
ARIES/NT: A Recovery Method Based on Write-Ahead Logging
for Nested Transactions

K. Rothermel, IBM European Networking Center, Tiergartenstrasse 15, D-6900 Heidelberg, W. Germany
rotherme@dhdibml.bitnei

(:. Mohatl, Data Base ‘I’echnolo~y Inshte, IBM Almaden Research Center, San Jose, CA 95120, USA
mohnn@ibm.com

~hstt~ct A simple and efficient recovery method for
nested transact.ions, called ARIES/NT (Algorithm for
Recovery and Isolation Exploiting Semantics for
Nested ‘I’ransactions), that uses wrile-ahead logging
and supports semantically-rich modes of locking and
operation logging is presented. ‘I’his method applies
to a very general model of nested transactions, which
includes parlial rollbacks of subtransactions, upward
and downward inheritance of locks, and concurrent
execution of ancestor and descendent subtransactions.
The adopted syslem nrchit.cclure encompasses aspects
of distributed data base management also. ARIES/NT
is an extension of the ARIES recovery and concurrency
control method developed recently for the single-level
transaction model by Mohan. et. al. in the IBM Re-
search Report RJ6649.

1. introduction
The nested transaction concept was popularized by
Moss [Moss81]. It has been implemented in several
systems so far, such as ARGUS [LCJS87], Camelot
[SpPR88], CLOUDS [DaLh88], LOCUS
[MuM1’83], and Eden [JNJR1%2]. Nested transac-
tions have at least three advantages over single-lcvcl
transactions: First., tlley provide a means for controlling
concurrency within transactions. Second, nested trans-
actions can be used to protect. a part of a transaction
f’rom failures of another part of the transaction - i.e.,
nested transact.ions can act as firewalls, preventing
outside influences from affecting t.he intern&. ‘Third,
nested transactions allow an easy and secure compo-
sition of transaclion programs, by means of which the
modulatily of sys(.cms can be increased.
The goal of our work has been to devise an ellicient
and simple recovery method which guarantees t.he
usual transaction atomicily properties for a very gen-

Pesmission to copy without fee all OI part of this material is
granted provided that the copies are not mode OT distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, OT to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the Fifteenth International
Conference on Very Large Data Bases

era1 model of nested transactions. Even though a
number of papers have discussed the shadow-page
recovery technique (as used in System R
[GMRLLII]), write-ahead logging (WAL) is the
method of choice in most commercial systems because
ofits efficiency, flexibility, and power (see [MHl,PS89]
for detailed comparisons). In WAL systems, an up-
dated page is written back to the same nonvolatile
storage (e.g., disk) location from where it was read.
That is, in-place updating is done on nonvolatile stor-
age. The H’/ff, gvoiocol asserts that the log records
representing changes to some data must be physically
written to stable storage hefore the changed data is
updated on nonvolatile storage.
In this paper, a recovery method that uses WAL for
nested transactions, called ARIES/NT (Algorithtn for
Recovery and Isolafion Exploiting Semantics for
Nested Transactions), is presented. ARIES/NT is an
extension of the ARIES recovery and concurrency
control method introduced by Mohan, et al. in
[MIILPS89]. It retains all the features of the latter.
ARIES tracks precisely the state of a page on nonvol-
atile storage as well as in main storage by associating
a log sequence number (LSN) with every page. The
ISN of a data base page is the address of the log
record which describes the update most recently per-
formed on the page. It is a monotonically increasing
value that helps us relate the state of a page to logged
updates of t.he page.
Like ARIES, ARIES/NT also logs all database
changes, including even those performed during roll-
backs of transactions. Updates performed during roll-
backs arc logged using what are called compensation
log records (CI.Rs). During restart recovery, ARIES/
NT guarantees that, for those transactions which were
already aborting at the time of the system failure, only
those actions that had not been undone ever before
are rolled back. This means that the changes specified
in a CLR are never undone (the changes are described
in CLRs only for redo purposes during restart alter a
failure or during media recovery). This also causes a
CLR to be used to keep track of how much of the
transaction has already been rolled back and how
much more remains to be rolled back. This tracking
is done by recording, in a CLR, a set of pointers, each
of which points to the next record to be dealt with in

Amsterdam, 1989

- 337 -

fhc chain of log records written by the transact.ion or
one of its subt.ransactions (in ARIES, instead of a set
of pointers, there will be only one pointer, called
UndoNxt.I.SN, since ARIES was designed for the
single-level t.ransarlion model).
The remainder of this paper is organized as follows.
Section 2 introduces the notion of a nested transaction
and describes the system architecture we assume. In
section 3, lhc new recovery method ARIES/NT is
presented. Section 4 describes other work on recovery
algorithms for nested transactions. Finally, section 5
summarizes our work.

2. Transaction and System Models
In this section, WC discuss the nested transact.ion model
and the system architecture that we assume for ARIES/
NT.

2.1. Nested Trcmsactions
The transaction model that ARIES/Nl’ is designed for
is a generalization of the nested transaction model of
[MossSl]. In this model, a transaction may contain
any number of sditransactians, and cnch
subtransaction again may comprisr any number of
subtransactions.
A transaction which is not enclosed in another trans-
action is called a top-level transaction (TL-transaction).
In the following, we use the term “transaction” to de-
note both I’L-transactions and subtransactions. Trans-
actions having subtransactions are called parents, and
their subtransactions are their chifdren. The ancestor
(respectively, descendant) relation is the reflexive tran-
sitive closure of the parent (child) relation. We use
the term superior (respectivtly, in..riw) for the
nonreflexive version of ancestor (descendant). The
nesting hierarchy of a TL-transaction can be rcpre-
sented by a so-called transaction tree, where the nodes
of the tree represent transactions, and the edges rep-
resent the nesting relationship amongst the transactions.
Transactions can t.erminate eitber normally by com-
mitting or abnormally by aborting. Subtransactions
appear atomic to the surrounding transactions and
may commit or abort independently. A transaction is
not allowed to commit until all its children have ter-
minatcd. A subtransaction may abort without afrecting
the commit or abort outcome oft.he surrounding trans-
acl.ion. IIowever, the commit of a subtransaction is
relative; even if the subtransaction commits, aborting
one of the subtransact.ion’s superiors will undo its ef-
fects. Updates become permanent only when the en-
closing TL-transaction commits.
The concurrency control scheme for nested transacGon
presented in [Moss811 is a locking approach. In this
scheme, transactions may hold and retain locks. When

a subtransaction commits, its locks are inherited by its
parent, which then retains the locks. A t.ransaction
holding a lock for an object is allowed to access this
object. The access is not allowed if it only retains the
lock. Consequently, a retained lock is only a place
holder indicating that transactions outside the hierarchy
of the retainer cannot acquire the lock, but descendants
of the retainer can.
The locking scheme introduced by Moss only allows
for upward tien’tance of locks, i.e., a parent may
inherit locks of its children, but not vice versa. In
[I laRo87b], a more general locking scheme that ad-
ditionally supports downward inheritance of locks is
proposed. ARIES/NT is flexible enough to be used
together with concurrency control schemes enabling
downward as well as upward lock inheritance
[RoMo89]. Moreover, it accommodates the support
of even semantically-rich lock modes like increment/
decrement which permit multiple transactions to update
the same data concurrently. This is the kind of feature
that requires a recovery method to support operation
logging (before and/or aRer image logging will not
work) and to avoid the erroneous attempts to undo
or redo some actions unnecessarily by precisely track-
ing the state of a page using the LSN and by writing
Cl .Rs.
Even concurrency control methods which are similar
to locking, like the one described in [BaRa87], can
be used w&h ARIES and ARIES/NT (see
[Ml lLPS89]).

2.2. System Architecture
A distributed database system (DDBS) consists of a
set of sites, which are interconnected via a commutti-
cation network. Each site is comprised of a set of
sulisystems, which cooperate with each other for the
purpose of processing transactions. We assume that
each subsystem has its own recovery component.
On each site of the DDBS, there exists a special sub-
system called the bookkeeper. Bookkeepers coordinate
the initiation, migration and termination of transac-
tions. Moreover, they maintain transaction s1at.e in-
formation, which is needed for recovery purposes, as
well as information needed to build up transaction
trees and to keep track of which transactions have
visited which sites and which subsystems. The notations
RK-subsystem and NBK-subsystem are used to denote
a bookkeeper subsystem and a non-bookkeeper sub-
system, respectively. An NBK-subsystem may be some
component of a DDBS site, such as an index manager
or a record manager.
A transaction may be distributed over several NBK-
subsystems, possibly residing on different sites of the
DDBS. A transaction is initiated at a subsystem either
when the subsystem receives the first request to be
performed within this t.ransaction, or as soon as a

- 338 -

child of this transaction commils at l.tiis sr~bsyslen~,
whichever happens first. From an NDK-sllhsystcm’s
point of view, a sublransaction may bc in two diKcrcn1
states, namely “unknown” and “acl.ive”. AL a subsys-
tem, the init.ial stale of a sublransactinn is “unknown”.
The subtransaction enters the “active” state as soon as
it gets initiated at the slJhsystem. It again becomes
“unknown” when il commits or when one of its an-
cestors aborts.
‘T‘l.-transactions alone may also reside in the “prepared”
sla1.e. This state can be reached during the execution
of a 2-Phase-Commit (2PC) protocol (e.g., lhe Pre-
sumed Abort protocol of [Mol.OgG]), which is used
to terminate distributed TL-transactions. During the
first phase of 2PC, the lransaclion enters the “prepared”
state at a subsystrm if IJpdates were performed al Ihat
subsystem and that subsystem is willing to commit the
lransaclion. After its terminalion (commit or abort)
in the second phase, the lransaclion retrJrns to the
“unknown” sla1.e. Of course, it also becomes “unknown”
when it is aborted in the “active” stale.
Each JIK in the DDl?S guarantees the following:

For each “active” snbtransaction, an NDK-subsystem
will evenlually receive either a commit (for this
snblransaction) or an abort (for an ancestor of this
subtransacCon) request from the local I3K. A commit
(respectively, ahart) request cbntains the identifier of
lhc subtransaction to he committ.ed (aborted) as well
as the identifier of the parent (inferiors, which arc
“active” at this subsyst.em) of ~lis subtransaction. A
commit. request will not be issued until all the chil-
dren of (he committing snbtransaction have f.ermi-
nated.
For each “active” I’L-transaction, an NBK-
subsystem will evenl.ually receive an abort or a pre-
pare request rrom its local BK. While a prepare
request contains lhe identifier of lhe ‘H.-transaction
to he prepared, an ahort request. includes Ihe iden-
tiliers of the ‘II,-transaction’s “active” descendants
at tilis subsystem. A prepare request will no1 be
issued until all the children of the preparing Tl.-
transaction have terminated.

l For each “prepared” ‘1’1:transaction, an NI<K-
subsystem will evcnluall\ receive a commit or an
ahort rcquesl from ils local I3K.

l For each “active” transnctic *a, an NBK-subsystem
can issue a query lo the local HK asking for the
transaction’s inferiors residing in the “active” sta1.e
at this subsys!.em. An NICK-subsystem needs this
information when it decides lo unilat.erally abort a
lransaclion.

3. ARIES/NT
In this section, first we give a brief overview of ARIES/
NT, and then in(roduce the important data strrJct.ures.

Subsequently, WC present the algorithm assuming nor-
mal operation, and finally describe how it operates
during restart processing. Note that here we are pri-
marily concentrating only on the ARIES/NT exten-
sions, for the nested transaction model, to ARIES.
[MIICPS89] should be consulted for detailed infor-
mation and the rationale for the different basic design
decisions.

3.1. Ovevview
In this section, we will first present the basic principles
of ARIES (see also the section “1. Introduction”) and
then briefly describe the extensions that lead to ARIES/
NT.
During restart afker a failure, ARIES first scans the
log, sfarf.ing from the first record of the last complete
checkpoint, up to the end of the log. During this anal-
ysis pass, information is gathered about (1) pages that
were polenlially more up lo date in the burners than
in Ihe nonvolatile storage version of the data base and
(2) transactions that were in progress at the time of
the crash. Then, ARIES repents Abiory, with respect
to those updates that were logged to stable storage but
whose effects on data base pages did not get written
to nonvolatile storage before the crash. This is done
for ALI, transactions, including for those transactions
that were in progress at the time of the crash. This
essentially reestablishes the state of the data hasi: as
of the time of the crash. No logging is done of the
updates redone during this redo pass.
The next pass is the undo pass during which all in-
progress transaction’s updates are rolled back in rc-
verse chronological order, in a single sweep of lhc log.
Note that for lhose transactions which were already
rolling back at the time of the crash, ARIES will only
rollback those actions that had not already been IJn-
done. This is possible since history is repcalcd for
such transactions and since f.he lasl CLR wrillcn lijt
each already rolling back transaction points IO the
next. nonCLR record, if any, that is lo he undone.
Now, we will briefly dcscribc the cxlrnsions to the
above which lead to ARIBS/N’I’. In bolh ARIES and
ARIES/NY’, all log records written by the same trans.
action are linked via a so-called backward chain (BW-
chain). In addition, in ARII!S/NT, I.hc l3W-chains ol
contnzitfc?nsublransaclions arc linked to the l3W-chains
of their parents to reflccl lhe h2nsacl.ion lrccs on lhc
log. When a subtransaction ‘I’ commits, a ‘child com-
mitted record’, which contains a pointer IO Ihc last
record of T’s chain, is written to Ihc IIW-chain of ‘1”s
parent. Consequently, lhc IIW-chain of an ill-progress
transaction together with the chains of its cornmitlrd
inferiors form a I.rce slruclurc, which is r;illrtl ll~r
transaction’s hackwnrd chain tree (BWC-tree). Since
the parent/child relnlianships of conlniiltrd
subt.ransacCons arc stored on IIIC log, subsystr~n~ GUI

- 339 -

rorgct subtransactions alter commit and the analysis
pass need not collect informalion about committed
subtransactions, which simplifies recovery.

When a transaction is aborted, the actions of that
transaction and its (commit.ted or active) inferiors are
rolled hack in reverse chronological order. I,ike
ARIES, ARlES/JVI logs datahasc updates performed
during rollback by mea~ls of CI.Rs. A Cl,R is also
used to keep track how much or a transaction and its
committed inferiors has already been rolled back and
how nmch more remains to be undone. l’his is
achieved by recording, in a CI.R, a set. or pointers,
each of which points to the next log record to be
processed in the BW-cllnin of the transaction or a
committed inferior during undo.

As in ARIES, in ARJES/NT also, restart proccssiug
starts with an analysis pass, continues with a redo pass
and ends with an undo pass. Redo processing of
AJ<IES/NT works in exactly the same way as in
ARIES, while the algorithms of the analysis and undo
pass have been modified to support tree-structured log
contents.

3.2. Dntn Structzwes

In Ihis section, we describe some of the important data
structures used by ARIES/NT at an NJJK-suhsysl.em.

Each record in the log of an NRK-subsystem belongs
to a so-called backward chain (RW-chain). A BW-
chain is associated with a transaction and connects
the log records which arc relevant for undoing and
redoing this transaction at a parlicular subsystem.

The fields of a log record which are of interest in the
subsequent. discussions are:

l PrevlSN: Address of the preceding Jog record in
the transaction’s BW-chain. This value is Nil. if
this is the first log record.

l LastLSN: Present only in log records of the type
C-Committed. When a subtransaction commits. a
C-Committed record is added to Ihc BW-chain of
its parent. I,ast.J,SN contains the address of Ihe last
log record in the BW-chain of Ilie committed
subtransaction.

l Chiltlld: Present only in log records of the l.ype C-
Cbnznzittcd. It is the identifier of the child whose
commit caused this log record to be written.

l UndoNextSet: Present only in log records of Ihe
type CCR. When written by a t.ransaction T, it
contains the address of the next log record of T that
is to be processed during undo. Moreover, it also
includes for each committed inferior of ‘I‘ which is
only partially undone, fhe address of lhe next log
record that is to he processed during rondo in the
inferior’s BW-chain (for details see below).

l I’ageld: I’rescnt only in records of type Upda~c
(nonC1.R) or CI.R. The idcnlificr or the ~I;II;I hasc:
page to which lhe updales of this record wcrr applictl.

III each NBK-subsystem, there cxisls a irmlsactiolt
table called TrnnsTnb. For each lrnnsacl.ion known
by the subsyslcm. Ihis table contains an entry corisisliilg
of ‘I’ransld. State. and I,astl,SN (lhc address ol’ 111r
most rcccril.ly wrillcn log record in Ihc lrnnsactioll’s
J3W-chain).
A page in the bulTer pool is said 1.0 bc ~/jr/y if’ IIIC
hulfcr version of the page has some updnl.cs which arc
1101 yet reflected in the nonvolatile storage version 01
ihe same page. The table Dirtyf’ngcs is used lo rrp-
resent the information about dirty pages. IIuring nor-
mal processing, when a nondirty page is bril,g fixed
in lhe hull&s for an updalc operation, the hulrcr IWI!~-
ager inserts into the DirtyPages table a new entry
containing the idcnt.ilicr of Lhe page (I’agcld) and the
current end-of-log address (RecLSN - rccovcry I SN),
which is the address of the next log record 1.0 hc
written. Whcncver a page is wrilten back to disk, IIIC
corresponding entry is dclcted from DirtyPages.

3.3. Normal Psocessing

The lbllowing two subsections describe thr algorilllms
for database updates, transaction prcparc and commit.
The third subsection presents the algorithm Ibr roll-
back, and Finally, the fourth subsection &scribes how
checkpoints are taken during normal processing.

3.3.1. Update
When an NBK-subsystem receives the first work re-
quest of a transaction, the recovery manager (RM) of
this subsystem checks whether the transaction is al-
ready “active”. The transaction would already be ac-
tive, if a child of this transaction had executed at the
subsystem and had committed before. If the transac-
tion is still “unknown”, the RM inserts an ent.ry for
the transaction in the RM’s Transl’ah.

.

Whenever the execution of a work request causes a
transaction to perform an update to an object. in a
page, this page is fixed in the buffer and latched in
the exclusive (X) mode, the update is applied, an Up-
date log record is added to the transaction’s BW-chain,
the J,SN of the log record is placed in the page’s LSN
field, and the page is unlatched and unfixed (see
[Mlll,PS89] for filrther explanations). The buJTer
manager ruses the page I.SN to enforce the WAJ, pro-
tocol. The page LSN is also used during recovery to
determine the exact state of a page without having to
examine any user data in the page. Before a transaction
may update an object in a page, it must hold a lock
for the object.
To support flexible storage management and to reduce
the volume of log data, the changes to a page can be

- 340 -

XI NBK-suhsys~rm S, whicll contains a HW < Il;lill ICJI
each lransaclion in lhis Iransaclion lrcc. Al lirrlc: I I,
lhcrc exisls a forcsl comprised of‘ Ihrcc BW(, Irc>c\,,
wllich arc associalcd wilh Iransaclion5 A, I! at10 1..
‘l‘o Ille BW<J-lrco 01‘ B, for irlr;lallcc, hclorig Ihr: BW-
chains of B, (: and II, whcrc B’s BW-cllain is the root
chain of lhis BW(:-lrcc.
T/FTransnctions: When an NBK -suhsysl.cm rcccivcs
a prepare rcquesl for a II.-lransaclion during Ihc firs1
pllasc of 2P(Z, the RM of this suhsyslcm adds a Prc-
pare log record to lhc IransacGon’s BW-chain and
s~~~chrono~lsly writes Ihc record (and all log records
preceding this log record) to the log on stahlc storage.
The log record contains, besides olhcr information,
the identifier of the TL-transaclion and a list of tile
updat.e lype locks (X, IX, clc.) held or retained by Ihis
transaction. The nonupda1.e type locks (S, IS, etc.)
can he released at this time.
When an NBK-subsystem receives a commit rcqucst
for a TL-transaction, it appends an End record to the
transaction’s BW-chain. Whether or not t.his record is
written synchronously to stable storage depends on
the kind of 2PC protocol used (for a detailed discussion,
see [MoL086]). After writing the log record and
releasing the locks held or retained by the transaction,
the subsystem delet.es Ihe transaction’s enlry in
TransTab.

“ct~lw” A
P

i!

“OCtlvs”

eommlttod D c!l

Figure 1: Transaction Tree with Transaction States

logged logically (logging operations, rather than hcforc
and afier-images of modified data). This permits the
semantics of the operations on the data to be exploited
to permit addit.ional concurrency. Moreover, since op-
erations are logged, undo processing cari afTect a page
totally different from the one alTected during forward
processing (see [Mlll,PS89, MoLe89J). Because the
updates performed during rollbacks are logged, this
permits us to support page-oricmfed redo processing
and media recovery.

3.3.2. Prepare and Commit

Suhtrancactionx When an NBK-subsystem receives a
commit request for a subtransaction ‘I‘ from its local
OK, the RM of this subsystem checks whether there
already exists an entry for T’s parent in the local
TransTab. If the entry does not exist, it changes the
state of T’s parent from “unknown” to “active” by
inserting the corresponding entry in TransTab. Subse-
quently, it. asynchronol~rly writes a C-Committed (child
commitl.ed) log record, which represent< the first record
in the BW-chain of T’s parent. On the ot.her hand, if
T’s parent is already “active”, it only adds a C-
Committed record to the BW-chain of T’s parent. The
C-Committed record contains, hesides other informa-
tion, t.he identifier of ‘I‘ (Childld) as well as the log
address of the last record in T’s BW-Chain (1 ,astl,SN).
A BW-chain that represents the root of a BWC-tree
is called a root chain. An ancestor which represen1.s a
root chain is denoted as a root ancestor. The BW-
chains of ‘I’L-transactions as well as Ihe BW-chains of
aborted or “active” sublransactions always rrprcscnt
the root of a BWC-tree, whereas the BW-chains of
committed subtransactions are always nonroot chains.
Consequently, for each TL-transaction T, there might
exist a forest of BWC-trees. which consists of T’s
BWC-tree and the BWC-trees of the “active” and
aborted inferiors of ‘I’.
Figure 1 shows.a transaction tree consisting of trans-
actions A, B, C, 11, E and F. Transactions A, B and
E are in the “active” stale, while (he others are already
committed. Figure 2 depicts a portion of the log of

3.3.3. Rollback
When an NBK-subsystem receives an abort request
for a transaction or it decides to unilaterally abort the
transaction, it has to undo the effects ofthe transaction’s
“active” or “prepared” descendants (called known-
descendants). We define the BWC-forest of a transac-
tion to consist of the hWC-trees of the known-
descendants of this transaction. In order to rollback
a transaction, the log records belonging to the trans-
action’s BWC-forest have to be undone and compen-
sated for.
When rollback for a transaction starts, the rollback
process only knows the root chains of the transaction’s
BWC-forest; however, as rollback proceeds, it learns
about all the nonroot chains of this forest. In order
to keep track of which BW-chains of a transaction are
currently known, for each of the transaction’s known-
descendants, a list calted KnownChains is maintained
by the rollback process. The KnownChains list of a
known-descendant contains an UndoNext pointer for
each BW-chain (of the known-descendant’s BWC-tree)
which has so far been encountered by the rollback
process. The UndoNext pointer of a BW-chain points
to the next log record in the chain to be read and
processed.
When rollback of a transaction starts, the
KnownChains tist of a known-descendant, say X, of
this transaction contains one UndoNext pointer, which

- 341 -

TransTab
A:
B:
c:

D:

E:

F:

0’

Figure 2: Log anrl ‘i’ransl’ab at a Particular NBKSubsystem

points to the last record of X’s BW-chain. Whenever
a C-Committed record belonging to X’s BWC-t.rec is
encountered in the log during rollback, a new
UndoNext pointer is added to X’s KnownChains list.
Conversely, whenever the first log record of a BW-chain
belonging to X’s BWC-tree is read, the corresponding
UndoNext pointer is removed from X’s KnownChains
list.
The CLRs compensating the log records belonging to
a given BWC-tree are added to fhe root chain of this
BWC-tree - i.e., CLRs can only occur in root chains
(assuming there are no partial rollbacks - see
[RoMo89]). If a s&transaction commits and later
on it is aborted due to the rollback of one of its
superiors, then that subtransaction’s CLRs appear in
the chain of log records of that superior.
Jiach CLR includes a set of log addresses: for each
chain C’ which is a descendant of root chain C and
which is known by the rollback process, the
UndoNextSet field of a CJ,R added to C contains the
address of the next log record in C’ to be processed.
It is the information in lhe UndoNextSct that helps us
avoid undoing the same nonCJ,R record more than
once and also avoids having to undo CJ>Rs.
J;igure 3 shows the log of the NBK-subsystem S during
the rollback of subtransaction B, which is a node ol
the transaction tree depicted in Figure 1. It is assumed
that the rotlhack of B starts at time tl . The BWC-forest
of B consists of two BWC-trees, the one of J3 and the
one of E. In order to rollback B, the Jog records
belonging to both these JIWC-trees have to be undone
and compensated for in reverse chronological order.
The CLRs compensating log records belonging to the
JJWC-tree of B (E, rcspectivcly) are added t.o the BW-
chain of n (E). which is the root chain of the BWC-tree
of B (1.:). The UndoNextSet field of a CLR contains
a set of log addresses. For example, C1.R x6, which
compensates Update log record ~6, contains the LSNs

of u3 and 114. Update record u3 (~4, respectively) is
the next Jog record to be undone and compensated
for in the BW-chain of Q (C). At time t2, there exist
tw,o KnownChains lists, one for E and one for B. The
KnownChains list for B contains two UndoNext point-
ers, which point to u4 and ~3, whereas E’s
KnownChains list includes one pointer, pointing to US.
Of course, the next log record to be undone and com-
pensated for is ~5.

In order to describe how the rollback process acts on
the dimerent types of log records, we assume that it
selects UndoNext pointer P residing in the
KnownCIains list of known-descendant X. Further,
we assume that P points to log record R in BW-chain
C. Depending on R’s type, rollback acts as follows:

l Il@zte: If R.PrevLSN equals NIL then R is the
first log record in C - i.e., except R all undoable log
records belonging to C have already been undone
and compensated for. In this case, the rollback
process can forget C by removing I’ from X’s
KnownChains list. If R.PrevJ,SN is not NIL, then
P is updated to the value of R.PrevJ..SN. ‘J’hat is,
after this update P points to the next log record of
C to be read from the log.
ARer updating X’s KnownChains list, II is nndonc

and compensated for if it is not a redo-only log
record. The corresponding CJ,R is written to X’s
BW-chain, which represents C’s root ancestor. ‘l’hr
UndoNcxtSct field of this CLR coulains Ihe
UndoNext pointers residing in X’s KnownChains
list. Aner writing the CLR, the page JSN and X’s
LastJSN in Trans’l’nh are updalcd Lo ho the <‘I R’s
J,SN.
If X’s KnownChains lisl is cmply allrr IrtnoGug I’.
then R is Lhe last log record hclonginp IO thr I\\\‘(
tree of X that is yet to hc procrssrd. If this is the
case, aner processing R ~II I;rtd rccortl is \\c.ittru I,>
X’s JIW-chain, and then X is tlrlctcd li.~rtll l’r.111~ 1’.11>

- 342 -

B:

c:

D:

E:

F:

ul

I

time
I b

t1 t2
- Updato Log Record c - C-Committed Log Record xl - CLR Compenratlng for ul

Figure 3: Logging Scenario

C-Cmnmittcd:lbe KnownChains list of X is updated
by modiljling P as described above. Moreover, a
new UndoNext pointer I?’ is added to X’s
KnownChains list, and is set to the value of
R.I,astLSN. Consequently, alleer this update, P’
points to the last record of a BW-chain, which is a
child of C in X’s BWC-tree.
Prepare: P is changed to the value of’ R.Prevl,SN -
i.e., aller this update P poinrs lo the next. record in
C to be processed.

The rollback algorithm described above only allows
for foral rollback of transactions. I Jowever, it has been
extended to support parri& rollbacks also (see
[RoMo89]).

3.3.4. Checkpoints

For taking checkpoiuts periodically, the same fuzzy
check~poirzfing mechanism as described in [Ml ll.,PS89]
can be used without any changes. Taking a checkpoint
is initialed by writing a RcginChpt log record. The
checkpoint operation is completed hy synchrono&y
writing t.o stable storage an EndChpt record, which
contains a copy of TransTab, and DirtyPages. The
I.,SNs of the BeginChpt and EndChpt log records are
stored in the Master record, which is in a well-known
place on stable storage. Note Ihal no dirty pages need
LO be forced to nonvolaLile storage during the check-
point operation. The assumption is that Ihe bulTcr
manager is periodically wriling dirty pages to nonvol-
atile storage. as background activity, to keep the

amount of redo work to be done at restart 10 a rea-
sonable level.

3.4. Restart Processing
When a system failure occurs, the secondary storage
version of the database may be len in an inconsistent
state. It may contain uncommitted updates. Moreover,
it. may not contain some or all the updates of cornmilted
(or aborted) transactions. In order lo reestablish a
consistent database state, restart recovery has to be
performed. Restart recovery is performed with three
passes of the log, as outlined in the section “3.1. Over-
view”. In the following, the three log passes are de-
scribed in detail.
Figure 4 summarizes the recovery processing done hy
difTerent systems. Note that, during rcshrt, 1102, and
System R do not redo any updates of the loser (“acl.ivc”
state) transactions. This is called selective redo. 111
System R alone, the undo pass precedes the redo pass.
There are a nrlmber of reasons for this and lhe cor-
rectness of this method relies on the shadow-page ap-
proach to recovery [GMiH,l.,gl]. The rcadcr is rc-
ferred to [MHLPS89] for detailed discussions con-
cerning the problems caused by the recovery slratcgics
used by the prior syslems and how ARIES can cxploiL
parallelism during the redo and undo passes I.0 speed
up restart. The algorithms for taking checkpoints dur-
ing restart and for media recovery are the snmc as
those described in [MHI,PS89].

- 343 -

Amlydm

8
Rsdo Nonlsnrs 3 -------- rs

c’___--____ - -- ---...
.

IL: Analyds
E

L

qe,-.*.~ _._._. -.-.-.-.-.-.-.-.-.-.-.~~

P
Rdo wml-

-.-.-.-.-.-.-.-.-.-.-.~,
I,

VJ
I

Am1yslm - md0Al.t z --_- ---- _--
4 c’ m--L----- lJndoLo8wm ~~~ ‘I

.$s -.---- L

Figure 4: Restart Processing in Different Systems

3.4.1. Analysis Pas
The analysis pass begins by reading the Master record.
The TransTab and DirtyPages tables are initialized
from the EndChpt record. The log is scanned forward
starting with the BeginChpt record until the end of the
log is reached. During this scan, depending on its
type, a log record R written by a transaction X is
processed as follows:

l f&fate: If R represents the first log record in X’s
BW-chain, an entry is inserted into TransTab for X
with State set to “active” and LastLSN set to R’s
LSN. Otherwise, in X’s entry, LastLSN is set to R’s
LSN. If R.PageId is not in the DirtyPages table, a
new entry is added lo this table. The entry consists
of R.Pageid and R’s LSN (as the RecLSN).

l CLR: In X’s Trans’l‘ab entry, LastLSN is updated.
If R.Pageld is not in the DirtyPages table, a new
entry is added.

l Prepare: In X’s TtansTab entry, I.astLSN is updated
and State is set to “prepared”.

l C-Committed: The entry in TransTah for R.ChildJd
is deleted.

l End: X is forgotten by removing X’s entry from
TransTab.

ARer the log is scanned until its end, RerJoLSN is set
to the minimum of the RecLSN values in DirtyPages.
This is the log address from which the redo pass will
start processing the log.
In summary, the output of the analysis pass is (1) the
TransTab table, which contains the transactions that
were in the “active” and “prepared” state at the time

of the system failure, (2) the DirtyPages table, which
contains the identifiers of the pages in the buffers that
were potentially dirty when the system failure occurred,
and (3) RedoLSN, which is the location on the log
from which the redo pass should start processing tbc
log.

3.4.2. Redo Pass
The redo pass reestablishes the state of the database
at the time of the system failure and reacquires locks
for “prepared” transactions. The redo pass algorithm
described for ARIES in [MtJLPS89] can be used
without changes. The inputs to this algorithm are
RedoLSN and DirtyPages produced during the anal-
ysis pass. Log records are examined starting from the
RedoJSN and using the information in DirtyPages as
a Jilter, the pages which may not be up to date with
respect to the logged changes are examined. For each
page which is examined, a Jog record’s changes are
redone if the page’s LSN is less than the log record’s
LSN. Note Lhat, unlike some other recovery methods
(e.g., System R [GMBLL81]), ARJES redoes even
the updates of transactions in the “active” state.

3.4.3. Undo Pas
During the undo pass, the effects of all transactions
residing in the “active” stab at the end of the analysis
pass have to be undone. In the following, the set of
BWC-trees of the these transactions are denoted by
RestartUndo-Forest (R&Forest). The fate ofthe trans-
actions in the “prepared” state will be determined after
contact is reestablished with the commit coordinator
(see [MoLO86]).
Restart rollback is very similar to normal rollback. Jn
reverse chronological order, the restart rollback process
undoes and compensates for the Jog records which
belong to the RU-Forest and which had not been
undone ever before. It starts by initializing a
KnownChains list for each transaction residing in the
“active” state after the analysis pass. The KnownChains
list of an “active” transaction contains one UndoNext
pointer, which points to the last record of the trans-
action’s BW-chain. Subsequently, it selects from these
KnownChains lists the UndoNext pointer with the
highest value. Then it reads the log record that the
selected pointer pointi to and acts on it as dcscrihcd
below. This is rgeated until all the KnownChains
lists are empty.
In order to describe how the restart rollback process
acts on the different types of log records, we assume
that it selects UndoNext pointer P residing in the
KnownChains list of transaction X. Further, WC as-
sume that P points to log record R in IJW-chain (1.
Depending on R’s type the restart rollback process
acts as follows:

- 344 -

l Update, C-Conmdttcd: Restart rollback acts on R
in the same way as normal rollback does.

l CLR: P is removed from X’s KnownChains list,
and subsequently, all the UndoNext pointers in
R.UndoNextSet are added to this list. ‘l’hat is, for
each BW-chain which belongs to X’s BWC-tree and
which was known by a rollback process at the point
of the system failure, an UndoNext pointer is added
to X’s KnownChains list. These pointers point to
the log records IO be undone next in the correspond-
ing BW-chains.

4. Related Work
As far as we know, the only other recovery algorithm
supporting WAL. for nested transactions is the one
presented in [Moss87]. Moss’s WAL algorithm does
not writg CLRs and it does not seem to record LSNs
in the nonvolatile storage versions of modified pages.
That algorithm is not good enough to support fine-
granularity of locking and avoid the numerous prob-
lems caused by not writing CLRs (the reader is referred
to [Ml 1LPS89] for detailed discussions concerning
these topics and illustrations of the difficulties involved
in supporting high concurrency eflicicntly using WAL.).
Especially with semantically-rich modes of locking
(like increment/decrement) and operation logging,
Moss’s WAL approach of performing undo actions
before redo actions during restart recovery and of not
writing CLRs will not work.
Moreover, Moss does not discuss the concurrency
control protocols and he assumes that the way the
logging of changes is done guarantees idempolence.
As discussed in [MIILPS89], the latter would make
it impossible to support operation logging and efficient
storage management for varying length objects. Use
of LSNs on nonvolatile storage also is crucial for
avoiding unnecessary and/or erroneous redo and undo
work during restart recovery. Failures during restart
processing will further compound the problems.
ARIES and ARIES/NT support eflicient restart and
media recovery, and high concurrency by permitting
operation logging, page-oriented rcdos and logical
undos (see [MoLe89] for examples). For these rca-
sons, we consider ARIES/NT to be fundamentally
direrent from and more powerful than Moss’s WAL
algorithm.
Most recovery algorithms for nested t.ransactions pub-
lished so far are variations of the “version approach”
described in [Moss81]. Briefly, this version algorithm
goes as follows: When a transaction gets a write lock
for an object, a new backup version of this object is
created. This version is associated with the object. and
the transaction, and is used to restore the object should
the transaction ahort. The versions associated with an
object are stored in a version stack, which is kept in
volatile memory. When a subtransaction commits, its

associated versions are orered to the parent. I‘hc par-
ent accepts a version, if it does not already have an
associated version for the same object. Ot.hcrwisc, the
olicred version is discarded. If a transaction aborts,
each of its associated versions is used to rcstorc IIIC
objecb directly or indirectly modified by the transac-
tion. AI&r that, the versions associated with the trans-
action can be destroyed. When a TL-transaclion com-
mits, the current state of each object directly or indi-
rectly modified by this transaction is saved in st.ablc
storage. Then, all versions associated with this trans-
action are destroyed.
In most implementations of Moss’s version algorithm
(or variations of it), a version of an object is a complete
copy of this object (e.g., see implementations in rldcn
[JNJBP82] and ARGUS [LCJS87]). An alf.ernativc
approach is to storeversions incrementally. In LOCUS
[MuMP83], for example, file versions arc stored in-
crcmentally - i.e., only those file pages that are new
compared to the previous version need to be recorded
in the new version.
Moss’s version algorithm and its variations have sev-
eral drawbacks:
If a transaction locks an object, a new version of the
whole object has to be created. If the locked object is
big, then the creation of new versions witl be very
expensive. On the other hand, if the objects lo bc
locked are small, version stack management might
become a substantial cost factor.
I’hose algorithms support only the no-steal bufFer man-
agement policy, whereas ARIES and ARIES/NT sup-
port the no-steal as well as the steal policies (with
steal, pages with uncommitted data may be written
back to nonvolatile storage).
Partial rollbacks for nested transactions is not sup-
ported by them. Modelling savepoints [GMBLI,II,
IIaRo87a, LIIMW84J by means ofsubtransactions is
too costly (inheritance of locks, generatjng new trans-
action identifier, etc.), since savepoints are used very
frequently (e.g., to guarantee statement-level atomicily,
which is required by ANS SQL).

5. Summary
A new recovery method for nested transactions, called
ARIES/NT, has been presented. ARIES/NT is an
extension of the ARIES recovery and concurrency
control method that was introduced by Mohan, et al.
in [MllL,PS89] and that has been implemented to
varying degrees in Starburst [Moha86], Quicksilver
[HMSC88], the OS/2 Extended Edition’ Database
Manager [ChMy88]. and DB2 V2Rl. A high con-
currency index management algorithm based on
ARIES, and called ARIES/IM. has been implemented
in the OS/2 EE Database Manager and is described,
with extensions, in [MoLe89].

- 345 -

ARIES/NT is characterized by the following prnpcrtics:

l It supports WAL, for nested transactions, and, as
far as we know, it is the only comprehensive Whl,
algorithm for nested transactions developed so far
that permits semantically-rich modes of locking
[BaRa87], operation logging, and cflicicnt recovery.

l It allows arbitrary parallelism between related as
well as unrelated transactions - i.e., a transaction
may run concurrently with its superiors, inferiors,
siblings and all other unrelated transactions.

l It supports concurrency control schemes allowing
upward as well as downward inheritance of locks.
That is, children may inherit locks to their parents,
and vice versa.

l It supports savepoints at each transaction level - i.e.,
TL-transactions as well as subtransactions may es-
tablish savepoin8.

Moreover, all the properties of ARIES described in
[MIILPS89] hold for ARIES/NT also. No changes
to fuzzy image copying (archive dumping), media re-
covery, buffer management, and deferred or selective
restart algorithms of ARIES are necessitated by the
introduction of the support for nested transactions.
Some more details on ARIES/NT can be found in
[RoMo89]. Additional discussions concerning BK-
BK communications, BK recovery, BK data structures,
and deadlocks arising from allowing concurrent exe-
cution of subtransacl.ions and their ancestors will be
presented in an expanded version of that paper
[MoRo89].

6. References
BaRall

ChMy88

DaLARR

GMBLI.81

I laRoR7a

IIaRo87h

Badrinath, RR., Ramamritham, K. Semantics-
Based Concurrency Con troi. Beyond
Commutativity, Proc. 3rd IEEE lntemational
Conference on Data Engineering, February 1987.
Chang, P.Y., Myre, W.W. OS/2 EE Database
Manager Overview and Technical Highlights,
IBM Systems Journal, Vol. 27, No. 2, 1988.
Dasgupta, P., LeBlanc Jr., R., Appelbe, W. 771e
Clouds Distributed Operating System, Proc. 8th
International Conference on Distrihuted Comput-
ing Systems, San Jose, June 1988.
Gray, J., McJones, P., Blasgen, M., Lindsay,
B., Lorie, R., Price, I’., Putzolu, P., Traiger, 1.
l%e Recovery Manager of the System R Database
Manager, ACM Computing Surveys, Vol. 13,
No. 2, June 1981.
llaerder, T., Rothermel, K. Concepts /or nuns-
action Recovery in Nested 7Fansactions, hoc.
ACM-SIGMOD International Conference on
Management of Data, San Francisco, May 1987.
I laerder, T., Rothermel, K. Concurrency Control
Issues in Nested nansactions, IBM Research

IIMSCRR

.IN.IRP82

IKJS87

LIIMW84

MI11 .PS89

Moha86

MoLe89

MoL086

MoRo89

MO&s81

Moss87

MuMi’

RaMo89

SpPB88

Report RJSROJ, hlmaden Research ~cnter, AU-
gust 1987.
Ilaskin, R., Malachi, Y., Sawdon, W., <:han, G.
Recovery Management in QuickSilver, ACM
Transactions an Computer Systcmq, Vol. 6, No.
I, ~82-108, February 1988.
Jessop, W.II., Not, J., Jack&son, I1.M.. Hacr,
J.-l .., l’u, C. An Introduction to the I:‘den ‘liuns-
acthnal File System, hoc. 2nd IKKK Symp. on
Rcliahility in Distributed Software and Ibatahase
Systems, Pittsburgh, July 1982.
Liskov, B., Curtis, I)., Johnson, I’., Schciller,
R. lmpfcmentalion of Argus, Proc. 11th ACM
Symposium on Operating Systems Principles,
Austin, November 1987.
Lindsay, B., Ilaas, I,., Mohan, C., Wilms, I’.,
Yost, R. Computation and Communication in
R*: A Distributed Database Manager, ACM
Transactions on Computer Systems, Vol. 2, No.
1, February 1984.
Mohan, C., lladerle, D., I,indsay, B., Pirahcsh,
I I., Schwarz, P. ARIES: A Transaction Recovery
Method Supporting Fine-Granularity Incklng
and Partial Rollbaclrs Using Write-Ahead Lng-
ging. IRM Research Report RJ6649, IBM
Almaden Research Center, January 1989.
Mohan, C. An Overview of Starburst: An Ex-
tenslble Relational DBMS, Froc. ACM-
SIGMOD International Conference on Manage-
ment of Data, Washington, May 1986.
Mohan, C., Levine, F. ARIBSIIM; An Efficient
and High Concurrency Index Management
Method Using Write-Ahead Logging, IBM Re-
search Report RJ6846, IBM hlmaden Research
Center, June 1989.
Mohan, C., Lindsay, B.. Obermarck, R. 7?ans-
action Management in the R* Distributed Data
Base Management System, ACM Transactions
on Database Systems, Vol. 11, No. 4, December
1986.
Mohan, C., Rothermel, K. ARIt?S/NT: A Re-
covery Method Based on W&e-Ahead Logging
for a Very General Modelof Nested Thnsactions,
IBM Research Report, IBM Almaden Research
Center, Forthcoming.
Moss, J.E.B. Nested ZQansactions: An Approach
to Reliable Distributed Computing, PhD Thesis,
Tech Rep MIT LCSFR-260, MIT, April 1981.

i Also as a mo died version from MIT Press,
1985.
Moss, E. Log-Based Recovery for Nested ‘Ihns-
actions, Proc. 13th International Conference on
Very Large Data Rases, Brighton, September
1987.
Mueller, E.T., Moore, J.D., Popek, G.J. A
Nested ‘IFansaction Mechanism for LOCUS,
Proc. 9th ACM Symposium on Operating Sys-
tems Principles, Bretton Woods, October 1983.
Rothermel, K., Mohan, C. ARIES/NT: A Re-
covery Method Based on Write-Ahead Logging
for Nested 7?ansactions, IBM Research Report
RJ 6650, IBM Almaden Research Center, Jan-
uary 1989.
Spector, A., Pausch, R., Bruell, G. Came/of: A
Flexible. Distributed 7Yansaction Processing Sys-
tem, Proc. IEEE Compcon Spring ‘88, San Fran-
cisco, March 1988.

1 OS/2 is a trademark of the International Business Machines Corp.

- 346 -

