ARIES/NT: A Recovery Method Based on Write-Ahead Logging
for Nested Transactions

K. Rothermel, IBM European Networking Center, Tiergartenstrasse 15, D-6900 Heidelberg, W. Germany
rotherme@dhdibm 1 .bitnet

C. Mohan, Data Base Technology Institute, IBM Almaden Research Center, San Jose, CA 95120, USA
mohan@ibm.com

Abstract A simple and efficient recovery method for
nested transactions, called ARIES/NT (Algorithm for
Recovery and Isolation Exploiting Semantics for
Nested Transactions), that uses write-ahead logging
and supports semantically-rich modes of locking and
operation logging is presented. This method applies
to a very general model of nested transactions, which
includes partial rollbacks of subtransactions, upward
and downward inheritance of locks, and concurrent
exccution of ancestor and descendent subtransactions.
The adopted system architecture encompasses aspects
of distributed data base management also. ARIES/NT
is an extension of the ARIES recovery and concurrency
control method developed recently for the single-level
transaction model by Mohan, et al. in the IBM Re-
search Report RJ6649.

1. Introduction

The nested transaction concept was popularized by
Moss [Moss81]. It has been implemented in several
systems so far, such as ARGUS [LCJS87], Camelot
[SpPR88], CLOUDS [DaLA88]), LOCUS
[MuMP83], and Fden [JNJBP82]. Nested transac-
tions have at least three advantages over single-level
transactions: First, they provide a means for controlling
concurrency within transactions. Second, nested trans-
actions can be used to protect a part of a transaction
from failures of another part of the transaction - i.e.,
nested transactions can act as firewalls, preventing
outside influences from affecting the internal<. Third,
nesled transactions allow an easy and secure compo-
sition of transaclion programs, by means of which the
modulatity of systems can be increased.

‘The goal of our work has been lo devise an eflicient
and simple recovery method which guarantees the
usual transaction atomicily properties for a very gen-

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the Fifteenth International
Conference on Very Large Data Bases

- 337 -

eral model of nested transactions. Even though a
number of papers have discussed the shadow-page
recovery technique (as used in System R
[GMBLLS81]), write-ahead logging (WAL) is the
method of choice in most commercial systems because
ofits efficiency, flexibility, and power (see [MHI.PS89]
for detailed comparisons). In WAL systems, an up-
dated page is written back to the same nonvolatile
storage (e.g., disk) location from where it was read.
That is, in-place updating is done on nonvolatile stor-
age. The WAL protocol asserts that the log records
representing changes to some data must be physically
written to stable storage before the changed data is
updated on nonvolatile storage.

In this paper, a recovery method that uses WAL for
nested transactions, called ARIES/NT (Algorithm for
Recovery and Isolation Exploiting Semantics for
Nested Transactions), is presented. ARIES/NT is an
extension of the ARIES recovery and concurrency
control method introduced by Mohan, et al. in
[MIILPS89]. It retains all the features of the latter.
ARIES tracks precisely the state of a page on nonvol-
atile storage as well as in main storage by associating
a log sequence number (LSN) with every page. The
LSN of a data base page is the address of the log
record which describes the update most recently per-
formed on the page. It is a monotonically increasing
value that helps us relate the state of a page to logged
updates of the page.

Like ARIES, ARIES/NT also logs all database
changes, including even those performed during roll-
backs of transactions. Updates performed during roll-
backs are logged using what are called compensation
log records (CL.Rs). During restart recovery, ARIES/
NT guarantees that, for those transactions which were
already aborting at the time of the system failure, only
those actions that had not been undone ever before
are rolled back. This means that the changes specified
in a CLR are never undone (the changes are described
in CLRs only for redo purposes during restart after a
failure or during media recovery). This also causes a
CLR to be used to keep track of how much of the
transaction has already been rolled back and how
much more remains to be rolled back. This tracking
is done by recording, in a CLR, a set of pointers, each
of which points to the next record to be dealt with in

Amsterdam, 1989

the chain of log records written by the transaction or
one of its subtransactions (in ARIES, instead of a sct
of pointers, there will be only one pointer, called
UndoNxtL.SN, since ARILES was designed for the
single-level transaction model).

The remainder of this paper is organized as follows.
Section 2 introduces the notion of a nested lransaction
and describes the system architecture we assume. In
section 3, the new recovery method ARIES/NT is
presented. Section 4 describes other work on recovery
algorithms for nested transactions. Finally, section S
summarizes our work.

2. Transaction and System Models

In this section, we discuss the nested transaction model
and the system architecture that we assume for ARIES/
NT.

2.1. Nested Transactions

The transaction model that ARTES/NT is designed for
is a generalization of the nested transaction model of
[Moss81]. In this model, a transaction may conlain
any number of subtransactions, and cach
subtransaction again may comprisc any number of
subtransactions.

A transaction which is not enclosed in another trans-
action is called a top-level transaction (TL-transaction).
In the following, we use the term “transaction” to de-
note both TL-transactions and subtransactions. Trans-
actions having subtransactions are called parents, and
their subtransactions are their children. The ancestor
(respectively, descendant) relation is the reflexive tran-
sitive closure of the parent (child) relation. We use
the term superior (respectively, inferior) for the
nonreflexive version of ancestor (descendant). The
nesting hierarchy of a TL-transaction can be repre-
sented by a so-called transaction tree, wherc the nodes
of the trec represent transactions, and the edges rep-
resent the nesting relationship amongst the transactions.

Transactions can terminate either normally by com-
mitting or abnormally by aborting. Subtransactions
appear atornic to the surrounding transactions and
may commit or abort independently. A transaction is
not allowed to commit until all its children have ter-
minated. A sublransaclion may abort without affecting
the commit or abort outcome of the surrounding Lrans-
action. However, the commit of a subtransaction is
relative; even if the subtransaction commits, aborting
one of the subtransaction’s superiors will undo its ef-
fects. Updates become permanent only when the en-
closing TL-transaction commits.

The concurrency control scheme for nested transaction

presented in [Moss81] is a locking approach. In this
scheme, transactions may hold and retain locks. When

- 338 -

a subtransaction commits, its locks are inherited by its
parent, which then retains the locks. A transaction
holding a lock for an object is allowed to access this
object. The access is not allowed if it only retains the
lock. Consequently, a retained lock is only a place
holder indicating that transactions outside the hierarchy
of the relainer cannot acquire the lock, but descendants
of the retainer can.

The locking scheme introduced by Moss only allows
for upward inheritance of locks, i.e., a parent may
inherit locks of its children, but not vice versa. In
[ITaRo87b], a more general locking scheme that ad-
ditionally supports dewnward inheritance of locks is
proposed. ARIES/NT is flexible enough to be used
together with concurrency control schemes enabling
downward as well as upward lock inheritance
[RoMo89]. Moreover, it accommodates the support
of even semantically-rich lock modes like increment/
decrement which permit multiple transactions to update
the same data concurrently. This is the kind of feature
that requires a recovery method to support operation
logging (before and/or after image logging will not
work) and to avoid the erroneous attempts to undo
or redo some actions unnecessarily by precisely track-
ing the state of a page using the LSN and by writing
CILRs.

Even concurrency control methods which are similar
to locking, like the one described in [BaRa87], can
be used with ARIES and ARIES/NT (see
[MHI.PS89]).

2.2. System Architecture

A distributed database system (DDBS) consists of a
set of sites, which are interconnected via a communi-
cation network. Each site is comprised of a set of
subsystems, which cooperate with each other for the
purpose of processing transactions. We assume that
each subsystem has its own recovery component.

On each site of the DDBS, there exists a special sub-
system called the bookkeeper. Bookkeepers coordinate
the initiation, migration and termination of transac-
tions. Moreover, they maintain transaction slate in-
formation, which is needed for recovery purposes, as
well as information needed to build up transaction
trees and to keep track of which transactions have
visited which sites and which subsystems. The notations
BK-subsystem and NBK-subsystem are used to denote
a bookkeeper subsysiem and a non-bookkeeper sub-
system, respectively. An NBK-subsystem may be some
component of a DDBS site, such as an index manager
or a record manager.

A transaction may be distributed over several NBK-
subsystems, possibly residing on different sites of the
DDBS. A transaction is initiated at a subsystem cither
when the subsystem receives the first request to be
performed within this transaction, or as soon as a

child of this transaction commils at this subsystem,
whichever happens first. From an NBK-subsystem’s
point of view, a subtransaction may be in two different
states, namely “unknown” and “aclive”. At a subsys-
lem, the initial state of a subtransactlion is “unknown”.
The subltransaction enters the "active” statc as soon as
it gets initiated at the subsystem. It again becomes
“unknown” when it commits or when one of its an-
cestors aborts.

Tl.-transactions alone may also reside in the "prepared”
state. This state can be reached during the execution
of a 2-Phase-Commit (2PC) protocol (e.g., the Pre-
sumed Abort protocol of [Mol.0O86]), which is used
to terminate distributed TL-transactions. During the
first phase of 2PC, the transaction enters the “prepared”
state at a subsystem if updates were performed at that
subsystem and that subsystem is willing to commit the
transaction. After its termination (commit or abort)
in the second phase, the transaction refurns to the
“unknown” state. Of course, it also becomes “unknown”
when it is aborted in the "active” state.

FEach BK in the DDBS guarantecs the following;

® For each "active” subtransaction, an NBK-subsystem
will eventually reccive either a commit (for this
subtransaction) or an abert (for an ancestor of this
subtransaction) request from the local BK. A commit
(respectively, ahort) request contains the identifier of
the subtransaction to be committed (aborted) as well
as the identifier of the parent (inferiors, which arc
"active” al this subsystem) of this subtransaction. A
commit request will not be issued until all the chil-
dren of the committing subtransaction have termi-
nated.

® For each “active” TL-transaction, an NBK-
subsystem will eventually receive an abort or a pre-
pare request from its local BK. While a prepare
request contains the identifier of the T1.-transaction
o be prepared, an ahort request includes the iden-
tiliers of the TlL-transaction’s "active” descendants
at this subsystem. A prepare request will not be
issued until all the children of the preparing TL-
transaction have terminated.

® For cach “preparcd” °T'l-transaction, an NRK-
subsystem will eventually receive a commit or an
ahort request from its Jocal BK.

® [For each "active” transactic*:, an NBK-subsystem
can issue a query to the local BK asking for the
transaction’s inferiors residing in the “active” state
at this subsystem. An NBK-subsystem needs this
information when it decides to unilaterally abort a
transaction.

3. ARIES/NT

In this section, first we give a brief overview of ARIES/
NT, and then introduce the important data structures.

- 339 -

Subsequently, we present the algorithm assuming nor-
mal operation, and finally describe how it operates
during restart processing. Note that here we are pri-
marily concentrating only on the ARJES/NT exten-
sions, for the nested transaction model, to ARIES.
[MIILPS89] should be consulted for detailed infor-
mation and the rationale for the different basic design
decisions.

3.1. Overview

In this section, we will first present the basic principles
of ARIES (see also the section “1. Introduction”) and
then briefly describe the extensions that lead 1o ARIES/
NT.

During restart after a failure, ARIES first scans the
fog, starting from the first record of the last complete
checkpoint, up to the end of the log. During this anal-
ysis pass, information is gathered about (1) pages that
were polentially more up to date in the buffers than
in the nonvolatile storage version of the data base and
(2) transactions that were in progress at the time of
the crash. Then, ARIES repeats history, with respect
to those updates that were logged to stable storage but
whose effects on data base pages did not get written
to nonvolatile storage before the crash. This is done
for ALL transactions, including for those transactions
that were in progress at the time of the crash. This
essentially reestablishes the state of the data base as
of the time of the crash. No logging is done of the
updates redone during this redo pass.

The next pass is the undo pass during which all in-
progress transaction’s updates are rolled back in re-
verse chronological order, in a single sweep of the log.
Note that for those transactions which were already
rolling back at the time of the crash, ARIES will only
rollback those actions that had not alrcady been un-
done. This is possible since history is repeated for
such transactions and since the fast CLLR writlen for
each already rolling back transaction points to the
next nonCLR record, if any, that is to be undone.

Now, we will briefly describe the extensions to the
above which lead to ARIES/NT. In both ARIES and
ARIES/NT, ali log records written by the samc trans-
action are linked via a so-called hackward chain (BW-
chain). In addition, in ARIES/NT, the BW-chains of
committed subtransactions arc linked to the BW-chains
of their parents to reflcct the transaction trees on the
log. When a subtransaction 'I" commits, a “child com-
mitted record’, which contains a pointer to the last
record of T’s chain, is written to the BW-chain of 1's
parent. Consequently, the BW-chain of an in-progress
transaction together with the chains of its committed
inferiors form a (rce structurc, which is called the
transaction’s backward chain trce (BWC-tree). Since
the parent/child relationships of committed
sublransactions arc stored on the log, subsystems can

forget subtransactions after commit and the analysis
pass need not collect information about commilied
subtransactions, which simplifies recovery.

When a transaction is aborled, the actions of that
transaction and its (committed or active) inferiors are
rolled back in reverse chronological order. Like
ARIES, ARIES/NT logs database updates performed
during rollback by means of CLRs. A CLR is also
uscd to keep track how much of a transaction and its
commilted inferiors has already been rolled back and
how much more remains to be undone. This is
achieved by recording, in a CLR, a set of pointers,
cach of which points to the next log record to be
processed in the BW-chain of the transaction or a
committed inferior during undo.

As in ARIES, in ARIES/NT also, restart processing
starts wilh an analysis pass, conlinucs with a redo pass
and ends with an undo pass. Redo processing of
ARIES/NT works in cxactly the same way as in
ARIES, while the algorithms of the analysis and undo
pass have been modified to support tree-structured log
contents.

3.2. Data Structures

In this section, we describe some of the important data
structures used by ARIES/NT at an NBK-subsystem.

Each record in the log of an NBK-subsystem belongs
to a so-called backward chain (BW-chain). A BW-
chain is associated with a transaction and connccts
the log records which are relevant for undoing and
redoing this transaction at a particular subsystem.

The fields of a log record which are of interest in the
subsequent discussions are:

®* PrevL.SN: Address of the preceding log record in
the transaction’s BW-chain. This value is NIL if
this is the first log record.

¢ LastLSN: Present only in log records of the type

C-Committed. When a subtransaction commits, a

C-Committed record is added to the BW-chain of

its parent. LastLSN contains the address of the last

log record in the BW-chain of the committed

subtransaction.

Childld: Present only in log records of the type C-

Committed. U is the identifier of the child whose

commit caused this log record to be written.

® UndoNextSet: Present only in log records of the
type CLR. When written by a transaction T, it
contains the address of the next log record of T that
is to be processed during undo. Moreover, it also
includes for each committed inferior of 'I' which is
only partially undone, the address of the next log
record that is to be processed during undo in the
inferior’s BW-chain (for details see below).

- 340 -

® Pageld: Present only in records of type Update
(nonCLR) or CLR. The idenlificr of the daa base
page to which the updates of this record were applicd.

In cach NBK-subsystem, there cxists a iransaction
tablc called TransTab. For cach transaction known
by the subsystem, this table contains an entry consisting
of Transld, State, and LastLLSN (thc address of the
most recently written log record in the transaction’s
BW-chain).

A page in the buffer pool is said to be dirty if the
buffer version of the page has some updates which arc
not yet reflected in the nonvolalile storage version of
the same page. The table DirtyPages is used 10 rep-
resent the informalion about dirty pages. During nor-
mal processing, when a nondirty page is being fixed
in the buffers for an update operation, the buffer man-
ager inseris into the DirtyPages tablc a new entry
containing the identifier of the page (Pageld) and the
current end-of-log address (RecL.SN - rccovery L.SN),
which is the address of the next log record to be
written. Whencver a page is wrilten back to disk, the
corresponding entry is deleted from DirtyPages.

3.3. Normal Processing

The lollowing two subsections describe the algorithms
for database updates, transaction prepare and commit.
The third subsection presents the algorithm for roll-
back, and finally, the fourth subsection dcscribes how
checkpoints are taken during normal processing.

3.3.1. Update

When an NBK-subsystem receives the first work re-
quest of a transaction, the recovery manager (RM) of
this subsystem checks whether the transaction is al-
ready "active”. The transaction would already be ac-
tive, if a child of this transaction had ecxecuted at the
subsystem and had commitled before. If the transac-
tion is_still “"unknown”, the RM inserts an entry for
the transaction in the RM's TransTab.

Whenever the execution of a work request causes a
transaction to perform an update to an objecl in a
page, this page is fixed in the buffer and latched in
the exclusive (X) mode, the update is applied, an Up-
date log record is added to the transaction’s BW-chain,
the SN of the log record is placed in the page’s LSN
field, and the page is unlatched and unfixed (sce
[MHELPS89] for further explanations). The bufTer
manager uses the page 1.SN to enforce the WAL pro-
tocol. The page LSN is also used during recovery to
determine the exact state of a page without having to
examine any user data in the page. Before a transaction
may update an object in a page, it must hold a lock
for the object.

To support flexible storage management and to reduce
the volume of log data, the changes to a page can be

"octive” g
committed 0 “active"
committed 0 committed

Figure 1: Transaction Tree with Transaction States

logged logically (logging operations, rather than before
and after-images of modified data). This permits the
semantics of the operations on the data to be exploited
to permil additional concurrency. Moreover, since op-
eratlions are logged, undo processing can affect a page
totally different from the one affected during forward
processing (see [MUIL.PS89, MoLe89]). Because the
updates performed during rollbacks are logged, this
permils us to support page-oriented redo processing
and media recovery.

3.3.2. Prepare and Commit

Subtransactions: When an NBK-subsystem receives a
commit request for a subtransaction T from its local
BK, the RM of this subsystem checks whether there
alrecady exists an entry for T’s parent in the local
TransTab. If the entry does not exist, it changes the
state of T’s parent from "unknown” to “active” by
inserting the corresponding entry in TransTab. Subse-
quently, it asynchronously writes a C-Committed (child
committed) log record, which represents the first record
in the BW-chain of T"s parent. On the other hand, if
T’s parent is already "active”, it only adds a C-
Committed record to the BW-chain of T's parent. The
C-Commmitted record contains, besides other informa-
tion, the identificr of T (Childld) as well as the log
address of the last record in T's BW-Chain (Lastl.SN).

A BW-chain that represents the root of a BWC-tree
is called a root chain. An ancestor which represents a
root chain is denoted as a root ancestor. 'The BW-
chains of TL-transactions as well as the BW-chains of
aborted or "active” subtransactions always represent
the root of a BWC-tree, whercas the BW-chains of
committed subtransactlions are always nontroot chains.
Consequently, for each TL-transaction T, there might
exist a forest of BWC-trees, which consists of T’s
BWC-tree and the BWC-trees of the "active” and
aborted inferiors of T

Tigure 1 shows.a transaction tree consisting of trans-
actions A, B, C, D, E and F. Transactions A, B and
I: are in the "active” state, while the others are already
committed. T'igure 2 depicts a portion of the log of

- 341 -

an NBK-subsystcm S, which contains a BW chain for
each transaction in this transaction trec. Al lime t1,
there exists a forest comprised of three BWC trees,
which are associated with transactions A, B and 1.
To the BWC-tree of B, for instance, belong the BW-
chains of B, C and 1), where B's BW-chain is the root
chain of this BWC-tree.

TL-Transactions: When an NBK -subsystem receives
a prepare request for.a TL-transaction during the first
phase of 2PC, the RM of this subsystem adds a Pre-
parc log record to the transaction’s BW-chain and
synchronously writes the record (and all log records
preceding this log record) to the log on stable storage.
The log record contains, besides other information,
the identifier of the TL-transaclion and a list of the
updale type locks (X, IX, cic.) held or retained by this
transaction. The nonupdate type locks (S, 1S, ctc.)
can be releascd at this time.

When an NBK-subsystem receives a commit request
for a TL-transaction, it appends an End record to the
transaction’s BW-chain. Whether or not this record is
wrilten synchronously to stable storage depends on
the kind of 2PC protocol used (for a detailed discussion,
see [MoLO86]). After writing the log record and
releasing the locks held or retained by the transaction,
the subsystem deletes the transaction’s entry in
TransTab.

3.3.3. Rollback

When an NBK-subsystem receives an abort request
for a transaction or it decides to unilaterally abort the
transaction, it has to undo the effects of the transaction’s
"active” or “prepared” descendants (called known-
descendants). We define the BWC-forest of a transac-
tion to consist of the BWC-trees of the known-
descendants of this transaction. In order to rollback
a transaction, the log records belonging to the trans-
action’s BWC-forest have to be undone and compen-
sated for.

When rollback for a transaction starts, the rollback
process only knows the root chains of the transaction’s
BWC-forest; however, as rollback proceeds, it learns
about all the nonroot chains of this forest. In order
to keep track of which BW-chains of a transaction are
currently known, for each of the transaction’s known-
descendants, a list called KnownChains is maintained
by the rollback process. The KnownChains list of a
known-descendant contains an UndoNext pointer for
each BW-chain (of the known-descendant’s BWC-tree)
which has so far been encountered by the rollback
process. The UndoNext pointer of a BW-chain points
to the next log record in the chain to be read and
processed..

When rollback of a transaction starts, the

KnownChains list of a known-descendant, say X, of
this transaction contains one UndoNext pointer, which

TraonsTab

[Llp[C o

© ~ C—Committed Log Record u — Update Log Record

Last |State|Trens
LSN M|
o A
— [nctive] »
- E
= time
t 5
=

Figure 2: Log and TransTab at a Particular NBK-Subsystem

points to the last record of X's BW-chain. Whenever
a C-Commilted record belonging to X’s BWC-tree is
encounlered in the log during rollback, a new
UndoNext pointer is added to X's KnownChains fist.
Conversely, whenever the first log record of a BW-chain
belonging to X’s BWC-tree is read, the corresponding
UndoNext pointer is removed from X’s KnownChains
fist.

The CLRs compensating the log records belonging to
a given BWC-tree are added to the root chain of this
BWC-tree - i.e., CL.Rs can only occur in root chains
(assuming there are no partial rollbacks - see
[RoMo89]). If a subtransaction commits and later
on it is aborted due to the rollback of one of its
superiors, then that subtransaction’s CI.Rs appear in
the chain of log records of that superior.

Each CLR includes a set of log addresses: for each
chain C’ which is a descendant of rool chain C and
which is known by the rollback process, the
UndoNextSet field of a CLR added to C contains the
address of the next log record in C’ to be processed.
It is the information in the UndoNextSct that helps us
avoid undoing the same nonCLR record more than
once and also avoids having to undo CLRs.

Figure 3 shows the Jog of the NBK-subsystem S during
the rollback of subtransaction B, which is a node of
the transaction tree depicted in Figure 1. It is assumed
that the rollback of B starts at time t1. The BWC-forest
of B consists of two BWC-trees, the one of B and the
one of E. In order to rollback B, the log records
belonging to both these BWC-trees have to be undone
and compensated for in reverse chronological order,
'The CLRs compensating log records belonging to the
BWC-tree of B (E, respectively) are added to the BW-
chain of B (F), which is the root chain of the BWC-tree
of B (E). The UndoNextSet field of a CLLR contains
a set of log addresses. For example, CLR x6, which
compensates Update log record ub, contains the LSNs

- 342 -

of u3 and u4. Update record u3 (u4, respeclively) is
the next log record to be undone and compensated
for in the BW-chain of D (C). At time (2, there exist
two KnownChains lists, one for Il and one for B. The
KnownChains list for B contains two UndoNext point-
ers, which point to u4 and u3, whereas E’'s
KnownChains list includes one pointer, pointing to u5.
Of course, the next log record to be undone and com-
pensated for is u3.

In order to describe how the rollback process acts on
the different types of log records, we assume that it
selects UndoNext pointer P residing in the
KnownChains list of known-descendant X. Further,
we assume that P points to log record R in BW-chain
C. Depending on R’s type, rollback acts as follows:

¢ Update: If R.PrevLSN equals NIL then R is the
first log record in C - i.e., except R all undoable log
records belonging to C have already been undone
and compensated for. In this case, the rollback
process can forget C by removing P from X'’s
KnownChains list. If R.PrevLSN is not NIL, then
P is updated to the value of R.PrevL.SN. That is,
afler this update P points to the next log record of
C to be read from the log.

Afer updating X's KnownChains list, R is undone
and compensated for if it is not a redo-only log
record. The corresponding CLR is written to X's
BW-chain, which represents C's rool ancestor. The
UndoNextSet field of this CLR contains the
UndoNext pointers residing in X's KnownChains
list. Afler writing the CLR, the page 1.SN and X's
LastL.SN in TransTab are updated to be the C1L.R's
LSN.

It X’s KnownChains list is empty afler removing P,
then R is the last log record belonging to the BW(C
tree of X that is yet to be processed. Il this is the
case, afler processing R an End record s written (o
X'’s BW-chain, and then X is deleted from Trans Uab

&

ntl2

=

=

m

»
>

1 |
1

: |
time H v

ul — Update Log Record ¢ — C-Committed Log Record xI — CLR Compensating for ul

Figure 3: Logging Scenario

® C-Committed: The KnownChains list of X is updated
by modifying P as described above. Moreover, a
new UndoNext pointer P’ is added to X’'s
KnownChains list, and is set to the value of
R.LastLSN. Consequently, after this update, P’
points o the last record of a BW-chain, which is a
child of C in X’s BWC-tree.

® Prepare: P is changed to the value of R.PrevL.SN -
i.e., after this update P points to the next record in
C to be processed.

The rollback algorithm described above only allows
for total rollback of transactions. [lowever, it has becn
extended to support partial rollbacks also (see
[RoMo89]).

3.3.4. Checkpoints

IFor taking checkpoints periodically, the same fuzzy
checkpointing mechanism as described in [M111.PS89]
can be used without any changes. Taking a checkpoint
is initiated by wriling a BeginChpt log record. The
checkpoint operation is completed by synchronously
writing to stable storage an EndChpt record, which
contains a copy of TransTab, and DirtyPages. The
L.SNs of the BeginChpt and EndChpt log records are
stored in the Master record, which is in a well-known
place on slable storage. Note that no dirty pages necd
to be forced to nonvolatile storage during the check-
point operation. The assumption is that the buffer
manager is periodically writing dirty pages to nonvol-
atile storage, as background activity, to keep the

amount of redo work to be done at restart to a rea-

sonable level.

3.4. Restart Processing

When . a system failure occurs, the secondary storage
version of the dalabase may be lefl in an inconsistent
state. It may contain uncommitted updates. Moreover,
it may not contain some or all the updates of commilted
(or aborted) transactions. In order to reestablish a
consistent database state, restart recovery has to be
performed. Restart recovery is performed with three
passes of the log, as outlined in the section *3.1. Over-
view”. In the following, the three log passes are de-

scribed in detail.

Figure 4 summarizes the recovery processing done by
“different systems. Note that, during restart, DB2, and
System R do not redo any updates of the loser ("active”
state) transactions. This is called selective redo. In
System R alone, the undo pass precedes the redo pass.
There are a number of reasons for this and the cor-
rectness of this method rclies on the shadow-page ap-
proach to recovery [GMBLL81]. The reader is re-
ferred to [MHLPS89] for detailed discussions con-
cerning the problems caused by the recovery straicgics
used by the prior systems and how ARIES can exploit
parallelism during the redo and undo passcs to speed
up restart. The algorithms for taking checkpoinis dur-
ing restart and for media recovery are the samc as

those described in [MHLPS89].

- 343 -

E

—e

n

© checkpoint / Fallure]

Analysls -
o Rado Nonipears Z
8 o Undo Losers i
o Analysis N
El.. _tnorosers oo m e s,
2% Redo Nonlosers
el T e L
n

Figure 4: Restart Processing in Different Systems

3.4.1. Analysis Pass

The analysis pass begins by reading the Master record.
The TransTab and DirtyPages tables are initiafized
from the EndChpt record. The log is scanned forward
starting with the BeginChpt record until the end of the
log is reached. During this scan, depending on its
type, a log record R written by a transaction X is
processed as follows:

® Update: If R represents the first log record in X's
BW-chain, an entry is inserted into TransTab for X
with State set to "active” and LastLSN set to R’s
LSN. Otherwise, in X's entry, LastLSN is set to R’s
LSN. If R.Pageld is not in the DirtyPages table, a
new entry is added to this table. The entry consists
of R.Pageld and R’s LSN (as the RecLSN).

® CLR: In X’s TransTab entry, LastLSN is updated.
If R.Pageld is not in the DirtyPages table, a new
entry is added.

¢ Prepare: In X's TransTab entry, LastLSN is updated
and State is set to "prepared”.

¢ C-Committed: The entry in TransTab for R.Chitdld
is deleted.

® End: X is forgotten by removing X's entry from
TransTab.

After the log is scanned until its end, RedoL.SN is set
to the minimum of the Recl.SN values in DirtyPages.
This is the log address from which the redo pass will
start processing the log.

In summary, the output of the analysis pass is (1) the
TransTab table, which contains the transactions that
were in the "active” and "prepared” state at the time

- 344 -

of the system failure, (2) the DirtyPages table, which
contains the identifiers of the pages in the buffers that
were potentially dirty when the system failure occurred,
and (3) RedoLSN, which is the location on the log
from which the redo pass should start processing the
log.

3.4.2. Redo Pass

The redo pass reestablishes the state of the database
at the time of the system failure and reacquires locks
for “prepared” transactions. The redo pass algorithm
described for ARIES in [MHLPS89] can be used
without changes. The inputs to this algorithm are
RedoLSN and DirtyPages produced during the anal-
ysis pass. Log records are examined starling from the
RedoLSN and using the information in DirtyPages as
a filter, the pages which may not be up to date with
respect to the logged changes are examined. For each
page which is examined, a log record’s changes are
redone if the page’s LSN is less than the log record’s
LSN. Note that, unlike some other recovery methods
(e.g., System R [GMBLL.81]), ARIES redoes even
the updates of transactions in the "active” state.

" 3.4.3. Undo Pass

During the undo pass, the effects of all transactions
residing in the “active” state at the end of the analysis
pass have to be undone. In the following, the set of
BWC-trees of the these transactions are denoted by
RestartUndo-Forest { RU-Forest). The fate of the trans-
actions in the "prepared” state will be determined after
contact is reestablished with the commit coordinator
(see [MoLO86]).

Restart rollback is very similar to normal rollback. In
reverse chronological order, the restart rollback process
undoes and compensates for the log records which
belong to the RU-Forest and which had not becn
undone ever before. It starts by initializing a
KnownChains list for each transaction residing in the
"active” state after the analysis pass. The KnownChains
list of an "active” transaction contains one UndoNext
pointer, which points to the last record of the trans-
action’s BW-chain. Subsequently, it selects from thesc
KnownChains lists the UndoNext pointer with the
highest value. Then it reads the log record that the
selected pointer points to and acts on it as described
below. This is repeated until all the KnownChains
lists are empty.

In order to describe how the restart rollback process
acts on the different types of log records, we assume
that it selects UndoNext pointer P residing in the
KnownChains list of transaction X. Further, we as-
sume that P points to log record R in BW-chain C.
Depending on R’s type the restart rollback process
acts as follows: ‘

¢ Update, C~Committed: Restart rollback acts on R
in the same way as normal rollback does.

® CLR: P is removed from X’s KnownChains list,
and subsequently, all the UndoNext pointers in
R.UndoNextSet are added to this list. That is, for
each BW-chain which belongs to X’s BWC-tree and
which was known by a rollback process at the point
of the system failure, an UndoNext pointer is added
to X’s KnownChains list. These pointers point to
the log records to be undone next in the correspond-
ing BW-chains.

4. Related Work

As far as we know, the only other recovery algorithm
supporting WAL for nested transactions is the one
presented in [Moss87]. Moss’s. WAL algorithm does
not write CLRs and it does not seem to record LSNs
in the nonvolatile storage versions of modified pages.
That algorithm is not good enough to support fine-
granularity of locking and avoid the numerous prob-
lems caused by not writing CLRs (the reader is referred
to [MITLPS89] for detailed discussions concerning
these topics and illustrations of the difficulties involved
in supporling high concurrency efficiently using WAL).
Especially with semantically-rich modes of locking
(like increment/decrement) and operation logging,
Moss's WAL approach of performing undo actions
before redo actions during restart recovery and of not
writing CLRs will not work.

Moreover, Moss does not discuss the concurrency
control protocols and he assumes that the way the
logging of changes is done guarantees idempolence.
As discussed in [MH1ILPS89], the latter would make
it impossible to support operation logging and efficient
slorage management for varying length objects. Use
of LSNs on nonvolatile storage also is crucial for
avoiding unnecessary and/or erroneous redo and undo
work during restart recovery. Failures during restart
processing will further compound the problems.
ARIES and ARIES/NT support efficient restart and
media recovery, and high concurrency by permitting
operation logging, page-oriented redos and logical
undos (see {Mol.e89] for examples). For lhese rca-
sons, we consider ARIES/NT to be (undamentally
different from and more powerful than Moss's WAL
algorithm.

Most recovery algorithms for nesled transactions pub-
fished so far are variations of the "version approach”
described in [Moss81]. Briefly, this version algorithm
goes as follows: When a transaction gets a write lock
for an object, a new backup version of this object is
created. This version is associated with the object and
the transaction, and is used to restore the object should
the transaction abort. The versions associated with an
object are stored in a version stack, which is kept in
volatile memory. When a subtransaction commits, its

- 345 -

associated versions are offered to the parcnt. The par-
enl accepts a version, if it does not already have an
associated version for the same object. Otherwisc, the
offered version is discarded. If a transaction aborts,
cach of its associated versions is used to restore the
objects directly or indirectly modified by the transac-
tion. After that, the versions associated with the trans-
action can be destroyed. When a TL-transaction com-
mits, the current state of each object directly or indi-
rectly modified by this transaclion is saved in stable
storage. Then, all versions associated with this trans-
action are destroyed.

In most implementations of Moss’s version algorithm
(or variations of it), a version of an object is a complete
copy of this object (e.g., see implementations in Eden
[INIBP82] and ARGUS [LCIS87]). An alternative
approach is to store versions incrementally. In 1.OCUS
[MuMP83], for example, file versions arc stored in-
crementaily - i.e., only those file pages that are ncw
compared to the previous version need to be recorded
in the new version.

Moss’s version algorithm and its variations have sev-
eral drawbacks:

If a transaction locks an object, a new version of the
whole object has to be created. If the locked object is
big, then the creation of new versions will be very
expensive. On the other hand, if the objects Lo be
locked are small, version stack management might
become a substantial cost factor.

Those algorithms support only the no-steal buffer man-
agement policy, whereas ARIES and ARIES/NT sup-
port the no-steal as well as the steal policies (with
steal, pages with uncommitted data may be written
back to nonvolatile storage).

Partial rolibacks for nested transactions is not sup-
ported by them. Modelling savepoints [GMBI.1.81,
I1aRo87a, LHMW84] by means of subtransactions is
too costly (inheritance of locks, generating new Lrans-
action identifier, etc.), since savepoints are used very
frequenty (e.g., to guarantee statement-level atomicity,
which is required by ANS SQL).

5. Summary

A new recovery method for nested transactions, called
ARIES/NT, has been presented. ARIES/NT is an
extension of the ARIES recovery and concurrency
control method that was introduced by Mohan, et al.
in [MHLPS89] and that has been implemented to
varying degrees in Starburst [Moha86], QuickSilver
[HMSC88], the 0S/2 Extended Edition' Database
Manager [ChMy88], and DB2 V2R1. A high con-
currency - index management algorithm based on
ARIES, and called ARIES/IM, has been implemented
in the 08/2 EE Database Manager and is described,
with extensions, in [Mol.c89]. '

ARIES/NT is characterized by the following properiics:

® It supports WAL for nested transactions, and, as
far as we know, it is the only comprehensive WAL
algorithm for nested transactions developed so far
that permits semantically-rich modcs of locking
[BaRa87], operation logging, and cfficient recovery.

¢ It allows arbitrary parallelism between rclated as
well as unrelated transactions - i.e., a (ransaclion
may run concurrently with its superiors, inferiors,
siblings and all other unrelated transactions.

¢ It supports concurrency control schemes allowing
upward as well as downward inheritance of locks.
That is, children may inherit locks to their parents,
and vice versa.

® It supports savepoints at each transaction level - i.e.,
TL-transactions as well as subtransactions may es-
tablish savepoints.

Moreover, all the properties of ARIES described in
[MHLPS89] hold for ARIES/NT also. No changes
to fuzzy image copying (archive dumping), media re-
covery, buffer management, and deferred or selective
restart algorithms of ARIES are necessilated by the
introduction of the support for nested transactions.
Some more details on ARIES/NT can be found in
[RoMo89]. Additional discussions concerning BK-
BK communications, BK recovery, BK dala structures,
and deadlocks arising from allowing concurrent exe-
cution of subtransactions and their ancestors will be
presented in an expanded version of that paper
[MoRo089].

6. References

BaRa87 Badrinath, B.R., Ramamritham, K. Semantics-
Based Concurrency Control. Beyond
Commutativity, Proc. 3rd IEEE International
Conference on Data Enginecring, February 1987.
Chang, P.Y., Myre, W.W. 0S/2 EE Database
Manager Overview and Technical Highlights,
IBM Systems Journal, Vol. 27, No. 2, 1988.
Dasgupta, P., LeBlanc Jr., R., Appelbe, W. The
Clouds Distributed Operating System, Proc. 8th
International Conference on Distributed Comput-
ing Systems, San Jose, June 1988.
GMBLIR1 Gray, J., Mclones, P., Blasgen, M., Lindsay,
B., Lorie, R., Price, T., Putzolu, F., Traiger, L.
The Recovery Manager of the System R Database
Manager, ACM Computing Surveys, Vol. 13,
No. 2, June 1981.

ChMy8$8

DaL.A8S

11aRo87a Haerder, T., Rothermel, K. Concepts for Trans-
action Recovery in Nested Transactions, Proc.
ACM-SIGMOD Internationa)l Conference on
Management of Data, San Francisco, May 1987.
HaRo87h Haerder, T'., Rothermel, K. Concurrency Control

Issues in Nested Transactions, IBM Research

' 05/2is a trademark of the International Business Machines Corp.

- 346 -

1IMSC88

JNJBPS2

L.CJIS87

LIIMW84

MHL.PS89

Moha86

Mole89

Mol.O86

MoRo89

Moss81

Moss87

MuMP83

RoMo89

SpPBss

Report RJS803, Almaden Rescarch Center, Au-
gust 1987.

I1askin, R., Malachi, Y., Sawdon, W., Chan, G.
Recovery Management in QuickSilver, ACM
Tr tions on Computer Systems, Vol. 6, No.
1, p82-108, liebruary 1988.

Jessop, W.11., Noe, J., Jackobson, 1D.M., Baer,
J.-1., Pu, C. An Introduction to the Iiden Trans-
actional File System, Proc. 2nd IEEL Symp. on
Reliability in Distributed Software and 1)atahase
Systems, Pittsburgh, July 1982,

Liskov, B., Curtis, ., Johnson, P., Scheifler,
R. Implementation of Argus, Proc. 11th ACM
Symposium on Operating Systems Principles,
Austin, November 1987.

Lindsay, B., Haas, L., Mohan, C., Wilms, P.,
Yost, R. Computation and Communication in
R*: A Distributed Database Manager, ACM
Transactions on Computer Systems, Vol. 2, No.
1, February 1984.

Mohan, C., Haderle, D., Lindsay, B., Pirahesh,
H.,Schwarz, P. ARIES: A Transaction Recovery
Method Supporting Fine-Granularity Locking
and Partial Rollbacks Using Write-Ahead log-
ging, IBM Research Report RJ6649, IRM
Almaden Research Center, January 1989.
Mohan, C. An Overview of Starburst: An Ex-
tensible Relational DBMS, Proc. ACM-
SIGMOD International Conference on Manage-
ment of Data, Washington, May 1986.

Mohan, C., Levine, F. ARIES|IM: An Efficient
and High Concurrency Index Management
Method Using Write-Ahead Logging, IBM Re-
search Report RJ6846, IBM Almaden Research
Center, June 1989.

Mohan, C., Lindsay, B., Obermarck, R. 7rans-
action Management in the R* Distributed Data
Base Management System, ACM Transactions
on Database Systems, Vol. 11, No. 4, December
1986.

Mohan, C., Rothermel, K. ARIES/NT: A Re-
covery Method Based on Write-Ahead Logging
Jor a Very General Model of Nested Transactions,
IBM Research Report, IBM Almaden Research
Center, Forthcoming.

Moss, J.E.B. Nested Transactions: An Approach
to Reliable Distributed Computing, PhD Thesis,
Tech Rep MIT/LCS/TR-260, MIT, April 1981.
Also as a modified version from MIT Press,
1985.

Moss, B. Log-Based Recovery for Nesied Trans-
actions, Proc. 13th International Conference on
Very Large Data Bases, Brighton, September
1987.

Mueller, ET., Moore, 1.D., Popek, G.J. 4
Nested Transaction Mechanism for LOCUS,

* Proc. 9th ACM Symposium on Opcrating Sys-

tems Principles, Bretton Woods, October 1983.
Rothermel, K., Mohan, C. ARIES/NT: A Re-
covery Method Based on Write-Ahead Logging
for Nested Transactions, IBM Research Report
RJ 6650, IBM Almaden Research Center, Jan-
uary 1989.

Spector, A., Pausch, R., Bruell, G. Camelot: 4
Flexible, Distributed Transaction Processing Sys-
tem, Proc. IEEE Compcon Spring ‘88, San Fran-
cisco, March 1988.

