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Abstract 

We identify a useful property of a program with re- 
spect to a predicate, called factoring. While we prove 
that detecting factorability is undecidable in general, 
we show that for a large class of programs, the pro- 
gram obtained by applying the Magic Sets transfor- 
mation is factorable with respect to the recursive 
predicate. When the factoring property holds, a sim- 
ple optimization of the program generated by the 
Magic Sets transformation results in a new program 
that is never less efficient than the Magic Sets pro- 
gram and is often dramatically more efficient, due 
to the reduction of the arity of the recursive predi- 
cate. We show that the concept of factoring general- 
izes some previously identified special cases of recur- 
sions, including separable recursions and right- and 
left-linear recursions, and that the specialized evalua- 
tion algorithms and rewriting strategies developed for 
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those classes can be derived automatically by apply- 
ing the Magic Sets transformation and then factoring 
the result. 

1 Introduction 

The Magic Sets transformation [BMSU86, BR87] is 
a rule rewriting technique that, given a query and 
a recursive program, produces a new program such 
that the semi-naive bottom-up evaluation of the new 
program constructs the answer to the query more 
efficiently than the original recursion. Magic Sets 
achieves its power by restricting the search of the un- 
derlying database to the portion of the database that 
is relevant to the query. 

The Magic Sets transformation is conceptually sim- 
ple and the potential savings gained by ignoring the 
irrelevant tuples in the database is large. However, for 
some important recursions much better algorithms 
are known. Intuitively, this is because Magic Sets 
does not reduce the arity (number of columns) of the 
recursive predicate. Since the size of the relation com- 
puted is bounded by nk, where n is the number of 
distinct constants in the database and h is the ar- 
ity of the recursive predicate, reducing the arity (k) 
can result in an order of magnitude increase in the 
efficiency of the algorithm. 

In this paper we identify a useful property of a 
program with respect to a predicate, called factor- 
ing. If a program can be factored nontrivially with 
respect to a query, then the program can be rewrit- 
ten to reduce the arity of the recursive predicate. Few 
programs and queries have the factoring property as 
written; however, in many important cases the Magic 
Sets transformation produces programs that do have 
the factoring property. While we prove that in general 
detecting factorable recursions is undecidable, we de- 
scribe classes of recursions for which the Magic Sets 
transformation always produces a factorable recur- 
sion. 
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Recently the separable recursions [Nau88] and the 
left- and right-linear recursions [NRSU89] have been 
identified as significant classes of recursion for which 
there are arity reducing evaluation algorithms. In 
this work we show that these classes of recursions are 
proper subsets of the class of recursions for which 
Magic Sets produces a factorable recursion. Fur- 
thermore, the special purpose evaluation algorithms 
of [Nau88] and the special purpose rewriting tech- 
niques of [NRSU89] can be derived automatically by 
simple optimizations applied to the factored Magic 
program. 

We introduce the notion of factoring in Section 2, 
and show that in general it is undecidable. We de- 
scribe classes of programs for which the corresponding 
“Magic” programs are factorable in Section 3. In Sec- 
tion 4, we summarize some simple optimizations that 
can be used in conjunction with factoring to refine a 
program. We discuss the connections between our ap- 
proach, that is, Magic Sets followed by factoring, and 
the Counting transformation and the Separable, One- 
sided, and Right- and Left-linear classes of programs 
in Section 5. In Section 6, we present conclusions and 
directions for future work. 

Example 1.1 As an example of the power of our 
approach, consider a definition of transitive closure 
including all three forms of the recursive rule, shown 
in Figure 1. We obtain the following program by 
first applying the Magic Sets transformation and then 
factoring: 

mA”‘(W) :- ft(w). 

m-t*‘(5). 

ft(Y) :- mJbf(X), e(X, Y). 

ww(Y ) :- ft(Y). 

(This example is presented in detail in Section 3.) 0 

t(x, Y) :- t(X, Iv), t(w,Y). 

G, Y) :- e(X, W), t(W, Y). 

t(x, Y) :- t(X, W), e(W, Y). 

G, Y) :- e(X,Y). 

cwv(Y) :- t(5,Y). 

Figure 1: The three rule transitive closure. 

2 The Factoring Property 

Consider a program P, a query Q, and a predicate p 
that appears in P. Let P’ be the program obtained 
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by adding the following rules to P: 

pl(Xi, 7 * * .p Xi,) :- p(Xl, . . . , Xn). 

p2(Xj, 1.. . , Xjl) :- p(X1,. . . ,Xn). 

P(Xl,***,Xn) :- pl(Xil,-*-,Xi~), 

P2(Xj, 9 * - * 9 Xj, )- 

where the Xi’s are distinct variables. Here, 
Xi,,*-*, Xi, andXjl,..., Xi, represent subsets of X1 
through X,, . We say that (P, Q, p) has the fac- 
toring property if P and P’ compute the same an- 
swers to Q for all EDBa. More precisely, we say that 
P(&,...Jn) can be factored into pl(Xi, . . . , Xi) 
adpz(&,..., Xl) in P with respect to Q. This holds 
trivially if either pl or p2 contains all arguments of p. 
We say that p can be non-trivially factored if neither 
p1 nor p2 contains all arguments of p, and hence- 
forth, we shall consider only non-trivial factoring of 
programs. 

Note that factoring is defined for general logic pro- 
grams, not just Datalog. The following theorem 
shows that factorability is undecidable even for Dat- 
alog programs. 

Theorem 2.1 It is undecidable whether a predicate . 
in a given program is non-trivially factorable with re- 
spect to a given query. 

The proof of Theorem 2.1 is by reduction from the 
containment problem for Datalog queries, and as- 
sumes multiple IDB predicates. To our knowledge, 
the decidability of factoring for single IDB predicate 
programs is open. 

We have the following simple observation, which 
suggests an equivalent definition of factoring. 

Proposition 2.1 Let P’ be obtained from a given 
program P by the following transformation with re- 
spect to predicate p: 

l Every body literal p(tl, . . . , tn) is replaced by the 
litetds pl(ti,, . . . ,tir) and pz(tj,, . . . , tj,). 

l Every rule with head p(tl, . . . , t,,) is replaced by 
two rules with the same body, and with heads 
Pl(til,*-*, tir) and n(tjl, . . . , tit)- 

P and P’ compute the same answers to Q for 
all EDBs if and only if p(Xl, . . . ,X,,), where the 
Xs are distinct variables, can be factored into 
Pl(Xil,*--, Xi,) and pz(Xj,, . . . , Xj,) in P with me- 
spect to a query Q. 

We refer to the transformation described in the 
above proposition as the factoring transformation. 
Note that applying this transformation results in a 
program that does not contain p, which is replaced 
by two predicates, p1 and ~2, of strictly lower arity. 



3 Classes of Efficiently Evalu- 
able Programs 

The Magic Sets transformation [BMSU86, BB87] 
rewrites a program with the objective of restrict- 
ing the computation by propagating bindings in the 
query. We identify classes of programs for which the 
program produced by applying the Magic Sets trans- 
formation can be factored with respect to the recur- 
sive predicate. 

3.1 Preliminary Definitions 

We begin by introducing some terminology and con- 
ventions. We only consider programs in which there 
is a single (recursive) IDB predicate, say p, and there 
is a single reachable adornment, say pa. We refer to 
such programs as unif programs. 

A rule is said to be in standard form if every argu- 
ment of >a) in the head or the body, is a variable, and 
no variable appears in two arguments of the same pa- 
literal. We require all rules to be in standard form, 
and we allow the use of a special predicates to en- 
sure that this requirement does not entail a loss of 
generality. Thus, a literal p”(X,X, 5,Y) could be 
replaced by p”(X, U, V, Y), equal(V, 5), equal(X, V), 
while a literal pQ(X.Y, 2) must be replaced by the 
conjunct p” (U, 2) , list (X, Y, V) . Conceptually, list 
and equal are infinite EDB relations. Once this trans- 
lation to standard form is done, the results in this 
paper can be used to test for factorability 

We use pa@, n to denote a pa-literal, where x is 
the vector of variables in the bound argument posi- 
tions of a pa-literal, and 7 is the vector of variables 
in the free argument positions. 

Consider a rule in the adorned program with head 
literal pa(x,n. A left-linear occurrence of pa is a 
body literal p”(x,v), and a right-linear occurrence 
of pQ is a body literal p”(v,n. 

The following definitions generalize those 
in [NRSU89]. 

Definition 3.1 A rule is lefl-linear if it is of the form 

p”(T,F) :- left(X),P~(~,~‘1),P~(~,Uz), 
.,.) 

where 

p;(X,v*),last(vl,77’2,. ..&,Y). 

l The rule is in standard form. 

l left(r) and last(rr , . . . ,r,,T) are disjoint 
conjunctions of EDB predicates. 

Definition 3.2 A rule is right-linear if it is of the 
form 

:- fir&Z, v), 

p*(V,7), right(T). 

where 

l The rule is in standard form. 

l first(z,‘i7) and right(Y) are disjoint conjunc- 
tions of EDB predicates. 

Definition 3.3 A rule is a combined rule if it is of 
the form 

. ..) 

p,*(X, 7Tn), center(77,7), 

p”(V,T), right(L). 

where 

l The rule is in standard form. 

0 left(lT), center(T,V), and right(y) are disjoint 
conjunctions of EDB predicates. 

We remark that some of the conjunctions of EDB 
predicates referred to in the above definitions may 
contain occurrences of the special EDB predicate 
equal. As a special case, a conjunction may contain 
only such occurrences. 

3.2 Factorable Programs 

We present theorems that identify classes of programs 
for which the corresponding Magic programs are fac- 
torable. The importance of these theorems lies in the 
technique that they exemplify: a two-step approach 
to optimizing programs in which the programs are 
rewritten using the Magic Sets transformation and 
subsequently factored if possible. 

Let P be a program, & a query, and Pad the 
adorned program corresponding to a left-to-right 
evaluation of the rules of P. Pm# represents the pro- 
gram obtained by applying the Magic Sets transfor- 
mation to P and Q. 

Example 3.1 The rewriting algorithms presented 
in [NRSU89] were the first to derive automatically 
unary programs for single-selection queries for all 
three forms (left-linear, right-linear, non-linear) of the 
transitive closure. We achieve the same result here 
by first applying the Magic Sets transformation and 
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m_tbf (W) :- m~tb’(X),tbf(X, W). 
m_tbf(W) :- mlbf(X), e(X, W). 

mAbf(5). 

tbfp, Y) :- rn-tbf(X), tbf(X, W), t”‘(W, Y). 

t”‘(X, Y) :- mlbf(X), e(X, W), t”/(W, Y). 

t”f(x, Y) :- mfbf(X),tbf(X, W), e(W, Y). 

tbf(x, Y) :- m-t”‘(X), e(X, Y). 

query(Y) :- tbf(5, Y). 

Figure 2: Pms for the three-rule transitive closure. 

then factoring the rewritten program. To illustrate 
the technique, we again consider the single program 
that includes all three forms of the recursive rule pre- 
sented in Figure 1. The Magic Sets algorithm rewrites 
this program to produce the program in Figure 2. 

If we identify mJ”f tuples with goals in a top-down 
evaluation, we see that only the last occurrence of t”f 
in a rule body generates new goals, and further, the 
answer to a new goal is also an answer to the goal 
that invoked the rule. In fact, every answer to a sub- 
goal is also an answer to the query goal mf’f . Also, 
if c is generated as an answer to a subgoal, then a 
new subgoal m-tbj(c) is also generated. These obser- 
vations imply that it does not matter which subgoal 
an answer corresponds to; its role in the computation 
is the same in any case. That is, tbj(X,Y) can be 
factored into bt(X) and ft(Y) in the Magic program. 
This yields the program shown in Figure 3. 

Applying further optimizations, discussed in Sec- 
tion 4, we finally obtain the following unary program: 

m_t”‘(W) :- ft(W). 

mAbf(5). 

ft(Y) :- mlbf(X), e(X, Y). 

query(Y) :- ft(Y). 

Cl 

Definition 3.4 Let p be the only IDB predicate in a 
program P, and Q be a query on p. Then the combi- 
nation of P and Q is an RLC-stable program if P con- 
sists only of right-linear, left-linear, and combined- 
linear rules plus one exit rule, and pa is the only 
adorned version of p in Pad. 

We now define some auxiliary conjunctive queries 
that appear often later in this section. 

m_t’j(W) 

mfbf(W) 

m-tbf(5). 

WX) 

W) 

ww 
ft(Y) 

ft(Y) 

ft(Y) 

:- m-t”‘(X), bt(X), ft(W). 

:- mdbf(X), e(X, IV). 

:- 

:- 

:- 

:- 

mf”‘(X), W), ft(W, 

WV, ft(Y). 

m-tbf(W, 4X, W, 

WW, ft(Y). 
mat”(X), bt(X), 

ft(W, e(W Y). 
m-t”‘(X), e(X, Y). 

m-tbf(W, bt(X), ft(W, 

bt(W, ft(Y). 

mJbf(X), 4X, W, 

WV, ft(Y). 
m-t”(X), bt(X), 

PW), e(W 0 
m-t”(X), e(X, Y). 

W, fW’). 

Figure 3: The factored version of P”s. 

Definition 3.5 The conjunctive query free-exit is 
defined as follows: 

free-exit(F) :- exit(T, I?). 

where exitfl,P) is the body of the exit rule. 
The conjunctive query bound-first is defined for a 

given right-linear rule: 

bound-f irstfl) :- first(X, sr). 

where first(x,fT) appears in the body of the rule. 
The conjunctive query bound is defined for a given 

left-linear or combined rule: 

bound0 :- Zeft(X). 

where left(x) appears in the body of the rule. 
The conjunctive query bound is defined for a given 

right-linear or combined rule: 

free(T) :- right(F). 

where right(F) appears in the body of the rule. 
The conjunctive query middle is defined for a given 

combined rule: 

middle@, ?J> :- center(T, V). 

where center(?l,v). appears in the body of the rule. 
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Often by a slight abuse of notation we will refer to 
left, right, and center as conjunctive queries instead 
of using bound, free and middle. 

Our first theorem essentially generalizes of the re- 
sults in [NRSU89], although it must be used in con- 
junction with the additional optimizations described 
in Section 4 in order to do so. It uses the following 
definition, 

Definition 3.6 Let P, Q be an RLC-stable program 
with IDB predicate p. Then P, Q is selection-pushing 
if the following conditions hold: 

l For any combined or right-linear rule r in P, the 
conjunctive query “free-exit” must be contained 
in the conjunctive query “free” for r. 

l For any pair of rules ri and r2 in P, if both ri and 
r2 contain a “left” conjunctive query, these must 
be equivalent. If one contains a “left” query, 
and the other a “first” query, the conjunctive 
query “bound-first” must be contained in the 
conjunctive query ubound”. 

Theorem 3.1 Let P,Q be an RLC-stable program 
with IDB predicate p, and let x be the vector of vari- 
ables appearing in bound arguments ofpa in the heads 
of the rules of Pod, and let ‘f;; be the vector of variables 
appearing in free arguments of pa in Pad. If P, Q is 
selection-pushing then pa(;it,q can be factored into 
b(x) and fp(F) in Pms with respect to the query Q. 

Example 3.2 We illustrate the intuition behind 
selection-pushing and show that violating any of the 
associated conditions could destroy this property. 

P(X, Y) :- lUX),P(X, l-9, cl@4 V), 

P(K Y), rl(Y). 

PKY) :- 12(X),P(X, W, c2W V), 

P(K Y), r2(Y). 

PWY) :- fV, V),p(V, Y), NY). 
p(X,Y) :- e(X,Y). 

query(Y) :- p&Y). 

The Magic Sets algorithm rewrites this to 

m,pbf (V) :- m-pb’(W, WV, 

Pb’(X, w, WL 0 
m-p”‘(V) :- m-pb’(x), W9 

P”‘(X, 0 cw, 0 
m-pb’ (V ) :- m-pbf(W, f (X7 0 
mqbf(5). 

p”f(X, Y) :- m-pbf(x), W),pbf(X, u), 

cl(K V),p”W,Y), rl(Y). 
pb’(X, Y) :- m-pbfV), 12(X),pbf(X, 0 

W7, V),P”N Y), r2W. 
p”f(X, Y) :- m_p”‘W, f(X, 0 

P”‘W 0 NY). 
pbf(X, Y) :- m-pb’(X), e(X, Y). 

query(Y) :- ~“‘(5, Y). 

Factoring this program and applying further trans- 
formations described in detail in Section 4 yields 

m-pbf(V) :- bp(X), 11(X), 

fPV), wx v. 
m,pbj(V) :- bp(X), 12(X), 

fPV), cw, VI. 
m,p’j( V) :- m-pbf(X), W, 0 
m-pbf(5). 

bp(X) :- m-pbfW, f V, VI, 

bP(V, fp(Yh W’). 
bp(X) :- m_pbfW, 4X, 0 

fP(Y) :- m*bj(X), 4X, Y). 

ww(Y) :- fpW 

The transformations that produce the above program 
from the factored version of the Magic program pre- 
serve equivalence. We have applied these transform* 
tions in order to delete some unnecessary literals and 
rules in the factored program, thus making it easier 
to understand the essential ideas. 

Consider the following EDB instance: f(5, l), 
e(5,6), e&7), e(%8), 11(l), 46,2), rV), rW. 
Because the condition that bound-first should be a 
subset of I1 is violated by this EDB, 8 is incorrectly 
derived as an answer. Indeed, m,sbj(l) is generated 
using msbf(5) and f(5,l). This generates bp(1) us- 
ing e(l,7). Also, the tuple e(5,6) gives us fp(6). The 
critical step follows: the fact fp(6) is used in the first 
rule with bp(l), 11(l) and c1(6,2) to generate the fact 
m-p”!(2). That is, the fact fp(6), which is an answer 
to the goal m-pbf(5), is incorrectly used where an 
answer to the goal m-pbf(l) is required, thereby gen- 
erating a spurious subgoal. One can verify that 8 is 
a valid answer if ll(5) is added to the EDB. A sim- 
ilar example can be constructed if I1 and 12 are not 
identical, since the answer generated in response to a 
subgoal that satisfies 11 but not 12 can be used in the 
second rule to generate spurious subgoals. 

Now consider the EDB instance: f(5, l), e(5,6), 
e(l,7), 11(5), cl(6,l). The fact fp(7) is incorrectly 
generated. The first rule is used to generate m+‘j(l) 
from the query goal and the fact e(5,6). The fact 
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fp(7) is generated in response to this subgoal, but 
it cannot be an answer to mq”f(5) unless rl(7) is 
true. The EDB instance violates the condition that 
free-e& should be contained in rl. This made it 
possible to generate subgoals whose answers are not 
answers to the original goal. CI 

Intuitively, we are separating the bound arguments 
from the free arguments, and we must ensure that 
every answer to a subquery (keeping in mind a top- 
down evaluation of the program) is also an answer to 
the original query. (We refer to the vector of values 
in the free arguments as the answer, corresponding 
to a query that is the vector of values in the bound 
arguments of a pa-fact.) For this, we require that the 
right conjunctive queries be satisfied by every per 
tential answer tuple, that is, free-exit is contained 
in every right conjunctive query. (Some answer tu- 
ples may be generated from left-linear rules, but these 
need not satisfy the right queries since there is a 
derivation of these answers to the original query that 
does not propagate these answers through right-linear 
occurrences of p”.) 

In addition, we must ensure that no spurious an- 
swers are generated. The main idea is that for every 
derivation of a fact using Pms, there is an equiva 
lent derivation in which the bound arguments of every 
left-linear p” fact is identical to the bound arguments 
in the query. That is, in every recursive rule that con- 
tains a left-linear occurrence of pa, we can replace the 
variables Xi, . . . ,X,,, in the bound arguments by the 
constants provided in the original query. This is in 
fact the motivation for the term “selection-pushing.” 

When a right-linear rule is applied to generate new 
subqueries, the answers to these subqueries could be 
used in left-linear occurrences of p”. To justify this, 
we must ensure that a subquery invoking the right- 
linear rule is reachable from a subquery that satis- 
fies the conditions on the bound arguments of the 
left-linear occurrences of p”. Since every subquery is 
reachable from the initial goal, this is guaranteed if 
the initial query satisfies the (unique, for the given 
program) left conjunctive query. If the initial goal 
does not satisfy the left conjunctive query, then we 
cannot apply the right-linear rule, and the condition 
that the bound-first conjunctive queries should be 
contained in the left conjunctive query ensures this. 

We can identify further classes of programs that 
can be factored. 

Definition 3.7 Let P, Q be an RLC-stable program 
containing only combined recursive rules. Then P, Q 
is symmetric if the following conditions hold: 

l Each rule contains exactly two occurrences of 

l 

pa in the body, and the “middle” conjunctive 
queries are all equivalent. 

For any recursive rule r in P, the conjunctive 
query “free-exit” must be contained in the con- 
junctive query “right” for r. 

Theorem 3.2 Let P,Q be an RLC-stable program 
with IDB predicate p, and let x be the vector of vari- 
ables appearing in bound arguments of p“ in the heads 
of the rules of Pad, and let P be the vector of vari- 
ables appearing in free arguments of pa in Pad. If P, 
Q is symmetric, then p”(x,ir) can be factored bp(m 
and fp(y) in P”‘s with respect to the query Q. 

The Magic program for the following query can 
thus be factored: 

P(X,Y) :- 

P(X,Y) :- 

P(XY) :- 
query(Y) :- 

W)7P(X, W, c(K 0 

P(K n 40 

lWOP(X, D), c(K V), 

P(K Y), r2(Y). 

4X, Y). 

P(5, Y). 

In summary, the results in this section are illustra- 
tive of a general approach to optimizing programs, in 
which we first apply the Magic Sets transformation 
and then factor. When we factor a Magic program 
and separate the bound and free arguments, we must 
establish two things: 

l Every answer to a subquery is also an answer to 
the original query. 

l No spurious subqueries or answers are generated. 

Because testing for these classes of recursions in 
general requires testing for containment of conjunc- 
tive queries, and testing for conjunctive query con- 
tainment is NP-complete [CM77, ASU79], testing for 
membership in these classes is also NP-complete. It is 
important that the measure of size here is the size of 
the recursion and query, not the database. An algo- 
rithm that is exponential in the size of the recursion 
and query (small) may be worth running during query 
planning in order to save time proportional to the size 
of the database (large) during query evaluation. Fur- 
thermore, in many cases, the conjunctive queries will 
be empty, in which case polynomial time algorithms 
for testing if a recursion satisfies Theorems 3.1 and 
3.2 recursions exist. 
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4 Some Additional Optimiza- 
tions 

We use the following definitions. 

Definition 4.1 A bound argument position of pQ is 
a static argument position if for every p”-literal in the 
body of a rule, the variable in this argument position 
also appears in the same argument position in the 
head of the rule. (Recall that the head must also be 
a pp literal, since we only consider unit programs.) 

Definition 4.2 Let (P, Q) be a unit program - 
query pair, and let the ith argument of pQ be a static 
argument. Without loss of generality, let the variable 
in the ith argument of PQ always be X, and let the 
constant in the ith argument of the query Q be c. 
The program P is reduced with respect to argument 
position i a.9 follows: 

l Every rule r is replaced by a(r), where u is the 
substitution X t c. 

l Every pa-literal - in the head or the body of a 
rule - is replaced by a #-literal with the same 
vector of arguments except for the ith argument, 
which is deleted. s is a new predicate with one 
fewer argument position, and 8 is identical to 
the adornment Q, but with the b corresponding 
to the ith argument deleted. 

We begin with a result that augments the theorems 
presented in the previous section. Some programs 
that do not satisfy the conditions of these theorems 
can be transformed into programs that do by applying 
the following lemma. 

Lemma 4.1 Let (P, Q) be a unit program - query 
pair, let the ith argument of Pa be a static argument, 
and let P’ be the reduced program. Then P and P’ 
are equivalent with respect to Q. 

In the rest of this section, we summarize a few sim- 
ple optimizations that are often applicable to factored 
programs. 

If pa is factored into bp and fp in P”‘g, then the 
relation bp is contained in magic-pa, since every rule 
defining bp contains magic-p” (with identical argu- 
ments) in the body. Further, for every rule defining 
fp (resp. bp) there is a rule with an identical body 
describing bp (resp. fp). Therefore, the goal bp(-), 
where _ denotes an “anonymous” variable, succeeds 
if any fp goal succeeds, and vice-versa. These obser- 
vations lead to the following propositions. 

Proposition 4.1 If a rule contains both bp and 
magic,pQ in the body, with identical arguments, then 
we may delete the magicpa literal. 

Proposition 4.2 If a rule contains the literal bp(-) 
and also an fp literal, the literal bp(-) can be deleted. 

A symmetric proposition allows us to delete some 
fp(,) literals. 

A similar observation is that if m-pm(F) is the orig- 
inal query goal, then bp(i?) is true if any fp goal suc- 
ceeds. This is because every fp fact, in particular the 
successful fp goal, is an answer to the original query. 
However, note that in general, pa may be factored 
but the original query may not be on predicate pQ. 

Proposition 4.3 Let the original query correspond 
to the fact m-p”(Z). If a rule contains the literal bp@) 
and also an fp literal, then the literal bp(z) can be 
deleted. 

Some additional simple observations that are useful 
are mentioned below. 

Proposition 4.4 We may delete a rule if the head 
literal also appears in the body, or if the head predicate 
is not reachable from the query predicate. 

This is a special case of deletion under uniform 
equivalence [Sag87]. 

Proposition 4.5 We may introduce an “anony- 
mous” variable in an argument position if the variable 
in it appears nowhere else in the rule. 

As shown in [RBK88], the preceding proposition 
can be strengthened to prove that an anonymous vari- 
able can be introduced in any existential argument 
position. 

Example 4.1 Consider again the factored version of 
Pm8 from the three-rule transitive closure (Figure 3.) 
We can delete the first and the third rules defining bt 
and the first two rules defining ft because the head 
literal also appears in the body. We can also delete 
the literal rn-t”f (X) from every rule that also contains 
bt(X), and then replace all variables that only appear 
once in a rule by anonymous variables. This yields: 

m_t’f(W) :- bt(,), ft(W). 

m-t”‘(W) :- m-t”‘(X), e(X, W). 

m-t”‘(5). 

bt(X) :- m-tbf(W, 4X, W, 

WW,fW. 
bt(X) :- m-t”(X), e(X, Y). 

ff(Y) :- W-), fW), 4W 0 
ft(Y) :- mAbf(X), e(X, Y). 

query(Y) :- bt(5), ft(Y). 
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We can delete both body occurrences of bt(,) since 
the rules in which they appear also contain ft liter- 
als in the body. Similarly, we can delete the literal 
bt(5) from the rule defining the query. This makes 
bt unreachable from the query, and we can delete all 
remaining rules for bt. This gives us: 

ml”‘(W) :- ft(W). 

m-t*‘(W) :- m-t*‘(X), e(X, W). 

m-t”(5). 

ft(Y) :- ft(W), e(W Y). 
ft(Y) :- ml*‘(X), e(X, Y). 

query(Y) :- ft(Y). 

The second rule defining m-t*j and the first rule 
defining ft can be deleted under uniform equivalence, 
and we finally obtain the following program: 

m-t*‘(W) :- ft(W). 

m-t”‘(5). 

ft(Y) :- m>“(X), e(X, Y). 

query(Y) :- ft(Y). 

Cl 

5 A Unifying Overview 

We consider how the refinements of the Magic Sets 
transformation presented in this paper are related to 
some previously defined optimizations. 

5.1 One-Sided Recursions 

One-sided recursions were identified in [Nau87] as a 
class of recursions for which there are efficient evalua- 
tion algorithms. Here we restate the characterization 
of one-sided recursions. 

Theorem 5.1 (Theorem 3.1 from [Nau87]) Let D be 
a recursive definition with a single, linear recursive 
rule r. Then D is one-sided if and only if the full 
A/V graph for r has only one connected component 
with a cycle of nonzero weight, and that component 
has a cycle of weight 1. 

An important subset of the one-sided recursions 
are those such that the full A/V graph has one con- 
nected component with a cycle of nonzero weight, and 
that component contains exactly one cycle of nonzero 
weight, and that cycle is of weight 1. We call such 
a one-sided recursion a simple one-sided recursion. 
Any simple one-sided recursion can be “expanded” 

(by substituting the rule into itself some number of 
times) to produce a rule of the form 

PG 3) :- P(W%(C~,B). 0) 

where x, B, c, and B are vectors of disjoint variables, 
and c is a conjunction of EDB predicates. 

The preceding recursion is written in a form iso- 
morphic to what we have called a left-linear recursive 
rule. However, the definition of left-linear is in terms 
of both the recursion and the specific query in ques- 
tion. By contrast, the one-sided recursions are de- 
fined independently of queries. Notice, however, that 
coupled with the query p(i?, Y)?, the preceding rule is 
left-linear; while coupled with the query p(X, z)? it is 
right-linear. 

A selection that binds either every variable in x 
or B is a full-selection. With this definition, we can 
formalize the preceding discussion with the following 
theorem. 

Theorem 5.2 Let P be a simple one-sided recursion, 
ezpanded so that it is of the form of Equation 1. Let Q 
be a full-selection query on p, the recursive predicate 
of P. Also, let Pm9 be the output of the Magic Sets 
algorithm on P and Q. Then Pm9 and Q factor with 
respect to p. 

5.2 Separable Programs 

Separable programs, defined in [Nau88], were de- 
fined to be class of recursions for which selection 
queries have efficient evaluation algorithms. Essen- 
tially, [Nau88] gave conditions that determine if a 
given recursion is separable and a schema for evaluat- 
ing selection queries over separable recursions. Given 
a specific selection query on a recursion that is sep- 
arable, the schema can automatically be instantiated 
to produce an evaluation algorithm for the query. 

As was the case with one-sided recursions, the 
variables appearing in the heads of rules in separa- 
ble recursions can be divided into equivalence classes 
(see [Nau88] for details.) A selection query that binds 
every variable of some equivalence class is a full- 
selection query, as before. 

Theorem 5.3 Let P be a separable recursion, let Q 
be a full-selection query on p (the recursive predicate 
of P), and let Pm9 be the result of the Magic Sets 
transformation applied to P, Q. Then the pair Pms, Q 
is factorable. 

The proof proceeds by showing that the conditions 
for separability given in [Nau88] guarantee that the 
pair P, Q will satisfy the conditions of Theorem 3.1. 
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To see that the converse is not true, that is, that 
there are factorable programs that cannot be viewed 
as full selections on separable recursions, note that 
separable recursions are all linear, whereas factorable 
programs need not be linear. 

There is also a close connection between the in- 
stantiated separable recursion evaluation algorithm 
and the program resulting from Magic Sets followed 
by the factoring rewrite. Essentially, for a full selec- 
tion on a separable recursion, the instantiated separa, 
ble recursion evaluation schema represents the same 
computation as the semi-naive bottom-up evaluation 
of the output of the factoring rewrite applied to the 
Magic program. 

5.3 Left- and Right-Linear Programs 

In [NRSU89], recursions containing right-linear, left- 
linear, mixed-linear, and combined-linear recursions 
were identified and special rewriting algorithms in the 
spirit of the Magic Sets transformation were given. 
A simple check shows that the classes of programs 
defined in [NRSU89] are a proper subset of the pro- 
grams satisfying the conditions of Theorem 3.1, and 
that Theorem 3.2 handles some additional programs. 
In addition, for the programs considered in that pa- 
per, the Magic Sets plus factoring transformation pr& 
duces the same final program as the rewriting alge 
rithms from that paper. 

5.4 The Counting Transformation 

The Counting transformation [BMSU86, BR87, SZSS] 
can be understood as a variant of the Magic Sets 
transformation. First, every derived predicate is aug- 
mented with some index fields, which, intuitively, en- 
code the derivation of the fact. That is, the value of 
the index encodes the sequence of rule applications, 
and the literal that is expanded at each step, that 
was used to derive the fact. The program Pm9 with 
these additional fields is then refined by deleting the 
fields corresponding to bound arguments in derived 
predicates. 

When we describe Counting as reducing the arity 
of derived predicates, we ignore the new index fields 
that are introduced. The cost of computing the in- 
dices can be significant; in fact, this may make the 
Counting strategy more expensive than even Naive 
fixpoint evaluation, or cause non-termination. 

There is an obvious parallel to factoring Magic pro- 
grams, since the objective here is again to reduce the 
arity of derived predicates by separating the bound 
and free arguments. The connection is quite close 
- for the class of programs for which we have shown 

the Magic program to be factorable, the factored pro- 
gram (with some of the simple optimizations that we 
discussed in Section 4) is identical to the Counting 
program with all index fields deleted. In effect, this 
is a class of programs for which the benefits of the 
Counting strategy - reductions in predicate arity, 
and accompanying deletion of some literals and rules 
- can be obtained without the overhead of comput- 
ing indices. 

If a program contains left-linear or combined rules, 
the Counting program will not terminate since a rule 
is created that generates the same fact with an infinite 
number of values in the index fields. The following 
example is illustrative: 

tqx, Y) :- tbf(X, Z), e(Z, Y). 

t*qx, Y) :- e(Z,Y). 

The first rule generates the Magic rule: 

magicA”j(X) :- magic-t”j(X). 

With the indices added in the Counting transforma- 
tion, this is: 

cntf”f(X, I + 1) :- cnt_t*f(X, I). 

This is a rule whose fixpoint evaluation does not ter- 
minate, given an initial cntl*f fact, which is obtained 
from the query. 

Theorem 5.4 If a program satisfies the conditions 
of the factoring theorems in Section 3, and no rule 
contains a left-linear literal, then the factored Magic 
program, after deleting trivially redundant r&es, is 
identical to the Counting program with all index fields 
deleted. 

The factoring approach allows us to reduce arities 
of some programs with left-linear literals, whereas 
the Counting program would never terminate in such 
cases. On the other hand, the well-known same- 
generation program is the canonical example of a pro- 
gram that cannot be factored, and in which the index 
fields introduced in Counting are necessary. 

6 Conclusion and Directions 
for Future Work 

We have shown that the Magic Sets transformation 
followed by factoring produces programs on which 
bottom-up evaluation efficiently produces the answer 
to the query. 

The results presented in this paper motivate several 
interesting problems. 
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l We have identified classes of programs for which 
the corresponding Magic program can be fac- 
tored. However, there are other interesting pro- 
grams that can also be factored. Identifying 
broader classes of factorable programs is an in- 
teresting research direction. 

l We showed that for the classes of factorable 
Magic programs identified in this paper, the in- 
dices in Counting were unnecessary. Can we 
show that the Counting indices are unnecessary 
in factorable Magic programs, independently of 
the sufficient conditions that we use to ensure 
factorability? 

l Not all one-sided recursions have arity-reducing 
evaluation algorithms, and not all one-sided 
recursions produce factorable Magic programs. 
Does Theorem 3.1 cover all one-sided recursions 
that have arity-reducing evaluation algorithms? 

l Suppose the program for pQ is factorable, but 
this predicate is not the query predicate. How 
can we identify cases in which pa can be factored 
even though it is not the top-level query? 

l Consider the various techniques for deleting rules 
and literals in Section 4 (additional optimiza- 
tions). Does the order in which these are ap- 
plied to a program affect the final result? If so, 
can we identify classes of programs for which the 
final result is unique? 
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