
A Low Communication Sort Algorithm
for a Parallel Database Machine

Raymond A. Lorie and Honesty C. Young

IBM Almaden Research Center
San Jose, CA 95120-6099, USA

Abstract
The paper considers the prcblem of sorting a file in a
distributed system. The file is originally distributed on
many sites, and the result of the sort is needed at an-
other site called the “host”. The particular environment
that we resume is a backend parallel database machine,
but the work is applicable to distributed database sys-
tems as well.

After discussing the drawbacks of several existing algo-
rithms, we propose a novel algorithm that exhibits com-
plete parallelism during the sort, merge, and return-to-
host phases. In addition, this algorithm decreases the
amou@ of inter-processor communication compared to
existing parallel sort algorithms. We describe an imple-
mentation of the algorithm, present performance mea-
surements, and use a validated model to demonstrate
its scalability. We also discuss the effect of an uneven
distribution of data among the various processors.

1 Introduction
A database machine based on multiple nodes that share
nothing is one way to provide the functionality of a con-
ventional relational database system, with performance
that goes far beyond what can be achieved with a sin-
gle node. In particular, we consider a multiple node
backend database machine that is connected to one or
more host nodes. The interface to the database ma-
chine is SQL-like. This means that a complex query can
be executed completely in the backend, and that only
the request and the results are exchanged on the host-

Permission to copy without fee all or part ,oj‘this material is
granted provided that the copies aTe not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the Fifteenth International
Conference on Very Large Data Bases

backend connection. For the sorting problem, however,
we assume the host gathers sorted records in such a
way that does not require sort key comparison. In other
words, we do not carry out any comparison-based global
sort or global merge at the host site. We also assume
that the host extracts tuples from the communication
messages and returns them to the application program.

The backend itself is a collection of n loosely-coupled
nodes communicating by message passing on a network.
Each node has its own processor(s), memory, channels,
disks, and operating system. We assume that the hard-
ware is symmetric in the sense that every node is equiv-
alent to every other node. Besides the network which
supports the n-to-n communication between the nodes,
each node has a communication channel that it can use
to receive a request from the host or send data back to
the host. We refer to these communication channels as
the n-to-l network (see Fig. 1). We also assume that n-
to-n communication shares the same media where each
of the n-to-l communication has its own media. One or
more instances of the DBMS software may run on a .sin-
gle node, and each instance is called a site; The scheme
of running multiple sites on a single node is called “vir-
tualisation” in [9].

We call data sites the sites where the records are origi-
nally stored and merge sites the sites where the merge
operation is performed. In addition, there is a host site
and a coordinator site. To simplify the discussion, we
assume a site consists of a data site and a merge site, un-
less specified otherwise. Pi denotes the i-th site and Pa
and P,i denote the i-th data, and merge site, respec-
tively. Depending on the algorithm, the sort operation
may be performed on either the data sites or the merge
sites.

Given a table T, with columns Cl, C2, . . . Ck, the
sorting problem consists of returning to the host, the
desired fields of the records that satisfy a predicate,
ordered on the value of an expression computed on one
or several columns. In order to simplify the analysis, we

Amsterdam, 1989

- 125 -

1 host 1

I
Figure 1: A Generic Backend Database Machine.

assume that the predicate is always true, that all fields
are returned, and that the order is defined on a single
column, as in the following SQL statement.

SlSLECT * FBOH T ORDER BY Cl

Barring data skew, the performance of a sort depends
on the amount of CPU used at each site, the amount of
disk I/O done at each site, the amount of n-to-l com-
munication, and the amount of n-ton communication,
and of course, the degree of parallelism. The cost com-
plexity of n-to-n communication is typically superlinear:
na for a full crossbar switch or n log n for a multistage
interconnection network. The cost complexity of n-to-l
communication in contrast is proportional to nl. So,
a good sort algorithm for a distributed configuration
is one that minimizes the amount of n-to-n communi-
cation, and exploits high degree of parallelism without
substantially increasing the CPU and disk activity.

Section 2 discusses some related work. Section 3 pro-
poses a novel, fully parallel algorithm (FPA) that de-
creases the amount of communication substantially.
Section 4 describes briefly the ARBRE prototype built
at the IBM Almaden Research Center, and provides
some overall performance for a benchmark sort. Sec-
tion 5 outlines a model to evaluate the new sort algo-
rithm for a variety of parameter ranges. In section 6,
we discuss the effect of an uneven distribution of data
on the overall performance of the algorithm. In the con-
clusion, we summarize the benefits and applicability of
the proposed sort algorithm.

2 Related Work
Researchers have studied the parallel sorting problem
extensively (see the surveys in [2,8]). Most of the as-
sumptions and results, however, are of theoretical inter-
est (e.g., the number of processors required is a function
of the number of records to be sorted). Moreover, prac-
tical issues such as the times to read the source records
from their data site(s) and to deliver the sorted records
to a single host site are often ignored.

The sorting algorithms that are related to our cur-

ln is the number of nodes in the system

1
1

n-to-l

n-to-n

rent discussion are sometimes called “limited paral-
lelism sorting algorithms” [2]. Four variations of such
algorithms are worth mentioning.

Algorithm A: data sites send all records to a sort site
S. S does the sort, then returns the sorted file to the
host site. Although the scans are done in parallel, the
sort itself is done serially.

Algorithm B: sort the data locally at each data site
and merge the sorted file at a single merge site. This
is similar to Tandem’s FASTSORT [5] except that, in
FASTSORT, the input data constitute a single file and
a preliminary phase distributes the data before the local
sorts take place.

Algorithm C: sort the data locally in each data site,
organize the merge sites into a binary tree, and merge
the sorted files in a pipelined fashion. This is a varia-
tion of the parallel binary merge algorithm in [3], which
is itself an improved version of an algorithm described
in [4] in that it pipelines the merge phase. The sort
used in DBC/1012 [ll] is similar to algorithm C in that
each AMP does a local sort and sends the sorted stream
through the Y-net, which carries out the merge opera-
tion in hardware.

Algorithm D: data sites use key-range partitioning to
redistribute the data to sort sites; sort sites sort the re-
distributed data locally, and the host site concatenates
the sorted file. This is a parallel version of the dis-
tributive partitioned sorting proposed in [7j. This algo-
rithm computes, by some method, a partitioning of the
key range R into subranges Rl, R2, Rn such that
a roughly equal number of records falls in each snb-
range. Any well-known distributed random sampling
algorithms may be used here. Each subrange Ri is as-
signed to one sort site in a one-to-one fashion; for exam-
ple, Ri is assigned to P,i. Then, each data site sends
each of its records to the appropriate sort site that han-
dles the range containing the record’s sort key. When
all records have been sent, all records with keys in the
first range are all in P,r. All records with keys in the
second range are in P,,,z, etc. Each site can then sort
the records that it received. When done, P,r returns
its sorted records to the host. When it finishes, P,z
does the same, etc., until P,,.

Each of the above algorithms has at least one phase
where parallelism is not exploited. Algorithm A has
a serial sort phase. Algorithm B has a serial (non-
pipelined) merge phase. Algorithm C also has a serial
(pipelined) merge phase. Algorithm D has the most
parallelism, but it sends entire records on the n-to-
n communication network, imposing a load of (num-
her-et-records * record-length).

In algorithms B, C, and D, the return of the results

- 126 -

to the host is serialized. There is a single site that
sends the sorted records to the host in algorithms B
and C. In algorithm D, the sorted records are sent first
from Pi, then from Pz, etc. In our experiments, this is
responsible for most of the response time.

In the next section, we propose a novel algorithm, simi-
lar to algorithm D, that eliminates the drawbacks men-
tioned above. The technique used to decrease the n-to-n
communication is similar to the one used in a semi-join.
To our knowledge, the only other research work that
sends only the sort keys during an intermediate step of
a sorting algorithm is the “key broadcasting” algorithm
described in [lo], where a parallel sort is executed in a
common-bus local network environment.

3 A Fully Parallel Algorithm
Our sort algorithm has parallel sort, merge, and return-
to-host phases. Thus, it is called a fully parallel algo-
rithm (FPA). We will exploit the size difference between
the sort key and the entire record by sending only sort
keys from the data sites to the merge sites. The data
sites send sorted files directly to the host which ei&
ciently “merges” them without doing sort key compar-
isons. As explained below, the host’s merge algorithm
uses information computed during the merge sites’ pro-
cessing of the sort keys. The merge sites send only this
information to the host; the sort keys are discarded as
they are merged.

Before presenting the details of our sort algorithm, we
describe it at a high level. Each data site sorts locally
the portion of the fie that it owns; in doing so, it com-
putes the distribution of the keys that it encounters, and
sends the distribution to a global coordinator. Based
on such information from all data sites, the coordina-
tor assigns each merge site a range of keys for which it
is responsible. Each data site sends each of its record
keys (in sorted order) to a certain merge site. For each
record, the merge site is chosen as the site responsible
for the key of that record. Each merge site merges the
keys that it receives from all data sites, determining the
order that the data sites deliver the next record to the
host site.

3.1 Detailed Description
There are four kinds of tasks involved in the sort (see
Fig. 2): the host task (always executed on the host
machine), the coordinator (executed on any site), the
scan tasks (one on each data site), and the merge tasks
(one on each merge site). The tasks enclosed by the
dotted line box are running on each site. The sort and
the scan operations can be done by the same scan task
because their operations do not overlap in time. In
order to distinguish the work between merging the sort

p-i.q,,,,

coord

i -_ -_ -- -- -- -- -- -- -- -- -_ -_ -- - _- -_ -_ _- -- -- -- -1

sitej

Figure 2: The Dataflow among Tasks.

keys and returning the sorted records to the host, the
data sites do not send sorted records to the host site
until all the sort keys have been sent to the merge sites.
Therefore, the scan task is also responsible for returning
the sorted records to the host site.

The host task sends the sort request to the coordinator
and waits until it starts receiving a stream of site Ids
Vi from the P,,,r, etc. At that time, the host considers
successively each value in VI. A value i indicates that it
needs to read the next record from the stream of records
coming from data site Pa.

The coordinator waits for a request from the host.
When it receives the request for a sort, it sends the
request to all data sites and merge sites. It then waits
for all data sites to send their distribution tables. Based
on these distribution tables the coordinator constructs
the GDT (Global Distribution Table). The GDT is then
sent to all data sites. The coordinator needs to be in-
volved no longer.

The sort itself has four phases-local sort, synchroniza-
tion, merge, and return-to-host.

Phase 1: Local Sort
Phase 1 starts on any Pdi as soon as it receives its sort
request from the coordinator. Pa scans its local records
and sorts the records using any algorithm. The result
of the sort iz a fUe Si of sorted records. Each record
in Si contains a key and a record body. While the sort
is taking place, two objects are being built besides the
sorted output: (1) A list that contains the lowest key
stored in a single page of Si and a descriptor for that

- 127 -

page. This list is called the indez list, because it is
used to determine the page that contains the first record
of a key range. (2) A small table, called distribution
table, containing information on the key distribution; it
is derived from the index list mentioned above.

This sorting algorithm and the data structures it uses
are best illustrated by an example. Consider a system
with three sites. Each record has two fields and the first
(single byte) field is the sort key field. Let the contents
of the sorted files Sl, S2 and S3 be, respectively:

Sl
A Alice
B Barbara
G Greg
H Helen
H Henry
K Kevin
L Linda
M Mark
N Norman
S Steve

s2
C Carl
D Debbie
F Frances
F Frank
G Gloria
M Mary
N Nancy
P Peggy
R Ron
S Sue
T Teresa
W Walter

s3
A Adam
B Brian
C Christine
DDan
E Elisabeth
E Eric
J Jane
J John
K Kathy
L Larry
P Peter
R Ruth
T Tom
W Wendy

(4

A particular sampling algorithm may generate the fol-
lowing distribution tables:

B D B
H F D
K M E
MP J
s s L

W R
W

04

Phase 2: Synchrotiation
As soon as Phase 1 is completed on a P&, this P& sends
its distribution table to the coordinator and waits for
the GDT from the coordinator. Once the coordina-
tor has received the distribution tables from all sites, it
combines their contents and builds a single GDT. The
GDT contains the boundaries of n subranges, such that
the numbers of records with keys falling in each range
are roughly equal. Each range is assigned to a merge
site on a one-to-one basis (for example range Rl to site
Pml, etc). The coordinator then sends the GDT to all
sites.

Let’s use the previous example to show how the coordi-
nator computes the GDT. The coordinator receives the
data in (b), merges the distribution tables, and parti-
tions the results into 3 roughly equal size groups, to
obtain the range definitions that constitute the GDT:

BBDDEF HJKLMM PRSSUU

----------- ___e_______ ___________ F n
lowest higheet

Phase 3: Merge
During this phase, there are two tasks at each site, work-
ing concurrently: a producing scan task and a consum-
ing merge task. Once a data site receives the GDT its
producing scan task reads sequentially the records from
its sorted file. For each record in the sorted file, the
key is extracted and sent to the merge site Pj, where
j is such that the key falls in the j-th range defined by
GDT. It is received by the consuming merge task of Pj
for merging.

A strictly sequential processing of file Si is not optimal
as the following scenario illustrates. Assume all sites
start sending only records that falI in the first range.
Therefore all traffic is destined for the merge site in
charge of the first range, which becomes overloaded.
When records in the second range are sent, another
merge site becomes overloaded, and the process contin-
ues. Our solution to the problem consists of processing
only a small portion of the records in the first range (for
which the target is P,r). The small portion may be a
single page from each data site. While P,r handles the
corresponding merge, all producing tasks jump to the
beginning of the second range, etc. After the first batch
of Rn has been processed, each producing task sends its
second batch of Rl and so on, in a round-robin fash-
ion. Clearly, if one looks at a sufficiently large period
of time, all data sites produce records that are sent to
the appropriate merge sites. So all sites are kept busy,
sending, receiving and merging records.

In the following example, we denote a key sent by data
site P& to merge site Pmj by <key, i>+ Pj’ for ilbrstra-
tive purpose. Pi starts producing records, sending them
to the indicated merge sites. If each data site sends 2
records in a batch, the following communication pattern
occurs:

batchl:

<A,l> -+ Pl <C,2> + Pl <A,3> + Pl
<B,l> + Pl <D,2> + Pl <B,3> --) Pl

<G,l> -+ P2 <G,2> + P2 <J,3> + P2
<H,l> + P2 <M,2> + P2 <J,3> + P2

<N,l> + P3 <N,2> ---) P3 <P,3> + P3
<S,l> + P3 <P,2> + P3 <R,3> -+ P3

lThe sender’s site identifier can be decoded easily from a meb
sage and is not included in the message body.

- 128 -

batch2:

<H,l> + P2 <F,2> -+ Pl <C,3> + Pl
<K,l> + P2 <F,2> + Pl <D,3> -+ Pl
. . .

3.2 Alternative Implementations

The algorithm as explained above is the one that we
implemented and evaluated (see section 5 below). Some
variations are worth discussing.

Since the data sites are not synchronked, the actual
communication pattern will differ from the lock-step
pattern shown here.

Pi receives from aII sites (including itself):

<A,l> <C,2> <A,3>
<B,l> <D,2> <B,3>

EOS
EOS EOS

Since the keys are sent to a different consuming merge
task in each round, aII merge tasks may start at about
the same time. Clearly, the merge task of Pmk receives
records that have keys that faII into the range for which
the site Pa is responsibIe, and aII records received from
a single site arrive in order. These ordered streams of
keys can thus be merged to produce a single output
stream. Each entry in the output stream contains only
the identifier of the data site.

1.

2.

For example, consider the first merge site. It merges its
records to obtain the foRowing order:

<A,l> <A,3> <B,l> <B,3> <C,2> <C,3> . . .

and produces the following Vi stream:

vi 131323232233

The other two merge sites produce their output streams
in a similar fashion:

3.

4

In the above description, the entire fBe S is read
twice-once to send the keys to the merge tasks,
and once to return the records to the host. It may
be preferable to have the local sort write two files:
S with the entire records and a much smaller IiIe
K with keys only. In phase 3, the smaller 6Ie K is
read, instead of S.
When multiple merge sites are running on a sin-
gle node (because of site virtuabsation), the merge
phase can be divided into several sub-phases. The
host site cannot start receiving records in the R2
ranges until it has received aU records in Rl, which
cannot finish before P,r finishes. If the merge
phase has several sub-phases, the host can start
receiving records in the ranges for which the corre-
sponding merge operations have completed. That
is, the host site receiving operation is pipelined
with the merge site merging operation. The most
important advantage of the pipelined schedubng is
that the time to receive the records is expanded,
thus, the resource requirements on the host can be
smoothed out. Consequently, the same host can ac-
commodate more nodes without incurring response
time penalty.
Finally, other sampling algorithms may be used to
compute the GDT.

v2 121133131312
v3 122323122323

Phase 4: Returning Records to the Host
When Phase 3 is finished at site Pi, the corresponding
stream Vi and sorted tile Si are sent as streams to the
host. If the next entry in V is k, the host knows that it
needs to get the next record from Sk sent by data site
pk.

Prototype

In the example, the host receives a stream of site iden-
tifiers (V), which is the concatenation of Vi, V2 and
Vs. It also receives the sorted S’s (a) from each site.
Following the site id order of V, it retrieves records in
that order:

A Alice from Pl
A Adam from P3
B Barbara from Pl
B Brian from P3
c Carl from P2
C Christine from P3

At IBM AImaden Research Center, we have bnilt a pro-
totype of a backend database machine, called ARBRE
(AImaden Research Backend Relational Engine), in or-
der to explore the use of parallelism within complex
reIationaI queries, and across many independent trans-
actions [9].

A prototype of the database machine is now opera-
tional. It runs on three dyadic 4381 nodes providing 6
processors for the backend database machine; a fourth
4381 is used as a host. Each processor is approximately
3.5 MIPS (mUion instructions per second). The oper-
ating system is MVS and a 3088 is used for channel-to-
channel communication. The database system is orga-
nised as follows: on each of the 4381’s, four virtusl sites
are emulated by running four DBMS’s in four address
spaces, providing 12 sites in total. Each relation is split
horirontaIIy into partitions; each partition is stored in
a different DBMS. The access method is borrowed from
SQL/DS (DBSS) [S].

. . . Since we have not implemented a query compiler, we

- 129 -

hand-code programs that specify the strategy that
would normally be chosen by the optimizer. A strat-
egy is expressed as a series of routines which are gen-
erally duplicated at each site. These routines produce
or consume streams of data that are passed between
disks, nodes, and the host. The execution is controlled
by data flow and stream communication is controlled
by a pacing mechanism.

We exercised the prototype for various sets of parame-
ters. Here we report the results for one particular set of
parameters which we use later to validate our model:

l number of sites : 12 (2 site per processor of 3.5
MIPS, 21 MIPS aggregate)

l number of records: 12 * 16000 records = 192,000
records

a record length : 64 bytes
l key length : 8 bytes (included in the 64)

For each of the four phases, we measured the CPU time,
the number of I/O’s, the number of messages, and the
response time. Results on each site are shown below.

sort sync merge return total 1
CPU (set) 12.0 - 10.2 6.2 28.4

, I/O 2884
Comm 2 2 159 509 672
Resp (set) 44.7 1.6 22.4 23.6 92.3

Note that the CPU for the synchronization is too small
to be measured and that we only show the total I/O
because some pages logically modified in one phase are
written later, due to the buffer page replacement alg+
rithm, blurring the boundaries between phases.

5 Modei *
In this section, we
immediately apply
described.

model every phase separately, and
the model to the experiment just

Let’s define the path length of various operations by the
following symbols (approximate values from the proto-
type are given in parentheses):

l to extract a record from a list: Ex (= 950)
l to enqueue a record to a stream: Eq (= 150)
l to dequeue a record from a stream: Dq (= 150)
l to send or receive a message: Cm (= 4000)
l to perform an I/O: 10 (= 8000)
0 to carry out a key comparison: Cp (= 150)

The system parameters and their values are:

l the page sise: P (= 4086s)
a the message sise: M (= 2048)
l the record length: RI (= 64)

s4096 bytes less 10 bytes page header

l the key field length: Kl (= 8)
l the number of sites: S (= 12)

The following symbols are also used, and all refer to one
site only:

l the number of records: Ni
l the number of disk I/O’s: Nio
l number of pages in the base table: Nb
l number of pages in the index list: Nl
l the number of communication messages: NC

When two sites are sharing the same physical processor,
we model the response time to be either the sum of the
CPU and I/O times (when it is not CPU bound) or
twice the CPU time (when it is CPU bound). Let us
analyre what happens at one site.

Phase 1: Local Sort
We developed a model for the CPU and I/O times of
local sorts and validated the model by running multiple
experiments on our prototype. The detailed description
of the local sort model is not relevant to this paper;
thus, it will not be explained further. For the chosen
parameters, the CPU time is 12 se-c and the I/O time is
33 sec. Based on our response time model, the response
time for 2 simultaneous sorts is (12 + 33) = 45 sec.

Phase 2: Synchronisation
A message is sent from each site to the coordinator and
from the coordinator to each site. This is a small linear
overhead. Each site has an equal number of records to
sort; so all sorts can be expected to terminate roughly
at the same time; therefore we will neglect the time re-
quired for this phase but will return to the skew problem
in a later section.

Phase 3: Merge
Using the symbols defined above, the first order’ ap-
proximation gives us:

0 Nb = ctiling(ZVi/floor(P/BZ))
0 NZ = ctiling(Nb/floor(P/KZ + 46))
l Nio= Nb+NZ
l NC = ctiling(Ni/floor(M/KZ))

Consequently, we have

t Nb = ctiling(16000/floor(4086/64)) = 254
l NZ = ctiling(254/floor(4086/12)) = 1
l Nio=254+1=255
l NC = ceiling(lSOOO/floor(2048/8)) = 63

The total path length and its breakdown art shown be-
low:

‘In particular, we ignore the path length l&&d to the dte

identifier manipulation since each site identifier is very amall (one
to two bytes).

6The page descriptor haa 4 byta.

- 130 -

The order of the operations shown above reflects the
sequence for a “typical” record. The Cp term in the
formula for key extraction is the path length associated
with the partition range check. The CPU time on a
3.5 MIPS processor for 34.5 M instructions is 9.9 sec.
Assuming each I/O takes 20 ms, the elapsed time for
I/O is 255 * 0.020 = 5.1 sec. The phase is strongly
CPU bound. Therefore running simultaneously two
such phases on one processor will yield an elapsed time
of (2 * 9.9) = 19.8 sec.

These 19.8 set are somewhat less than the measured
22.4 sec. Part of the difference is due to the fact that the
merge needs always a record from a specific incoming
stream in order to proceed. Therefore, some waiting
time can be expected. A simulation has shown that the
relative response time increase due to the deterministic
merge varies very little with the increase in the number
of sites: 3% for 4 sites to roughly 11% for 64 or 128
sites.

Phase 4: Return.
For the return phase, we obtain the following path
length:

operation formula path length

CM)

~1

1 Total I I 21.6 I

The CPU time on a 3.5 MIPS processor for 21.6 M
instructions is 6.2 sec. The I/O time is 254 * 0.020 = 5.1
sec. Again, since the phase is CPU bound, the elapsed
time for two such phases executed simultaneously is 2
* 6.2 = 12.4 sec. This is true only if the host and the
communication network are infinitely tbst. In fact one
can show that the host CPU requirement is 15.5 sec.

numbe!Oof sites

Figure 3: Response Time Reduction.

To summarise, let us compare the results of the model
and the actual measurements:

I I sort merge return

I CPU I I 12.0 I 10.2 I 6.2

The response time of the return phase is longer than
estimated because the channel-to-channel used in the
prototype to implement the n-to-l communication net-
work becomes the bottleneck.

After having validated the model with actual measure-

5.1 Exercising the Model

ments, we exercised it at will to examine response time
reduction and horisontal growth. We adjusted some pa-
rameters to values that are more appropriate for high-
performance relational DBMS, but ditlicdt to change
in our current prototype implementation. We assume
that I/O streams read sixteen 4096 byte pages at a time
with a latency of (20 + 15 * 16) = 44 ms, and message
sise of 4KB instead of 2KB. To eliminate the site virtu-
alisation effect, we run one site on a processor. We also
consider 4 MIPS backend processors, and a 32 MIPS
host processor.

We studied the response time reduction by sorting a
total of 1 million 64 byte records that are evenly dis-
tributed among all sites. We also assume here that
the GDT gives the exact partition. For the single site
case, the synchronisation, and merge phases are not U-
ecuted. Fig. 3 shows the speed up with respect to the
single site case for various configurations.

- 131-

1
8 1.0

0.1-
1

numbei’of sites 100

Figure 4: Horisontal Growth.

As the figure indicates, one pays for the distribution
overhead when the number of sites goes from 1 to 2; af-
terwards the speed up is quasi-linear. This is true under
the assumptions that the records are evenly distributed
initially, and that the GDT ensures a pretty accurate
partition. In Section 6, we will address the problem of
uneven distribution of initial records.

We also studied horisontal growth by increasing the
number of sites and the total number of records to be
sorted, in the same proportion. That is, the number of
records on each site remains unchanged. In particular,
we sort 16K records per site. Since we are interested in
multiple site cases, the response time in Fig. 4 is normal-
ised to that of two sites. As expected, when the number
of sites in the system increases, the response time in-
creases slightly as well. (Remember that the number
of key comparisons needed to produce a record in the
merge phase varies with the logarithm of the number
of sites.) For the chosen parameters, the response time
is increased by about 2.4% when the number of sites
doubles.

5.2 Comparison with Other Sort Algo-
rit hms

Let’s use our model to compare the proposed fully par-
allel algorithm (FPA) with a variation of FPA (called
FPA’) without employing the “semi-sort” communica-
tion reduction technique and with the algorithms de-
scribed in Section 2. The work load is to sort 1M 64
byte records using 64 4 MIPS processors. The com-
munication CPU time is added wherever appropriate.
The total CPU time is computed as the sum of all non-
overlapped CPU times, and the total time is computed
as the sum of the total CPU time and the I/O time.

For all methods, the n-to-l communication is 64 MB
and is not discussed any further. In the table 5.2, two
CPU times are shown for the return phases of both
FPA and FPA’: the smaller one is the CPU time on a
backend processor while the larger one is that on the
host processor. These two numbers are carried on in
the subtotal and total. The real elapsed time should lie
between the total CPU time and the total time.

The major reason for algorithm D performing much
worse than FPA is that the sorted results are sent to
the host in a serialired k&ion. For algorithms B, C,
and D, the scan time is not much smaller than the sort
time because the particular database system used in the
prototype has the property that reading a record for the
internal sort is much cheaper (in terms of path length)
than returning a record via the record-at-a&me inter-
face. Algorithm C performs better than algorithm B
because the merge fan-in of the former is much smaller.

Unless the n-to-n communication has a very high ef-
fective bandwidth, algorithms A, C, and D may expe-
rience a slow down because the n-t&n communication
becomes a bottleneck when all sites exchange records
among themselves. The bottleneck is caused by high ag-
gregate communication, bursty communication or both,
depending on the sort algorithm. For algorithm C, the
amount of n-to-n communication is 64B * 1M * log, (
S), where S is the number of sites. For a system with
64 sites, the total n-to-n communication is 384 MB. For
all algorithms A, B, and D, the amount of n-to-n com-
munication is 64B * 1M = 64 MB. On the other hand,
the amount of n-to-n communication for FPA is 8B *
1M = 8 MB. Comparing FPA with FPA’, we demon-
strate that the “semi-sort” technique not only reduces
the n-to-n communication but also decreases the total
CPU path length.

For algorithms A and D, the n-to-n communication hap
pens in bursts, even though the total response time is
much longer than that of FPA. The n-to-n communicw
tion in algorithms B and C can be spread over the entire
merge phase. However, the entire record is sent log, (S)
(6 under the chosen parameters) times for algorithm C.

In fact, the sorting algorithm reported in [l] (on which
algorithms C is based) is limited by the network data
transfer. Also, algorithms B and C were compared in
[lo], which concluded that algorithm B performs better
than algorithm C in the common-bus local network for
the same reason.

6 Sensitivity to Data Skews
The FPA automatically balances the load for both the
merge and return phases, independently of the initial
distribution of data. The local sort phase, however,
depends upon this initial distribution: if one site has

- 132 -

Table 1: Algorithm Comparisons

more data than another, the local sort phase will take
more time. The total elapsed time is thus a function of
the maximum local sort time.

We propose the following technique to reduce the effect
of skew. Suppose each data site periodicalIy informs
the other data sites where it is in the scan (in particu-
lar, if it has finished or not). Then, an overloaded site
can send pages to other sites that have finished. The
overloaded site still needs to read the pages and send
them on the communication network; the receiving sites
need to receive and extract the data from the page. If
records are short, then scanning a page is time consum-
ing; if records are long the path length for communica-
tion becomes more important and this load balancing
technique is not as efficient. Of course having several
sites being able to access the same disk would help in
this case.

In order to study the effect of an uneven distribution
of the data, let us consider one site that has A records
while all other sites have B records. Assuming A > B,
we define the skew as Z= A/B. It is easy to calculate
the response time degradation of the initial scan as a
function of Z. The corresponding curve is plotted as a
dotted line in Fig. 5. The figure also shows how the pro-
posed technique may improve the situation for different
record lengths. Note again that the degradation applies
only the pm-scan phase; its effect should be amortised
over the whole duration of the global sort.

7 Conclusions
There is increased interest in using multiple nodes to
improve the throughput and response time of database
operations. Sort is just one of these operations; but it
may be the most important one since it also plays a
role in other operations such as duplicate elimination,

4.0,

3.0.
r

i

s2.0.
e

1

1.0.

Figure 5: Effect of Redistributing Excess Records.

grouping, joining, etc.

We have proposed an efficient parallel sort algorithm
that assumes only a “shared nothing” architecture. In
such an architecture, the nodes do not share main mem-
ory; nor do they share disks. Instead, they communi-
cate among themselves, and with the host, by message
passing.

The algorithm, evaluated by exercising a model vali-
dated by an actual prototype, exhibits the following nice
properties:

- 133 -

1.

2.

3.

A.ll sites (except for very short intervals) are per-
formed simultaneously, yielding high utiliaation of
resources.
It scales very well. It decreases response time prac-
tically linearly when more processors are working
on the same problem; it also supports horisontal
growth, where 2n processors sort 2N records in
roughly the same time that n processors sort N
records. The primary reason for such good perfor-
mance is that the sorted records are returned from
all sites to the host site concurrently.
It reduces the amount of n-to-n communication
and the path length to send/receive communication
messages by using a “semi-sort” algorithm, where
only keys have to be sent on the n-to-n communi-
cation network.

The efficiency of the algorithm is affected by the amount
of skew in the data (the uneven distribution of data on
the sites). Since skew only affects the initial scan of the
data, and not the other phases of the sort, adverse ef-
fect is diluted. In any case, we discuss a load-balancing
technique that can often be used to reduce the effect of
skew on the initial scan itself. This technique is very
efficient if the work needed to process a page is sig-
nificantly larger than the work required to read and
send/receive it. If this is not the case, the same tech-
nique can be used ifseveral processors are connected to
the same disk (which is generally needed in some small
amount for availability, anyway); then the data can be
read through the I/O channel with large prefetch rather
than through communication.

Acknowledgements
We acknowledge the important contribution of Jean-
Jacques Daudenarde, Gary Hallmark, and Jim Stamos
to the development of the ARBRE prototype. We also
thank Jim for useful discussions on the performance
analysis, and for many valuable comments on the draft,
which improved the presentation of this paper very sub-
stantially.

References
[l] M. Beck, D. Bitton, and W. K. Wilkinson. Sort-

ing large files on a backend multiprocessor. IEEE
!l3unsactions on Computers, C-37(7):769-778, July
1988.

[2] D. Bitton, D. J. Dewitt, D. K. II&o, and
J. Menon. A taxonomy of parallel sorting.
ACM Computing Surveys, 16(3):287-318, Septem-
ber 1984.

[3] D. Bitton-Friedland. Design, Anal@ and Imple-
mentation of Parallel Eztemal Sorting Algorithms.
PhD thesis, Computer Sciences Department, Uni-

PI

PI

PI

VI

PI

PI

PO1

WI

versity of Wisconsin-Madison, January 1982.

S. Even. Parallelism in tape-sorting. Commun.
ACM, 17(4):202-204, April 1974.

J. Gray, M. Stewart, A. Tsukerman, S. Uren, aud
B. Vaughan. FASTSORT: an external sort us-
ing parallel processing. Tandem Systems Review,
2(3):40-47, December 1986.

IBM Corporation. SQL/Data System Geneml In-
formation. IBM Form No. GH245012.

P. J. Janus and E. A. Lamagna. An adaptive
method for unknown distributions in distributive
partitioned sorting. IEEE tinsactions on Corn-
puters, C-34(4):367-372, April 1985.

S. Lskshmivarahan, S. K. Dhall, and L. L. Miller.
Parallel sorting algorithms. Advances in Comput-
ers, 23:295-354, 1984.

R. Lorie, J. Daudenarde, G. Hallmark, J. Stamos,
and H. Young. Adding intra-transaction paral-
lelism to an existing dbms: early experience. IEEE
Data Engineering Bulletin, 12(1):2-8, March 1989.

K. P. Mikkilinent and S. Y. W. Su. An evaluation
of sorting algorithms for common-bus local net-
works. Journal of Parallel and Distributed Com-
puting, 5(1):59-81, February 1988.

P. M. Neches. The anatomy of a data base com-
puter system. In Proceedings of the 2nd Intema-
tional Conference on Supercomputing, pages 102-
104, 1987.

- 134 -

