
The Case For Safe RAM
George Copeland, Tom Keller, Ravi Krishnamurthy and Marc Smith

MCC
3500 West Balcones Center Drive

Austin, Texas 78759
(512) 338-3473

Abstract
Battery-backed-up DRAM memories can be

configured today to be almost as reliable as disk. This
paper argues that it is cost-effective to employ Safe
RAM in computer systems which support reliable
updates.

Safe RAM allows systems that support reliable
updates, such as database and transaction processing
systems, to perform more efficiently. We show how a
response time improvement can always be realized, and
how a throughput improvement can be realized to the
extent that a system has had to limit disk utilization to
achieve adequate response time. We also show that
Safe RAM is cost-effective today for most applications
and will become increasingly cost-effective as more
caching is used, and as DRAM standby power and disk
active power decrease.

1 Introduction
This paper investigates whether it is cost-effective to

employ in computer systems a memory that is made
almost as reliable as disk, which we call Safe RAM. We
define Safe RAM as a memory having enough backup
power to keep both the memory and disk alive for long
enough to copy the memory to disk, as well as adequate
protection from runaway software. Some Safe RAM
features are available in some systems t0day.t
However, a convincing argument has not yet been
made for the cost-effectiveness of Safe RAM. A major
area of opportunity for Safe RAM is in support of
reliable updates which must be made atomic and
persistent. Although other benefits may exist for Safe
RAM (e.g., improved availability), we base our
cost-effectiveness arguments only on reliable updates.

Many computer systems, such as database and
transaction processing systems, must support reliable
updates. Such systems typically employ several
conventional techniques for amortizing disk I/O across
multiple transactions. The most common, caching
(i.e., memory buffering for disk reads), amortizes

t Tandem, Stratus, HP, DEC’s Mira, *IBM disk caches and
Amdahl RAM disks have the ca ablht of keeping memory
alive during power failure. The?BM 1S400 has an option
that allows both the memory and disk to continue operation
for several minutes.

Permission to copy without fee all OT part of this material is
granted provided that the copies are not made OT distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying ia by permission of the Very Large Data Base
Endowment. To copy otherwise, OT to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the Fifteenth International
Conference on Very Large Data Bases

reads. The addition of logging and checkpointing
amortizes reliable data writes [Gra78, Hae83]. The
further addition of group commit amortizes log writes
[DeW84, Gaw85]. A common thread among these
techniques is that disk is assumed to be a stable mass
storage and RAM is not, so that a transaction must
commit its reliable updates by forcing either the
updated data pages or logs containing the updates out to
disk. A performance limitation of this assumption is
that a transaction must wait on at least one disk write
for the log.

We can overcome this limitation by the strategy of
spooling into Safe RAM all data and/or log pages
containing reliable updates. A transaction can then
safely commit after having written its updates to the
Safe RAM, thus avoiding the need for forcing logs or
pages containing reliable updates to disk during the
critical path of a transaction. Pages are written from the
Safe RAM to disk by a background task whenever the
disk has no other I/O to perform. This strategy allows
all disk writes for reliable updates to be removed from
the critical path of any transaction. This gives Safe
RAM a performance advantage for disk bottlenecked
systems, which can be applied at different points along
the throughput and response time continuum. We
show that a response time improvement can always be
realized, and that a throughput improvement can be
realized to the extent a system has had to limit disk
utilization to achieve adequate response time.

The performance advantages of Safe RAM increase
in time as technology progresses. Safe RAM is of
marginal advantage in processor-bottlenecked systems;
however, processor MIPS are becoming cheaper at a
much faster rate than disk arms. Also, DRAM standby
power and disk active power, which contribute to the
cost of Safe RAM, are decreasing at a rapid rate. Thus,
the reasons why Safe RAM may not have been a good
idea in the past are rapidly diminishing.

We first discuss the feasibility and cost of Safe RAM
using conventional technologies in Section 2. In
Section 3, we review conventional techniques for
reliable updates and show how they can be easily
extended to use Safe RAM. Sections 4 and 5 quantify
the performance impact of this Safe RAM extension to
the best of the conventional techniques and show when
it is cost-effective. Throughout this comparison, we
make assumptions that are pessimistic for Safe RAM.
Section 6 discusses some related issues. Section 7
provides a summary.

2 Feasibility And Cost Of Safe RAM
In this section, we first describe how Safe RAM can

be realized using conventional RAM, UPS
(uninterruptible power supply) and memory-protection

Amsterdam, 1989

- 327 -

technologies using either of two physical organizations.
Then, we describe how the additional cost involves only
a few per cent of the system cost. We use this cost later
as a basis for determining cost-effectiveness.
2.1 Realization With Conventional Technology

We view the storage hierarchy of the system as shown
in Figure 2.1. It consists of 1) a main conventional
RAM, 2) a Safe RAM which we call the Safe, and 3) a
conventional disk. The main RAM contains code,
system files, temporary results, transaction workspaces
and a cache for the most frequently used pages of the
database. The Safe is used as a stable intermediate
storage for reliable updates to disk, such that the pages
in the Safe are almost as resilient to system and power
failures as pages in disk.t We use a foreground (i.e.,
high priority) disk queue for database reads and I/O for
temporary data, and a background (i.e., low priority)
oueue to spool reliable data and loa writes.

Figure 2.1: A Storage Hierarchy With Safe RAM
Although the Safe is built using off-the-shelf RAM

technology, it must be made almost as safe as disk. A
disk is nonvolatile and is protected by requiring access
through a controller. Making RAM almost as safe as
disk requires roughly comparable nonvolatility and
protection.

Non-volatility is accomplished by using a UPS for the
Safe, the disk and the disk controller. Upon UPS
detection of power failure, these components are
switched to UPS battery power and the Safe’s contents
are written to disk. When normal power is reinstated,
recovery requires no special procedure. The UPS
power requirement is the total active power of these
components plus the standby power of the Safe’s
DRAM. The UPS energy (energy=power*time)
requirement is dependent upon the time to write the
Safe to disk.

Safe RAM is a storage medium. The physical failure
rate of equally-priced disk and parity-based RAM
subsystems are roughly equivalent [Bel88]. Any of the
conventional recovery techniques used for disk media
failure in conventional systems can be used to protect
against Safe RAM media failure as well. Most database
systems use a checkpoint and log technique for
recovery from disk media failure, which writes a log of
updates for each transaction before the transaction is
allowed to commit and periodically writes a checkpoint
of the database, both to a separate media than those
containing the database [Gra78]. Some database
svstems offer an ootional mirrored-disk techniaue for
t[Gra78] (in Section 5.8.3.2) makes the historical note that

database systems using core memories, which were non-
volatile, assumed that the contents of m-core logs survived
system crashes.

recovery from disk media failure, which maintains two
copies of the database on separate disks by applying
writes to both disk copies [Kat78]. The mirrored-disk
technique improves availability because recovery is
much faster than the checkpoint and log technique, but
increases cost. The choice of whether to use this
technique is based on the application’s availability and
cost requirements and the expected frequency of disk
media failure. In systems that use the mirrored-disk
technique, the checkpoint and log technique is usually
also used as a backup for media recovery and for
recovery from user and system errors which commit
incorrect updates to the database. A similar choice of
whether to use a mirrored Safe for recovery from Safe
media failure is possible.
2.2 Physical Realizations

Figure 2.2 illustrates two physical realizations of the
Safe. The Separate Safe realization employs a Safe
which is separate from the main RAM and requires a
separate mode of access (e.g., through a controller in a
“silicon disk” implementation). The Integrated Safe
realization makes the entire main RAM safe, so that the
Safe pages can be distributed throughout the main
RAM, intermixed with other pages (e.g., workspace
and cache pages).

~1~~

Figure 2.2: Physical Realizations
The advantages of the Separate Safe are:

l No additional protection requirements are needed,
because the separate mode of access to the Separate
Safe by the main processor protects the Safe from
“runaway” system errors which result in undesired
writes to memory. For the Integrated Safe,
additional memory protection may be required to
reduce the frequency of recovery. Conventional
memory protection techniques (e.g., generous use of
process virtual address spaces, write-protection
mechanisms available in conventional MMUs,
shadow memory pages or mirrored processor and
memory pairs) can be used to ensure that only very
limited types of system or user-program errors can
damage Safe contents.

l Only the disk controller, the Safe and the disk
require battery power and energy during the time
required to write the Safe to disk. The Integrated
Safe requires all of memory to be refreshed during
this time.

The advantages of the Integrated Safe are:
l The size of the Safe in Integrated Safe can be

dynamically varied up to the size of main memory.
The size of the Separate Safe is fixed at a smaller
moderate size and therefore requires the additional
complexity of handling the case where the size of the
Safe is exceeded (e.g., by forcing writes to the disk
instead of the Safe until room becomes available in

- 328 -

the Safe). Also, the cost of additional memory for
the Integrated Safe to accommodate the Safe
contents is limited to the average Safe size instead of
a maximum Safe size as in the case of the Separate
Safe.

l Copying pages between workspaces, the cache and
the Safe is not necessary. Instead, pointers and
protection status can be updated to reflect the move
without physically copying the pages. The Separate
Safe requires transfers between the main RAM and
the Safe using a different, and probably slower,
mode of access. This advantage is important for
throughput if the processor is the bottleneck (since
less work is required) and for response time (because
this copyin

7
takes place during the critical path of a

transaction . On the other hand, the copying
required by the Separate Safe can reduce data
contention because copying is considerably shorter
than disk I/O and the page must be read locked
during this time to ensure that a consistent copy of
the page is written to disk.
For brevity, we will assume a Separate Safe for this

paper. An analysis which includes the Integrated Safe
may be found in [Cop88].

2.3 Assumptions About Technology
The technology estimates relevant to this report

concern DRAM (dynamic RAM) cost, standby power
and active power, processor active power, disk cost,
speed and active power, and UPS cost, power and
energy. In Figure 2.3, we provide estimates for both
1987 and 1993 for the sake of comparison. In
particular, notice the rapid rate of decline of DRAM
standby power IFuj86, Ohs87, Saw88], a trend which
favors a Safe RAM approach. We arrived at these
estimates by simple extrapolation from historical trends
and from various popular periodicals. We have
pessimistically assumed that UPS costs will remain
constant. The purpose of these numbers is not to make
accurate predictions about technology. Instead, we use
them to roughly calibrate various curves and provide
ballpark estimates for several parameters. The
conclusions that we draw in this paper are not highly
sensitive to the accuracy of these estimates and our
calculations can easily be redone by the reader with
different technology characterizations and cost
estimates as they become available.

2.4 Cost Of Safe RAM
In this section, we estimate the cost of the Separate

Safe physical realization in both 1987 and 1993. We
define the Safe as cost-effective if it can improve
throughput by at least some CostRatio (ratio of system
cost with Safe to without Safe) without increasing
response time. For example, we determine later that
the CostRatio is 1.043 for the Separate Safe realization
using 1987 technology. This means that to be
cost-effective, a Safe would have to increase
throughput by more than 4.3%, without sacrificing
response time.

The CostRatios that we calculate in this section are
pessimistically high because of the following
assumptions:

cost/Mbyte
DRAM standby power

active power
micro

IXOCBSSOT
active power

$SOO/Mbyte $25lMbyte
2wattlMbyte lOwatt/Gbyte

lOwatts lOwatts

Swath Swatts

UPS time of power 20min (1200sec) 20min (1200sec)

extra batteries 1 $0. S/Kwatt-set 1 $0. S/Kwatt-set

Figure 2.3: Technology Assumptions
l We assume a single disk system. The required Safe

size for n disks is significantly smaller than n times
the size required for one disk.

l We only include disk in the base cost. Including
processor and memory in the base cost would reduce
the CostRatio required to make Safe RAM
cost-effective.

9 We include a large memory size in the standby power
requirements of the Integrated Safe. The UPS power
requirements for RAM standby power is proportional
to the RAM size.

l Only a very small percentage of the UPS energy is
actually required to support Safe RAM, but we
include the full cost of this unused energy in the
CostRatio.
For the Separate Safe in 1987, the power required is

about 116 watts, including a 100 watt disk, a 5 watt
microprocessor, a DRAM with active power of 10 watts,
and 100 2-Kbyte pages of Safe DRAM at 2 watt/Mbyte
for standby power (0.4 watts). The time to write 100
sector-sized pages of Safe at 0.026 set/access is 2.6 set
(assuming random writes to sectors). This is only about
0.2% of the energy capacity of the UPS, so that no
additional battery energy is needed. This results in
$116 worth of UPS. The additional RAM cost for the
Safe would be $100. Thus, the total additional cost for
the Safe is about $216. Because disk cost is $5,000, the
CostRatio is 1.043.

For the Separate Safe in 1993, the power required is
about 65 watts, including a 50 watt disk, a 5 watt
microprocessor, a DRAM with active power of 10 watts,
and 100 2-Kbyte pages of Safe DRAM at 10 watt/Gbyte
for standby power (0.002 watts). The time to write 100
sector-sized pages of Safe at 0.0 16 set/access is 1.6 set
(assuming random writes to sectors). This is only about
0.1% of the energy capacity of the UPS, so that no
additional battery energy is needed. This results in $65
worth of UPS. The additional RAM cost for the Safe
would be $5. Thus, the total additional cost for the

- 329 -

Safe is about $70. Because disk cost is $2,000, the
CostRatio is 1.035.

Obviously, even for today’s technology, only a
negligible improvement in throughput is required to
recover the dollar cost of Safe RAM because the dollar
cost is so small.

3 History Of Reliable Updates Techniques
In this section, we summarize the historical evolution

of conventional techniques for reliable updates and
show how they can be easily extended to use Safe
RAM.

In the simplest technique for reliable updates, a
transaction reads pages from the public database and
updates copies of the pages in the cache or a local
workspace. When the transaction is ready to commit, a
log of the updates is forced to disk, denoting the
commit point. Then, the updated database pages are
forced to disk to reflect the transaction-consistent
state. The disk I/OS in the critical path of each
transaction in this simple technique can be
characterized by three variables:
9 Dr: the number of read I/OS for pages that were not

in the cache (and I/O for temporary data) ;
9 Dw: the number of write I/OS for pages containing

reliable updates;
l Dl: the number of log I/OS of reliable updates at

commit time.
Some pages are read only once and discovered in

cache by subsequent transactions, which amortizes
reads. In the simple technique, a page may be
overwritten on disk many times if that page is updated
by many transactions. Many techniques have been
proposed to amortize the writes over many transactions.
Two such techniques are checkpointing (CP) which
amortizes data writes, and group commit (GC) which
amortizes log writes.

In CP techniques [Gra78, Hae83, Moh89], only the
log is forced to disk at commit time of the transaction.
A database page is written to disk only when that page is
swapped out by the cache-replacement algorithm. As a
result, a database page may be written to disk only once
after many updates. To recover from failure, the
system must reconstruct a consistent state of the
database using the log. To avoid a recovery having to
go arbitrarily far back in the log, checkpointing is
periodically done, wherein all the updated pages still in
the cache are forced to disk at the end of a
checkpointing interval. This strategy incurs the
following I/OS in the critical path of each transaction:
1) Dr, 2) Dw’ (I/O for swapping out dirty pages for
allocating memory for later transactions), 3) Dl, and 4)
checkpointing overhead. Due to cache locality, Dw’ is
usually smaller than Dw (for the simple technique) and
checkpointing overhead is amortized over many
transactions. While checkpointing reduces the I/O for
reliable updates, the data writes still lie in the critical
path of some later transaction, because the
cache-replacement algorithm will write pages out to
allocate memory for later transactions. Thus, every

write of an updated page is done in the critical path of
some transaction.

After reducing the number of read and write I/OS per
transaction via caching and checkpointing (perhaps
close to zero for systems supporting memory-resident
data), the log I/O cost becomes significant. In GC
techniques [DeW84, Gaw85, Moh89], transactions are
held up until a full log page can be written or a timeout
occurs. Thus, the log write is amortized over a group of
transactions. This strategy incurs the following I/OS in
the critical path of each transaction: 1) Dr, 2) Dw’, 3)
Dl’, and 4) checkpointing overhead. Dl’ is usually less
than Dl (in the simple and CP techniques), because the
logs are amortized over several transactions. Further, a
log I/O still lies in the critical path of each transaction,
data I/OS still lie in the critical path of some later
transaction, and each transaction is also held up for a
period of time (waiting to commit) in its critical path.
Consequently, the response time of each transaction
reflects these I/O and waiting overheads.

Recall that in both the CP and GC techniques, dirty
data pages are written out to disk by the
cache-replacement algorithm to reallocate memory
during the critical path of some later transaction.
Alternatively, spooling can be used to migrate these
dirty pages to disk. The advantage of spooling is that
the dirty pages are written to disk as a background
operation when no read I/O request is pending, instead
of during the critical path of some transaction. The GC
technique can be extended to use such a spooling
mechanism to further improve performance. When
this extension is made, checkpointing is usually also
further optimized by making a log entry containing
system status information (e.g., which pages are “dirty”
and the status of transactions) instead of actually
flushing the updated (dirty) pages, because spooling will
keep the updated pages young enough so that a
recovery does not have to go very far back in the log.

We consider Safe RAM a natural next step in this
migration toward improved performance. Although
Safe RAM may eventually influence the design of
recovery algorithms, the use of Safe RAM does not
necessarily require changing existing recovery
algorithms provided that the Safe is treated the same as
disk. Safe RAM can productively be used in
conjunction with the most efficient conventional
reliable update techniques (e.g., GC with spooling). In
Sections 4 and 5, we compare the performance impact
of Safe RAM on GC with spooling. In this context, the
advantage of Safe RAM is that amortizing log writes via
grouping does not cause a delay in commit times. This
removes the log writes from the critical path of
transactions. We quantify when this justifies the cost of
Safe RAM.

4 Modeling
This section provides guidelines for the size of the

Safe and provides equations for throughput and
response time, which we use in Section 5 to show
cost-effectiveness. We compare the best of the
conventional reliable update techniques (e.g., GC with

- 330 -

spooling) with and without the Safe. Throughout this
section, we assume that the disk is the system
bottleneck. We also make a number of assumptions,
which we refer to as “pessimistic assumptions”, that
have a negative effect on the performance model for
Safe RAM (e.g., overestimating the required size of the
Safe and underestimating its improvements in response
time and throughput). As a result, we get a lower
bound for the improvement using Safe RAM, so that
our cost-effectiveness argument is conservative.

4.1 Size of Safe
We are interested in determining the required size of

the Safe given disk loading and how the load is made up
of reads and writes. We will do this by defining two
metrics, the mean time to overflow the Safe (MTTO)
and the mean time to recover from the overflow
(MTTR), and then, for given loads and Safe sizes,
determining these means and seeing if they are
acceptable. We show that even under extremely
pessimistic assumptions, a moderate-sized Safe results
in acceptable MTTO and M’ITR.

We model the system by a single M/M/l queue,
making the following pessimistic assumptions in order
to guarantee that the calculated MTTO will be far
smaller than would be observed in an actual
implementation:

l All disk I/OS are writes. The higher the proportion of
reads to writes, the smaller the Safe needs to be. (If
all disk I/OS were reads, then no Safe would be
required.)

l Disk service times are exponentially distributed.
This distribution has a variance higher than usually
encountered in disk systems, resulting in longer
queue length distributions (and thus a shorter
M-I-TO).
For simplicity, we assume Poisson arrival rates. We

assume a Safe of k pages (capable of holding k writes)
and arrival and service rates characterized by means X
and 1. The probability of having exactly k writes in the
queue is (1-p)pk where p=X/c~, the average utilization
[Kle76]. The steady-state probability of having more
than k writes in the queue (an overflowed Safe) is
simply pk+l . The probability of having k or fewer writes
in the queue is l-pk+l . The average rate at which the
Safe overflows is

[
a full Safe given that we

x Prob started with a non-full Safe 3

= X Prob k writes in the queue given that we
started with< k writes in the queue I

The mean time between overflows is the inverse, or

MTTO = l/p lmpk+l

(l-p)pk+l *

Similarly, the mean rate at which the system exits the
overflow state is

l.t Prob having k+l writes in the queue given that
we started with k writes in the aueue I

= (bpjF .
The inverse yields MTTR, or

MTTR=$&
Notice that MTTR is independent of k.

Figure 4.1 illustrates how MTTO (plotted on a log
scale) depends exponentially on p for a given Safe size
of k. We use a mean disk service time of 1/1.t = 26 msec
for the plot. Note that for even (unrealistically) high
disk utilizations (e.g., 0.90), the pessimistic bound of
MTTO yields 10,800 set = 3.0 hours for k=lOO. The
bound of MTTR for this case is 0.26 sec. To
summarize this extreme example, if one implemented
this system and ran an exclusively write workload on an
overutilized disk with mean utilization of 90%, then one
could expect a 100 page Safe to require writes to be
forced to disk instead of the Safe for 0.26 see once
every 3 hours.

elC&

e k e4

F
e2

I
.... minute \

tl I I I I I L

.60 -65 .70 .75 .80 .85 .90

Fig 4.1: P M an Time to
Overflow the Safe

4.2 Performance Model
This section develops the throughput and response

time equations with and without Safe RAM. We
assume the following:

l Only disk I/O is included in our throughput and
response time equations. Processor delays are
assumed to be negligible.

. The logs of G (G>l) transactions are grouped into
one page.

l Reliable writes are spooled for both the Safe and
non-Safe case. We assume these spooled writes are
removed from the critical path of any transaction.

- 331 -

This assumption is justified by the short length of the
spooling queue described in Section 4.1 and by the
fact that these pages will have recently-used cache
status at the time they are put into the queue. These
writes are nonpreemptive, so that the foreground
queue must wait on any spooling I/OS which have
already begun.

l There is a single database disk characterized by
service rate l.~ and utilization p.

l There is a single log disk characterized only by
service rate l.t. Safe RAM never requires waiting for
the log write, so that this response time delay is
eliminated and a high log-disk utilization can be
tolerated. Without Safe RAM, we optimistically
assume that the log disk is never the system
bottleneck and has low enough utilization so that its
response time equals its service time of 11l.t. We also
optimistically assume that a log write can be
accomplished in a single I/O, regardless of how large
Dw and G are. These optimistic assumptions are
correspondingly pessimistic for Safe RAM.

9 For simplicity, we ignore any checkpointing
overhead, which is typically quite small.
When Safe RAM is not used for either disk, the

commit time of multiple (G) transactions are delayed
for a group commit, so that their logs can be written to
the log disk with a single log write. We assume each
transaction causes a total of D disk I/OS to the database
disk, so that the maximum number of transactions per
second without Safe RAM is

TpSo = h - h.k n- l-l’
where po is the database-disk utilization without the
Safe. The Dr reads are placed in the database disk’s
foreground queue, the Dw writes are placed in the
database disk’s spooling queue, and the log writes are
placed in the log disk’s foreground queue. Thus, the
transaction response time has three terms.

First, each transaction must wait on Dr I/OS in the
database disk’s foreground queue. The average
response time (queue wait plus service) for each of
these I/OS is given in [Kle76] (Vol. 2, p. 121) as

+$ft l/CL'

where pr=EQ-, is the disk utilization due to the
foreground queue.

Secondly, each transaction must wait on the other
transactions in its group. This average group delay lies
within the range:

+&oW) = -$ (G-1) > -$ (G-1).
The first expression assumes that each transaction is
delayed for an average of half of the average
inter-arrival time of G-l transactions (we assume the
last transaction does not have to wait). The second
expression assumes that each transaction is delayed for
an average of half of the burst-service time of G-l
transactions. We use the second expression for group
delay because it is lower and thus is pessimistic for Safe
RAM (i.e., it underestimates the savings due to Safe
RAM).

Thirdly, each transaction must then wait on the hlp,

write in the log disk’s foreground queue, whicli WC:
assume is l/k.. As a result, the average ~ranSlc~ifJrl

response time yithout Safe RAM is

When Safe RAM is used for both data and log disks,
the logs of multiple (G) transactions are grouped within
the Safe containing the log disk’s spooling queue, so
that they can later be written to the log disk with a single
log write, but without requiring the commit time of any
transaction to be delayed. Each transaction causes a
total of D I/OS to the database disk, so that maximum
TPS with Safe RAM is

-I-PC& = .+L - iti!i
- D ’

where ps is the database disk utilization with the Safe.
The Dr reads are placed in the database disk’s
foreground queue, the Dw writes are placed in the
database disk’s spooling queue, and the log writes are
placed in the log disk’s spooling queue. Thus, each
transaction must wait on Dr I/OS in the database disk’s
foreground queue. This is described by the first term in
RTo, except that ps is used instead of po. Safe RAIM
avoids the delays for group commit and log writes
(second and third terms in RTo). As a result, RT with
Safe RAM is . .

RTs = Dr .

5 When Is Safe RAM Cost-Effective?
In this section, we quantify the performance

improvements of Safe RAM and show when it is
cost-effective.
5.1 Comparison Methodology

The performance improvement due to Safe RAM
can be applied at different points along the throughput
and response-time continuum. We examine
throughput ratios (with Safe RAM over without Safe
RAM) while constraining the response time with Safe
RAM to be at least as good as without it. We also
examine response time ratios (without Safe RAM over
with Safe RAM) while constraining throughput to be
equal. The numerators and denominators of these
throughput and response time ratios are chosen to
conveniently indicate that Safe RAM is better when
either of the ratios is greater than 1. We define

TPSs’o = TPSo RTsSRTo -I
and RTo/s sBTp

I RTs TPSo=TPSs.

We define cost-effective to mean that TPSs/o is greater
than the CostRatio described in Section 2.4.

It is easy to prove that RTo/s>l and TPSs/ozl for all
values of Dr, Dw, G and po, and that TPSs/o>l when
po<pm, where pm is the maximum allowable disk
utilization even when the Safe is employed. The
remaining questions are by how much these ratios
exceed 1 and when Safe RAM is cost-effective (i.e.,
when TPSs/o > CostRatio). We derived TPSs/o and
RTo/s analytically and plotted them using the following
values:

- 332 -

X X

The first case is the DebitCredit benchmark without
caching [Ano85]. The second case constrains Dr/D to
be the same as the first case while decreasing D via
caching. The third case constrains D to be the same as
the first case while increasing Dr/D. The fourth case
constrains Dr/D to be the same as the third case while
decreasing D via caching. We use G values of 1 (no
grouping) and 4. We varied p. from 0.2 to 0.9 and
allowed ps to go as high as 0.9 and 0.7. We included
pmz0.9 to represent the upper bound on disk
utilization for any system. We also included pmz0.7 to
represent systems that require spare disk utilization for
other purposes (e.g., disk mirroringt) .
5.2 The Comparison

For the case when grouping is not used (G=l) , Figure
5.1 illustrates the effect of Safe RAM on throughput
when response time with Safe RAM is constrained to be
at least as good as without it. The TPSs/o curves are
shown in solid lines for pmz0.9. TPSSIO = pmlpo
except when ps is forced to be below pm by the
response time constraint. The dashed line shows the
0.7/pocurve. For pmz0.7, the curves are the minimum
of the 0.7/p. curve and the solid curves. The higher of
the two CostRatios (1.043) is also shown by the dotted
line. Figure 5.3 illustrates TPSs/o when grouping is
used (G=4). Figures 5.1 and 5.3 illustrate the
following:

l As Dr is reduced (either by reducing Dr directly or by
reducing D with Dr/D held constant), the curves
come closer to the pmlpo curve, because the
response time constraint becomes easier to meet.
For G=l and pmz0.9, the (0.3, 0.4) curve is the
same as the 0.9/po curve. For G=l and pmzO.7, the
(0.3, 0.4) and (0.6, 0.1) curves are the same as the
0.7/po curve. For G=4 and pmzO.9, all but the (6,
1) curve are the same as the 0.9/p. curve. For G=4
and pmz0.7, all of the curves are the same as the
0.71~~ curve.

l As G is increased, the throughput improvement due
to Safe RAM becomes much larger. This is due to
the fact that Safe RAM eliminates the delay involved
in group commit.

. As p. approaches pm, there is less room left for TPS
improvement but the RT improvement increases.
For the case when grouping is not used (G=l) , Figure

5.2 illustrates the effect of Safe RAM on response time

tFor example if disk mirrorin were used with DebitCredit
without caching (first case), &en Dr, Dw and D become:

I mode of operation Dr Dw D
during normal operation 3 8 11

while one of the disks is out 6 8 14
To support the same arrival rate while one of the disks is
out, maximum utilization during normal operation must be
reduced lo below 11/14=0.79 in order IO keep utilization
while one of the disks is out below 1.0.

with throughput held constant. The RTo/s curves are
shown in solid lines for pmz0.9. For pmz0.7, the
portion of the curves to the right of the dashed line do
not apply. Figure 5.4 illustrates RTo/s when grouping is
used (G=4).

The advantage of Safe RAM comes from the
following:
9 Log writes can be put in a spooling queue in addition

to the data writes, so that the single log write is taken
out of the response time’s critical path. This
advantage diminishes when Dr and p. increase (the
foreground queue wait time dominates) or when D
and G increase (the group delay dominates).

. Response time is not delayed in order to exploit the
grouped log writes. This advantage improves as G
and D increase (the group delay dominates), and
diminishes as Dr and p. increase (the foreground
queue wait time dominates). It has been argued that
a group commit timeout value is typically much
shorter (e.g., 50 to 100 msec) than the required
response time (e.g., 1 set), so that Safe RAM
provides little advantage. However, in such systems,
Safe RAM would allow a much larger G without
impacting response time, so that more of the
advantages of grouped log writes would be possible.
Also, parallel systems often tend to centralize logging
to exploit the maximum throughput advantage from
group commit without increasing its response time
penalty. Safe RAM allows more parallelism for logs,
so that the maximum throughput advantage from
group commit can be obtained without adding to
transaction response time.
Our most significant point is: Even with pessimistic

assumptions, Safe RAM is cost-effective for systems
that support reliable updates and have had to limit disk
utilization to achieve adequate response times,
provided that Dr is reasonably small.

Safe RAM is expected to become increasingly
cost-effective in the future because of the following:

l The CostRatio is expected to decrease in the future
because of reduced DRAM standby power and cost
per bit and reduced active disk power, even though
we assumed that disk unit cost will decrease and UPS
cost will be unchanged.

. The continuous improvements in DRAM cost per bit
will cause caching to substantially increase in the
future, so that Dr will decrease.
When viewing Figures 5.1 through 5.4, it is useful to

recall the assumptions which we have made that are
pessimistic for Safe RAM:
. The CostRatios were inflated because

l we included the higher of the two CostRatios in the
TPSs/o figures,

9 we assumed a single disk system,
l we only included disk in the base cost,
l we include a large memory size in the standby

power requirements of the Integrated Safe,
9 we included the full UPS energy cost even though

only a tiny percentage of the UPS energy is
required to support Safe RAM, and

- 333 -

1.8

1.0

1.8 -

, \ \ \ \ \ \ \ \

(Dr,Dw)

$1.6 -

s
1.4 -

1.2 -

CostRatio.. \ \ \
1.0 , ,

I I I I I I I

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
Fig 5.1: Through&t Improvement (G=l)

5
I

(Dr,W

J
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P 0 P 0
Fig 5.2: Response Time Improvement (G=l) Fig 5.4: Response Time Improvement (G-4)

9 we overestimated the size of the Safe.
l We assumed that the log disk’s delay without the Safe

was a minimal ~/J.L due to low utilization (even though
a log disk employing Safe RAM could tolerate a very
high utilization) and regardless of how large G and D
were (even though large G and/or D would cause
multiple log writes).

l The group commit delay was based on burst service
time instead of average inter-arrival time.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P 0
Fig 5.3: Throughput Improvement (G=4)

(Dr,Dw)

The accumulative effect of these assumptions can be
quite significant.

6 Some Related Issues
This section describes several open issues concerning

Safe RAM.
We showed that a typical existing UPS has

considerably more energy capacity than is required to
realize Safe RAM. (The energy requirements of Safe

- 334 -

RAM could be even further reduced by writing the
pages in the Safe to contiguous disk locations during
power failure and making the appropriate updates to
disk page-mapping tables.) This suggests that a UPS
with less energy and lower cost would suffice to realize
Safe RAM. In fact, a large-capacitance power supply
might suffice. Otherwise, the excess energy could be
used to keep memory alive during power outage, so that
subsequent disk reads of the data that was in memory at
the time of power failure are unnecessary. The most
cost-effective amount of energy for such higher
availability could be calculated using an analysis similar
to the S-minute rule [Gra87] to trade off UPS energy
cost for disk arm cost. Further, the excess energy could
be used to keep the entire system alive during power
outage to increase availability.

An interesting variation of the Separate Safe physical
realization is the Controller Safe, which includes the
Safe within the disk controller. This realization would
allow today’s systems which do not use group commit
and which support reliable updates to plug in such a
disk controller transparently to the rest of the system to
achieve performance improvements.

For the Integrated Safe realization with a large
cache, a separate spooling queue for cache-resident
data (i.e., fixed in memory) with lower priority than the
disk-resident data (i.e., subject to LRU swapping) has
two advantages. One advantage is a significant
reduction in the size of the spooling queue, because the
separate spooling queue for cache-resident data can
consist of pointers to cache-resident pages instead of
the pages themselves. A second advantage is more
efficient buffer management. Cache-resident data
requires cache space anyway, whereas disk-resident
data needs to be written out as early as possible to avoid
being allocated by the LRU mechanism, which would
cause a disk I/O during the critical path of some later
transaction.

7 Summary
We argued the feasibility of Safe RAM using

conventional technologies and estimated the additional
cost required in both 1987 and 1993 using a physical
realization called Separate Safe. We then described
how Safe RAM can be used in conjunction with the
most efficient conventional recovery techniques for
improved performance. Finally, we quantified the
performance effect of Safe RAM and described how,
even with very pessimistic assumptions, Safe RAM is
cost-effective today for systems that support reliable
updates and have had to limit disk utilization to achieve
adequate response times, provided that there are a
reasonably small number of disk reads per transaction.
Even though we assumed that disk unit cost will
decrease and UPS cost will be unchanged, we showed
how Safe RAM will be increasingly cost-effective in the
future because caching will increase (due to DRAM
cost per bit improvements) and because DRAM
standby power and disk active power will decrease.

Acknowledgements
Thanks to Jim Gray for his encouragement and

helpful suggestions.

References
[Ano85] Anon. et al, “A Measure of Transaction

Processing Power,” Datamation (April 1 1985).
[Be1881 J. Bell, private communications concerning

experience as a Field Engineer and a Quality
Assurance Manager (19 8 8).

[Cop881 G. Copeland, R. Krishnamurthy and M.
Smith, “The Case For Safe RAM,” MCC Technical
Report No. ACA-ST-080-88 (February 1988).

[Dew841 D.J. Dewitt, R.H. Katz, F. Olken, L.D.
Shapiro, M.R. Stonebraker and D. Wood,
“Implementation Techniques for Main Memory
Database Systems,” Proceedings of the ACM
SIGMOD Conference on Management of Data,
Boston (June 1984).

[Fuj86] S. Fujii et al, “A 50-J.LA Standby
lMx1/256Kx4 CMOS DRAM With High-Speed
Sense Amplifier,” IEEE Journal of Solid-State
Circuits, Vol. 21, No. 5 (October 1986).

[Gaw85] D. Gawlick and D. Kinkade, “Varieties of
Concurrency Control in IMS/VS Fast Path,” IEEE
Quarterly Bulletin on Database Engineering, Vol. 8,
No. 2 (June 1985).

[Gra78] J.N. Gray, “Notes on Database Operating
Systems, ” in Operating Systems: An Advanced
Course, Springer-Verlag, New York (1978).

[Gra87] J.N. Gray and F. Putzolu, “The 5 Minute Rule
for Trading Memory for Disc Accesses and the 10
Byte Rule for Trading Memory for CPU Time,”
Proceedings of the ACM SIGMOD Conference on
Management of Data, San Francisco (May 1987).

[Hae83] T. Haerder and A. Reuter, “Principles of
Transaction-Oriented Database Recovery,” ACM
Computing Surveys, Vol. 15, No. 4 (December
1983).

[Kat78] J.A. Katzman, “A Fault-Tolerant Computing
System,” Proceedings of the Eleventh Hawaii
Conference on System Sciences (January 1978).

[Kle76] L. Kleinrock, Queueing Systems, Volume 1:
Theory, and Queueing Systems, Volume 2: Computer
Applications, John Wiley & Sons, New York (1976).

[Moh89] C. Mohan, D. Haderle, B. Linsay, H.
Pirahesh and P. Schwarz, “ARIES: A Transaction
Recovery Method Supporting Fine-Granularity
Locking And Partial Rollbacks Using Write-Ahead
Logging, ” IBM Research Report RJ6649 (January
1989).

[Ohs871 T. Ohsawa et al, “A 60-ns 4-Mbit CMOS
DRAM With Built-In Self-Test Function,” IEEE
Journal of Solid-State Circuits, Vol. 22, No. 5
(October 1987).

[Saw881 K. Sawada et al, “A 30-l.tA Data-Retention
Pseudostatic RAM With Virtually Static RAM
Mode,” IEEE Journal of Solid-State Circuits, Vol.
23, No. 1 (February 1988).

- 335 -

- 336 -

