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~hstt~ct A simple and efficient recovery method for 
nested transact.ions, called ARIES/NT (Algorithm for 
Recovery and Isolation Exploiting Semantics for 
Nested ‘I’ransactions), that uses wrile-ahead logging 
and supports semantically-rich modes of locking and 
operation logging is presented. ‘I’his method applies 
to a very general model of nested transactions, which 
includes parlial rollbacks of subtransactions, upward 
and downward inheritance of locks, and concurrent 
execution of ancestor and descendent subtransactions. 
The adopted syslem nrchit.cclure encompasses aspects 
of distributed data base management also. ARIES/NT 
is an extension of the ARIES recovery and concurrency 
control method developed recently for the single-level 
transaction model by Mohan. et. al. in the IBM Re- 
search Report RJ6649. 

1. introduction 
The nested transaction concept was popularized by 
Moss [Moss81]. It has been implemented in several 
systems so far, such as ARGUS [LCJS87], Camelot 
[SpPR88], CLOUDS [DaLh88], LOCUS 
[MuM1’83], and Eden [JNJR1%2]. Nested transac- 
tions have at least three advantages over single-lcvcl 
transactions: First., tlley provide a means for controlling 
concurrency within transactions. Second, nested trans- 
actions can be used to protect. a part of a transaction 
f’rom failures of another part of the transaction - i.e., 
nested transact.ions can act as firewalls, preventing 
outside influences from affecting t.he intern&. ‘Third, 
nested transactions allow an easy and secure compo- 
sition of transaclion programs, by means of which the 
modulatily of sys(.cms can be increased. 
The goal of our work has been to devise an ellicient 
and simple recovery method which guarantees t.he 
usual transaction atomicily properties for a very gen- 
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era1 model of nested transactions. Even though a 
number of papers have discussed the shadow-page 
recovery technique (as used in System R 
[GMRLLII]), write-ahead logging (WAL) is the 
method of choice in most commercial systems because 
ofits efficiency, flexibility, and power (see [MHl,PS89] 
for detailed comparisons). In WAL systems, an up- 
dated page is written back to the same nonvolatile 
storage (e.g., disk) location from where it was read. 
That is, in-place updating is done on nonvolatile stor- 
age. The H’/ff, gvoiocol asserts that the log records 
representing changes to some data must be physically 
written to stable storage hefore the changed data is 
updated on nonvolatile storage. 
In this paper, a recovery method that uses WAL for 
nested transactions, called ARIES/NT (Algorithtn for 
Recovery and Isolafion Exploiting Semantics for 
Nested Transactions), is presented. ARIES/NT is an 
extension of the ARIES recovery and concurrency 
control method introduced by Mohan, et al. in 
[MIILPS89]. It retains all the features of the latter. 
ARIES tracks precisely the state of a page on nonvol- 
atile storage as well as in main storage by associating 
a log sequence number (LSN) with every page. The 
ISN of a data base page is the address of the log 
record which describes the update most recently per- 
formed on the page. It is a monotonically increasing 
value that helps us relate the state of a page to logged 
updates of t.he page. 
Like ARIES, ARIES/NT also logs all database 
changes, including even those performed during roll- 
backs of transactions. Updates performed during roll- 
backs arc logged using what are called compensation 
log records (CI.Rs). During restart recovery, ARIES/ 
NT guarantees that, for those transactions which were 
already aborting at the time of the system failure, only 
those actions that had not been undone ever before 
are rolled back. This means that the changes specified 
in a CLR are never undone (the changes are described 
in CLRs only for redo purposes during restart alter a 
failure or during media recovery). This also causes a 
CLR to be used to keep track of how much of the 
transaction has already been rolled back and how 
much more remains to be rolled back. This tracking 
is done by recording, in a CLR, a set of pointers, each 
of which points to the next record to be dealt with in 
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fhc chain of log records written by the transact.ion or 
one of its subt.ransactions (in ARIES, instead of a set 
of pointers, there will be only one pointer, called 
UndoNxt.I.SN, since ARIES was designed for the 
single-level t.ransarlion model). 
The remainder of this paper is organized as follows. 
Section 2 introduces the notion of a nested transaction 
and describes the system architecture we assume. In 
section 3, lhc new recovery method ARIES/NT is 
presented. Section 4 describes other work on recovery 
algorithms for nested transactions. Finally, section 5 
summarizes our work. 

2. Transaction and System Models 
In this section, WC discuss the nested transact.ion model 
and the system architecture that we assume for ARIES/ 
NT. 

2.1. Nested Trcmsactions 
The transaction model that ARIES/Nl’ is designed for 
is a generalization of the nested transaction model of 
[MossSl]. In this model, a transaction may contain 
any number of sditransactians, and cnch 
subtransaction again may comprisr any number of 
subtransactions. 
A transaction which is not enclosed in another trans- 
action is called a top-level transaction ( TL-transaction). 
In the following, we use the term “transaction” to de- 
note both I’L-transactions and subtransactions. Trans- 
actions having subtransactions are called parents, and 
their subtransactions are their chifdren. The ancestor 
(respectively, descendant) relation is the reflexive tran- 
sitive closure of the parent (child) relation. We use 
the term superior (respectivtly, in..riw) for the 
nonreflexive version of ancestor (descendant). The 
nesting hierarchy of a TL-transaction can be rcpre- 
sented by a so-called transaction tree, where the nodes 
of the tree represent transactions, and the edges rep- 
resent the nesting relationship amongst the transactions. 
Transactions can t.erminate eitber normally by com- 
mitting or abnormally by aborting. Subtransactions 
appear atomic to the surrounding transactions and 
may commit or abort independently. A transaction is 
not allowed to commit until all its children have ter- 
minatcd. A subtransaction may abort without afrecting 
the commit or abort outcome oft.he surrounding trans- 
acl.ion. IIowever, the commit of a subtransaction is 
relative; even if the subtransaction commits, aborting 
one of the subtransact.ion’s superiors will undo its ef- 
fects. Updates become permanent only when the en- 
closing TL-transaction commits. 
The concurrency control scheme for nested transacGon 
presented in [Moss811 is a locking approach. In this 
scheme, transactions may hold and retain locks. When 

a subtransaction commits, its locks are inherited by its 
parent, which then retains the locks. A t.ransaction 
holding a lock for an object is allowed to access this 
object. The access is not allowed if it only retains the 
lock. Consequently, a retained lock is only a place 
holder indicating that transactions outside the hierarchy 
of the retainer cannot acquire the lock, but descendants 
of the retainer can. 
The locking scheme introduced by Moss only allows 
for upward tien’tance of locks, i.e., a parent may 
inherit locks of its children, but not vice versa. In 
[I laRo87b], a more general locking scheme that ad- 
ditionally supports downward inheritance of locks is 
proposed. ARIES/NT is flexible enough to be used 
together with concurrency control schemes enabling 
downward as well as upward lock inheritance 
[RoMo89]. Moreover, it accommodates the support 
of even semantically-rich lock modes like increment/ 
decrement which permit multiple transactions to update 
the same data concurrently. This is the kind of feature 
that requires a recovery method to support operation 
logging (before and/or aRer image logging will not 
work) and to avoid the erroneous attempts to undo 
or redo some actions unnecessarily by precisely track- 
ing the state of a page using the LSN and by writing 
Cl .Rs. 
Even concurrency control methods which are similar 
to locking, like the one described in [BaRa87], can 
be used w&h ARIES and ARIES/NT (see 
[Ml lLPS89]). 

2.2. System Architecture 
A distributed database system (DDBS) consists of a 
set of sites, which are interconnected via a commutti- 
cation network. Each site is comprised of a set of 
sulisystems, which cooperate with each other for the 
purpose of processing transactions. We assume that 
each subsystem has its own recovery component. 
On each site of the DDBS, there exists a special sub- 
system called the bookkeeper. Bookkeepers coordinate 
the initiation, migration and termination of transac- 
tions. Moreover, they maintain transaction s1at.e in- 
formation, which is needed for recovery purposes, as 
well as information needed to build up transaction 
trees and to keep track of which transactions have 
visited which sites and which subsystems. The notations 
RK-subsystem and NBK-subsystem are used to denote 
a bookkeeper subsystem and a non-bookkeeper sub- 
system, respectively. An NBK-subsystem may be some 
component of a DDBS site, such as an index manager 
or a record manager. 
A transaction may be distributed over several NBK- 
subsystems, possibly residing on different sites of the 
DDBS. A transaction is initiated at a subsystem either 
when the subsystem receives the first request to be 
performed within this t.ransaction, or as soon as a 
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child of this transaction commils at l.tiis sr~bsyslen~, 
whichever happens first. From an NDK-sllhsystcm’s 
point of view, a sublransaction may bc in two diKcrcn1 
states, namely “unknown” and “acl.ive”. AL a subsys- 
tem, the init.ial stale of a sublransactinn is “unknown”. 
The subtransaction enters the “active” state as soon as 
it gets initiated at the slJhsystem. It again becomes 
“unknown” when il commits or when one of its an- 
cestors aborts. 
‘T‘l.-transactions alone may also reside in the “prepared” 
sla1.e. This state can be reached during the execution 
of a 2-Phase-Commit (2PC) protocol (e.g., lhe Pre- 
sumed Abort protocol of [Mol.OgG]), which is used 
to terminate distributed TL-transactions. During the 
first phase of 2PC, the lransaclion enters the “prepared” 
state at a subsystrm if IJpdates were performed al Ihat 
subsystem and that subsystem is willing to commit the 
lransaclion. After its terminalion (commit or abort) 
in the second phase, the lransaclion retrJrns to the 
“unknown” sla1.e. Of course, it also becomes “unknown” 
when it is aborted in the “active” stale. 
Each JIK in the DDl?S guarantees the following: 

For each “active” snbtransaction, an NDK-subsystem 
will evenlually receive either a commit (for this 
snblransaction) or an abort (for an ancestor of this 
subtransacCon) request from the local I3K. A commit 
(respectively, ahart) request cbntains the identifier of 
lhc subtransaction to he committ.ed (aborted) as well 
as the identifier of the parent (inferiors, which arc 
“active” at this subsyst.em) of ~lis subtransaction. A 
commit. request will not be issued until all the chil- 
dren of (he committing snbtransaction have f.ermi- 
nated. 
For each “active” I’L-transaction, an NBK- 
subsystem will evenl.ually receive an abort or a pre- 
pare request rrom its local BK. While a prepare 
request contains lhe identifier of lhe ‘H.-transaction 
to he prepared, an ahort request. includes Ihe iden- 
tiliers of the ‘II,-transaction’s “active” descendants 
at tilis subsystem. A prepare request will no1 be 
issued until all the children of the preparing Tl.- 
transaction have terminated. 

l For each “prepared” ‘1’1:transaction, an NI<K- 
subsystem will evcnluall\ receive a commit or an 
ahort rcquesl from ils local I3K. 

l For each “active” transnctic *a, an NBK-subsystem 
can issue a query lo the local HK asking for the 
transaction’s inferiors residing in the “active” sta1.e 
at this subsys!.em. An NICK-subsystem needs this 
information when it decides lo unilat.erally abort a 
lransaclion. 

3. ARIES/NT 
In this section, first we give a brief overview of ARIES/ 
NT, and then in(roduce the important data strrJct.ures. 

Subsequently, WC present the algorithm assuming nor- 
mal operation, and finally describe how it operates 
during restart processing. Note that here we are pri- 
marily concentrating only on the ARIES/NT exten- 
sions, for the nested transaction model, to ARIES. 
[MIICPS89] should be consulted for detailed infor- 
mation and the rationale for the different basic design 
decisions. 

3.1. Ovevview 
In this section, we will first present the basic principles 
of ARIES (see also the section “1. Introduction”) and 
then briefly describe the extensions that lead to ARIES/ 
NT. 
During restart afker a failure, ARIES first scans the 
log, sfarf.ing from the first record of the last complete 
checkpoint, up to the end of the log. During this anal- 
ysis pass, information is gathered about (1) pages that 
were polenlially more up lo date in the burners than 
in Ihe nonvolatile storage version of the data base and 
(2) transactions that were in progress at the time of 
the crash. Then, ARIES repents Abiory, with respect 
to those updates that were logged to stable storage but 
whose effects on data base pages did not get written 
to nonvolatile storage before the crash. This is done 
for ALI, transactions, including for those transactions 
that were in progress at the time of the crash. This 
essentially reestablishes the state of the data hasi: as 
of the time of the crash. No logging is done of the 
updates redone during this redo pass. 
The next pass is the undo pass during which all in- 
progress transaction’s updates are rolled back in rc- 
verse chronological order, in a single sweep of lhc log. 
Note that for lhose transactions which were already 
rolling back at the time of the crash, ARIES will only 
rollback those actions that had not already been IJn- 
done. This is possible since history is repcalcd for 
such transactions and since f.he lasl CLR wrillcn lijt 
each already rolling back transaction points IO the 
next. nonCLR record, if any, that is lo he undone. 
Now, we will briefly dcscribc the cxlrnsions to the 
above which lead to ARIBS/N’I’. In bolh ARIES and 
ARIES/NY’, all log records written by the same trans. 
action are linked via a so-called backward chain (BW- 
chain). In addition, in ARII!S/NT, I.hc l3W-chains ol 
contnzitfc?nsublransaclions arc linked to the l3W-chains 
of their parents to reflccl lhe h2nsacl.ion lrccs on lhc 
log. When a subtransaction ‘I’ commits, a ‘child com- 
mitted record’, which contains a pointer IO Ihc last 
record of T’s chain, is written to Ihc IIW-chain of ‘1”s 
parent. Consequently, lhc IIW-chain of an ill-progress 
transaction together with the chains of its cornmitlrd 
inferiors form a I.rce slruclurc, which is r;illrtl ll~r 
transaction’s hackwnrd chain tree (BWC-tree). Since 
the parent/child relnlianships of conlniiltrd 
subt.ransacCons arc stored on IIIC log, subsystr~n~ GUI 
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rorgct subtransactions alter commit and the analysis 
pass need not collect informalion about committed 
subtransactions, which simplifies recovery. 

When a transaction is aborted, the actions of that 
transaction and its (commit.ted or active) inferiors are 
rolled hack in reverse chronological order. I,ike 
ARIES, ARlES/JVI logs datahasc updates performed 
during rollback by mea~ls of CI.Rs. A Cl,R is also 
used to keep track how much or a transaction and its 
committed inferiors has already been rolled back and 
how nmch more remains to be undone. l’his is 
achieved by recording, in a CI.R, a set. or pointers, 
each of which points to the next log record to be 
processed in the BW-cllnin of the transaction or a 
committed inferior during undo. 

As in ARIES, in ARJES/NT also, restart proccssiug 
starts with an analysis pass, continues with a redo pass 
and ends with an undo pass. Redo processing of 
AJ<IES/NT works in exactly the same way as in 
ARIES, while the algorithms of the analysis and undo 
pass have been modified to support tree-structured log 
contents. 

3.2. Dntn Structzwes 

In Ihis section, we describe some of the important data 
structures used by ARIES/NT at an NJJK-suhsysl.em. 

Each record in the log of an NRK-subsystem belongs 
to a so-called backward chain (RW-chain). A BW- 
chain is associated with a transaction and connects 
the log records which arc relevant for undoing and 
redoing this transaction at a parlicular subsystem. 

The fields of a log record which are of interest in the 
subsequent. discussions are: 

l PrevlSN: Address of the preceding Jog record in 
the transaction’s BW-chain. This value is Nil. if 
this is the first log record. 

l LastLSN: Present only in log records of the type 
C-Committed. When a subtransaction commits. a 
C-Committed record is added to Ihc BW-chain of 
its parent. I,ast.J,SN contains the address of Ihe last 
log record in the BW-chain of Ilie committed 
subtransaction. 

l Chiltlld: Present only in log records of the l.ype C- 
Cbnznzittcd. It is the identifier of the child whose 
commit caused this log record to be written. 

l UndoNextSet: Present only in log records of Ihe 
type CCR. When written by a t.ransaction T, it 
contains the address of the next log record of T that 
is to be processed during undo. Moreover, it also 
includes for each committed inferior of ‘I‘ which is 
only partially undone, fhe address of lhe next log 
record that is to he processed during rondo in the 
inferior’s BW-chain (for details see below). 

l I’ageld: I’rescnt only in records of type Upda~c 
(nonC1.R) or CI.R. The idcnlificr or the ~I;II;I hasc: 
page to which lhe updales of this record wcrr applictl. 

III each NBK-subsystem, there cxisls a irmlsactiolt 
table called TrnnsTnb. For each lrnnsacl.ion known 
by the subsyslcm. Ihis table contains an entry corisisliilg 
of ‘I’ransld. State. and I,astl,SN (lhc address ol’ 111r 
most rcccril.ly wrillcn log record in Ihc lrnnsactioll’s 
J3W-chain). 
A page in the bulTer pool is said 1.0 bc ~/jr/y if’ IIIC 
hulfcr version of the page has some updnl.cs which arc 
1101 yet reflected in the nonvolatile storage version 01 
ihe same page. The table Dirtyf’ngcs is used lo rrp- 
resent the information about dirty pages. IIuring nor- 
mal processing, when a nondirty page is bril,g fixed 
in lhe hull&s for an updalc operation, the hulrcr IWI!~- 
ager inserts into the DirtyPages table a new entry 
containing the idcnt.ilicr of Lhe page (I’agcld) and the 
current end-of-log address (RecLSN - rccovcry I SN), 
which is the address of the next log record 1.0 hc 
written. Whcncver a page is wrilten back to disk, IIIC 
corresponding entry is dclcted from DirtyPages. 

3.3. Normal Psocessing 

The lbllowing two subsections describe thr algorilllms 
for database updates, transaction prcparc and commit. 
The third subsection presents the algorithm Ibr roll- 
back, and Finally, the fourth subsection &scribes how 
checkpoints are taken during normal processing. 

3.3.1. Update 
When an NBK-subsystem receives the first work re- 
quest of a transaction, the recovery manager (RM) of 
this subsystem checks whether the transaction is al- 
ready “active”. The transaction would already be ac- 
tive, if a child of this transaction had executed at the 
subsystem and had committed before. If the transac- 
tion is still “unknown”, the RM inserts an ent.ry for 
the transaction in the RM’s Transl’ah. 

. 

Whenever the execution of a work request causes a 
transaction to perform an update to an object. in a 
page, this page is fixed in the buffer and latched in 
the exclusive (X) mode, the update is applied, an Up- 
date log record is added to the transaction’s BW-chain, 
the J,SN of the log record is placed in the page’s LSN 
field, and the page is unlatched and unfixed (see 
[Mlll,PS89] for filrther explanations). The buJTer 
manager ruses the page I.SN to enforce the WAJ, pro- 
tocol. The page LSN is also used during recovery to 
determine the exact state of a page without having to 
examine any user data in the page. Before a transaction 
may update an object in a page, it must hold a lock 
for the object. 
To support flexible storage management and to reduce 
the volume of log data, the changes to a page can be 
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XI NBK-suhsys~rm S, whicll contains a HW < Il;lill ICJI 
each lransaclion in lhis Iransaclion lrcc. Al lirrlc: I I, 
lhcrc exisls a forcsl comprised of‘ Ihrcc BW(, Irc>c\,, 
wllich arc associalcd wilh Iransaclion5 A, I! at10 1.. 
‘l‘o Ille BW<J-lrco 01‘ B, for irlr;lallcc, hclorig Ihr: BW- 
chains of B, (: and II, whcrc B’s BW-cllain is the root 
chain of lhis BW(:-lrcc. 
T/FTransnctions: When an NBK -suhsysl.cm rcccivcs 
a prepare rcquesl for a II.-lransaclion during Ihc firs1 
pllasc of 2P(Z, the RM of this suhsyslcm adds a Prc- 
pare log record to lhc IransacGon’s BW-chain and 
s~~~chrono~lsly writes Ihc record (and all log records 
preceding this log record) to the log on stahlc storage. 
The log record contains, besides olhcr information, 
the identifier of the TL-transaclion and a list of tile 
updat.e lype locks (X, IX, clc.) held or retained by Ihis 
transaction. The nonupda1.e type locks (S, IS, etc.) 
can he released at this time. 
When an NBK-subsystem receives a commit rcqucst 
for a TL-transaction, it appends an End record to the 
transaction’s BW-chain. Whether or not t.his record is 
written synchronously to stable storage depends on 
the kind of 2PC protocol used (for a detailed discussion, 
see [MoL086]). After writing the log record and 
releasing the locks held or retained by the transaction, 
the subsystem delet.es Ihe transaction’s enlry in 
TransTab. 

“ct~lw” A 
P 

i! 

“OCtlvs” 

eommlttod D c!l 

Figure 1: Transaction Tree with Transaction States 

logged logically (logging operations, rather than hcforc 
and afier-images of modified data). This permits the 
semantics of the operations on the data to be exploited 
to permit addit.ional concurrency. Moreover, since op- 
erations are logged, undo processing cari afTect a page 
totally different from the one alTected during forward 
processing (see [Mlll,PS89, MoLe89J). Because the 
updates performed during rollbacks are logged, this 
permits us to support page-oricmfed redo processing 
and media recovery. 

3.3.2. Prepare and Commit 

Suhtrancactionx When an NBK-subsystem receives a 
commit request for a subtransaction ‘I‘ from its local 
OK, the RM of this subsystem checks whether there 
already exists an entry for T’s parent in the local 
TransTab. If the entry does not exist, it changes the 
state of T’s parent from “unknown” to “active” by 
inserting the corresponding entry in TransTab. Subse- 
quently, it. asynchronol~rly writes a C-Committed (child 
commitl.ed) log record, which represent< the first record 
in the BW-chain of T’s parent. On the ot.her hand, if 
T’s parent is already “active”, it only adds a C- 
Committed record to the BW-chain of T’s parent. The 
C-Committed record contains, hesides other informa- 
tion, t.he identifier of ‘I‘ (Childld) as well as the log 
address of the last record in T’s BW-Chain (1 ,astl,SN). 
A BW-chain that represents the root of a BWC-tree 
is called a root chain. An ancestor which represen1.s a 
root chain is denoted as a root ancestor. The BW- 
chains of ‘I’L-transactions as well as Ihe BW-chains of 
aborted or “active” sublransactions always rrprcscnt 
the root of a BWC-tree, whereas the BW-chains of 
committed subtransactions are always nonroot chains. 
Consequently, for each TL-transaction T, there might 
exist a forest of BWC-trees. which consists of T’s 
BWC-tree and the BWC-trees of the “active” and 
aborted inferiors of ‘I’. 
Figure 1 shows.a transaction tree consisting of trans- 
actions A, B, C, 11, E and F. Transactions A, B and 
E are in the “active” stale, while (he others are already 
committed. Figure 2 depicts a portion of the log of 

3.3.3. Rollback 
When an NBK-subsystem receives an abort request 
for a transaction or it decides to unilaterally abort the 
transaction, it has to undo the effects ofthe transaction’s 
“active” or “prepared” descendants (called known- 
descendants). We define the BWC-forest of a transac- 
tion to consist of the hWC-trees of the known- 
descendants of this transaction. In order to rollback 
a transaction, the log records belonging to the trans- 
action’s BWC-forest have to be undone and compen- 
sated for. 
When rollback for a transaction starts, the rollback 
process only knows the root chains of the transaction’s 
BWC-forest; however, as rollback proceeds, it learns 
about all the nonroot chains of this forest. In order 
to keep track of which BW-chains of a transaction are 
currently known, for each of the transaction’s known- 
descendants, a list calted KnownChains is maintained 
by the rollback process. The KnownChains list of a 
known-descendant contains an UndoNext pointer for 
each BW-chain (of the known-descendant’s BWC-tree) 
which has so far been encountered by the rollback 
process. The UndoNext pointer of a BW-chain points 
to the next log record in the chain to be read and 
processed. 
When rollback of a transaction starts, the 
KnownChains tist of a known-descendant, say X, of 
this transaction contains one UndoNext pointer, which 
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TransTab 
A: 
B: 
c: 

D: 

E: 

F: 

0’ 

Figure 2: Log anrl ‘i’ransl’ab at a Particular NBKSubsystem 

points to the last record of X’s BW-chain. Whenever 
a C-Committed record belonging to X’s BWC-t.rec is 
encountered in the log during rollback, a new 
UndoNext pointer is added to X’s KnownChains list. 
Conversely, whenever the first log record of a BW-chain 
belonging to X’s BWC-tree is read, the corresponding 
UndoNext pointer is removed from X’s KnownChains 
list. 
The CLRs compensating the log records belonging to 
a given BWC-tree are added to fhe root chain of this 
BWC-tree - i.e., CLRs can only occur in root chains 
(assuming there are no partial rollbacks - see 
[RoMo89]). If a s&transaction commits and later 
on it is aborted due to the rollback of one of its 
superiors, then that subtransaction’s CLRs appear in 
the chain of log records of that superior. 
Jiach CLR includes a set of log addresses: for each 
chain C’ which is a descendant of root chain C and 
which is known by the rollback process, the 
UndoNextSet field of a CJ,R added to C contains the 
address of the next log record in C’ to be processed. 
It is the information in lhe UndoNextSct that helps us 
avoid undoing the same nonCJ,R record more than 
once and also avoids having to undo CJ>Rs. 
J;igure 3 shows the log of the NBK-subsystem S during 
the rollback of subtransaction B, which is a node ol 
the transaction tree depicted in Figure 1. It is assumed 
that the rotlhack of B starts at time tl . The BWC-forest 
of B consists of two BWC-trees, the one of J3 and the 
one of E. In order to rollback B, the Jog records 
belonging to both these JIWC-trees have to be undone 
and compensated for in reverse chronological order. 
The CLRs compensating log records belonging to the 
JJWC-tree of B (E, rcspectivcly) are added t.o the BW- 
chain of n (E). which is the root chain of the BWC-tree 
of B (1.:). The UndoNextSet field of a CLR contains 
a set of log addresses. For example, C1.R x6, which 
compensates Update log record ~6, contains the LSNs 

of u3 and 114. Update record u3 (~4, respectively) is 
the next Jog record to be undone and compensated 
for in the BW-chain of Q (C). At time t2, there exist 
tw,o KnownChains lists, one for E and one for B. The 
KnownChains list for B contains two UndoNext point- 
ers, which point to u4 and ~3, whereas E’s 
KnownChains list includes one pointer, pointing to US. 
Of course, the next log record to be undone and com- 
pensated for is ~5. 

In order to describe how the rollback process acts on 
the dimerent types of log records, we assume that it 
selects UndoNext pointer P residing in the 
KnownCIains list of known-descendant X. Further, 
we assume that P points to log record R in BW-chain 
C. Depending on R’s type, rollback acts as follows: 

l Il@zte: If R.PrevLSN equals NIL then R is the 
first log record in C - i.e., except R all undoable log 
records belonging to C have already been undone 
and compensated for. In this case, the rollback 
process can forget C by removing I’ from X’s 
KnownChains list. If R.PrevJ,SN is not NIL, then 
P is updated to the value of R.PrevJ..SN. ‘J’hat is, 
after this update P points to the next log record of 
C to be read from the log. 
ARer updating X’s KnownChains list, II is nndonc 

and compensated for if it is not a redo-only log 
record. The corresponding CJ,R is written to X’s 
BW-chain, which represents C’s root ancestor. ‘l’hr 
UndoNcxtSct field of this CLR coulains Ihe 
UndoNext pointers residing in X’s KnownChains 
list. Aner writing the CLR, the page JSN and X’s 
LastJSN in Trans’l’nh are updalcd Lo ho the <‘I R’s 
J,SN. 
If X’s KnownChains lisl is cmply allrr IrtnoGug I’. 
then R is Lhe last log record hclonginp IO thr I\\\‘( 
tree of X that is yet to hc procrssrd. If this is the 
case, aner processing R ~II I;rtd rccortl is \\c.ittru I,> 
X’s JIW-chain, and then X is tlrlctcd li.~rtll l’r.111~ 1’.11> 
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Figure 3: Logging Scenario 

C-Cmnmittcd:lbe KnownChains list of X is updated 
by modiljling P as described above. Moreover, a 
new UndoNext pointer I?’ is added to X’s 
KnownChains list, and is set to the value of 
R.I,astLSN. Consequently, alleer this update, P’ 
points to the last record of a BW-chain, which is a 
child of C in X’s BWC-tree. 
Prepare: P is changed to the value of’ R.Prevl,SN - 
i.e., aller this update P poinrs lo the next. record in 
C to be processed. 

The rollback algorithm described above only allows 
for foral rollback of transactions. I Jowever, it has been 
extended to support parri& rollbacks also (see 
[RoMo89]). 

3.3.4. Checkpoints 

For taking checkpoiuts periodically, the same fuzzy 
check~poirzfing mechanism as described in [Ml ll.,PS89] 
can be used without any changes. Taking a checkpoint 
is initialed by writing a RcginChpt log record. The 
checkpoint operation is completed hy synchrono&y 
writing t.o stable storage an EndChpt record, which 
contains a copy of TransTab, and DirtyPages. The 
I.,SNs of the BeginChpt and EndChpt log records are 
stored in the Master record, which is in a well-known 
place on stable storage. Note Ihal no dirty pages need 
LO be forced to nonvolaLile storage during the check- 
point operation. The assumption is that Ihe bulTcr 
manager is periodically wriling dirty pages to nonvol- 
atile storage. as background activity, to keep the 

amount of redo work to be done at restart 10 a rea- 
sonable level. 

3.4. Restart Processing 
When a system failure occurs, the secondary storage 
version of the database may be len in an inconsistent 
state. It may contain uncommitted updates. Moreover, 
it. may not contain some or all the updates of cornmilted 
(or aborted) transactions. In order lo reestablish a 
consistent database state, restart recovery has to be 
performed. Restart recovery is performed with three 
passes of the log, as outlined in the section “3.1. Over- 
view”. In the following, the three log passes are de- 
scribed in detail. 
Figure 4 summarizes the recovery processing done hy 
difTerent systems. Note that, during rcshrt, 1102, and 
System R do not redo any updates of the loser (“acl.ivc” 
state) transactions. This is called selective redo. 111 
System R alone, the undo pass precedes the redo pass. 
There are a nrlmber of reasons for this and lhe cor- 
rectness of this method relies on the shadow-page ap- 
proach to recovery [GMiH,l.,gl]. The rcadcr is rc- 
ferred to [MHLPS89] for detailed discussions con- 
cerning the problems caused by the recovery slratcgics 
used by the prior syslems and how ARIES can cxploiL 
parallelism during the redo and undo passes I.0 speed 
up restart. The algorithms for taking checkpoints dur- 
ing restart and for media recovery are the snmc as 
those described in [MHI,PS89]. 
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Figure 4: Restart Processing in Different Systems 

3.4.1. Analysis Pas 
The analysis pass begins by reading the Master record. 
The TransTab and DirtyPages tables are initialized 
from the EndChpt record. The log is scanned forward 
starting with the BeginChpt record until the end of the 
log is reached. During this scan, depending on its 
type, a log record R written by a transaction X is 
processed as follows: 

l f&fate: If R represents the first log record in X’s 
BW-chain, an entry is inserted into TransTab for X 
with State set to “active” and LastLSN set to R’s 
LSN. Otherwise, in X’s entry, LastLSN is set to R’s 
LSN. If R.PageId is not in the DirtyPages table, a 
new entry is added lo this table. The entry consists 
of R.Pageid and R’s LSN (as the RecLSN). 

l CLR: In X’s Trans’l‘ab entry, LastLSN is updated. 
If R.Pageld is not in the DirtyPages table, a new 
entry is added. 

l Prepare: In X’s TtansTab entry, I.astLSN is updated 
and State is set to “prepared”. 

l C-Committed: The entry in TransTah for R.ChildJd 
is deleted. 

l End: X is forgotten by removing X’s entry from 
TransTab. 

ARer the log is scanned until its end, RerJoLSN is set 
to the minimum of the RecLSN values in DirtyPages. 
This is the log address from which the redo pass will 
start processing the log. 
In summary, the output of the analysis pass is (1) the 
TransTab table, which contains the transactions that 
were in the “active” and “prepared” state at the time 

of the system failure, (2) the DirtyPages table, which 
contains the identifiers of the pages in the buffers that 
were potentially dirty when the system failure occurred, 
and (3) RedoLSN, which is the location on the log 
from which the redo pass should start processing tbc 
log. 

3.4.2. Redo Pass 
The redo pass reestablishes the state of the database 
at the time of the system failure and reacquires locks 
for “prepared” transactions. The redo pass algorithm 
described for ARIES in [MtJLPS89] can be used 
without changes. The inputs to this algorithm are 
RedoLSN and DirtyPages produced during the anal- 
ysis pass. Log records are examined starting from the 
RedoJSN and using the information in DirtyPages as 
a Jilter, the pages which may not be up to date with 
respect to the logged changes are examined. For each 
page which is examined, a Jog record’s changes are 
redone if the page’s LSN is less than the log record’s 
LSN. Note Lhat, unlike some other recovery methods 
(e.g., System R [GMBLL81]), ARJES redoes even 
the updates of transactions in the “active” state. 

3.4.3. Undo Pas 
During the undo pass, the effects of all transactions 
residing in the “active” stab at the end of the analysis 
pass have to be undone. In the following, the set of 
BWC-trees of the these transactions are denoted by 
RestartUndo-Forest (R&Forest). The fate ofthe trans- 
actions in the “prepared” state will be determined after 
contact is reestablished with the commit coordinator 
(see [MoLO86]). 
Restart rollback is very similar to normal rollback. Jn 
reverse chronological order, the restart rollback process 
undoes and compensates for the Jog records which 
belong to the RU-Forest and which had not been 
undone ever before. It starts by initializing a 
KnownChains list for each transaction residing in the 
“active” state after the analysis pass. The KnownChains 
list of an “active” transaction contains one UndoNext 
pointer, which points to the last record of the trans- 
action’s BW-chain. Subsequently, it selects from these 
KnownChains lists the UndoNext pointer with the 
highest value. Then it reads the log record that the 
selected pointer pointi to and acts on it as dcscrihcd 
below. This is rgeated until all the KnownChains 
lists are empty. 
In order to describe how the restart rollback process 
acts on the different types of log records, we assume 
that it selects UndoNext pointer P residing in the 
KnownChains list of transaction X. Further, WC as- 
sume that P points to log record R in IJW-chain (1. 
Depending on R’s type the restart rollback process 
acts as follows: 
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l Update, C-Conmdttcd: Restart rollback acts on R 
in the same way as normal rollback does. 

l CLR: P is removed from X’s KnownChains list, 
and subsequently, all the UndoNext pointers in 
R.UndoNextSet are added to this list. ‘l’hat is, for 
each BW-chain which belongs to X’s BWC-tree and 
which was known by a rollback process at the point 
of the system failure, an UndoNext pointer is added 
to X’s KnownChains list. These pointers point to 
the log records IO be undone next in the correspond- 
ing BW-chains. 

4. Related Work 
As far as we know, the only other recovery algorithm 
supporting WAL. for nested transactions is the one 
presented in [Moss87]. Moss’s WAL algorithm does 
not writg CLRs and it does not seem to record LSNs 
in the nonvolatile storage versions of modified pages. 
That algorithm is not good enough to support fine- 
granularity of locking and avoid the numerous prob- 
lems caused by not writing CLRs (the reader is referred 
to [Ml 1LPS89] for detailed discussions concerning 
these topics and illustrations of the difficulties involved 
in supporting high concurrency eflicicntly using WAL.). 
Especially with semantically-rich modes of locking 
(like increment/decrement) and operation logging, 
Moss’s WAL approach of performing undo actions 
before redo actions during restart recovery and of not 
writing CLRs will not work. 
Moreover, Moss does not discuss the concurrency 
control protocols and he assumes that the way the 
logging of changes is done guarantees idempolence. 
As discussed in [MIILPS89], the latter would make 
it impossible to support operation logging and efficient 
storage management for varying length objects. Use 
of LSNs on nonvolatile storage also is crucial for 
avoiding unnecessary and/or erroneous redo and undo 
work during restart recovery. Failures during restart 
processing will further compound the problems. 
ARIES and ARIES/NT support eflicient restart and 
media recovery, and high concurrency by permitting 
operation logging, page-oriented rcdos and logical 
undos (see [MoLe89] for examples). For these rca- 
sons, we consider ARIES/NT to be fundamentally 
direrent from and more powerful than Moss’s WAL 
algorithm. 
Most recovery algorithms for nested t.ransactions pub- 
lished so far are variations of the “version approach” 
described in [Moss81]. Briefly, this version algorithm 
goes as follows: When a transaction gets a write lock 
for an object, a new backup version of this object is 
created. This version is associated with the object. and 
the transaction, and is used to restore the object should 
the transaction ahort. The versions associated with an 
object are stored in a version stack, which is kept in 
volatile memory. When a subtransaction commits, its 

associated versions are orered to the parent. I‘hc par- 
ent accepts a version, if it does not already have an 
associated version for the same object. Ot.hcrwisc, the 
olicred version is discarded. If a transaction aborts, 
each of its associated versions is used to rcstorc IIIC 
objecb directly or indirectly modified by the transac- 
tion. AI&r that, the versions associated with the trans- 
action can be destroyed. When a TL-transaclion com- 
mits, the current state of each object directly or indi- 
rectly modified by this transaction is saved in st.ablc 
storage. Then, all versions associated with this trans- 
action are destroyed. 
In most implementations of Moss’s version algorithm 
(or variations of it), a version of an object is a complete 
copy of this object (e.g., see implementations in rldcn 
[JNJBP82] and ARGUS [LCJS87]). An alf.ernativc 
approach is to storeversions incrementally. In LOCUS 
[MuMP83], for example, file versions arc stored in- 
crcmentally - i.e., only those file pages that are new 
compared to the previous version need to be recorded 
in the new version. 
Moss’s version algorithm and its variations have sev- 
eral drawbacks: 
If a transaction locks an object, a new version of the 
whole object has to be created. If the locked object is 
big, then the creation of new versions witl be very 
expensive. On the other hand, if the objects lo bc 
locked are small, version stack management might 
become a substantial cost factor. 
I’hose algorithms support only the no-steal bufFer man- 
agement policy, whereas ARIES and ARIES/NT sup- 
port the no-steal as well as the steal policies (with 
steal, pages with uncommitted data may be written 
back to nonvolatile storage). 
Partial rollbacks for nested transactions is not sup- 
ported by them. Modelling savepoints [GMBLI,II, 
IIaRo87a, LIIMW84J by means ofsubtransactions is 
too costly (inheritance of locks, generatjng new trans- 
action identifier, etc.), since savepoints are used very 
frequently (e.g., to guarantee statement-level atomicily, 
which is required by ANS SQL). 

5. Summary 
A new recovery method for nested transactions, called 
ARIES/NT, has been presented. ARIES/NT is an 
extension of the ARIES recovery and concurrency 
control method that was introduced by Mohan, et al. 
in [MllL,PS89] and that has been implemented to 
varying degrees in Starburst [Moha86], Quicksilver 
[HMSC88], the OS/2 Extended Edition’ Database 
Manager [ChMy88]. and DB2 V2Rl. A high con- 
currency index management algorithm based on 
ARIES, and called ARIES/IM. has been implemented 
in the OS/2 EE Database Manager and is described, 
with extensions, in [MoLe89]. 
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ARIES/NT is characterized by the following prnpcrtics: 

l It supports WAL, for nested transactions, and, as 
far as we know, it is the only comprehensive Whl, 
algorithm for nested transactions developed so far 
that permits semantically-rich modes of locking 
[BaRa87], operation logging, and cflicicnt recovery. 

l It allows arbitrary parallelism between related as 
well as unrelated transactions - i.e., a transaction 
may run concurrently with its superiors, inferiors, 
siblings and all other unrelated transactions. 

l It supports concurrency control schemes allowing 
upward as well as downward inheritance of locks. 
That is, children may inherit locks to their parents, 
and vice versa. 

l It supports savepoints at each transaction level - i.e., 
TL-transactions as well as subtransactions may es- 
tablish savepoin8. 

Moreover, all the properties of ARIES described in 
[MIILPS89] hold for ARIES/NT also. No changes 
to fuzzy image copying (archive dumping), media re- 
covery, buffer management, and deferred or selective 
restart algorithms of ARIES are necessitated by the 
introduction of the support for nested transactions. 
Some more details on ARIES/NT can be found in 
[RoMo89]. Additional discussions concerning BK- 
BK communications, BK recovery, BK data structures, 
and deadlocks arising from allowing concurrent exe- 
cution of subtransacl.ions and their ancestors will be 
presented in an expanded version of that paper 
[MoRo89]. 
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