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ABSTRACT 
An Event-Join combines temporal join and outer- 

join properties into a single operation. It is mostly used 
to group temporal attributes of an entity into a single 
relation. In this paper, we motivate the need to support 
the efficient processing of event-joins, and introduce 
several optimization algorithms, both for a general data 
organization and for specialized organizations (sorted 
and append-only databases). For the append-only data- 
base we introduce a data structure that can improve the 
performance of event-joins as well as other queries. 
Finally, we evaluate the performance of the proposed 
algorithms. 

1. INTRODUCTION AND MOTIVATION 
Temporal data models are designed to capture the 

complexities of many time-dependent phenomena, 
something that traditional approaches, like the rela- 
tional model, were not intended to do. Many new 
operators are needed in order to exploit the full poten- 
tial of temporal data models in enhancing the retrieval 
power of a database management system (DBMS). 
Many temporal operators have been introduced in the 
literature, (e.g. [Clifford & Tansel 85, Adiba & Quang 
86, Clifford & Croker 87, Snodgrass 87]), yet with few 
exceptions, (e.g., tLurn et al 84, Rotem & Segev 87, 
Snodgrass & Ahn 87]), the issues of performance and 
optimization have not received as much attention. In a 
previous paper [Gunadhi & Segev 881, we identified a 
set of temporal joins and carried out preliminary inves- 
tigation into their optimization. 

In this paper, we study the optimization of 
event-join operations. The event-join operator was 
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first introduced by [Segev & Shoshani 88a]; it is unique 
in that it combines temporal join and outerjoin com- 
ponents into a single operation. It is used primarily to 
group temporal attributes of an entity into a single rela- 
tion; temporal attributes belonging to the same entity, 
but which are not synchronous in their event points, are 
likely to be stored in separate relations. Many queries 
require that they be grouped together as one relation, 
but differences in their behavior over time brings up 
the possibility that null values are involved in the 
operands and the join result. 

This paper deals with optimizing event-joins in 
temporal relational databases. Its contributions are the 
following: 
l Motivating and demonstrating the need to support the 
efficient processing of event-joins. 
0 As traditional processing cannot support event-joins, 
we have developed optimization algorithms for various 
situations, including static sorted databases, and 
dynamic databases with general data organization and 
append-only organization. 
l In the context of the append-only database, we have 
developed a new data structures called the AP-Tree 
(Append-Only Tree). This tree is a variation of an 
ISAM and a B+-tree combination, and is useful for 
other temporal queries besides event- joins. 
l We compare the proposed algorithms by evaluating 
their costs and present some computational results. 

The paper is organized as follows: in the next 
section, we discuss the relational representation of tem- 
poral data. In section 3, the event-join operator is 
defined and explained through an an example. Section 
4 explores the optimization of event-joins for data that 
is sorted and data in a generalized setting; an algorithm 
for each is described in this section. Section 5 deals 
with the third main type of data: append-only data- 
bases, for which we propose two algorithms to optim- 
ize the event-join operator for such a database. The 
AP-tree is introduced in section 6. Section 7 presents 
an analysis of the costs and relative performance of the 
four algorithms developed. Conclusions and directions 
for further research are given in section 8. 

Amsterdam, 1989 

- 205 - 



2. RELATIONAL REPRESENTATION OF TEM- 
PORAL DATA 

A convenient way to look at temporal data is 
through the concepts of Time Sequences (TS) and 
Time Sequence Collection (TX) [Segev & Shoshani 
871. A TS represents a history of a temporal attribute(s) 
associated with a particular instance of an entity or a 
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Table 1: Rqnsettting SWC Data with Lifeqan = [l. 201 

relationship. ‘Ihe entity or the relationship are identitied 
by a surrogate (or equivalently, the time-invariant Key 
[Navathe & Ahmed 861). For example, the salary his- 
toryofanemployeei8aTS.Intbispaper,wearecon- 
cemed with two types -- stepwise constant and 
discrete. Stepwise constant (SWC) data represents a 
state variable whose values are determined by events 
and remains the same between events: the salary atui- 
bute represents SWC data. Discrete data represents an 
attribute of the event itself, e.g. number of items sold. 
Time sequences of the same surrogate and attribute 
types can be grouped into a time sequence collection 
(TX), e.g. the salary history of all employees forms a 
TSC. There are various ways to represent temporal 
data in the relational model; detailed discussion can be 
found in [Segev & Shoshani 88a]. In this paper we 
assume a representation as shown in Table 1. 

We use the temx surrogate, temporal attribute, 
and time attribute when referring to attributes of a 
relation. For example, in Table 1, the surrogate of the 
MANAGER relation t is E#, MGR is a temporal attri- 
bute, and Ts and TE are time attributes. We assume 
that all relations are in 6rst temporal normal form 

t We refer to the d8t8 amsttuct a3 8 ‘telation’. but we mean 
8 ‘temponl tdatkd. h is different fmm 8 standard mlation be- 
cause d the associated metad8ta 

(ITNF) [Segev & Shoshani 88a]. 

3. EVENT JOINS 

An Event-Join groups several temporal atui- 
butes of an entity into a single relation. This operation 
is extremely important because due to normalization, 
temporal attributes am likely to reside in separate rela- 
tions. To illustrate this point, consider an employee 
relation in a conventional database. If the database is 
normal&d we are likely to find all the attributes of the 
employee entity in a single relation. If we now define 
a subset of the attributes to be temporal (e.g., salary, 
jobcode, manager, commission-rate, etc.) and they are 
stored in a single relation, a tuple will be created when- 
ever an event affects at least one of those attributes. 
Consequently, grouping temporal attributes into a single 
relation should be done if their event points are syn- 
chronized. Regardless of the nature of temporal atui- 
butes, however, a physical database design may lead to 
storing the temporal attribute8 of a given entity in 
sevd relations. The analogy in a conventional data- 
base is that the database designer may create 3NF 
tables, but obviously, the user is allowed to join them 
and create an unnormalizd result. 

Let ri(Ri) be a relation on scheme 
Ri = ($9 41, . . . . Ai,, Ts , Te ). In many instances we 
illustrate the concepts using a single temporal attribute, 
that is, m = 1; all apply to any m > 1. Also, when the 
tWO SWKt@ ~YJMS Si Of Ri and Si Of Rj m the 
same, we simply use S. Instances of surrogate S are 
denotedbysl,s2, sm.. We use Xi to refer to an arbi- 
trary tuple of ri; q(A) is the VZIIU~ of attribute A in 
tuple Xi. In order to describe the event-join between rl 
and r2, we first present two basic operations TE-JOIN 
and TE-OUTERJOIN. T&JOIN is the temporal 
equivalent of a standard equijoin; two tuples x1 E rl 
and x2 E r2 are concatenated t if their join attribute’s 
values are equal and the intersection of their time inter- 
vals is non-empty; the Ts and Te of the result tuple 
correspond to the intersection interval. Semantically, 
this join condition is “where the join values are equal 
at the same time”. In the case of event-joins, we am 
concerned only with a special case of TE-JOINS where 
the joining attribute is the surrogate. A TE- 
OUTERJOIN is a directional operation from rl to r2 
(or vice versa). For a given tuple x1 E rl, outerjoin 
tuples are generated for all points f E [xl(Ts), xl(TE)] 
where there does not exist x2 E r2 such that 

t It is not a stutdard concatenation since only one pair of 
Ts and TE is port of the result toflea. 

- 206 - 



x2(S) = xl(S) and t E [xx2(Ts), x2(TE)]. Note that all 
consecutive points t that satisfy the above condition 
generate a single outerjoin tuple. Using those opera- 
tions the event-join, ri EVENT-JOIN r2, is done as: 
templ t rl TE-JOIN r2 on S; temp2 t rl TE- 
OUTERJOIN r2 on S ; temp3 t r2 TE-OUTERJOIN 
rl on S ; result t templ u temp2 u temp3. Table 2 
shows the result of an event-join performed between 
the MANAGER and COMh4ISSION relations of Table 
1. 
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Table 2: Result of Event-Join 
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The most troublesome components of the event- 
join are the outer-joins. The situation is further compli- 
cated by the time interval predicate associated with the 
TE-outerjoin, preventing the usage of non-temporal 
outerjoin procedures [Rosenthal & Reiner 84, Dayal 
871. An easy solution that comes to mind is to store all 
non-existence tuples explicitly, e.g., tuples like 
(1,0,6,8) are added to the MANAGER relation of 
Table 1. In that case the outerjoin components disap- 
pear, and the problem reduces to a TE:JOIN on S. 
Unfortunately, there are many situations where such a 
‘fix’ will degrade overall performance rather than 
improve it. For example, if the whole Si domain is 
represented in relation ri, representing all non-existence 
data explicitly will in the worst case double the size of 
the table (this is the case of alternating state transitions 
between existence and non-existence). A much worse 
problem may arise when a relation contains only a frac- 
tion of the S-domain values, e.g., if on the average, 
only 5% of the employees of a large corporation earn 
commissions, adding to the non-existence data for the 
95% other employees to the commission relation will 
add to storage cost, querying cost (including event- 
joins), and maintenance of the commission relation and 
any of its associated secondary indexes. Consequently, 
we divide event-joins into two types -- ‘easy’ and 

‘difficult’. Easy cases are those where the relations con- 
tain explicit tuples for all non-existence data and are 
sorted by (S ,7’s) (the sorted case is detailed in the next 
section). Other cases are regarded difficult. In the 
remainder of the paper we are mostly concerned with 
the difficult cases. 

4. EVENT-JOIN OPTIMIZATION 
In this section we discuss the optimization of 

event-joins where the relations are either sorted or 
unsorted. Before we proceed with details of the algo- 
rithms, the important concept of tuple covering, which 
is used throughout the discussions, is presented first. 

4.1. Concept of Tuple Covering 
We first introduce the notion of covering which 

is used in all the event-join algorithms. To illustrate the 
concept, consider the example of Table 3. 

Table 3: Example of Tuple Covering 

Relation rl has a scheme R, = (S,A1, Ts, TE) and a 
single tuple <s 1, a, 5, 15. r2 has a scheme 
R2= (S,A, Ts, TE) and four tuples as shown in the 
table. During the event-join, x1 E rl has to be com- 
pared with tuples x2 E r2; assume that the order of 
comparisons is as shown in the table (topdown). A 
tuple x2 contributes to the covering of x1 if one or two 
result tuples (xi(S), xl(A1), x2(A3), Ic) can be derived, 
where Ic E [xl(Ts), xl(TE)]. Ic can be viewed as a 
covered portion of xi. The ‘modified xi’ column in the 
table represents the uncovered portion of xi. Note that 
in the covering process we have relied on the ordering 
of r2 by time in deriving the outerjoin tuples (those 
with x2(Ad = 0). Also, the covering column of the 
table contains only a subset of the final result since the 
covering of r2’s tuples is incomplete. The remaining 
result tuples should be derived from a TE-outerjoin 
from r2 to r 1. In this particular example, tbe remaining 
result tuples are <s 1,0, b , 1,2>, <s 1, 0, c ,3,4> and 
<sl,O,c, 16,20>. 

Determining and maintaining the information 
about the covered portion of a tuple is substantially 
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different if the relations are not sorted by Ts. In the 
sorted case we can determine outerjoin tuples as the 
scanning progresses and the information about the 
covered portion of the tuple is maintained by simply 
modifying its Ts. In the general case, the covered 
subintervals can be encountered in a random order; 
moreover, an outerjoin result tuple associated with 
x 1 E rl can be determined only when the scanning of 
r2 is complete. We tlrst present an algorithm for the 
case where rl and r2 are sorted by S (primary or&r) 
and by Ts (secondary order). In the next subsection we 
discuss the general case. As can be seen from the 
above example, the particular values of A r and A2 are 
immaterial as far as the logic of the event-join is con- 
cern&, we are only interested in existence or non- 
existence of these attributes. Consequently, in the 
remainder of the paper, whenever convenient, we use 
examples with relation schemas of (Si , Ts , TE ), but the 
reader should keep in mind that at least ON Ai attribute 
is part of the actual tuples. Also, the algorithms 
presented in this paper involve lots of housekeeping 
details. For lack of space we omit the details and pro- 
vide only an outline of the algorithms. The logic of all 
algorithms is described ignoring blocking of tuples; it is 
trivially extended to handle blocking. 

4.2. Event-Join Sort-Merge Algorithm 
The Sort-Merge algorithm processes the event- 

join by taking advantage of the fact that both relations 
are in sort order. Unlike a conventional relation which 
requires only primary key order for sorting, the tem- 
poral relation needs to be sorted on S as the primary 
order and Ts as the secondary order. The event-join 
sort-merge algorithm, which will be referred to as 
Algorithm One, scans each relation just once in order 
to produce the result relation. At each iteration, two 
tuples (possibly with mod&d Ts), x1 E rl and 
x2 E r2, are compared to each other and one or two 
result tuples will be produced based on the relationship 
between the tuples on their surrogate values and time 
intervals. 

The first comparison in Algorithm One is on the 
surrogate value -- if they are unequal, it means that the 
tuple with the lower S value, say xl, does not have any 
matching surrogates in the other relation; this implies 
that x1 is fully covered, an outerjoin result tuple is gen- 
erated, and the next x1 tuple is read. If on the other 
hand x1(S) = x2(S), there are many possible relation- 
ships that can exist between the time intervals of the 
two tuples; but there are just three distinct possibilities 
in terms of result tuples that have to be generated. The 
three cases are identified in Step 3 of Algorithm One. 

Algorithm One 
(1). Read x1 and x2. Repeat steps 2 to 4 until Endaf- 
File (EOF). If EOF occurred for ri. generate outerjoin 
tuples for the remainder of ‘j’s tuples (including the 
current tuple if not fully covered). 
(2). If xi (S ) < x,(S). generate an outerjoin result tuple for 
xi. 
(3). For the situation where xl(S) = x2(S), there are three 
cases to consider. 
CaSe I: Xi(Ts) = Xj(Ts). Write Bn interseCtian result tU- 

ple. 
Cake 2: %(7’s) <Xj(Ts) and x~(?‘B) Zxj(Ts). Write one 
outerjoin tuple for xi and one intersection tuple. Modify 
x1 and x2 and read next tuple(s). 
Care 3: Xi(TE) < Xj(Ts). Write all OUterjoin tuple for Xi. 

(4). Modify x1 and x2 and read next tuple(s). 

The next tuple of ri is read only when the current tuple 
has been fully covered. Note that whenever we use the 
subscriptsiandjinAlgorithmOne,i=1andj=2 
ori=2andj=l. Alsoanintersectionresulttupleis 
equivalent to a TEGJOIN result tuple. 

4.3. Event-Join Nested-Loop Algorithm 
The Nested-Loop method described below does 

not assume any kind of ordering among the tuples in 
either relation. The event-join is achieved in two 
stages, the tirst of which is nested-loop with rl and r2 
being the inner and outer relations respectively. Tuples 
produced in the first stage are the result of either inter- 
sections or outerjoins from rl to r2. In the second 
stage, the order of relations are now reversed for 
another nested-loop, but the only result tuples created 
here will be outerjoins from r2 to rl. 

Unlike the sorted case, maintaining the informa- 
th about the COVered portiOn Of Xi’!3 time interval Call- 

not be done by simply modifying Ts, and the following 
procedure is followed. In the tlrst nested-loop, when- 
ever a tuple xi from rl is first read a list U is initial- 
ized with the pair of time-stamps associated with x1. 
This list corresponds to the uncovered portions of x1. 
For each tuple x2, the algorithm applies the test of 
equality on the surrogate values and a non-null inter- 
section over time. The second condition is needed 
because if two tuples share a common surrogate value 
but are disjoint over time, no conclusion can be derived 
(in contrast to the sorted case) as to whether an outer- 
join is appropriate, unless the EOF for r2 has been 
reached. Thus, while scanning r2, the covering of x1 is 
achieved only through interval intersections, and for 
each x2, at most one intersection result tuple will be 
produced. Once this is accomplished, the uncovered 
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subintervals associated with x1 are determined, and 
appropriate outerjoin result tuples are generated. At the 
end of rZ’s scan the interval of x1 will either be com- 
pletely covered, has one uncovered segment, or at most 
two segments. For each uncovered segment, the time 
pair representing them are inserted into U in place of 
the original entry. This ensures that U remains an 
ordered list; the ordering within U helps the search for 
the appropriate interval that is relevant for a TE-JOIN 
in subsequent iterations through r2. Regardless of the 
number of entries in the list, any tuple x2 can only 
intersect with one entry, otherwise it would mean that 
there are two or more tuples in r2 having the same sur- 
rogate value and overlap in time. This implies that the 
condition of 1TNF has not been satisfied. 

Unlike conventional nested-loop procedures, we 
need not retrieve all the tuples of the outer relation, 
since an empty U indicates that the original xi has 
been fully covered. In the event that the loop ter- 
minates because the end of file r2 is reached, either the 
whole, or parts of xi’s time interval were left 
uncovered. An outerjoin result tuple is generated from 
each time pair in U; the time pair determines the 
time-start and time-end of the result tuple. 

The second nested-loop differs from the first in 
that it produces only outerjoin tuples from rF Thus no 
result tuple duplicating a tuple already produced in the 
first stage is created. In order to reduce the number of 
unnecessary scans of ri, the Algorithm uses a 
hush-filter [Bloom 703 created during the first stage 
as follows: when r2 is scanned, each time an x2 is 
found that participates in a TE-JOIN, the hash-filter is 
updated for that tuple. The hash-filter maintains H bits 
to represent JVr2 tuples, where H I N,?. The hash-filter 
entries corresponding to h(xz), where h is the hash- 
function, are initialized to 0, and whenever an x2 gen- 
erates an intersection result tuple for the current x1, 
h (~9 is set to 1. This table is kept in main memory, 
and in the best case scenario where there is sufficient 
memory to maintain one bit per tuple, the hash function 
is the count of x2 tuples already accessed, and the table 
is a one dimensional array indexed by this count. 

During the second stage, for each tuple in the 
inner relation r2, if it hashes to a value of 0, then an 
outerjoin tuple is produced without scanning ri. Other- 
wise, as in the first nested-loop, we carry out the same 
updates on the coverage of x2, although no intersection 
tuples are produced. As before, outerjoin tuples are 
produced when it can be determined that no x1 exists 
to cover the current x2. Below we outline the steps of 
the algorithm, labeled as Algorithm TWO. Vi denotes 
the list U for Xi, i =I, 2. 

Algorithm Two 
(1). [Nested-Loop-l] For each tuple in rl: read r2 and ex- 
ecute Step 2 until EOF for r2 or x1 is fully covered. If 
EOF for r 2, produce outerjoin tuples for x1 based on U1. 
(2). If xl(S) = x2(S) and the two time intervals intersect, 
then do: write sn intersection result tuple. Update U1. 
Set hash-filter entry for x2 to 1. 
(3). [Nested-Loop-Z] For each tuple x2 of r2: if hash-filter 
bit = 0 produce outerjoin tuple immediately, and read 
next x2. Otherwise read rl and execute Step 4 until EOF 
for r1 or x2 is fully covered. 
(4). if x2(S) = xl(S) and the two time intervals intersect 
then update UZ. 

In the case of having space for a second bit for 
each of r2’s tuples, Algorithm Two can be further 
improved if a second filter is used. During the first 
stage, while covering x1 it is possible that the time 
interval of x2 contains that of xi. In that case we set 
the corresponding filter entry to 1. Then, in Step 3 we 
also avoid the scan of rl if the tirst filter bit is 1 and 
the second filter bit is also 1. 

5. APPEND-ONLY DATABASES 

In the case of static history databases, one can 
store the data sorted by (S, Ts) and then apply Algo- 
rithm One; this provides the maximum efficiency for 
event-joins. For a dynamic temporal database, it may 
be too inefficient to keep the data sorted by (S, Ts), 
and consequently, either the operands are sorted prior 
to the application of Algorithm One, or Algorithm 
Two is used. If the database is append-only, the 
event-join algorithms can utilize this fact to enhance 
their efficiency. 

There are several variations of append-only data- 
bases, some of which are not ‘truly’ append-only. As 
far as event-joins are concerned we view a database to 
be append-only if tuples are inserted at the end of the 
file and in order of the events that generated them. The 
tuples can have open-end or closed-end time intervals. 
To illustrate these points, consider Figure 1 that shows 
the time sequences for three surrogate instances with 
life-spans of [l, NOW]; each event point (X in the 
figure) corresponds to the generation of a new tuple for 
the surrogate (we are not concerned with the values of 
the temporal attributes). Let relation ri represent that 
data; the states of that relation (for t 2 10) are shown 
in Table 4. Note that such data is inappropriate for a 
WORM device since insertions also cause updates; for 
example, the event at time 10 led to updating 
(~3, 1, NOW) to (~3, 1, 19) and appending the tuple 
(~3, 20, NOW). If the representation of the data in this 
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example uses time points instead of time intervals, it 
would be truly append-only. 

Figure 1: Time Sequences for 3 sutTogate# 

with Lifespans = [I, NOW I 

10SYr cm 83, 1. NOW 
sl. 5.6 

s 1.7. NOW 

~2.10, NOW 

s 1. 1. 4 

s2. 1.9 

53, 1. 19 

2051 cNextEventPt ~1.5.6 

sl. 7. NOW 
~2, 10, NOW 
83.20. NOW 

I 

Table I: Pragression of an Append-Only 

D8t8bMe StJttee 

Deletions in append-only temporal databases are 
significantly different than in conventional databases. In 
our case, they are storage management activities rather 
than user transactions. From a logical point of view 
deletions ate a result of a change in the lifespan t, i.e. 
an increase in the value of LSSTART. An example is a 
‘moving-window’ lifespan [NOW - 1, NOW] where 1 
is the length of history. In the case of step-wise con- 
stant sequences, deletion of data to reflect the new 
lifespan is not guaranteed to be contiguous; Table 5 
illustrates this issue. The table shows the state of ri at 
t = 21 (reproduced from Table 4) and the effect of 
changing the lifespan at t = 22 from [l, NOW] to 
[7,NOW]. As can be seen from the table a new 

t We use LSSTART and LS.END to refer to the boun- 
dary points of the lifespan. 

lifespan can cause updates and deletions at any point in 
the file. Although this example used open-end time 
intervals, the same problem occurs for any step-wise 
constant data regardless of its representation. It also 
demonstrates that maintaining the lifespan for an active 
database with small time granularity on a real-time 
basis can be prohibitively expensive. Fortunately, these 
updates and deletions can be done periodically without 
affecting the logical view of the data, that is, the physi- 
cal lifespan can be different tban the logical lifespan 
provided that the 6rst contains the latter. For discrete 
data, the situation is much simpler and implementing a 
change in the lifesban can be done by simply updating 
a begin-of-file pointer to the 6rst tuple whose time 
value is greater than or equal to the new LSSTART. 

Tuptc# IS=[l,NOW] LS=[7,NOW] 

t =21 1=22 

1 sl. 1. 4 ddetd 

2 sz 1.9 sz7.9 
3 $3. 1, 19 s3.7. 19 

4 sl, 5.6 d&?ld 

5 sl, 7. NOW sl, 7. NOW 
6 s2,1O,NOW ~2.10. NOW 

7 ~3.20, NOW ~3.20. NOW 

Table 5: Efht of Modifying the Lifespaa ol ri 

l tt=22 

If ri is an append-only relation the order of its 
tuples corresponds to the order of their events, thus, 
they are ordered by Ts. Unfortunately, the event-join 
needs the primary order to be by S, and the surrogate 
instances of ri can be in an arbitrary or&r. Neverthe- 
less, we can take advantage of the ordering by Ts. We 
assume that if retroactive corrections to the history are 
necessary, they are done in batch mode offline and the 
file is reorganized to preserve the Ts-orckr; this is a 
reasonable course of action in most environments 
where the normal mode of operation is not error- 
correction. Another solution is to use an overflow area 
to store the ‘correction records’; if their number is 
small (relative to the data file) they will not affect the 
performance of the event-join algorithms. 

We present two event-join algorithms in this sec- 
tion. The first algorithm, stated as Algorithm Three 
below, follows the logic of the Nested-Loop algorithms, 
but is different in two important ways. First, when x1 is 
compared against tuples of r2 we do not necessarily 
have to complete t2’s scan -- since r2 is append-only it 
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follows that x1 is fully covered if xl@ J = x2(,$2) and 
x2 fully covers xl, or if xl(S1) #x2(S2) and 
x2(Ts) >xl(TE). Second, as in the sorted case, the 
covered portions of x1 are always contiguous and thus 
we can maintain that information by updating xl(Ts) as 
was done in Algorithm One. Unlike the sorted case we 
cannot write outerjoin tuples for x2 when r2 is scanned 
to cover x1 (see Step 3 of Algorithm Three). 

Algorithm Three 
(1). [Nested-Loop-I] For each x1: read ra and execute 
Step 2 until x1 is fully covered or EOF for ra is reached. 
If EOF, generate outerjoin tuple for x1. 
(2). There are four cases to consider in this step. 
Care I: xt(Ts ) > xa(Ts ) -- no result tuple is generated. 
Case 2: xl(S) f x2(S) and xz(Ts) > xl(T~) -- gtmerate an 
outerjoin tuple for x1. 
Care 3: xl(S) z x2(S) and xa(Tr) I x1(2’s) -- no result 
tuple is generated. 
Care IX,(S) = x2(S) and xr(Ts) s xz(T~) -- do Step 3. 
(3). Execute Step 3 of Algorithm One, except that no 
outerjoin tuple is written for x2 if xa(Ts) < xr(Ts). and 
the hash filter is updated whenever the time intervals of 
xl and x2 intersect. 
(4). [Nested-Loop-21 The procedure is similar to Steps 1 
to 3. except: (i) If hash-filter entry for x2 is 0, produce an 
outerjoin tuple without scamring rt; (ii) Do not produce 
any intersection tuples; (iii) No filter updates occur and 
on EOF for ra the algorithm stops. 

The second algorithm, stated as Algorithm Four 
below, avoids the final outerjoin from rs to ri by writ- 
ing updated time-intervals for ra’s tuples while they are 
scanned for each xi tuple. This is achieved by creating 
a copy of ra which is updated during the first nested- 
loop. The benefit of this approach is that the second 
nested-loop is replaced by a single scan through t2 in 
order to determine which triples require outerjoins 
where no tuple has been found in rl with matching sur- 
rogates. The updating procedure for tuples in r 1 and r2 
is similar to that of Algorithm One. 

Algorithm Four 
(1). Create a working copy of ra and call it ra’. 
(2). [Nested-Loop-l] Procedure is the same as Steps 1 to 
3 of Algorithm Three, except: (i) Step 3 is done exactly 
as in Algorithm 0x1~ that is, we write outerjoin tuples for 
x2; (ii) xi is updated by writing in place its modified Ts ; 
if xi is fully covered, its Ts is set to TE + 1; (iii) No 
hash-filter is used. 
(3). Read r2’ in a single scan, and for those tuples where 
Ts I TE, produce an outerjoin result tuple. 

Note that Step 1 of Algorithm Four can be done 
while scanning r2 for the first x1 tuple; subsequent x1 
tuples scan r2’. Both of the above algorithms contains 
a nested-loop component to cover x1 tuples by scanning 
r2 This component is the most expensive part of the 
algorithms, and reducing the number of r2’s tuples 
scanned for each x1 is very important The append-only 
property helps in achieving that objective but we may 
further improve the performance by using a secondary 
in&x as described in the next section. 

6. THE APPEND-ONLY TREE 

Let rl and r2 be append-only relations. We use a 
second subscript xi whenever we need to identify 
specific tUpleS, that is, Xij is the tuple Xi in location j 
(note that there is a one-toone correspondence between 
tuple number and location number). We know that if 
jl > j2, then Xii,(Ts) 2 Xij2(Ts). Let ~1 be an arbitrary 
tuple of r i and assume we know the location of x2;, 
where 3 is the j that attains 
maxhjKdX2j&) 5 XI(%) d W3 = xl(W). 

T/ten, we can start a backward scan of r2 from location 
? until x1 is covered. Location 7 can be identified using 
an index on (,S, Ts). Such an index, however, if not 
available to support other queries, may be too expen- 
sive for a dynamic database. In this section we describe 
an index on Ts which is far cheaper to maintain com- 
pared to an S or (S, Ts) index. The index, referred to 
as M-tree (Append-only Tree), can be viewed as a 
form of a load-only P-tree. Since the index points to 
records based on Ts, we omit the requirement that 
x2;(Ss) = x,(SJ, and thus start from the tuple which 
has the desired Ts and is the farthest (towards the end 
of the file). Figure 2 illustrates the process of covering 
xl when the AP -tree is used. As a specific example, 
consider the tuples of relation ri in Table 4 at t 2 20. 
Let a tuple of rj be (s 1,6,7). To cover this tuple, only 
tuples of ri with Ts S 7 should be examined. If we use 
tltl AP -tree, the triple (s 1, 7, NOW) Of ri Can be 

accessed directly, and following a backward scan the 
latest tuple to be read is (s 1, 5, 6). Without the index, 
we would have to scan ri from the beginning and read 
5 tuples (compared to two tuples with the index). In 
deciding whether or not to use the index, the cost of 
accessing it should also be taken into consideration. 
Using the index may be beneficial since the worst case 
of the backward scan is processing all the way to the 
beginning of the relation, e.g. if the first tuple of ri in 
the above example would have been (~1, 1, NOW). 
The main property that affects the usefulness of the 
index is the uniformity of event rate among surrogates 
of the outer relation. 
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Flgure 2: Covering Tupie X1 Using AP -tree 

Note that a uniform rate of events for an outer 
relation t2 does not imply that the AP -tree need not be 
used for all x 1 E t 1. Those x 1 tuples closer to the 
beginning of the file may benefit more from a forward 
scan. Currently, if the event rate is not uniform among 
the surrogates of t2, an x 1 E t 1 is likely to benefit from 
using the AP -tree if x ,(S J is a very active surrogate in 
both rl and r2 

We will now describe the basics of the AZ’-tme 
(more details can be found in [Gunadhi & Segev 891). 
An AP -tree indexing ri on Ts is shown in Figure 3. 
This tree is a hybrid of an ISAM index and a B+-tree. 
The leaves of the tree contain all the Ts values in ri ; 
for each Ts value, the leaf points to the last (towards 
the end of the file) tuple with the specific Ts value. For 
example, tuples numbers 7, 8 and 9 have Ts = 10 
(those tuples must belong to different surrogates since a 
given surrogate cannot have two tuples with the same 
Ts). Each non-leaf node indexes nodes at the next 
level. Note that the pointer associated with a non-leaf 
key value points to a node at the next level having this 
key value as the smallest node value. The signiticance 
of this decision is explained later on. Access to the 
tree is either through the root or through the right-most 
leaf. The AP-tree is different than the E+-tree in 
several respects. First, if the tree is of degree 26, there 
is no constraint that a node must have at least d keys. 
Second, there is no node splitting when a node gets 
full. Third, the online maintenance of the tree is done 
by accessing the right-most leaf. Given the premise 
that deletions are treated as offline t storage manage- 

t Reorganbing the tnze to reflect deletions can be done dur- 
ing idle periods or low load periods. All the procedures function 
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8th Insertion 

ment, only the right-hand side of the tree can be 
affected. The only online transactions that affects the 
Ts values in an append-only database is appending a 
new tuple. In most cases, just the right-most leaf is 
affected, either a pointer is updated or a new key- 
pointer pair is added, but if it is full a new leaf has to 
be created to its right, and in the worst case nodes are 
added along the path from the root to the right-most 
node and a new root node has to be created. In Figure 
3 we show the effect of new tuples on the tree. 

In the case of event-joins, an AP-tree on r2 is 
used in the process of covering x1 E ri. Therefore, we 
need to get to the leaf node pointing to x2;. The fol- 
lowing procedure is adopted (v is a key value): 

Procedure AP 

1 StartattherootofAP-tree. 

2 For each node visited, follow the pointer corresponding 
to v+ = max(v Iv S xlr~)). 

cmrmctly regmdless of the timing; the only issue is perfommncc. 
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Several notes are in order. The fact that non-leaf 
nodes index lower level nodes based on the smallest 
rather than the largest key value assures that only one 
leaf node is visited, and that the maintenance of the 
tree is significantly cheaper than when the indexing is 
based on the smallest value. In step 2, we assumed 
that a v+ exists. It is easy to see that a v+ exists for all 
nodes except possibly for nodes on the path from the 
root to the left-most node. This case can be identified 
prior to accessing the M-tree and thus prevents 
unnecessary index search. 

7. COST ANALYSIS 
In this section, we analyze the costs of the four 

algorithms. The following definitions are needed. Wri 
is the width (bytes) for each tuple in ri. N,; is the 
number of tuples in ri. B is the page size (bytes). P,; 
is the number of pages used for ri = 

1 
(Nr, x Wri) / B 1 . 

Variables Wri, Nri and P,i apply to the operand rela- 
tions and also rEI, which denotes the relation resulting 
from the event-join. M is the size (pages) of main 
memory available for an algorithm. Ciu) is the cost in 
disk I/OS of step i of algorithm i . q is the percentage 
Of tUple.3 in ri that prodUCe outerjoin tllplc3S in +J. pi 
is the selectivity of the hash-filter on the tuples of ri 
that require outerjoins. Finally, yi measures the average 
scan length through relation ri when rj is the inner 
relation for Algorithm TWO, and yi’ does the same for 
Algorithms Three and Four. 

7.1. Algorithm One Cos@ 

If the two relations are already sorted, the cost is 
P,l + P,2 + Pu, which is the disk I/O time to join the 
two relations. For the case where the data need to be 
sorted fht, ah relation ri is first sorted into F,, files, 
each M pages in size, where F,i is the number of files 
neededforthesort,andisequalto P,i/M.TheFri 1 1 
files are then merged together, and the total cost for the 
sorting/merging is 2(MFri + P,i). We are assuming 
that (1) P,i S iIf, and (2) the system allows F,i files to 
be opened simultaneously. If one or both of these 
assumptions am unsatisfied, the I/O costs will be 
greater. The total cost, Ci(foral), is P,l + P,2 + P,m if 
the relations are sorted, and 2h4(Fpl + F,J + 
3(Pr1 + P,J + Pu, if sorting is required. 

7.2. Algorithm Two Costs 
Assume that the hash-filter is kept in main 

memory and maintains one bit per tuple. This means 
that the selectivity factor j3i represents the portion of 
tuples in ri with no matching surrogate values to be 
found in rj . Take ri as the inner relation in the 6rst 
nested-loop procedure. We present the cost of the algo- 
rithm in terms of its two nested-loop procedures which 
we label here as NLl and NL2. Cz(NL1) = P,l + 

r(l - %Ph /B] + *12(1 - al)rPrl / Ml p,, + 

al Cl 1 M pr2. 1 1 The first term represents the cost of 

reading in rl, the second term is the number of pages 
of result tuples written, the third term reflects the aver- 
age number of reads in order to produce result tuples 
where x1 is fully covered by r2, and finally the last 
component is the cost of producing outerjoin tuples for 
ri, which requires complete iteration through r2 for 
every M pages of ri. 

As for NL2, C2(NL2) = 

adhp,,/M + 1 1 
1 1 

p’i + V’“’ + nu - az) p,, 1 l+f p, 1 + 

W - f4.l pr2 1 M Cl. The lirst two components am 

the one time read cost of r2 and the write cost for the 
outerjoin result tuples for r5 the third subexpression is 
the cost of producing the outerjoin tuples with the help 
of the hash-filter; the fourth is the average cost of reads 
over the outer relation to determine that r2 tuples are 
fully covered, and the last item is the cost of exhaus- 
tive search related to producing outerjoin tuples. The 
total cost is Cz(totaZ) = C2(NL 1) + Cz(NL2). 

7.3. Algorithm Three Costs b 

For the ftrst case of the append-only nested-loop, 
the hash filter is also employed; thus we assume that 
one bit per tuple is used. The difference in cost 
between Algorithms Three and Two are:(l) outerjoins 
can be performed on average as cheaply as covered 
tuples in terms of disk reads for Algorithm Three, (2) 
the average length of a scan through the outer relation, 
yi’, is likely to be better than the ‘(i of Algorithm Two, 
since there is a clustering of tuples on Ts. As before, 
C&ml) = Cs(NL. 1) + Cs(NL2). 
loop, C,(NL 1) = P,l + 

where the second expression denotes 

the cost of iterating through r2. For th 

loop7 C1(Nt2) = P,, + 
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7.4. Algorithm Four Costs 
The final algorithm differs further from the previ- 

ous two nested-loop algorithms. The second part of the 
algorithm needs only a single scan through ~2. 
Although a temporary file needs to be created, it can be 
done during the first iteration through r2 in order to 

The tirst expression (in brackets), 

represent the total cost of reading in the relations when 
they are in the inner loop, plus the additional overhead 
of creating ti. The second component is the write cost 
of event-join tuples during the first loop plus the cost 
of updating r2’. The third component is the cost of gen- 
erating the outerjoin result tuples during the second 
nested-loop. The fourth term is the cost of scanning 
through r2 to produce the other result tuples. 

7.5. Comparisons Among Algorithms 
It is clear that Algorithm One is superior if the 

relations are already sorted. Also, the append-only algo- 
rithms dominate the algorithm for the general case. The 
interesting question is whether the relations, if not 
sorted, should be sorted, and then processed by Algo 
rithm One. Figure 4 shows some preliminary results. It 
should be noted that we have assumed favorable condi- 
tions for the sorting, e.g., no limit on the number of 
files that can be opened simultaneously during a sort- 
merge execution; if this is not the case, the results will 
make Algorithms Three and Four more attractive. 

Figure 4 shows the total I/O cost of the algo- 
rithms as a function of yi. We set the other parameters 
to be equal, i.e. P,= lOfl,OflO pages, P, = 200,ooO 
pages, @ = 0.1, and $i = 0.5. Additionally, we 
assumed that Ti ’ is equal to Ti. Ti measures the percen- 
tage of blocks in the relation that have to be scanned. 
The graph in Figure 4(a) shows the performance of all 
four methods when Ti WAS varied between 0.001 to 
0.01. It shows that Algorithm Two does worst among 
the algorithms, while Algorithm Four’s efficiency 
increases as the scan length gets shorter. It is better 
than Algorithm One at approximately yi = 0.001. Note 
that yi may be much more selective than 0.001 for an 
append-only database, since measured in disk I/OS, 
0.001 is 100 blocks, which is still a large number. Fig- 
ure 4 (b) highlights just the three best algorithms, so 
that a better comparison can be made at lower values 
of ‘yi. The values of the above parameters reflect the 
filter selectivity and the number of tuples scanned for 
each inner relation tuple. The results validate our con- 
jecture that one can do better than sorting in the 
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append-only environment. 

8. Summary and Future Research 
In this paper, we have addressed the problem of 

optimizing event-joins in a temporal relational data- 
base. Event-joins are important because normalization 
considerations are likely to split the temporal attributes 
of an entity among several relations. The event-join 
combines a temporal equijoin component and a tem- 
poral outerjoin component. Unlike a conventional 
outerjoin, the temporal counterpart consists of two 
asymmetric outetjoins, a fact that complicates its 
optimization. The complexity of processing event-join 
strategies depends on the nature of the data, its organi- 
zation, and whether or not all non-existing data are 
represented explicitly. We addressed three cases of 
data organization; these am (in increasing order of 
complexity) data sorted by surrogate and time, append- 
only, and general optimixation. For the sorted case 
(appropriate for static databases), the processing of an 
event-join is the most efficient since each relation has 
to be read only once. The append-only database is an 
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appropriate organization for many dynamic temporal 
databases and an event-join algorithm can take advan- 
tage of the time ordering. For the append-only case we 
have introduced the AP-Tree, which is used to reduce 
the cost of scanning an outer relation in a nested-loop 
procedure. 

In section 7, we have presented a cost analysis of 
the proposed algorithms. The algorithm for the sorted 
case (Alg. One) obviously dominates all others. The 
append-only algorithms (Algs. Three & Four) dominate 
the general nested-loop algorithm (Alg. Two); this is 
also expected. The interesting questions are whether, 
for the non-sorted case, the data should be sorted and 
then processed by Algorithm One. For the general 
case, the answer is yes (under the favorable sorting 
conditions that we assumed). For the append-only case 
the answer is dependent on the selectivity of the filter 
and the number of tuples scanned for each inner-loop 
tuple. Also, if the inner relation is significantly smaller 
than the outer relation, and the selectivity factors asso- 
ciated with the append-only algorithms are small, sort- 
ing will be less favorable. We are currently working on 
a comprehensive simulation test to validate our initial 
findings. 

Finally, it should be noted that many of the con- 
cepts presented in this paper are applicable to other 
temporal queries; in particular other joins since the 
concept of covering is also relevant to them. In current 
and future research we try to devise more elaborate 
rules on when to use the AP-Tree: Also, as evident 
from the cost equations, estimation of several parame- 
ters are required. 

References 
Adiba, M, Quang, N.B.. Historical Multi-Media Data- 
bases, Proc. ht. Co& on VLDB, pp. 63-70, 1986. 
Bloom, B.H., Space/Time Trade-offs in Hash Coding 
with Allowable Errors, Comm. of the ACM, 13, 7, 
1970. 
Clifford, J., Croker, A., ‘Ibe Historical Relational Data 
Model (HRDM) and Algebra Based on Lifespans, 
Proc. ht. Co@. on Data Engineering, pp. 528-537, 
1987. 
Clifford, J., Tansel, A., Gn an Algebra for Historical 
Relational Databases: Two Views, Proc. ACM SIG- 
MOD ht. Co@ on Mgt. of Data, pp. 247-265, 1985. 
Dayal, U., Of Nests and Trees: A Unified Approach to 
Processing Queries That Contain Nested Subqueries, 
Aggregates, and Quantifiers, Pro. ht. Conf on VLDB, 
pp.197-208, 1987. 

Gunadhi, H., Segev, A. A Framework for Query 
Optimization in Temporal Databases, Lawrence Berke- 
ley Lab Technical Report LBL-26417, 1988. 
Gunadhi, H., Segev, A. Indexing Structures for Tem- 
poral Database, Lawrence Berkeley Lab Technical 
Report, 1989. 
Lu, H., Carey, M.J., Some Experimental Results on 
Distributed Join Algorithms in a Local Network, Proc. 
Int. Conf. on VLDB, 1985. 

Lum, V., Dadam, P., Erbe, R., Guenauer, J., Pistor, P., 
Walch, G., Werner, H., Woodtill, J., Designing DBMS 
Support for the Temporal Dimension, Proc. ACM SIG- 
MOD Int. Coy? on Mgt. of Data, pp. 115-130, 1984. 
Mackert, L.F., Lohman, G.M., “R” Validation and Per- 
formance Evaluation for Local Queries, Proc. ACM 
SIGMOD Int. Co@. on Mgt. of Data, pp. 84-95, 1986. 
Navathe, S., Ahmed, R., A Temporal Relational Model 
and a Query Language, UF-CIS Technical Report TR- 
85-16, Univ. of Florida, 1986. 
Rosenthal, A., Rein*&, D., Extending the Algebraic 
Framework of Query Processing to Handle Outerjoins 
Proc. ht. Conf. on VLDB, pp. 334-343,1984. 

Rotem, D., Segev, A., Physical Organization of Tem- 
poral Data, Proc. Int. Conf. on Data Engineering, pp. 
547-553, 1987. 
Segev, A., Shoshani, A., Logical Modeling of Temporal 
Databases, Proc. ACM SIGMOD Int. Conf. on Mgt. of 
Data, pp. 454-466,1987. 

Segev. A., and Shoshani, A., The Representation of a 
Temporal Data Model in the Relational Environment, 
Lecture Notes in Computer Science, Vol. 339, M. 
Rafanelli, J.C. Klensin. and P. Svensson (eds.), 
Springer-Verlag, pp. 3961,1988a. 
Segev, A., Shoshani, A., Functionality of Temporal 
Data Models and Physical Design Implementations, 
IEEE Data Engineering, 11,4, pp. 3845, 1988b. 

Snodgrass, R., The Temporal Query Language TQuel, 
ACM Transactions on Database Systems, pp. 247-298, 
1987. 
Snodgrass, R., Ahn, I., Performance Analysis of Tem- 
poral Queries, TempIS Document No. 17, Dept. of 
Comp. Sci., Univ. of North Carolina, 1987. 

- 215 - 



- 216 - 


