENIAM Methodology 

For most constraints we tend to use the “if then” construct 
(viz. the scroll). In our examples so far the only ones not 
using the scroll were existence or non-existence constraints. 
These constraints are fairly straight forward. The only 
problem anyone may have is in phrasing them as a negation. 
The existence constraints, e.g. someone is booked on a 
flight, are the simplest. However, if we start with an empty 
database then no facts are initially present and thus such 
constraints are initially violated. Nevertheless we shall 
consider such constraints in the following. 

We claim that there are four basic structures which we can 
use to represent most constraints. These are: 

(i) existence, e.g. someone is to visit France, 
figure 21(a). 

(ii) nonexistence 

(a) of one element, e.g. there is 
someone who is not to visit 
France, figure 21(b). 

(b) all elements, e.g. no one is 
to visiting France, e.g. 
figure 21(c). 

(iii) scroll, e.g. everyone is to visit France, 
figure 21(d). 

taner 

Figure 20: 

Whenever we have constraints like someone . ., or Jill . . 
, i.e. those involving the existence of a fact we use a type 
(i) structure. For constraints that involve the existence of 
an unspecified individual for whom we wish to express a 
negative we use (iia). Other negatives without a conditional 

PERSON visit COUNTRY 

PERSON Visit COUNTRY 
. 

i-t 

@I 
ZN -CzY . Visit . 

Figure 2 1: 

- 113 - 



Figure 22: 

such as no <statement>, e.g. no person is to visit France 
and those involving specific individuals, e.g. Bill is not to 
visit France, use a type (iib) structure. 
Those involving (a) conditionals, such as if <condition> 
then <statement>, e.g. if someone visits a country that 
person needs a passport, (b) negative conditionals, e.g. no 
one other than people visiting a country needs a passport, 
and no one may visit a country without a passport, and (c) 
those involving all elements of a set, such as any, every, 
when, whenever, e.g. everyone visiting a country needs a 
passport use a type (iii) structure. 
For multiple conditions and statements etc. we join the 
predicates as we have previously suggested. For example 
everyone who visits Laos needs a cholera vaccination and 
a visa for Vietnam would be expressed as in figure 22(a). 
While n0 one may visit Iraq and have a visa to Israel 
would be expressed as in figure 22(b). 

5. conclusions 

We have shown that we can significantly extend the power 
of NIAM using a relatively simple graphical language which 
has the power of FOPL. We have demonstrated in a classroom 
environment that existential graphs can be easily learned 
and ENIAM used to express constraints, subtype definitions 
and deduction rules. We believe there is no necessity for 
analysts to have a background in logic to use ENIAM. 

As we showed in section 4.2 most constraints involve the 
scroll and will not involve structures more complicated than 
those shown. The various forms can be learned by example 
and combined as necessary. ENIAM has the advantage that, 
if required, the full power of FOPL can be used. 
We have shown elsewhere (Creasy 1988) that the graphs 
can be simply mapped to Prolog. We have also shown (lot. 
tit) that the technique suggested by Nicolas (1982) can be 

applied to the graphs to permit efficient computation of 
most constraints. We have implemented the algorithms and 
demonstrated the feasibility of the technique. 

6. References 

Creasy, P.N. (1988) “Extending Graphical Conceptual 
Schema Languages”, Internal Report, University of 
Queensland. 

Gardner, M. (1983) Logic machines and Diagrams, (first 
published 1958). The Harvester Press, Brighton. 
Halpin, T.H. (1988) Introduction to Information Systems, 
CS112 Lecture Notes, University of Queensland. 
Harel, D. (1988) “On Visual Formalisms”, Comm ACM 31, 
5 (May), pp 514-530. 

Nicolas, J-M. (1982) “Logic for Improving Integrity 
Checking in Relational Data Bases,” Acta I@ormatica 18, 
pp 227-253. 

Nijssen, G.M. (1977) “On the Gross Architecture of the 
Next Generation Data Base Management Systems,” 
Proceedings 1977 IFIP Congress, Toronto. North Holland, 
Amsterdam. 

Nijssen, G.M. (1986) “On Experience with Large-Scale 
Teaching and Use of Fact-based Conceptual Schemas in 
Industry and University,” in Proceedings IFZP Conference 
on Data Semantics (DS-I), R. Meersman and T.B. Steel Jr 
(Ed@. Elsevier North-Holland, Amsterdam. 

Peirce, C.S. (1960) Collected Papers of Charles Sanders 
Peirce, ~014. A.W. Burks (Ed.), Harvard University Press, 
Cambridge, Mass. 

Qume, W. V. (1955) Mathematical Logic, (revised edition) 
Harvard University Press, Cambridge, Mass. 
Reiter, R. (1988) “On Integrity Constraints,” Proceedings 
2nd Co@erence of Theoretical Aspects of Reasoning about 
Knowledge, Pacific Grove, California, March 7-9. pp 97- 111. 
Roberts, D.D. (1973) The Existential Graphs of Charles S. 
Peirce, Mouton, The Hague. 

Sowa, J.F. (1984) Conceptual Structures: Information 
Processing in Mind and Machine, Addison-Weseley, 
Reading, Massachusetts. 
Verheijn, G. and van Bekkum, J. (1982) “NIAM: An 
Information Analysis Method” in Information System 
Methodologies - A jbaework for understanding, Olle et al 
(Eds), CRIS3 Task Group of IFIP WG8.1, IFIP. 

- 114- 


