
OPTIMIZATION OF RELATIONAL SCHEMAS
CONTAINING INCLUSION DEPENDENCIES

Marco A. Casanova’, Luiz Tucherman’, Antonio L. Furtado2, Anelise P. Braga’

‘Rio Scientific Center - IBM Brazil - P.0 Box 4624 - 22.071, Rio de Janeiro, RJ - Brazil

2Dept. de lnformrjtica - Pontificia Universidade Catblica do Rio de Janeiro
Rua Marques de S. Vicente, 225 - 22.453, Rio de Janeiro, RJ - Brazil

ABSTRACT

A two-step optimization strategy for relational schemas
that contains a class of inclusion dependencies is
described. Both steps take into account additional
information that indicates how to preserve each inclu-
sion dependency in the presence of insertions an‘d
deletioy. The first step eliminates inclusion dependen-
cies which are redundant with respect to both the
semantics of the data and the behavior of the trans-
actions. The second step discards dependencies
through a structural transformation that again preserves
the semantics of the data and of the transactions and
that applies both to ihrF and to iV# relational
schemas.

1. INTRODUCTION

Among the classes of integrity constraints considered
for the relational model, we fmd the inclusion depend-
encies [CFP], or ISDs. For example, one may.
declare an ISD between tables SECRETARY and
EMPLOYEE to capture that all secretaries are
employees. The specification of an IND is often com-
plemented with insertion/deletion options [CFT,Da]
that indicate how to preserve the dependency in the
presence of insertions and deletions. For example,
one specify that the deletion of an entry of table
EMPLOYEE must propagate to the deletion of the cor-
responding entry of SECRETARY, if any, and that the
insertion of an entry of SECRETARY must be blocked
if there is no corresponding entry of EMPLOYEE.

Permission to copy without fee all or part of this nalerial is
granted provided that Ihe copies are not made or distributed jot
direct commercial advantage, Ihe VLDB copyright notice and
the title of the publication and its date appeal; and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, OT to republish, requires a fee
and/or special permission from the Endowment

Proceedings of the Fifteenth International
Conference on Very Large Data Bases

This paper describes an optimization process that
minimizes the set of INDs of a relational schema by
eliminating redundant dependencies and by redesigning
the schema, without modifying the basic semantics of
the data and the behavior of the transactions. The
process assumes that all INDs are key-based and that
are qualified with insertion/deletion options. A key-
based IND, or K-ISD, is just an ISD whose right-
hand side is a key. This restricted class of ISDs is
sufficiently powerful to capture important semantic
properties, such as hierarchies of sets of objects or
relationships between sets of objects, in an informa-
tion model.

The process of eliminating redundant inclusion
dependencies is based on the inference rules for ISDs
described in [CFP], adapted to K-INDs and to the
insertion/deletion options.

The process of discarding K-ISDs through a struc-
tural transformation may work in the context of 1NF
schemas or in the context of NF2 schemas. For 1NF
schemas, the transformation eliminates a K-IND by
collapsing the two tables the dependency relates into a
single table:. For h‘F2 schemas, the transformation
also eliminates an inclusion dependency by nesting the
two tables related. The transformation is used only
when the dependency meets certain criteria that guar-
antee that the new table will not contain undue redun-
dancies and that the old tables can be redefined as
views of the new table. Dependencies satisfying these
criteria are called trivializable.

From another perspective, the optimization process
can be viewed as a design discipline for schemas con-
taining a class of K-INDs which is defined both for
the traditional and the NF* variations of the relational
model. In this aspect, the process differs substantially
from the well-known design disciplines for the rela-
tional model [Ma], as well as from those defined for
the NF2 variation [AMM,FG,OY,RKS], since it is
based on inclusion dependencies whereas the vast

Amsterdam, 1989

- 317 -

majority of published disciplines are based on func-
tional or multivalued dependencies or their generaliza-
tions.

The organization of the paper is as follows. Section 2
discusses the elimination of redundant K-INDs.
Section 3 describes the structural transformation
assuming that all tables must be in first-normal form.
Section 4 shows how to adapt the transformation for
the NF* version of the relational model. Finally,
section 5 contains the conclusions.

The reader is referred to [CTFB] for a more detailed
presentation.

2. ELIMINATING REDUNDANT KEY-BASED
INCLUSION DEPENDENCIES

2.1 Preliminary Definitions

We assume a scenario where the database designer
specifies the conceptual schema of a database within
the traditional relational model, that is, using relation
schemes in first-normal form. We will be interested in
three classes of integrity constraints, the null con-
straints, indicating when attributes do not admit null
values, keys and a class of inclusion dependencies
which is sufficiently powerful to capture hierarchies of
sets of objects and to help defme relationships over
sets of objects.

More precisely, a relation scheme is an expression of
the form R[A,,..., A,] where R is the name and
A,,..., A, is the list of attribute names of the scheme,
taken from a given set of identifiers. We will fre-
quently use the term “attribute” instead of “attribute
name”.

Let E be a set of relation schemes with distinct names
in the rest of this subsection. A state for E is a func-
tion CJ that associates an nary relation O(R) to each
name R of a scheme R[A, ,..., A,] in E.

We assume familiarity with the relational algebra and
denote the value of a relational expression Q in a state
(J of E by o(Q).

Let h denote both the null value and tuples, with
arbitrary length, of null values. A null constraint over
E is an expression of the form “R: X f h” where R is
the name of a relation scheme in E and X is a
sequence of distinct attributes of R. We say that each
attribute A in X does not admit null vaIues in R. A
state (7 for E satisfies “R: X Zh” ifi tA #h, for each

tuple t in G(R) and for each attribute A in X.

A key over E is an expression of the form “R: K”
where R is the name of a relation scheme in E and K
is a sequence of distinct attributes of R. A state CJ for
E satisfies “R: K” iff, for each pair of tuples t,u in
o(R), if tK = UK then t = u and, for each tuple w in
o(R), vA #?,, for each attribute A in K. Therefore,
by definition, “R: K” implies “R: K z h” and we also
say that every attribute in a key “R: K” does not admit
null values in R.

Let Ei be a set of keys over E. We say that a key
“R: K” in K is minimal iff there is no other key in K
of the form “R: L” such that all attributes in L also
occur in K. In the definition of a relational schema,
to be soon introduced, we wiII indeed require that
&ery key be minimal.

Let K be a set of keys and N be a set of null con-
straints over E. A key-based inclusion dependency
over E, K and N, or a K-IXD, is an expression of the
form RI[XI]~R2[X2]:(y,F) where, for i= 1,2,

l Ri is the name of a relation scheme in E;
l Xi is a sequence of distinct attributes of Ri such

that Xt and X2 have the same length and X2 is
defined as a key of R2 in K;

l y is the insirtion option and 6 is the deIetion
op$on of the K-Ih’D, taking values from the set
(b’,bd,p’,pdj, with the following intended inter-
pretation:

bi block immediately
i propagate -immediately .

Ed
Pd

block deferred!y
propagate deferredly

with the restriction that y can be equal to pi or pd
only if all attributes of R-J, excluding those in X2,
admit null values, that is, no null constraint in N
says the contrary.

The restrictions imposed on y just avoid indetermina-
ties when propagating insertions into RI to insertions
into R2. Indeed, an insertion into RI determines only
the value of the attributes in X2. Hence, if some attri-
bute A of R2 did not admit a null value, the propa-
gation of the insertion would have to arbitrate some
non-null value for A, which is not reasonable.

The semantics of K-INDs has a static and a dynamic
perspective. The static perspective is reflected by

- 318 -

defining that a state CJ for E satisfies

R, W,I=#~I:(Y,~) iff V, [X,1) s V2W21).

The dynamic perspective refers to the fact that the
insertion and deletion options affect the behavior of
the operations over RI and R2 as defined in
[CFT,Da]. For example, if the deletion option is b’,
for block immediately, then there is a test that
rejects the deletion of a tuple t from R2 in a state (J, if
‘X2 E CF(R~[X,]). Note that, since X2 is a key of R2,
no other tuple f’ in (3(R2) is such that f’X2= fx .
Moreover, the test need not consider updates on Jf 2
since we do not permit updates on keys. If the
deletion option is bd, for block deferredly, there is
a test that aborts the transaction if the state up at
commit time is such that (p(R1[X1]) Q (P(R~[X~]).

A relational schema is a pair S= (E,Ij where E is a set
of relation schemes with distinct names and I is a set
of null constraints, keys and K-ISDs over E such that
every key in I is minimal. A state of S is a state of E.
A state of S is consistent iff it satisfies all constraints in
I.

We recall that, given a set D of dependencies and a
dependency d over a set of relation schemes E, we say
that d is a logical consequence of D iff any state (3 of
E that satisfies all dependencies in D also satisfies d.

Let S= (E,I) be a relational schema and T be a trans-
action over S. The behavior of T in S is the set of
pairs.(0,<~‘) of states of E such that there is an exe-
cution of T, starting in CJ and terminating in CT’, that
correctly fires all possible triggers and assertions,
immediate or deferred, associated with the
insertion/deletion options of K-INDs in I.

Let S = (EJ) be a relational schema and d be a
K-ISD in I. We say that d is redundant in I iff

l d is a logical consequence of I-16);
l every transaction T over S has the same behavior

in S and in S’= (E,I-(6)).

The notion of redundancy just extends the usual
notion of logical consequence for dependencies to
accommodate the behavior of transactions. For this
reason, it was phrased in a non-traditional way.

2.2 A Motivating Example

Consider a database storing information about soft-
ware modules, where a module can be in three stages:

planned, specified and implemented. Assume that
every implemented module must have been first speci-
fied and that every specified module must have been
first planned. Then, a simplified relational schema for
this database would contain the relation schemes

P[NAME,DESC]
S[NAME,SPEC]
I[NAME,CODE]

where P, S and I stands for ‘planned module’, ‘speci-
fied module’ and ‘implemented module’, respectively,
and the following K-INDs:

(do,) S[NAME]sP[NAME]: (@,$)
(cF’J I[NAME]sS[NAME]: (b’,p’)
(do,) I[NAME]_cP[NAME]: (b’,b’)

Let yi and 6, be the insertion and deletion options of
do,. We intuitively prove that d”j is only partially
redundant or, more precisely, we argue that: (1) &1 is
a logical consequence of 8, and flz; (2) ~3 is redun-
dant; but (3) 63 is not redundant.

Indeed, (1) follows directly from the semantics of
K-INDs. To prove (2), note that ~3 is a consequence
of ~2 and the definition of 8,. Indeed, since ~3 is b’,
~3 will block the insertion of a new implemented
module m iff m is not yet planned. But if m is not
yet planned, by a,, then m is not yet specified.
Hence, since ~2 is b’, ~2 will also block the insertion
of m, making it unnecessary to define ~3. Finally, to
prove (3), observe that, as 63 is, b’, 83 will reject the
deletion of a planned module m, if m is already imple-
mented, independently of any other assertion and
trigger. On the other hand, if 63 were not specified,
6t and 82 alone would propagate the deletion of a
planned module m to the deletion of its specification
and implementation. Hence, 8s is not redundant
because its deletion option affects the behavior of
transactions.

Suppose now that we replace 8, by:

(do,‘) S[NAME]cP[NAME]: (b’,b’)

Then, 8s becomes redundant for do,’ and a,, which
indicates that we may drop 8s without affecting the
semantics of the data and the behavior of the trans-
actions. Intuitively, by a,, all implemented modules
must have been specified. Hence, if the deletion of a
planned module m is blocked because m has already
been implemented, the deletion will also be blocked
because m must have already been specified.

- 319 -

In general, the database designer may specify a rela-
tional schema that contains any set of K-IXDs. The
goal of this section therefore is to analyse which of the
K-INDs specified are redundant.

2.3 Conditions for Redundancy of K-IN&

To analyse when a K-MD is redundant in the pres-
ence of a set of K-ISDs, we will adapt the inference
rules for INDs given in [CFP] to take into account
insertion and deletion options. In particular, one of
the rules will use regular expressions to define sets of
sequences of options. Thus, for example, the regular
expression (p” U bX) + bX(pX U bX)* denotes the set
containing the sequences pXbX, bxbx, pXbXpX,
pXbXbX, bXbXpX, bXbXbX, . . .

The modified inference rules are:

(Extended Reflexivity) .
R[X]cR[X]:(p’,p’), ifX is a key of R

(Extended Permutation)
if SIB, ,...,B,lEW ,,... &,,l:(y,~)
then S[Bi, ,...,
where it ,...,i,.,,

Bi,,,lER[Ai, v***sAiIJIl:(y,S)t
is a permutation 0 ,...,m

(Extended Transitivity)
if Ri-l[Xi-r]=Ri[Xi]:(yi,Gi), for i = l,...,k,

then R&$I~R&J:(Y,~)
where y and 6 are as follows (with x~{i,d)):

Yl -.Yk I Y I
(PX) + PX

(bX U pX)*bX(bX U p”)+ px,bX

(pX)*bX bX

6, . ..6k

(P")+

6

PX

(bX U p”)+ bx(bx U p”)*

bX(pX) *

pX,bX

bX

Intuitively, the antecedents of the extended transitivity
rule are ordered. Line 1 of the first table says that if
all insertion options are of the form px then the
insertion option of the conclusion must also be px;
line 2 says that if all insertion options are immediate
or all deferred (i.e., X= i or x =p) and at least one
insertion option before the last one is bX then the
insertion option of the conclusion can either be px or

bX; line 3 says that if all insertion options are px,
except the last insertion which is bX, then the insertion
option of the conclusion must be bX. The second
table has a similar interpretation for deletion options.

For example, from

we may derive just Ro[X&R3[X-J:(b’,pi). Indeed,
the insertion options of the K-INDs form the
sequence p’p’b’, which is in the set denoted by
(p’)*b’, but not in the sets denoted by (pi)+ or
(b’ U p’)*b’(b’ U pi)+, and hence the insertion option
of the derived K-ISD must be b’. . $4oreover, the
deletion options form the sequence p’p’p’, which is in
the set denoted by (pi) + , but not in the sets denoted
by (b’ U p’)+b’(b’ U pi)* or b’(p’)*, and hence the
deletion option of the derived K-IXD must be p’.
Therefore, Ro[X&R3[X3]:(b’,p’) follows from the
other three EK-ISDs by the extended transitivity rule.

These rules are sound, which means that whenever a
relational schema S= (E,o has a K-ISD din I which
can be obtained by the extended rules from the other
dependencies in I, we may optimize the database
design by replacing S by a new schema S’= (EJ),
where I’ = I-(6): This transformation will affect
neither the semantics of the data nor the semantics of
the transactions since a state CT of E satisfies I iff it
satisfies I’ and any transaction T has the same
behavior in S and in S’.

The reader is referred to [CTFB] for a fast algorithm
testing redundancy for a special class of K-INDs.

3. ELIMINATING K-INDS IN THE 1NF
RELATIONAL MODEL BY STRUCTURAL
TRANSFORMATIONS

3.1 Preliminary Definitions

We now address an optimization process that mini-
mizes the set of K-INDs of a relational schema by a
structural transformation that preserves first-normal
form. The transformation eliminates each K-IND
that satisfies certain criteria by collapsing the two
tables related by the dependency into a single table.
The transformation is made transparent to users by
redeftig the original tables as views over the new
table and by mapping their operations onto operations
on the new table. The transformation is advantageous

- 320 -

exactly because the view operations are much faster in
most cases than the corresponding operations on the
original relational schema, that is, on the schema con-
tained the non-trivialized K-IND.

The definition of the transformation requires the fol-
lowing additional concepts. Let E be a set of relation
schemes with distinct names. A view definition over E
is a triple (V[A, ,..., A,],Q,T) where

l V[A,,..., A,,] is a relation scheme whose name is
distinct from the names of the schemes in E;

l Q is an n-ax-y relational expression over E;
l T is a specification of correct translations for the

operations over V into operations over the
schemes in E (see [FC]).

When the specification of T is not of interest, we will
denote the view definition by V[A,,...,A,] = Q. We
also say that V is the name of the view and that Q is
the defining expression of the view.

Let V be a set of view definitions over E. Suppose
that the schemes in E and those defined in V have dis-
tinct names. We extend a state (3 of E to V by
assigning to each view V in V, whose deftig
expression is Q, the value u(Q).

Although a defining expression may be any valid rela-
tional expression, the structural transformation will
produce only h-restrictions, defmed below, followed
by projections.

Let h again denote both the null value and tuples,
with arbitrary length, of null values. ‘We define a
h-restriction over a relation scheme R in E as a
restriction of the form R[Ai, #h]...[Ai #h], where
Ai, ,-*.Ai, are attributes of R. We wilI requently use r
the following equivalences for relational expressions:

Original Expression Equivalent Expression

R[X][Y] R[Y] , ifY E X
R[Xfh][Y #h] R[XY #h]

R[X][Y #h] R[Y #h][X] , ifY E X

The transformation also requires extending the classes
of integrity constraints previously introduced to
relations defined by h-restrictions.

Thus, an extended null constraint over E is an
expression of the form “P: X f h” and an extended
key over E is an expression of the form “P: X” where
P either is equal to the name R of a relation scheme

in E or is a h-restriction over R and X is a sequence
of distinct attributes of R. The semantics of both
classes of constraints is a direct generalization of the
semantics of the original classes.

Let K and N be sets of extended keys and null con-
straints. An extended key-based inclusion dependency
over E, K and N, or an EK-IND, is an expression of
one of the forms

1) R,[X,lCR#,l:(r~~)
2) R,[Y, #hl[x,l~R~[x,l:(~,~),
3) RI [X,lSR2[Y2 #~~IV~I:(Y,@ or
4) R,b’, ~3~1~~,1~~,~~,~~1~~,1:~~,~~

where, for i = 1,2,

Ri is the name of a relation scheme in E;
Yt is a sequence of distinct attributes of Ri such
that Y2 fl X2= 0;
Xi is a sequence of distinct attributes of Ri such
that Xt and X2 have the same length and X2 is
defined as a key of R2 in K;
y is the insertion option, taking values from the set
{b’,bd,p’,pdj. However, y can be equal to pi or
pd only if the dependency is of the forms (1) or
(2) and all attributes of R2, excluding those in X2,
admit null values, that is, no null constraint in N
says the contrary.
6 is the {eletivn option, taking values from the set
(bi,bd,p’,pd,n’,ndj, where n’ stands for “Bropa-
gate immediately by nullifying” and n stands
for “propagate deferredly by nullifying”.
However, 6 can be equal to ni or nd only if the
dependency is of the forms (2) and (4) and all
attributes in Yt admit null values in R 1.

The restrictions imposed on y again just avoid inde-
terminacies when propagating insertions and the
restrictions on 6 just reflect when consistency can be
restored, after a deletion from R2, by nullifying attri-
butes values.

We say that the EK-IND is simpIe on the right-hand
side in cases (1) and (2) and that it is simple on the
left-hand side in cases (1) and (3). We also say that
the EK-IND is from RI to R2.

The semantics of EK-INDs is a direct extension of the
semantics of K-INDs and the new deletion options
have the following interpretation. Consider a
EK-IND of the forms (2) or (4). If the deletion
option 6 is n’, there is a trigger associated with the

- 321 -

EK-ISD that is fired right after each deletion affecting
R, terminates. Let o be one such deletion and
suppose that o is the state right after o terminates and
that D is the set of tuples that o deletes. The trigger
sets to null the Yt-values of every tuple u in
o(Rt [Yt # h]) such that there is a tuple t in D such
that uX = tx

‘d
and tx ECI(R~[Y~ #k][Xt]). With

option n , w?e associaL a trigger, fired when each
transaction commits data, that sets to null the
Yt -values of U, for each tuple u in (P(R, [Yt Z h])
such that UX #(P(R~[X~]), where up is the commit state
of the transaltion.

The optimization method will work with more
complex schemas, defmed as follows. An extended
relational schema is a pair SS= (IS, VS) where .I

l IS= (BS,VD,Ic), the internal component of SS,
is such that
- BS is a set of relation schemes with distinct

names, called base schemes of SS;
- VD is a set of view definitions over BS whose

schemes have distinct names;
- IC is a set of integrity constraints over the

schemes in BS, called active constraints of SS,
such that every key in ZC is minimal.

l VS= (E,l), the visible component of SS, is a rela-
tional schema such that E G BS U e(VD), where
e(VD) is the set of relation schemes introduced in
view definitions in VD.

An extended relational
SS= ((BS,VD,IQ,(E,I)) is correct iff

schema

l every consistent state of (BS,Zc) induces, via VD,
a consistent state of (EJ);

l the deletion and insertion options qualifying the
inclusion dependencies in IC guarantee, again via
VD, the deletion and insertion options qualifying
the inclusion dependencies in I.

3.2 Description of the Transformation

This section describes a structural transformation for
relational schemas, in first-normal form, that mini-
mixes the number of EK-INDs. The transformation
is called trivialization.

Let SS= ((BS, VD,IC),(E,Z)) be an extended schema.
An active EK-IND d in IC is trivializable iff d is of
the form S[L]ER[K]:(y,8) or of the form
S[L]CR[Z Z h][K]:(y,6) where

1) S is a base scheme of SS with key L that has an
attribute N that does not occur in L and does not
admit null values;

2) R is a base scheme of SS with key K and Z is a
list of attributes of R;

3) y, 6 E {bid);
4) there is no active EK-Ih’D in IC from a scheme T

to S such that the insertion option is pi or pd.

Condition (2) is a direct consequence of the definition
of EK-IND and is repeated here just to highlight that
K must be a key of R. Condition (3) indicates that
the insertion and deletion options of d are either b’ or
pi, that is, they must be both immediate, but it does
not require that the options be equal.

Conditions (1) and (2) permit, via the keys K and L,
to collapse schemes S and R into a single scheme G
without creating redundancies. Each tuple t in G
always encodes exactly one tuple of R and, if tN f h,
also encodes exactly one tuple of S. Condition (3)
clarifies which are the insertion and deletion options
compatible with the creation of G. Without any of
these three conditions, collapsing R and S into G
would produce a new relational schema that does not
preserve the semantics of the original schema. Finally,
condition (4) reflects the restrictions imposed on the
insertion options that may qualify a EK-IND.
Without it, step (7) of the trivialization process,
described in what follows, would produce an invalid
insertion option.

The trivialization algorithm takes as input a relational
schema SS, and produces as output an extended
schema SS,.,. Each step of the algorithm transforms
an extended schema SSi into a new extended schema

ssi+l by trivializing an EK-Il’!D di of SSt as
follows. Suppose that di is of the form

WlEWKl:(y,~) of the form
S[L]CR[Z Z h][K]:(y,i?yf where R[K,X] and S[L,Y]
are base schemes of SSt. Suppose that N is an attri-
bute of S that does not belong to L and that does not
admit null values. The new extended schema SSi + t
is obtained from SSi through the following transf-
ormations:

1) Remove di from the set of active integrity con-
straints;

2) Add G[K,X,Y’] to the set of base schemes, where
Y’ is a renaming of the attributes in Y to avoid
contlicts with the attributes of K and X (we will
denote by A’ the attribute of Y’ corresponding to
an attribute A of Y).

- 322 -

3) Remove R[K,X] from the set of base schemes
transforming it into a view by adding to the set of
view definitions the triple (R[K,X],G[K,X],T),
where T defines the translation of the operations
over R to G as follows:

update R set X=t update G set X = t
where Q where Q

Notes:

(1) translation when 6 = p’, that is, when deletions
from R propagate immediately;

(2) translation when 6 = b’, that is, when deletions
from R block immediately;

(3) N’ = h indicates that a tuple of G does not
encode a tuple of S.

4) Remove S[L,Y] from the set of base schemes
transforming it into a view by adding to the set of
view definitions the triple
(S[L,Y],G[N’ # h][K,Y’],U) where U is defined
as:

I Operation I Translation I I h’ote

insert into S

(L=uL,Y=uy)

inset-l into S

inset-l into G (1)
(K=uL,Y’=uy,X=h)

if insert fails then
update G set Y’=uY

where K = uL and N’ =h

update G set Y’ = uy (2)
(L=QY=uy) where K=uL and N’=

insert into S

(L=$,Y=uy)
update G set Y’=uY (3)
where K=uL and N’=

and Z#h

delete from S update G set Y’=h
where Q where Q’ (4)

update S set Y = uY update G set Y’= uy (5)
where Q where Q’ and N’ fh

Kotes:

(1) translation when “/ = pi, that is, when
insertions into S propagate immediately. Note
that, in this case, the trivialized EK-IND can only
be of the form S[L]cR[K]:(y,8) because y speci-
fies propagation;

(2) translation when y = b’, that is, when
insertions into S block immediately, and the
EK-IND is of the form S[L]ER[K]:(y,6);

(3) translation when y = b’ and the EK-IND is of
the form S[L]=R[Z #3,][K]:(y,6);
(4) Q’ is a renaming of Q reflecting the renaming
of Y to Y’;

(5) the term N’ #?b avoids that the update
becomes an insertion.

5) In each view deftig expression, except those of
R and S, replace R and S by their defining
expressions, simplifying the result if possible.

6) In ,each translation of a view operation, except
those associated with R and S, apply the trans-
lations specified in T and U to each operation over
RandS.

7) Define K as a key of G. Each active integrity con-
straint C of SSi, except the keys K of R and L of
S, generates an active integrity constraint C’ of
ssi+l obtained by -

a) replacing R in C by its defining expression;
b) replacing S in C by its defining expression and

renaming the attributes of S to their new
names in G;

c) simplifying the result.

Moreover, if C is a EK.-IND, the deletion and
insertion options of C’ remain the same as those
of C, except if C is of the form

qx,l=p[x,l:(Y~~) and the deletion option 6 is
p’ or pd, in which case the deletion option of C’
becomes ni or nd, respectively.

8) Discard the view definitions whose schemes do
not belong to the visible part.

The algorithm is correct in the sense that the visible
component of the final extended schema SS, is
exactly the original relational schema SS, and that
SS,, is correct (as defined at the end of section 3.1).
In other words, the optimization is transparent to
users since they will still see the original schema SS,
and, moreover, the semantics derived from that of the
internal component and from the view definitions of

- 323 -

SS,, is equivalent to the semantics originally specified.
The correctness of the algorithm follows by induction
on the number of iterations observing that, in each
step, the dependencies over R and S, which are now
views over G, become consequences of the dependen-
cies over G. Indeed, by defining K as a key of G in
step (2), we guarantee that K and L are keys of R and
S and, through the generic transformation defined in
step (7), we automatically map all null constraints,
keys and EK-INDs involving R and S to equivalent
dependencies over G .

As an example of the algorithm, consider a relational
schema containing the relation schemes

P[NAME DESC]
I[NAMEkODE]
Mm;,E#J

S[NAME SPEC]
a-’

standing for ‘planned module’, ‘specified module’,
‘implemented module’, ‘chief-programmer’ and
‘manages’, respectively, where keys are underlined and
all attributes do not admit null values. Suppose also
that the schema contains the following INDs:

S[NAME]cP[NAME]: (b’,p’)

I[NAME]G[NAME]: (b’,p’)

M[NAME]cP[NAME]: (b’,p’)

M[E#]EC[E#]: (b’,p’)

Intuitively, in terms of the entity-relationship model,
these dependencies say that I is a specialization of S, S
is a specialization of P and M represents a relationship
between P and C, which is n-l with P on the “n” side.

The algorithm will transform this schema into a final
extended relational schema with just two relation
schemes and one EK-IND, thus trivializing the main-
tenance of three EK-INDs. For example, the
trivialization of d”, will produce one new scheme,
SI[NAME SPEC,CODE], -9 and will transform S and I
into views with defining expressions:

S[NAME,SPEC] = SI[NAME,SPEC]
I[NAME,CODE] = SI[CODE Z I,][NAME,CODE].

Furthermore, this trivialization will modified all con-
straints involving S and I. For example, do, becomes

SI[NAME]EP[NAME]: (b’,p’)

To conclude this section, we remark that the
trivialization algorithm may be reinterpreted according
to two opposite views. On one hand, if we under-
stand a normalization process in the broad sense of a
process that simplifies the treatment of dependencies

by structural transformations, then the trivialization
algorithm can be viewed as a normalization process.
Indeed, defme that an extended relational schema
SS,.,= ((ES,, VD,.,,IC,,),(E,I)) is in extended key-
based inclusion dependency normal form (EK- IND/ Nfl
iff IC, has no trivializable EK-IND. We can then
reinterpret the trivialization algorithm as a process to
transform a given relational schema S= (E,r) into an
extended relational schema in EK-IND/NF. On the
other hand, if we understand a denormalization
process as any process that collapses into a single rep-
resentation two logically separated concepts, then the
trivialization algorithm can also be viewed as a denor-
malization process.

4. EXTENDING THE STRUCTURAL
TRANSFORMATION TO THE NF2 RELATIONAL
MODEL

This section briefly discusses, using an exampI how
to extend the structural transformation to NF rela-
tional schemas. Without defining them explicitly, we
shall use the basic notation of [Ja] and the counterpart
for the NF* model of the concepts introduced in
section 3. In particular, to indicate the operation that
unnests an XF* relation, we shall use the symbol l.t,
subscripted with an expression E defining the part to
be unnested. The unnest operation may be recursively
applied to the result of other unrest operations. Xote
that l.t automatically filters out the tuples whose
unnested component is the empty set.

Let SS be an extended NF* relational schema. A
EK-IND d in SS is N$-trivializable ifi it is of the
form S[L]cR[K] or of the form S[L]G~E(R)[K]
where

1) S is a base scheme of SS with at least one attri-
bute N not in L;

2,3,4) Identical to conditions (2),(3) and (4) of
trivialization in the traditional model.

Note that, in the NF* model, L need not be a key of
S and N may admit nulI values. The trivialization of
d nests S into R, creating a single scheme G. Each
tuple f of G always encodes the tuple of R with key tK
and the set of tuples u of S such that UL= fK. If this
set is empty, the projection of t over the nested attri-
butes of S will be simply the empty set, and not a
tuple of nulls, as in the traditional model.

The trivialization algorithm can be extended to NF*
relational schemas as the following example suggests.
Let us consider a relational schema containing just

- 324 -

two relation schemes:

E(w,NAME,DESC)
D(SSN,DNAME)

where E and D stands for ‘employee’ and ‘dependent’,
respectively, and where the keys are underlined.
Suppose also that the schema has one K-IND,

(do,) D[SSN] E E[SSN]: (b’,p’)

Then, we may trivialize 8, producing a single SF*
relation scheme:

ED(c,NAME,DESC,D(DNAME))

and transforming E and D into views with defining
expressions:

E(SSN,NAME,DESC) = ED[SSN,NAME,DESC]

D(SSN,DNAME) =

In a general setting, it is convenient to carefully
analyze the benetits of nesting a scheme S into
another scheme when there are EK-INDs involving S
that will not be trivialized because they wiIl be trans-
formed into EK-IXDs over relations defined with the
help of the unnest operator.

As for the traditional model, the deftition of
trivializable dependencies induces a normal form for
the SF* model and the trivialization algorithm corre-
sponds to a normalization process.

5. CONCLUSIONS

The optimization process described in this paper mini-
mizes the set of K-ISDs of a relational schema by
eliminating redundant K-IXDs and by trivializiig
EK-INDs without modifying the semantics of the
application. As a conceptual design process, it diiers
from the strategies defined for the traditional as well as
the h’F* variations of the relational model because is
based on inclusion dependencies and depends in a fun-
damental way on the insertion and deletion options to
avoid altering the behavior of the transactions.

ACKNOWLEDGEMENT

We thank Prof. Claudia Bauzer Medeiros for the
useful discussion concerning section 2.

REFERENCES

[AMM]

KW

[CFTI

[CTFB]

PI

[FCI

WI

[Jai

[MaI

PYI

[RW

H. Arisawa, K. Moriya, T. Miura, “Oper-
ations And The Properties On Non-First-
Normal-Form Relational Databases”, Proc.
of the 9th International Conference on Very
Large Data Bases, (1983), pp. 197-204.
M.A. Casanova, R. Fagin, C.
Papadimitriou, “Inclusion Dependencies and
Their Interaction with Functional Depend-
encies”, J. of Computer and System Sci-
ences, Vol. 28, No. 1 (Feb. 1984), pp. 29-59.
M.A. Casanova, A.L. Furtado and L.
Tucherman, “Enforcing Inclusion Dependen-
cies and Referential Integrity”, Proc. 14th
International Conference on Very Large
Data Bases, Los Angeles (Aug. 1988), pp.
13-25.
M.A. Casanova, L. Tucherman, A.L.
Furtado and A.P. Braga, “Optimization of
Relational Schemas containing Inclusion
Dependencies”, Technical Report CCR078,
Rio Scientific Center, IBM Brazil, Rio de
Janeiro, Brazil (June 1989).
C.J. Date, “Referential Integrity” in Refu-
tional Database: Selected Writings Addison-
Wesley Publishing Company, (1986), pp.
41-62.
A.L. Furtado and M.A. Casanova,
“Updating Relational Views”, in Query froc-
essing in Database Systems, W. Kim, D.S.
Reiner and D.S. Batory (eds.), Springer
Verlag (1985), pp. 127-142.
P. Fisher, D. Van Gucht, “Determining
When A Structure Is A Nested Relation”,
Proc. of the 11th International Conference
on Very Large Data Bases, (1985), pp.
171-180.
G. Jaeschke, “Recursive Algebra for
Relations with Relation Valued Attributes”,
TR-8503.002, IBM Heildeberg Scientific
Center (Mar. 1985).
D. Maier, The Theory of Relational Data-
buses, Computer Science Press (1983).
Z. M. Ozsoyoglu, L. Yuan, “A New Normal
Form for Nested Relations”, ACM Trans.
on Database Systems, Vol. 12, No. 1 (March
1987), pp. 11 I- 136.
M. A. Roth, H. F. Korth, A. Silberschatz,
meory of non-first-normal form relational
databases”, TR-84-36, Dept. of Computer
Science, Univ. of Texas at Austin, (1984).

- 325 -

- 326 -

