
FaceKit is an interface design toolkit for object-
oriented databases. By combining techniques from the

FaceKit: A Database Interface Design Toolkit
Roger King

Michael Novak

Department of Computer Science
University of Colorado

Boulder, Colorado 80309

Abstract

realm of User Interface Management Systems (UIMS)
with a built-in knowledge about the specific kinds of tech-
niques used by object-oriented databases, we have
designed a system that allows a user to customize a data-
base interface with minimal programming. Knowledge
about object-oriented database constructs such as classes,
groupings, etc., allows FaceKit to semi-automatically
create graphical constructs appropriate to the object-
oriented database environment. FaceKit is built on top of
Cactis, an object-oriented database management system
(DBMS), and is capable of creating interfaces that deal
with Cactis both at the schema and data level.

Keywords: graphical interfaces, user interface manage-
ment systems, object-oriented databases.

1. Introduction
FaceKit is a window based, interactive graphical

system for designing (we do not support a formal design
phase; some people might caIl FaceKit a tool for building
an interface) graphics-based interfaces for object-oriented
databases. Although more of a UIMS than a simple data-
base interface, FaceKit is intended for designing a particu-
lar set of interlaces - those dealing with objectoriented
databases. FaceKit knows about schemas, type-subtype
hierarchies, methods, and database tools such as data
definition languages (DDL). Therefore, knowledge about
the types of interfaces being designed and the objects they
manipulate is built into FaceKit. This knowledge allows
&fault representations of database objects and representa-
tions defined or modified by the user. Both default and
user-defined representations inherit properties in the same
way as the database objects they represent. This allows
the user to easily change any class or subclass of object
representations and also leave the defaults in effect where
desired. By taking advantage of the structure provided by

Permission to copy without fee all or part of this material is
granted provided that the copies are not made OT distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, OT to Tepublish, requires a fee
and/or special permission from the Endowment.

Proceedings of the Fifteenth International
Conference on Very Large Data Bases

Figure 1

the database, FaceKit makes designing a specific interface
easier and faster, and forces the interface to stay con-
sistent with the database.

Database interfaces have undergone many changes
in the last few years. Until a few years ago, most of the
database interfaces we saw where non-graphical. Aside
from programming language interfaces, they include rela-
tional algebras such as ISBL lUll], relational calculi like
QUEL [HSW75]. and query languages such as SEQUEL
[BoC74], which falls somewhere in between the two.
These interfaces vary in many ways, but their general goal
is to provide a general, fairly complete, interface to a data-
base. Then came interfaces such as QBE lZlo75], which
provides a form style interface for specifying queries. In
the last few years there has also been much interest in
graphical database interfaces. Among these are interfaces
such as ISIS [GGK85], Ski [KiM84], and SNAP [BrH86].
which allow schema manipulation in an interactive graphi-
cal environment. They also include office forms systems
such as FORMANAGER [yHS84]. Freeform [KiN87],
and SPECDOQ lKGM84]. These systems provide a non-
expert interface for the storage and retrieval of office data.

Obviously, a single interface cannot be everything
to everyone. Since many different database interfaces
may prove useful, we feel that being able to quickly
design a new or altered interface could prove very useful.
UIMS’s are designed for this very purpose. The question
is, why not use an existing UIMS to rapidly generate inter-
faces for an object-oriented database? To answer this
question, a little background on UIMS’s is necessary.

We will use the Secheim model of user interfaces
[Gre84,Gre85] (figure 1) to examine and compare some
of the existing UIMS systems. The Seeheim model is a
logical model applicable to a wide variety of UIMS’s. In
this model the user interface is broken into three logical
components: the presentation component, the application

This work was suppurred in par~ by ONR under contact numbers
N00014-86-K-0054 and NOO14-88-K-0559.

Amsterdam, 1989

- 115 -

interface model, and the dialogue control. The presenta-
tion component is responsible for producing device output
and gathering user input. ‘Ihe application interface model
is responsible for representing application data and mak-
ing it available to the interface, as well as providing the
application with access to the interface. The dialogue
component forms the bridge between the presentation
component and the application interface model. It makes
sure that tbe application carries out user rcqucsts and that
the presentation component produces the output requested
by the appliiation.

Tbe main emphasis in much of the UIMS research
has been on the dialogue control component [Gre86].
Although there have been systems with dialogue models
based on transition networks, gmrnmers, and events, these
system share a common perspective. UIMS’s such as
ADM [SRHSS], Grins [ODR85], Menulay [BLS83],
MIKE [Oh%], and Trillium [Hen861 all view an interface
as a dialogue between the user and the application. The
user makes a request and the application responds by per-
forming some task and possibly providing some output.
Similarly, the application makes input requests which the
user responds to. ‘Ihe research emphasis in these systems
has been on how to provide the user with the appropriate
tools for specifying the dialogue.

Work done on the presentation component includes
Peridot iMye87] and Squeak [Car871 Both of these sys-
tems put heavy emphasis on allowing users to create new
interaction techniques. Peridot users create these tech-
niques by using examples to show how they should
appear, while Squeak lets users apply direct manipulation
principles [HIIN, L&83] to specify them.

There are also several systems which focus on the
application interface model. Filters iEge88] and Coral
[SzM88] each provide a method of specifying relation-
ships between application and interface objects.
GWUIMS [SHB86] and H&ens [HuKSS] both allow for
sharing of data between the application and the interface.
All of these systems use an object-oriented data model.

Another object-oriented system called GROW
[sar86] looks at some dialogue and presentation issues.
GROW emphasii building modifiable and reusable
interfaces. The dialogue component uses messages for
communication between the application and the interface.
The presentation component provides a kernel of graphi-
cal objects arranged in a taxonomic hierarchy and it
allows the user to specify inter-object relationships.

There are two main reasons why we don’t wish to
use any of the currently available UIMS’s. First, even
though we have seen systems which can communicate
with application data in some manner, a general purpose
UIMS has no knowledge of database schemas. Since
FaceKit knows about database schemas, users may access
database objects, methods, etc. and incorporate them

directly into the interface. Similarly, interface objects arc
actually stored in the database and have the same structure
as database objects. Thus, only one view of objects exists.
Even those UIMS’s which sham some data between the
interface and the application still require the user to view
interface and application objects scparatcly and to provide
information about how the two are related. Having only
one view of objects means that less information needs to
be provided by the user. Furtbermorc, users do not need to
keep track of two different types of objects.

By providing access to database tools such as query
languages and methods, FaceKit also gives the user more
ways of rapidly constructing an interface. Instead of writ-
ing code to generate an interface technique, the user may
invoke a method in the database, or use a query language
to define the technique. Interface objects previously
created may also be used, because they too are stored in
the database.

The second mason that we don’t wish to use a
currently available UIMS is that creating a new database
interface often involves creating a new application. For
example, an office forms interface involves much more
than merely an interface to the database. New functionali-
ties must be built into the interface. These may include
new mathematical functions such as computing the city
and state sales tax on a sales field, and utilities such as an
inter-office memo system. Both of these new functionali-
ties involve more than simple interaction with the DBMS.
In or&r to support this type of interface, we wish to allow
the user to interactively design both an interface and its
corresponding application simultaneously [HuK88].
Unlike in a UIMS, our approach treats the interface being
designed as a database environment, rather than a dialo-
gue between a distinct user interface and an application.
Instead of defining merely an interface, we define the
visual, functional, and interactive aspects of the environ-
ment. Thus, certain otherwise hard to obtain functionali-
ties such as binding representations to objects can be
achieved. This also allows for “realistic” &fault interfaces
and faster specification of representations. In fact, such an
integration of database and UIMS technology has been
suggested before [Gre87,Ols87].

The minus side of our approach is that neither inter-
faces outside the object-oriented database realm nor non-
Cactis database applications are supported. However,
many applications may be be placed into an object-
oriented database. For example, much of the circuit board
design software currently available uses simple files to
store circuit information. Such systems could easily fit
into the object-oriented database paradigm. One could
argue that even aside from making it possible to use
FaceKit with the application, storing the data in a database
would make the application itself more manageable.

- 116-

Figure 2

2. Modeling an Interface
FaceKit is built on top of an object-oriented DBMS

named Cactis [HuK86,HuK87]. Since FaceKit has
knowledge about both Cactis schemas constructs and the
various schema manipulation tools (DDL, C language
interface, etc.) available within Cactis, we will give a brief
description of the %actis data model before proceeding to
describe the data modeling aspects of FaceKit

Cactis views an application environment as a collec-
tion of conslrucred o&crs. An object may have uuribues
and relationships. Objects and relationships are typed. A
constructed object’s type is determined by two things: its
attribute structure and its connecrors. A connector allows
a relationship to be applied to a certain object. An attri-
bute is an atomic property of a constructed object. These
atomic properties may be of any C data type, except
pointer. A relationship is a directional mapping from one
constructed object to one or more constructed objects.
Restrictions such as non-null or unique may also be put on
a relationship.

For example, a constructed object called person
may have the attributes name, social-security-number,
and age, which are all atomic and single-valued. It may
also have a connector called children and a connector
called parent. The directed relationships my-children and
my-parent can be used to connect people to their immedi-
ate family. Relationships may be used to pass attributes
from one object to another, in order to calculate derived
attributes. In this way, the social security number of a per-
son could be passed to a child over the my-children rela-
tionship, and used as the value of an attribute called
mygarent’s_social-security-number.

FaceKit uses the data mode1 and the database
management tools provided by Cactis for data and schema
manipulation. An interface needs to communicate with
these Cactis tools and it needs to manage visual represen-
tations and coordinate interface tasks. To accomplish this
a FaceKit interface consists of two conceptual com-
ponents: the representational component and the

opcrafionul component. Both the representational and
operational components communicate directly with Cactis
(figure 2). but their tasks are quite different.

The primary responsibility of the rcprescntational
component is managing the visual representations of data-
base objects. For the purpose of this discussion, database
object, or object, may refer to a constructed object, rela-
tionship, or attribute. Also, no distinction is made
between schema and data objects at this time. The
representational component builds, maintains and invokes
the methods used to produce the visual representations of
objects. Thus, if we build an interface where a data object
called person is represented by a screen image of that pcr-
son, the representational component makes sure that the
method used to draw these screen images is invoked at the
proper times, with the correct parameters.

The representational component is also responsible
for the input and output associated with an interface. Input
will generally consist of reading in some user data or com-
mand, while output will consist of either displaying new
objects on the screen or invoking a different representa-
tion of objects already present. An object may have many
different visual representations in the same interface. For
example, a database may have a baby picture and an adult
picture of the person in the example above.

The operational component is responsible for pro-
cessing user queries and sending the results to the
representational component so that the correct screen
updates will be performed. The operational component
performs a function much like that of the dialogue control
in the Seeheim model. However, it has access to the
Cactis database management tools. This means that no
application interface model is necessary. Instead, the
operational component talks directly to the application.
This has several advantages. First, it allows FaceKit to
store the operational description of an interface within
Cactis. Therefore, Cactis manages both the data and the
operational description. Not only does this make storage
of interface descriptions convenient, but it also allows
operations to be functionally depcndcnt on anything
present in the database. This allows an interface to change
its behavior as the database is modified. Second, since
these tools give the interface direct access to the applica-
tion data, semantic feedback can bc gathcrcd merely by
examining the relevant data. Similarly, constraints can be
checked and adhered to.

Perhaps the most important effect of allowing the
operational component access to these tools is utilized’
when designing interfaces. Instead of only being able to
bind a user request to some application subroutine, the
interface designer may construct a query using one of
these tools. Since new interface functionality can be
added quite rapidly in most cases, most of the functional-
ity of Cacti.9 can easily be plugged into an interface.

- 117 -

Figure 3

3. Designing an Interface
A very common UIMS approach to designing inter-

f&es is to specify screen layout, then bind each possible
user action to a specific application subroutine. Often,
interface routines for the application program to call are
also provided. FaceKit takes a different approach to
designing interfaces. Our approach allows the user to
d&e what we view as two somewhat different aspects of
the interface: appearance, and functionality. When
&fining appearance we are really delining two kinds of
visuals, interface constructs and database objects. By
interface constructs we mean items such as menus,
scrollbars, etc., as well as concerns like screen brightness,
icon sixes, etc. Defining the appearance of database
objects involves specifying representations for a class of
objects. A representation may be identical for each data
object in a class or it may be data dependent. In fact, it
may be dependent on external data For example, we may
use the system cloclr to determine the brightness of a pic-
ture that represents the data object sun.

By defining the appearance of database objects
separately, we need not worry about them when defining
functionality. The type of the query result determines the
screen appearance. Any type that has no user-defined
representation will use a built-in default representation.
For example, if a query results in an object of class per-
son, the interface automatically uses the representation of
person that has been defined. If one wishes to leave the
screen alone and produce the query result elsewhere, this
may also be specitied.

Both appearance and functionality are defined
interactively with FaceKit. In or&r to better explain how
they am defined, we will show how one would go about
defining an existing interface, an office forms system
called Freeform llCiN87]. We will also show some

sample applications of this interface. We will also show
how an interface used to retrieve information about com-
puter networks can be built using FaceKit.

3.1. Defining Representations with FaceKit
In figure 3, an object representation is being

defined. The buttons on the left specify what kind of
object is being defined and the line on top is a status line.
In this case, the object type to be defined is all (the
representation being defined is applicable to all types in
the database). The current level and view are both
schema. Two views are possible: schema and
class/subclass hierarchy. The schema view is the stan-
dard graphical view of a database schema, while the
hierarchy shows a forest of classes and subclasses. Two
levels are also available: schema and data. The schema
level lets us work with object types, while the data level
lets us work with object instances. The commands for
changing the view, level, and object type are available
through a popup menu. The popup menu also has com-
mands for placing restrictions on the representation being
defined, moving around the schema, etc.

In the schema shown, the text enclosed in rectangles
represents constructed objects and the unenclosed text
represents the attributes of the constructed objects. The
narrow arrows represent one-to-one relationships and the
wide arrows represent one-to-many relationships.

Instead of representing a schema as a connected
graph, we will represent relationships with inclusion.
Thus, the object pointed to by an arrow will be included
inside the object the arrow originates from. Also, atui-
butes will be included within the constructed object they
belong to. Once we choose relationship and inclusion
(figure 3). the schema changes to look like ligure 4. The
label on top of each box is the name of the relationship

- 118 -

Object type: 411 IVIew: Schema

ilnwc,

Plmm,yp --JYlm dam invoiaJmmba aDmmam

Figure 4

between the object represented by the box and the object it
is includ+ in. The double box around purchase denotes
that it is a onetemany relationship.

Although the representation looks fairly formlike
now, some further refinement is still needed. Attributes
need to have a line for filling in data behind them,
representations need to be made different for various types
of attributes, and multi-valued relationships such as pur-
chase need to be reprekented with some appropriate suuc-
ture like a table. Since the details of these changes are
very similar to the examples above, we will not show
them. Instead, we will give some examples of defining
functionality.

3.2. Defining Operations with FaceKit
An operation definition window is shown in figure

5. The schema shown is a refined version of the schema
in figure 4. Although there is no reason we cannot have
both the representation definition and operation definition
windows up simultaneously, we will qnly use one at a
time in order to make our diagrams less crowded and
confusing. A user building an actual interface would prob-
ably use them simultaneously.

By selecting an action (or sequence of actions) from
the Action buttons and a result (or sequence of results)
from the Result buttons, the user can bind the desired
functionality to a set of actions. For example, suppose the
sequence pick, new action, and menu is selected. This
specifies the following sequence. The user picks an object.

Figure 5

- 119-

Edlttsa - lo ncrell deprerr lctt bmttec

Opcrstim Oefhltlm uindad)
, right mOUI. button COnflmS)

Figure 7

The result of this is a new action. This new action will be
Ihe appearance of a menu. Therefore, we are causing the
a pick, in Freeform, to create a menu. Since a menu is to
hc created, a Menu Specification window is created. so
that we may specify which menu to use. Figure 6 shows
such a window, with a new menu being dcfincd. We could
have also chosen an already defined menu, bul instead, we

will demonstrate how one goes about defining a menu.
This is done by defining each menu item and its
corresponding functionality. The menu item being de&d
in figure 6 is Describe Current Object. ?he result of
choosing this menu item will be a query, which will be
defined in the Operation Result Specification window.

We will &fine tbii query using the DDL. The DDL
being used is a simplified version of the Cactis DDL
[SwS88], with some pseudo-code added. Open-win.
print, and all variables in lower case are FaceKit con-
structs. All upper case words are DDL keywords.

First, the query opens an output window, then
checks to make sure that the current object is of the class
constructed. If it is not, an enxx message is displayed in
the output window and tbe query is complete. Otherwise,
all attributes, relationships, and met@is directly con-
nected to the current object’s type are found. This infor-
mation is formatted and displayed in the output window.
The result of selecting the Describe Current Object
menu item from within Freeform is shown in figure 7.
The current object is the one surrou&d by a dashed
border. Both objects that appear on the form and those that
do not, are found by the query. For example, the attribute
birthdate is presented because it is in the database,
although it is not part of the form being displayed

Queries may also be produced by calling Cactis C
routines. Currently, these are the only two query methods
implemented. We will not give any examples of C queries,
since they am conceptually similar to DDL queries.

3.3. A Software Engineering Example
Since most software engineers now have access to

one or more computer networks, they need an easy way to

- 120 -

Object Data I

Figure 8

get information about these networks. With network
configurations changing fairly often, storing the‘informa-
tion in a database makes good sense. Having a graphical
interface to access such information also makes good
sense. Our next example shows part of such an interface
being built with FaceKit. Since this interface does not look
particularly “formlike”, it is good for illustrating the
variety of interfaces that can be built with FaceKit

In Figure 8, we show a pictorial representation of a
small subset of the CSNET sites in the United States. This
representation was built by invoking a method (not
shown) that plots database objects of type CSNET-node.
Due to space constraints, only a small part of the map is
shown on the screen. Note that actual data, not schema
information, is being displayed.

Each CSNET-nude contains a number of comput-
ers. Figure 9 shows a class hierarchy for the schema type
computer. In this hierarchy, computer is the base type,
mainframe, workstation, and micro are subtypes, and so
on. Classes are represented by enclosed text and attributes
are represented by unenclosed text. Attributes are con-
nected with lines: subclasses are connected with arrows.
Although this schema is not complete (for readability), we
can see that computers such as a Pyramid and a Sun 4 are
different and contain different attributes. The database
also contains methods which deal with this information.
These methods are also accessible to FaceKit.

For example, a method which draws the representa-
tion of a computer may exist in the database (or one may
be created specifically for this interface). FaceKit can
access this information in order to create a graphical

View: Schema

Figure 9

- 121 -

Sun 4 (server)
Black/White
Hard Disk - 250 Meg. I..,. l-rl

Optical House

Figure 10

representation of a CSNET site (figure 10). Each com-
puter at the selected site is shown along with its type and
name. How they ate connected to each other is also
shown. In this example, the gateway to the CSNET is a
VAX U/780 named boulder. FaceKit does not even need
to know the specifics about each computer at that site. For
each computer at that site, the database knows its type and
the proper method for that type is invoked. To build this
part of the interface, we only had to specify the screen
relationships between the computers at a site.

Figure 10 also contains a popup window that
displays attribute information about a selected computer.
Since different computers have different attributes, the
information given for a Sun will differ from the informa-
tion given about a Pyramid. Once again, the database
already knows these differences and therefore, much of
our work is done for us, especially if there is already a
built-in method for displaying attribute information.

4. Implementaticm
FaceKit is implemented on Sun workstations. It is

written in C and runs in a UNIK environment. All the
window management is done using Sunviews window
package. This package also produces the graphics and
handles user input. Since Sunviews manages the windows,
they may be moved, hidden, resized, collapsed, etc. just as
any other Sun window.

Methods for creating relxesentations are stored in
Cads along with the database objects they represent. No
distinction is made between them and regular Cactis
objects. Operation descriptions are also in Cactis, but
FaceKit creates separate database objects (diitinct from
regular Cactis objects) for storing them.

3. Future Directions
There are several areas of related research we

would like to explore in the future. First, we want to look
into giving FaceKit the ability to bootstrap interfaces. An
interface designer could then design an interface using
interfaces previously designed with FaceKit. For exam-
ple, Freeform could be used to define representations and
operations when building a new interface. Along the
same line, we would like see if interfaces not built with
FaceKit could be used as tools for building interfaces with
FaceKit. This means that some methods for translating
random interface queries into a form usable by FaceKit
need to be developed. Whether this is feasible to any
significant extent, remains to be seen.

There is also the issue of portability. Currently,
FaceKit is built on top of Cactis. Is it possible to create a
tool like FaceKit that can be easily connected to a wide set
of object-oriented databases? Also, can the techniques
used by FaceKit be successfully used by other UIMS’s?
The techniques that depend on extensive knowledge of the
application may not translate well to a general purpose
UIMS. However, they may prove useful in other special
application UIMS’s. Identifying these applications and
seeing which techniques work well with them could prove
to be an interesting research problem.

References
b4.361 P. S. Barth, “An Object-Oriented Approach

to Graphical Interfaces”, ACM Trunsucrions
on Gruphics5,2 (April 1986). 142-172.

[BoC74] R. Boyce and D. Chamberlin, “SEQUEL: ,A
Structured English rheQuery Language ,
Proceedings of ACM-SIGFIDET

- 122 -

[BrH86]

@3LS83]

[Car871

i3gef-W

[GGKSS]

FEW

[Gre85]

KM61

[Gre87]

[Hswm

[Hen861

[Hlm461

IHuK871

lP~881

[HHNI

Workshop on Data Descri don. Access and
Control, May 1974,219 -2 c! 1.
D. Bryce and R. Hull, “SNAP: A Graphics-
based Schema Manager”, IEEE Conference
On Data Engineering, 1986,151-164.
W. Buxton, M. R. Lamb, D. Sherman and K.
C. Smith, “Towards a Comprehensive User
Interface Mana ement
Graphics Z7,3 (f uly

System”, Computer
1983). 35-42.

L. Cardelli, “Building User Interfaces by
Direct Manipulation”, Digiral Sysrems
Research Center Tech. Report, October 1987.
R. K. Ege, “Defining Constraint-Based User
Interfaces”, Data Engineering 11, 2 (June
1988), 54-63.
K. J. Goldman, S. A. Goldman, P. C.
Kane&&is and S. B. Zdonik. “ISIS: Interface
for a Semantic Information System”,
SIGMOD Conference Proceedings , May
1985.328-342.
M. Gtyn, “Report on D$logue Specification
TO’o! I; Computer Graphics Forum 3 (1984).

- .
M. Green, “The University of Alberta User
Interface Management System”, Computer
Graphics 19.3 (July 1985). 205-213.
M. Green, “A Survey of Three Dialogue
Models”, ACM Transactions on Graphics 5,
3 (July 1986). 244-275.
M. Green, “Directions for User Interface
Management Systems Research”, Computer
Graphics 22,2 (April 1987), 113-l 16.
fk3ss M. Stonebeer and E. Wong,

: A Relational Data Base
Mana ement

H
System”, Proceedings of the

AFIP National Computer Conference 44
(May 1975), 409-416.
D. A. Henderson, “The Trillium User
Interface Design Environment”, CHI 86
Proceedings, April 1986,221-227.
S. Hudson and R. Kin ,
Database f

“CACTIS: A
System or Specifying

Functionally-Defined Databases”,
Proceedings of the International Worksho
on3Tbjecr-Oriented Databases, Sept. 198 , %

.
tatEn and R. King, “Object-Oriented

support for Software
Environments”, SIGMOD Conference
Proceedings, May 1987.
S. Hudson and R. Kin “Semantic Feedback
in the Higgens UIM J “. IEEE Transacrions
on Sojlware Engineering 14.8 (August 1988).
E. L. Hutchins, J. D. Hollan and D. A.
Norman, “Direct Manipulation Interfaces”,
in User Centered System Design ,87-124 .

[KiM84]

[KiN87]

[KGM84]

[LeL83]

[We871

[ODR85]

[Ols86]

[Ols87]

[SRH85]

[SwS88]

[SzM88]

[VIII

[YHS84]

[Zlo751

R. King and S. Melville, “Ski: A Semantic-
Knowledgeable Interface”, VLDB
C”;$?rence Proceedings, Singapore, August

.
R. King and M. Novak, “Freeform: A Uscr-
Adaptable Form Management System”,
VL.DB Conference Proceedings, Brighton,
England, 1987.
H. Kitagawa, M. Gotoh, S. Misaka and M.
Azuma, “Forms Document Managcmcnt
System SPECDOQ - Its Architccturc and
Implementation”, SIGOA Conference
Proceedings, June 1984,132-142.
A. Lee and F. H. Lochovsky, “Enhancing
The Usability of an Oflice Information
System Through Direct Manipulation”, CIII
Conference Proceedings, 1983, 130-134.
B. A. Myers, “Creating Dynamic Interaction
Techniques by Demonstration”, CIII + GI ,
1987.271-278.
D. R. Olsen, E. P. Dempsey and R. Roggc,
“Input/Output Linkage in a User Interface
System”, Computer Graphics 19, 3 (July
1985). 191-197.
D. R. Olsen, “MIKE: The Menu Interaction
Kontrol Environment”, ACM Transactions
on Graphics 5,4 (October 1986), 318-344.
D. R. Olsen, “Larger Issues in User Interface
Management”, Computer Graphics (ACM
SIGGRAPII Workshop on Software Tools for
User Interface Management 21, 2 (April
1987). 134-137.
A. J. Schulert, G. T. Rogers and J. A.
Hamilton, “ADM - A Dialog Manager”, CIII
85, April 1985,177-183.
J. L. Sibert, W. D. Hurley and T. W. Bleser,
“An Object-Oriented User Interface
Management System”, Compuler Graphics
20.4 (August 1986). 259-268.
M. Swain and C. Stepleton, “Design of a
Data Definition Language for Cactis”,
University of Colorado, Compuler Science
Dept. Tech. Report, December 1988.
P. A. Szekely and B. A. Myers, “A User
Interface Toolkit Based on Graphical Objects
and Constraints”, 0OPSL.A Proceedings,
1988,3645.
J. Ullman, “Principles of Database
Systems”, Second Edition, Computer Science
Press.
S. B. Yao, A. R. Hevner, Z. Shi and S. Luo,
“FORMANAGER: An Oflice Forms
Management System”, ACM Transactions on
O&e Information Systems 2, 3 (July 1984),
235-262.
M. M. Zloof, “Query By Example”,
Proceedings of the Narional Cornpurer
Conference 44 (1975), 431-438.

- 123 -

- 124 -

