
Derived Data Update in Semantic Databases*

I-Min Amy Chen and Dennis McLeod
Computer Science Department

University of Southern California

Abstract

The derived data update problem involves the trans-
formation of modifications of derived facts into cor-
responding changes to base facts and other derived
facts. Using a database schema defined with a generic
semantic database model which includes derived data
specifications, techniques and algorithms are provided
for appropriately modifying base data when derived
data are changed. An experimental prototype system
based upon this approach has been developed.

Keywords: derived data update, semantic databases,
update propagation

1 Introduction

Derived data in a database is useful to accommodate
multiple viewpoints on information, to maintain fie-
quently referenced/computed data, and to support
database protection/security [8, 9, 10, 111. Conse-
quently, a database is viewed here as consisting of
base data, or explicitly stored facts, and derived data,
which are computed from base data or derived data
by derivation rules.

It is important for database users to be able to mod-
ify derived data directly, rather than issuing a less
natural and possibly more complicated modification
on the underlying base data The derived data update
problem [4, 5, 6, 7, 12, 13, 161 involves the transforma-
tion of modifications of derived data into correspond-
ing changes to base data and other derived data The
transformation of modifications is usually termed up-
date propagation.

*This research was supported, in part, by the USC AT&T
Affili8tW Program.

Permission to copy without fee all or past of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the Fifteenth International
Conference on Very Large Data Bases

The derived data update problem is considered diffi-
cult because update propagation is not always unique;
there may be no way or more than one way to trans-
form modifications. For example, the object class A
may be defined as derived by the union of classes B

and C: inserting an instance to A can cause the in-
stance to be inserted to B, to C, or to both. In this
case, the update transaction is ambiguous.

The derived data update problem is similar to the
view update problem [4, 5, 6,7, 12, 13, 161 in the termi-
nology of relational databases. Because it is difficult
to support update propagation, most database sys-
tems permit view update in extremely limited cases,
or allow view update only if update propagation pro-
cedures are explicitly specified by designers or users.
The problem of supporting derived data update in
semantic (structurally object-oriented) databases is
largely open; most existing approaches restrict derived
data to be not changeable (e.g., IF0 [l], Galileo [3],
SDM [9], and Taxis [14]). DAPLEX [15] supports de-
rived data update, but users must specify the corre-
sponding update on the base data; the user is respon-
sible for assuring the correctness of such derived data
update transactions.

Since conceptual schemas specified with semantic
database models are richer than record-oriented (e.g.,
relational) schemas, it is possible to automatically de-
cide update propagation in a more substantive man-
ner. Our approach to the derived data update in a se-
mantic database is termed schema-based, since update
propagation is based on the schema definition, which
includes class (type) and attribute definitions, con-
straints, and derivation rules. For example, changes
to an attribute will have direct effects on its inverse,
the attributes derived from this attribute, and the
other attributes from which this attribute is derived.
Changes to instances of a class will have direct ef-
fects on the immediate superclass and subclasses of
the class. In our approach, schema information is used
to yield update rules. As a simple example, there is an
update-rule which states that if class A is the union
of classes B and C, then insertion to either class B or
class C will cause insertion to class A. Update propa-
gation is based upon these update rules.

The organisation of the remainder of this paper is
as follows. A generic semantic database model upon
which the schema-based approach is based is briefly

Amsterdam, 1989

- 225 -

introduced in section 2; this data model is a simplifi-
cation of SDM [9]. I n section 3, we describe derived
data update rules based on schema information. An
experimental prototype system embodying a derived
data update algorithm based upon the rules is pro
sented in section 4. Conclusions and directions for
future research are given in section 5.

2 A Generic Semantic Data-
base Model

A generic semantic database model (GSDM), which
embodies the main features of prominent semantic
database models [ll], is used as a basis for our ap-
proach to schema-based derived data update. The
GSDM is a simplification of SDM [9]. The Appendix
contains an example database schema describing a
university application environment specified using the
GSDM.

A database schema in GSDM consists of a collection
of classes. Each class has a set ofinstances (members),
which are the objects belonging to the class. Every
class has a class name, and an associated collection of
attributes. There are two kinds of attributes: mem-
ber and class attributes. Member attributes describe
properties of instances of a class; for example, every
instance of class COURSE has a course number, an in-
structor, a teaching assistant, and students enrolled in
the course. Class attributes specify properties of the
class as a whole, e.g., the total number of instances in
the class COURSE. As shown in the Appendix, class
COURSE has a class attribute Total-courses, and the
four member attributes Course-number, Taught-by,
Has-ta and Students-currently-enrolled. A class may
have a cardinality limitation, which restricts the num-
ber of instances of this class. For example, the class
TEACHING-ASSISTANT has the cardinality limit*
tion: with size between 0 and 25.

Each member attribute has a name and a specifica-
tion of the range (wake class) of this attribute; for
example, attribute course-number of COURSE has
value class INTEGERS. If the attribute is derived,
then there is also a derivation rule; e.g., a person’s
monthly income can be derived by: Annual-income /
12. An attribute can also be specified as the inverse
of an attribute of some other class.

An attribute can have associated constraints, e.g.,
single-valued or multi-valued. A multi-valued at-
tribute may have an associated upper and lower
bound. For example, attribute Takes of STUDENT
has an associated constraint: multi-valued with size
between 2 and 5. An attribute which is not allowed to
have null values is specified by may not be null; e.g.,
the Name of a person is constrained in this manner. If
the value of an attribute cannot be changed, then not
changeable is specified. Ezhausts value class requires
that all members of the value class must be the value
of the attribute for some instance(s). An attribute for

which overlapping values are not allowed is specified
with no overlap in values.

The specification of a class attribute is similar to
that of a member attribute, except that class attribute
does not have an inverse, and does not have constraints
specific to member attributes such as ezhausts value
class or no overlap in values. A class attribute can
have a derivation which involves properties of the class
as a whole, such as the total number of instances in
the class; e.g., class attribute Total-courses of class
COURSE has the derivation: number of members in
this class.

Classes in a GSDM database schema are organized
as a collection of directed acyclic graphs (DAGs). A
subclass can be derived from other classes or sub-
classes by one of the seven subclass constructors. A
subclass can be (1) specified by attribute predicate;
(2) explicitly specified (user-controlled); (3) the inter-
section of two classes; (4) the set difference of two
classes; (5) the union of two classes; (6) the current
set of values of a given attribute or (7) specified in
certain format’. For example, subclass COMPUTER-
MAJOR-STUDENT has the derivation rule: where
Major = ‘CS’ or Major = ‘CE’ (a category 1 sub
ChS). Subclass STUDENT is derived from PER-
SON with the derivation: specified (a category 2 sub-
class). Subclasses BOTH-TA-RA and STUDENT-
EMPLOYEE are the intersection and the union of
classes TEACHING-ASSISTANT and RESEARCH-
ASSISTANT (category 3 and category 5 subclasses,
respectively). Subclass UNDERGRADUATE is the
set difference of classes STUDENT and GRADUATE
(a category 4 subclass). COURSES-TAKEN has the
derivation rule: where is a value of Took of STUDENT
(a category 6 subclass).

A database tmnsaction (or tmnsaction for short) is
a set of database commands (or commands) which af-
ter exe&ion will not violate database integrity con-
straints. There are five kinds of modification com-
mands: add instances to a class, remove instances
from a class, change the value of a class attribute, add
values to a member attribute, and delete values from a
member attribute. Each of these five commands may
cause update propagation if data changed is derived.
In some cases, derived data update propagation rules
can be constructed for individual commands, and in
other cases the combination of commands within a
transaction must be considered.

3 A Schema-Based Approach

We propose in this section an approach to derived data
update for the GSDM. A list of update rules guiding
derived data update is given. A derived data update
transaction is allowed only if it follows update rules.

‘Subcbmrea derived using data formatting apcci&ations
(e.g., for strings) arc not explicitly considered here.

- 226 -

For example, “insertion to a class A which is the in-
tersection of two classes B and C will cause the same
instance to be inserted to B and C” is a sample up-
date rule. An update rule may include default actions
to resolve ambiguities. In the practical use of our ap
preach, the database designer or user can override the
defaults.

Update rules are gathered from the constructions
of classes or attributes, and from the restrictions of
classes or attributes. We call the former structura2
information, and the latter constmints. Structural in-
formation includes class definitions, subclass deriva-
tions, and derived attribute definitions. Constraints
are specified in the class or the attribute definitions;
examples of constraints include the cardinality limita-
tion of attributes and classes, the existence of inverse
of an attribute, and the restrictions that an attribute
value cannot be nulI or cannot be changed. Update
rules utilizing both structural information and con-
straints are presented here.

3.1 Update Rules From Structural In-
formation

3.1.1 Derived Attributes

Derived attributes are those attributes which have
associated derivation rules. For example, class
STUDENT-EMPLOYEE has the derived attribute
Benefit with the derivation rule: Tuition-coverage +
Stipend. Changing the value of Tuition-coverage or
the value of Stipend will cause the value of Benefit to
change. However, direct update on the value of Ben-
efit is not allowed since the update propagation is not
unique.

Class PERSON has the derived attribute: Monthly-
income with the derivation: Annual-income / 12. If a
person’s income changes, then the change can be made
on Annual-income, and Monthly-income will change
to the new value of Annual-income divided by 12.
Changes can also be made to the value of Monthly-
income, in which case the value of Annual-income is
changed to be the new value of Monthly-income mul-
tiplied by 12.

Whether an update on a derived attribute is allowed
depends upon how that attribute is derived. We have
the following update rule for derived attribute update:

Update-Rule 1 (One-to-one Onto) Update of a
derived attribute is allowed if the derivation jknction f
is a one-to-one onto total function. Update of under-
lying data will cause update of the derived attribute by
using the fanction f. Update of the derived attribute
will cause update of the underlying data by using the
inverse of function f.

3.1.2 Derived Subclasses

As stated in section 2, there are six hinds of subclasses
in the GSDM considered here: (1) specified by at-

tribute predicate, (2) explicitly specified, (3) the inter-
section of two classes, (4) the difference of two classes,
(5) the union of two class, and (6) the current set of
values of a given attribute. The following discussion
is based on these subclass categories.

COMPUTER-MAJOR-STUDENT is a subclass of
STUDENT with the derivation rule: Major of STU-
DENT is either ‘CS’ or ‘CE’. Inserting a COMPU-
TER-MAJOR-STUDENT Pl with major ‘CS’ will
propagate an insertion to class STUDENT. Insert-
ing a COMPUTER-MAJOR-STUDENT P2 with ma-
jor ‘MATH’ is an error. Inserting a STUDENT
P3 with major ‘CS’ or ‘CE’ will cause the same
student P3 to be inserted to class COMPUTER-
MAJOR-STUDENT. Deleting an instance P4 from
STUDENT will cause the deletion to be propagated
to COMPUTER-MAJOR-STUDENT, providing P4’s
major is ‘CS’ or ‘CE’. However, deleting a student
from COMPUTER-MAJOR-STUDENT is ambigu-
ous. This can be interpreted as a change of the stu-
dent’s major, or as a removal of that student from the
class STUDENT.

Update-Rule 2 (Attr-Pm&Based-l) Let T, be a
subclass of Tp which is derived by using an attribute
predicate P. Inserting an instance A to T, which sat-
isfies P will cause the same instance to be inserted to
Tp. However, if A does not satisfy P, then this is an
el‘ly)r. Inserting an instance B to Tp, provided B sat-
isfies P, will cause B to be inserted to T,. Deleting an
instance C from Tp will cause C to be deleted fivm T,
if C is also an instance of Tc.

Update-Rule S (Attr-Pred-Based-a) Let Tc be a
subclass of Tp which is derived by A = V, where A is
an attribute of Tp and V is a specijIed oalue. Inserting
a new instance z to T, will cause z to be inserted to
Tp, and value V to be added to the attribute A of 2.

STUDENT is an explicitly specified subclass of class
PERSON. Any insertion to STUDENT will be prop
agated to PERSON. Any deletion from PERSON will
be propagated to STUDENT. New data inserted to
PERSON can either be propagated to class STU-
DENT or not. To simplify the problem, the default
action is not to propagate. Also by default, the dele-
tion of an instance from STUDENT will not be prop-
agated to PERSON.

Update-Rule 4 (Specified) Let T, be a subclass of
Tp with derivation “specified.” Inserting an instance
A to T, will cause the same instance to be inserted
to Tp if it is not there already. Deleting an instance
B j+om Tp will cause deletion from T, if B is also an
instance of T,. Insertion to T or deletion fkom Tc will
not be propagated (by defaultp:

Subclass BOTH-TA-RA is an intersection of class
TEACHING-ASSISTANT (TA for short) and class

- 227 -

RESEARCE-ASSISTANT (RA for short), i.e., de-
rived by “is in TA and is in RA.” Inserting an instance
Pl to class TA, providing Pl is also a research a&-
tad, d cause Pl to be inserted to class BOTH-TA-
RA. Inserting P2 to BOTH- TA-RA will cause P2 to be
inserted to both classes TA and RA. Deleting P3 from
RA will cause P3 to be deleted from BOTH-TA-RA if
P3 is an instance of BOTH-TA-RA. Deleting P4 from
BOTH-TA-RA is ambiguous; it can mean deleting P4
from TA, from RA, or from both.

Update-Rule 5 (Intersection) Let T,, Tb and T,
be subclasses of Tp, where T, is derived by “is in T,,
and is in Tb.n Inserting z to T, (OT Tb), providing z
is ako in Tb (OT T,), will cause z to be inserted to T,.
Inserting 2 to T, will cause z to be inserted to T, and
Tb (and Tp). Deleting an instance y j%orn eithet T, OT

Tb will cause y to be deleted from T, if y is also an
instance of T,.

Class UNDERGRADUATE and class GRADUATE
are both subclasses of STUDENT. UNDERGRADU-
ATE is a set difference of STUDENT and GRADU-
ATE (i.e., derived by “is not in GRADUATE”). In-
serting a student Pl to class STUDENT can cause Pl
to be inserted to GRADUATE or UNDERGRADU-
ATE. If the derivation of GRADUATE is satisfied (i.e.,
Level of Pl is equal to ‘Graduate’), then the instance
Pl will be inserted to GRADUATE. If the derivation
is not satisfied, then Pl will be inserted to UNDER-
GRADUATE. Of course, there are cases where update
propagation is ambiguous, e.g., Pl’s Level is unknown,
or the derivation of GRADUATE is %pe&ed.” A
reasonable default here is to insert the instance to
class UNDERGRADUATE. Inserting an instance P2
to GRADUATE will cause P2 to be inserted to STU-
DENT if P2 is not already an instance of STUDENT
(therefore, it is not an instance of UNDERGRADU-
ATE either.) If P2 is an instance of class STUDENT
and class UNDERGRADUATE, then P2 will be re-
moved from class UNDERGRADUATE. Iaserting a
student P3 to class UNDERGRADUATE will cause
the same instance P3 to be inserted to class STU-
DENT if it is not in STUDENT and is not in GRAD-
UATE. However, it will be an error if P3 is an instance
of GRADUATE. Changing a student from GRADU-
ATE to UNDERGRADUATE must be done by first
deleting that student from GRADUATE, and then in-
serting the same student to UNDERGRADUATE.

A transaction which deletes an instance P4 from
STUDENT will delete P4 from GRADUATE or UN-
DERGRADUATE depending upon the nature of P4.
Whether deleting an instance from GRADUATE is lo
gal or not and how it will affect STUDENT depends
upon how GRADUATE is derived. If deleting an in-
stance from class GRADUATE is legal and it does not
affect the same instance in STUDENT, then that in-
stance will be added to UNDERGRADUATE. Delet-
ing a student from UNDERGRADUATE is ambigu-
ous; the update propagation can be either to delete

that instance from STUDENT, or to add that instance
to GRADUATE. Since it is not always possible to
make the instance a member of class GRADUATE,
the default action is to delete that instance from STU-
DENT.

Update-Rule 6 (Difference) Let T, and Tb be sub-
classes of Tp, and Tb is derived by “is not in T,,.” In-
serting an instance z to Tp will cause z to be inserted
to To if the derivation of T, is satisfied; it will cause
z to be inserted to Tb if the derivation of T, is not
satisfied. If the derivation of T,, cannot be evaluatea,
then z will be inserted to Tb by default.

Deleting an instance y from Tp will cause y to be
deleted j?om T, OT Tb, depending upon to which class
y belongs. Deleting an instance y from T, will cause y
to be added to Tb if the deletion is legal and y is still
an instance of Tp after it is deleted from T,. Deleting
an instance y born Tb will cause y to be deleted from
Tp by default.

Classes TEACHING-ASSISTANT (TA for short),
RESEARCH-ASSISTANT (RA for short), and
STUDENT-EMPLOYEE are all subclasses of class
GRADUATE. STUDENT-EMPLOYEE is the union
of TA and RA (i.e., derived by ?s in TA or is in
RA”). Inserting an instance Pl to TA or to RA will
cause Pl to be inserted to STUDENT-EMPLOYEE.
Inserting a student to STUDENT-EMPLOYEE is am-
biguous, because that student can be a teaching as-
sistant or a research assistant. Deleting an instance
from TA (or RA) will cause the instance to be deleted
from STUDENT-EMPLOYEE if that instance is not
in RA (or TA). Deleting an instance from STUDENT-
EMPLOYEE will cause that instance to be deleted
from both TA and RA.

Update-Rule 7 (Union) Let T,, Tb and T, be sub-
classes of Tp; T, is de&ed by “is in T, OT is in Tb.”
Inserting an instance z to T, or Tb will cause z to be
inseTted to T, if z is not already’ in T,. Deleting an
instance y from T, (or Tb) providing y is not in Tb (or
T,) will cause y to be deleted from T,. Deleting y from
T, will cause the same instance y to be deleted from
both T, and Tb (if it is there).

Class COURSES-TAKENis a subclass of COURSE
with the derivation: is a value of Took of STUDENT
this means that the instances of COURSES-TAKEN
are those instances of COURSE for which there exists
student(s) who have taken that course. If the fact “PI
took CS102” is added to the database, then the cor-
responding fact associated with COURSES-TAKEN, . ~EK, “CS102 is a course taken by Pl” will be inserted
to the database. If the fsct “CS102 is a course taken by
Pl” is inserted to the database, then the correspond-
ing fact “Pl took CS102” will be generated. Removing

lThat is, the derivation rule is “specified,” or values of at-
tributes in the derivation arc unknown.

- 228 -

the fact “Pl took CS102” wilI cause the fact “CS102 is
a course taken by Pl” to be deleted from the database,
and vice versa. This example can be generalized as
follows:

Update-Rule 8 (Attribute-Value-Based-Class)
Let Tp be a class with member attributes Al, .. a, A,,,
and T, is a class with derivation “is a value of Ai of
Tp” (i is between 1 and n). Let t be an instance of Tp.
Inserting a new value x to attribute & of instance t
will generate coTresponding data in T,. Inserting new
data to T, will generate corresponding data in Ai of
Tp. Deleting x from attribute Ai of instance t will re-
move corresponding data in T,. Deleting data from
T, will cause the corresponding data in A; of Tp to be
removed.

3.2 Update Rules From Constraints

There are cases when structural information is inade-
quate to decide a unique update propagation, but in
which constraints embedded in the schema definition
may be used to resolve the ambiguity. Examples of
such constraints (on attributes) are multi-valued and
may not be null. Value classes of attributes also pro-
vide information which is sometimes useful in resolving
ambiguities.

3.2.1 Attributes and Their Value Classes

Class STUDENT-EMPLOYEE is the union of TA
and RA. According to the discussion in the previ-
ous subsection, insertion to a union subclass such
as STUDENT-EMPL 0 YEE is ambiguous. Informa-
tion from member attributes and their value classes
can however be used to decide a unique update
propagation. For example, inserting an instance Pl
to STUDENT-EMPLOYEE, providing that Pl is in
charge of a course CSlOl, will cause this instance Pl
to be added to TA, since Is-in-charge-ofis an attribute
of TA. However, Pl may also be an instance of RA, if
classes TA and RA are not disjoint. A default action
is to insert Pl to TA only.

Update-Rule 9 (Value-Class) Suppose T, is a
subclass with derivation “is in T, OT is in Tb,” T, has
an attn’bute Att~ with value class Td, and Tb does not
have such an attribute. Inserting an instance x to T,
given Attr of x has a value from Td will cause x to be
inserted to T, only (by default).

5.2.2 Multi-valued with Size Restrictions

A multi-valued attribute may have a specified upper
and lower bound, limiting the size of the attribute. A
class can also have the size limitations. This informa-
tion can be used to decide update propagation.

Class STUDENT-EMPLOYEE is the union of TA
and RA. Suppose TA has a size limitation to be
between 15 and 25. Insertion to STUDENT-EM-
PLOYEE may be ambiguous, but if there are already
25 TAs, then the new student employee can only be a
RA, otherwise there will be a constraint violation. In
this case, the system will suggest that the new data
should be an instance of RA.

There are similar situations for intersection.
BOTH-TA-RA is an intersection of TA and RA. Delet-
ing an instance from BOTH-TA-RA providing there
are 15 TAs will suggest the deletion should only be
propagated to class RA.

Update-Rule 10 (Max-Size) Let T, be a subclass
with the derivation ‘% in T, or is in Tb “; T, has a
size limitation to be between Min and Max. InseTting
a new instance x to T, given T, aleady has Max size
will suggest that x should be inserted to Tb only.

Update-Rule 11 (Min-Size) Let T, be a subclass
with the derivation “is in T, and is in Tb”; T, has
a size limitation to be between Min and Max. Delet-
ing an instance x from T, given T, has Min size will
suggest that x should be deleted from Tb only.

3.2.3 Nullable

A class with an attribute specified as “may not be
null” will prevent any insertion to that class unless
the value of that attribute is given. Consider the class
STUDENT-EMPLOYEE, and suppose attribute Is-
in-charge-of of TA cannot have null values. Inserting
an instance Pl to STUDENT-EMPLOYEE without
giving a value to Is-in-chaTge-of will suggest that Pl
is a research assistant.

Update-Rule 12 (Nullable) Let T, be a union of
T, and Tb; T, has an attribute Attt which is specified
as umay not be null.” Inserting an instance x to T,
without giving a value to Attr will suggest that x should
be inserted to Tb only.

5.2.4 Changeable

In addition to the one-to-one case described previ-
ously, there are other cases in which a derived at-
tribute can be updated. For example, attribute Ben-
efit of class STUDENT-EMPLOYEE is defined to be:
Tuition-coverage + Stipend. If Stipend is defined to
be “not changeable,” then a change to the attribute
Benefit can result in a unique change to the attribute
Tuition-coverage.

Update-Rule 13 (Changeable-l) Let class T have
attribute8 Al, -se, A,,. Attribute A,, is derived by a
function f with attribute names Al, . . -, A,,, (m < n).
If Al, . . .) &- 1 are not changeable, then update on
A,, will result in a unique update on A,,,, which is

- 229 -

an inverse of function f with values of Al, .- ., A,,,-1
fied.

Suppose MEN is 8 subclass of PEOPLE with at-
tribute Sez equal to um81e,n and attribute Sex is spec-
ified 8s “not changeable.” In this c8se, deleting an
instance from MEN can only mean deleting the cor-
responding instance from PEOPLE, but not changing
the value of attribute Sez.

Update-Rule 14 (Changeable-2) Let T, be a sub-
class of Tp based on the attribute predicate P. If at-
tributes used in P are all not changeable, then deleting
an instance x from T, will result in deleting x j%om Tp.

3.2.5 Exhausts Value Class

Exhausts value class provides a global guide to decid-
ing update propagation. Let STUDENT, SCHOOL
and COMPANY be three classes; ORGANIZATION
is the union of SCHOOL and COMPANY. Sup-
pose STUDENT has 8n attribute Attends which has
the constraint exhausts value class with value class
SCHOOL. 8 Inserting “ABC” 8s an instance of OR-
GANIZATI0Nwi.U msLe “ABC” an instance of COM-
PANY.

Update-Rule 15 (Exhausts-Value-Class)
Let T,, Tb, T, and Td be classes. Let Td be defined
as: “is in Tb or is in T,. * Suppose T, has an at-
tribute Attr with value class Tb with constmint Kex-
hausts value class.” Inserting an instance x to Td with-
out corresponding instances in Attr of T, will insert x
to T, only.

4 Experimental Prototype

An experimental prototype system based upon the ap
preach described above has been designed and implc
mented. Currently this prototype is implemented in
the C language and runs on SUN/UNIX. This pro
totype handles update propagation based upon the
rules described above. The data representation and
algorithms this prototype uses, along with a brief de-
scription of the implementation, are presented here.
Two working examples are also included.

4.1 System Implementation

Figure 1 illustrates the overall structure of the experi-
mental prototype. Here, 8 user first defines 8 database
schema in the GSDM; this GSDM external schema is
then translated into an internal representation called
the kernel database repmsentation. The internal rep
resent&ion consists a set of triplets with the format

SInfonnally, this menus that s school must be attended by
some students.

Update
Transaction

Update Manager

Database
Schema

External Schema Spec

\Ir
Internal Schema Spec

Kernel Database

Figure 1: Bloch Diagram of Schema-Based Approach

(domain, mapping, range). For example, a schema
description such as “STUDENT is a subclass of PER-
SON with derivation specified” is encoded into the
internal triplets: (STUDENT, has-superclass, PER-
SON) and (STUDENT, hss-derivation, “specified”).
Database facts such as “Pl is a person with name
John” are also encoded into internal triplets: (PER-
SON, has-instance, Pl) and (Pl, Name, ‘John’). In
this way, both data and meta-data are represented
uniformly [2].

To modify the contents of 8 database, new data is
either added to or deleted from the kernel database.
Since this prototype is designed to test derived data
update functions, only simple update commands are
provided. Insertion is done by a command: INSERT
(domain, mapping, range). For instance, inserting
8 fact that P2 is 8 person with name Mary is done
by: INSERT (PERSON, has-instance, P2) and IN-
SERT (P2, Name, ‘Mary’). Deletion has a simi-
lar form: DELETE (domain, mapping, range). Up
date (or modification) is considered here as a deletion
followed by an insertion with a connection between
the two steps. A complete query language for this
system, which includes retrieval commands, insertion
commands, deletion with or without conditions, and
update commands, is currently under development.

The update manager receives update commands
from users, and uses an update algorithm, which em-
bodies the update rules, to determine update propage
tion. The update algorithm is presented immediately
below.

4.2 Derived Data Update Algorithm

The algorithm Update-Propagation(X) uses up
date tables to determine update propagation when
command X is issued; the command X can be adding
instances to or removing instances from 8 class, or

- 230 -

setting or modifying the value of a member or class
attribute. Generally speaking, X has format (op, d,
m, r), where op is an operation, d is a domain, m is a
mapping, and I is a range.

Update-Propagation(op, d, m, r):

l Case 1: m is an attribute name.

1. For each triplet Y = (a, b, c)
and (b is the inverse of m

or b is an attribute derived from m
or m is an attribute derived from b)

{ check the update table for
derived attributes;

if (a, b, c) is inserted to or
deleted from the kernel database

do Update-Propagation
(OP, a, b, c); 1

2. For each category 6 subclass z that is re-
lated to m

{ check the update table for
category 6 subclasses;

if (r, I, d) is inserted to or
deleted from the kernel database

do Update-Propagation

(op, r9 e, d); 1

l Case 2: d is a base class, and m = “has-instance.”

For each y which is a category i subclass of d (1
<i<S)

{ check the update table for category i

subclasses;

if (y, has-instance, r) is inserted to or

deleted from the kernel database

do Update-Propagation

(0~1, y, has-instance, r); }

Whether opl is insertion or deletion depends
upon the entries in the update table.

l Case 3: d is a category k subclass (1 5 k 5 6),
and m = “has-instance.”

1. For each y which is a superclass of d
{ check the update table for category k

subclasses;
if (y, has-instance, r) is inserted to or

deleted from the kernel database
do Update-Propagation

(opl, y, has-instance, r); }
Whether opl is insertion or deletion depends
upon the entries in the update table.

2. For each z which is a category i subclass of
d (1 2 i 5 6)

{ check the update table for
category i subclasses;

if (z, has-instance, r) is inserted to or
deleted from the kernel database

do Update-Propagation
(opl, z, has-instance, r); }

Whether opl is insertion or deletion depends
upon the entries in the update table.

3. If d is a category 6 subclass
and A is a related attribute of d

{ check the update table for
derived attributes;

if (r, A, d) is inserted to or
deleted from the kernel database

do Update-Propagation

(op, r, A, d); 1

4.2.1 Derived Attributes

Let A be an attribute, derived or not.

Insert x to Delete x from

A Apply One-to-One Apply One-to-One
Onto aad
Changeable-l;
ambiguous, if not
aDDticable.

Onto and
Changeable-l;
ambiguous, if not

4.2.2 Subclass Based on Attribute Predicates
(Categy 1)

Let T, be a subclass of T, based on an attribute pred-
icate P.

-
Insert x to

=
Tp Insert x to Te

if P is satisfied.

T, Insert x to T,
if P is satisfied,
Error if P is not
satisfied;
If P is with format
A = V, then apply
Attr-Pred-Based-2
otherwise, ambiguous. -

Delete x from

Delete x from T,.

APPLY
Changeable-P.
Ambiguous,
if not
applicable.

4.2.3 Specified Subclasses (Category 2)

Let T, be a subclass of Tp with derivation “specified.”

I Delete x from I 1 1 Insert x to

t T., 1 No action (de ’ - fault). I Delete x from T,. . .

L T, 1 Insert x to Tp. 1 No action (default)

- 231 -

4.2.4 Intersection Classes (Category 3)

Let T, be a subclass with derivation “is in T, and is
in Tb.n

c Insert x to Delete x from
T, Insert x to T,, Delete x kom T,.

if x is in Tb;
no action, otherwise.

Tb Insert x to T,, Delete x from T,.
if x is in T,;
no action, otherwise.

Tc Insert x to T, and Tb. Apply Min-Sise.
Ambiguous,
if not applicable.

4.2.5 Difference Classes (Category 4)

Let T, be a subclass of Tp but not in T,.

T-

T

delete x from T,,
otherwise.
Insert x to T,,,
if x is not in T,;
error otherwise.

Insert x to

Insert x to T,, if
derivation of T,
is satisfied;
insert x to T,, if
derivation of Ta
is not satisfied;
insert x to T,
(de&&), if
derivation of T,
cannot be
evaluated.

1 Insert x to Tp,
. if x is not in

I Tp, T,;

Delete x from

Delete x from T,
and T,.

Insert x to T,,
if the deletion
is legal
andxisstill
an instance of Tp.
Delete x from Tp
(default).

4.2.6 Union Class (Category 5)

Let T, be a class with derivation “is in T, or is in !&n

Insert x to Delete x from

T, Insert x to T,. Noactionifxisin
Tb; delete x from
T,, otherwise.

Ti, Insert x to T,. Noactionifxisin
T,; delete x from
T,, otherwise.

T, Check rules Delete x from T,, Tb.
Value-Class,
Max-Sise,
Nullable,
Exhausts-Value-
Class;
ambiguous,
if not applicable.

4.2.7 Attribute-Value-Based Subclasses (Cat-
egory 6)

Let T, be a subclass which is derived by: “is a value
of At& of class T,,.”

instances to Attr

Delete x from I

instances in

correspokiing to x.

4.3 Examples

We present in this subsection two illustrative work-
ing examples. For each example there is an initial
database state, an update transaction, and a descrip-
tion of update propagation.

4.3.1 Example One

Consider the database transaction that inserts a grad-
uate student P6 with name ‘Tim’ and student-id 789
to the database. This graduate student is taking the
courses CSl and EEl. He has au annual income of
$18,000.

l Initial Database (triplets):

(PERSON, has-instance, Pl)

(Pl, Name, ‘David’)

(COURSE, has-instance, CSl)

(COURSE, has-instance, EEl)

(CSl, Course-number, 123)
(EEl, Course-number, 101)

(COURSE, Total-courses, 2)

- 232 -

l Transaction:

INSERT (STUDENT, has-instance, P6)

INSERT (P6, Name, ‘Tim’)

INSERT (P6, Student-id, 789)

INSERT (P6, Takes, CSl)

INSERT (P6, Takes, EEl)

INSERT (P6, L evel, ‘Graduate’)

INSERT (P6, Annual-income, 18000)

l Update Propagation:

INSERT (STUDENT, has-instance, P6) will in-
sert the triplet (STUDENT, has-instance, P6)
to the kernel database, and call Update-
Propagation (insert, Student, has-instance, P6).
Since STUDENT is a category 2 subclass of PER-
SON, the update table for category 2 subclasses
wiII be referenced, and a new instance (PER-
SON, has-instance, P6) is generated. This new
instance will result in the invocation of Update-
Propagation (insert, PERSON, has-instance,
P6); however, no changes are made as a result.
STUDENT has a category 1 subclass GRADU-
ATE; therefore, the update table for category
1 subclasses is also referenced, and a new in-
stance (GRADUATE, has-instance, P6) is added
to the database. Update-Propagation(insert,
GRADUATE, has-instance, P6) is called, but no
changes are made as a result.

The command INSERT(P6, Takes, CSl) inserts
an instance (P6, Takes, CSl) to the database,
and calls Update-Propagation (insert, P6,
Takes, CSl). The update table for derived at-
tributes is checked, and (CSl, Students-currently-
enrolled, P6) is generated because Student+
cumntly-ended is the inverse of Takes. (EEl,
Students-currently-enrolled, P6) is generated for
similar reasons. (P6, Monthly-income, 1500) is
generated from (P6, Annual-income, 18000).

4.3.2 Example Two

Now consider the database transaction which inserts
a new teaching assistant into the database. This new
teaching assistant has name ‘John’ and student-id 123.
He took CSl before, and is taking CS2 and EEl now.
He is in charge of a course CSl.

l Initial Database (triplets):

(PERSON, has-instance, Pl)

(Pl, Name, ‘David’)

(COURSE, has-instance, CSl)

(COURSE, has-instance, CS2)

(COURSE, has-instance, EEl)

(CSl, Course-number, 123)

5

(CS2, Course-number, 222)

(EEl, Course-number, 101)

(COURSE, Total-courses, 3)

Transaction:

INSERT (TEACHING-ASSISTANT,

has-instance, P2)
INSERT (P2, Name, ‘John’)

INSERT (P2, Student-id, 123)

INSERT (P2, Took, CSl)

INSERT (P2, Takes, CS2)

INSERT (P2, Takes, EEl)

INSERT (P2, Is-in-charge-of, CSl)

Update Propagation:

The command INSERT (TEACHING-
ASSISTANT, has-instance, P2) adds the triplet
(TEACHING-ASSISTANT, has-instance, P2) to
the database, and calls Update-Propagation-
(insert, TEACHING-ASSISTANT, has-instance,
P2). Since TEACHING-ASSISTANT is a cate-
gory 2 subclass of GRADUATE, the update ta-
ble for category 2 subclasses is referenced, and
the triplets (GRADUATE, has-instance, P2) and
(P2, Level, ‘Graduate’) are generated. Update-
Propagation(GRADUATE, has-instance, P2)
wiII be executed, and the triplet (STUDENT, has-
instance, P2) is generated. This new data in turn
generates (PERSON, has-instance, P2).

STUDENT has a category 3 subclass BOTH-
TA-RA and a category 5 subclass STUDENT-
EMPLOYEE; therefore, update tables for cat-
egory 3 and 5 subclasses are checked, and
(STUDENT-EMPLOYEE, has-instance, P2) is
generated.

(CS2, Students-currently-enrolled, P6) and (EEl,
Students-currently-enrolled, P6) are generated
from (P6, Takes, CS2) and (P6, Takes, EEl)
respectively, because Students-currently-endled
is the inverse of Takes. (CSl, Has-ta, P2) is
the inverse of (P2, Is-in-charge-of, CSl). (CSl,
COURSES-TAKEN, P2) is generated from (P2,
Took, CSl), because class COURSES-TAKEN is
derived by “is a value of Took of STUDENT.”

Conclusions

In this paper, a schema-based approach to derived
data update for semantic databases has been pro-
posed. By contrast with view update in a relational
database environment, this approach utilizes informa-
tion in a semantic database schema, such as superclass
and subclass relationships, value classes of attributes,

- 233 -

inverses, etc., to propagate the effects of a modifica-
tion of derived data. Some derived data updates which
are ambiguous in a relational view update mechanism
can be decided in this approach, e.g., insertion to class
which is the union of two other classes. While the ap-
proach presented here is based upon the GSDM, it can
be applied to other semantic database models as well.

An experimental prototype system based upon the
approach described in this paper has been designed,
implemented, and tested. It is important to note
however that there are some cases in which derived
data update operations have unique propagations but
which our approach cannot detect. These difficulties
result from complex derivation rules, particularly for
derived attributes and category 1 subclasses.

Further research planned in this area includes: (1)
extending the update rules for category 1 subclasses
and for derived attributes, (2) completion of the ex-
perimental implementation of a query language and
end-user interface for the prototype system, and (3)
studying new approaches other than the schema-based
to derived data update.

In particular, a second approach to derived data
update termed the rule-based approach has also been
studied and implemented in our research. This rule-
based approach encodes all the schema-information
into production rules, and then applies a rule inference
mechanism to determine derived data update propaga-
tion. At present, we are conducting an analytic com-
parison of the schema-based and the rule-based ap
proaches; this comparison includes the different meta-
data roles and organizations in these two approaches,
and their different mechanisms to determine derived
data update. The study should provide further insight
into the semantics of meta-data modification.

Acknowledgements
The authors would like to thank Richard Hull for

his many comments and observations on the approach
to derived data update described in this paper. The
comments of the referees are also gratefully acknowl-
edged.

References

PI

PI

PI

S. Abiteboul and R. Hull, IF0 : A Formal Seman-
2ic Database Model, ACM Trans. on Database
Systems, ~01.12, no.4, Dee 1987

H. Afiarmanesh and D. McLeod, The 3DIS: An
Eziensible, Object-Oriented Information Manage-
ment Envkonment, ACM Trans. on Office Infor-
mation Systems, 1989 (to appear)

A. Albano, L. Cardelli and R. Orsini, Galileo : A
.%rongly-nped, Interactive Conceptual Language,
ACM Trans. on Database Systems, ~01.10, no.2,
June 1985, pp. 230-260

PI

PI

PI

PI

PI

PI

WI

Pll

ml

P31

PI

P51

P61

F. Bancilhon and N. Spyratos, Update Semantics
of Relational Views, ACM Trans. on Database
Systems, ~01.6, no.4, December 1981, pp. 557-575

U. Dayal and P. A. Bernstein, On the Correct
lknslation of Update Openations on Relational
Views, ACM Trans. on Database Systems, ~01.8,
no.3, September 1982, pp. 381-416

A. L. Furtado, K. C. Sevcik and C. S. DOS San-
tos, Permitting Updates Through Views of Data
Bases, Inform. Systems, ~01.4, 1979, pp. 269-283

G. Gottlob, P. Paolini, and R. Zicari, Properties
and Update Semantics of Consistent Views, ACM
Trans. on Database Systems, ~01.13, no.4, Decem-
ber 1988, pp. 486-524

P. Griffiths and B. Wade, An Authorization
Mechanism, for a Relational Database System,
ACM Trans. on Database Systems, ~01.1, no.3,
September 1976, pp. 242-255

M. Hammer and D. McLeod, Database Descrip-
iion with SDM: A Semantic Database Model,
ACM Trans. on Database Systems, ~01.6, no.3,
September 1981, pp. 351-386

S. Hudson and R. King, An Adoptive Derived
Data Manager for Distribuied Databases, Ad-
vances in Object-Oriented Database Systems, ed-
itor K.R. Dittrich, Springer-Verlag, 1988

R. Hull and R. King, Semantic Database Model-
ing: Survey, Applications, and Research Issties,
ACM Computing Surveys, vo1.19, no.3, Septem-
ber 1987, pp. 201-260

A. M. Keller, The Role of Semantics in l+ans-
lating View Updates, IEEE Computer, January
1986, pp. 63-73

A. M. Keller, Choosing a View Update TmnslaZor
by Dialog at View Definition Time, Proc. Inter.
Conf. on Very Large Data Bases, 1986, pp. 467-
474

J. Mylopoulos, P. A. Bernstein and H. K.
T. Wong, A Language Facility for Designing
Database-Intensive Applications, ACM Trans. on
Database Systems, ~01.5, no.2, June 1980, pp.
185-207

D. Shipman, The Functional Data Model and
the Data Language DAPLEX, ACM Trans. on
Database Systems, ~01.6, no.l, 1981, pp. 140-173

A. Sheth, J. Larson, and E. Walkins, Tailor: A
Tool for Updating Views, Proc. of Inter. Conf. on
Extending Data Base Technology, Venice, Italy,
March 1988

- 234 -

Appendix: (Example Database Schema)

PERSON
identifiers : Name
member attributes :

NEtIllS
value class : STRINGS
may not be null
not changeable

Age
value class : INTEGERS

Annual-income
value class : RRALS

Monthly-income
value class : REALS
derivation : = Annual-income / 12

PROFESSOR
interclass connection :

subclass of PERSON where specified
member attributes :

Teaches
velne class : COURSE
inverse : Taught-by

STUDENT
interclass connection :

subclass of PBRSOB where specified
member attributes :

Student-id
value class : INTEGERS

Major
value class : STRINGS

Level
value class : STRINGS

Takes
value class : COURSE
inverse : Students-currently-enrolled
multi-valued with size between 2 and 5

Took
value class : COURSE
multi-valued

COBPUTRR-MAJOR-STUDBNT
interclass connection : subclass of STUDENT

where Major = 'CS' or Major = 'CR'

GRADUATE
interclass connection : subclass of STQDl3NT

where Level = 'Graduate'

UNDERGRADUATE
interclass connection : subclass of STUDENT

where is not in GRADUATE

TEACHING-ASSISTANT
interclass connection :

subclass of GRADUATE where specified
cardinality : with size between 0 and 25

membsr attributes :
Is-in-charge-of

value class : COURSES-TAKEN
inverse : Has-ta

RBSBARCH-ASSISTANT
interclass connection :

subclass of GRADUATE where specified

STDDENTJMPLDYEE
interclass connection :

subclass of GRADUATE
where is in TBACEING-ASSISTANT
or is in RESEARCH-ASSISTANT

member attributes :
Tuition-coverage

value class : REALS
Stipend

velue class : REALS
Benefit

valw class : REALS
derivation : = Tuition-coverage

+ Stipend

BOTKTIRA
interclass connection :

subclass of GRADUATE
where is in TEACCHIBG-ASSISTANT
and is in RBSEARCH-ASSISTANT

COuBsE
identifiers : Course-number
member attribute6 :

Course~number
value class : INTEGERS
single-valued
may not be null

Taught-by
value class : PRDPESSOR
inverse : Teaches

Has-ta
value class : TEACHING-ASSISTANT
inverse : Is-in-charge-of

Students-currently-enrolled
valw class : STUDEBT
inverse : Takes
multi-valued with nize

between 0 and 50
class attributes :

Total-courses
value class : INTEGERS
derivation : nmber of members

in this class

COURSES-TAKEB
interclass connection :

subclass of COURSE where is
a value of Took of STUDENT

- 235 -

- 236 -

