OQL: A Query Language for
Manipulating Object-oriented Databases

A. M. Alashqur
S.Y.W. Su
H. Lam

Database Systems Research and Development Center
Electrical Engineerini Deggrtment
University of Flori

Abstract

An essential property which is desirable in a query
language designed for a certain data model is that
queries issued in that language must produce results that
are structured and modeled using the same data model. A
consequence of maintaining this property in a query
language is that the result of a query can be used as an
operand in some other query (or queries) or can be saved
as a user's view. Existing query languages that have been
designed for the class of object-oriented data models do
not posses this property. In this paper, we introduce the
object-oriented query language (OQL), which maintains
this property. an OQL query is considered as a function,
which when applied to a database, returns a subdatabase
whose structure consists of some selected object classes
and their associations. The objects that satisfy the
search conditions and participate in the patterns of
object associations specified in the query constitute the
extension of the resulting subdatabase. A subdatabase
forms a "context" under which system-defined and/or user-
defined operations can be specified and performed.
Several advanced features such as branching association
patterns and set operations on subdatabases are also
presented.

1. Introduction

The limitations of the existing record-oriented data
models have long been observed [HAM8],HUL87,SU88]. To
alleviate these limitations, several object-oriented (00)
and semantic data models have been introduced as the
potential alternatives for modeling many advanced
database applications such as CAD/CAM, office autamation,
and multimedia databases [HAM81,KIN84,BAT85,SU86,HULS7).
00 and semantic data models can capture much more of the
semantics of these application domains in a '"natural"
way. They provide a rich variety of modeling constructs,
which can model most of the situations that may arise in
such application domains.

The term "0O0 data model" is used to refer to a data model
that is a structurally and/or behaviorally object—
oriented [DIT86]. A structurally 00 data model is one
that encompasses at least the following characteristics:
1. It allows for defining aggregation hierarchies.

2. It allows for defining generalization hierarchies.

3. It supports the unique identification of objects, that
is, each object is assumed to have a unique object
identifier (surrogate).

The 00 view of an application world is represented in the

form of a network of classes and associations, which can

be aggregation or generalization associations.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and ils date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the Fifteenth International
Conference on Very Large Data Bases

Object classes can be either primitive classes whose
instances are of simple data types (e.g., integer,
string, real) or momprimitive classes whose instances
represent real world objects (e.qg., Part, Employee). At
the extensional level, instances of different classes can
be related (associated) with each other forming patterns
of object associations. A behaviorally object-oriented
data model, on the other hand, is one in which operations
that describe the behavior of the objects of a class can
be defined and registered with that class.

Several query languages such as DAPLEX ([SHIBl], GEM
{2AN83], ARIEL [MAC85], and the object-oriented query
language described in [BAN88], which are based on the 00
view of data as described above (or variations of it),
have been introduced in the literature. A query in these
languages is performed by choosing one of the non-
primitive classes in the schema as a central class
(anchor class). The user then specifies some path
expressions such that each path expression starts from
the central class and ends up at a primitive class. A
restriction condition can be specified on the class
referenced at the end of a path expression and/or such a
class can be specified in the target list (i.e., the list
of attributes to be retrieved). The result of a query is
defined as a set of tuples (i.e., a relation) each of
which corresponds to a single instance of the central
class and contains values related to that instance which
are collected fram the primitive classes specified in the
target list.

These languages share the above characteristic even
though they are based on different paradigms. For
example, DAPLEX is based on the functional paradigm. An
attribute of a class in DAPLEX is treated as a function,
which when applied to an object of the class, returns its
attribute value from the related class. Path expressions
starting from a central class can be specified by
composing functions. The query language of [BANS88], on
the other hand, is based on the message passing paradigm.
In this lanquage, an attribute of a class is treated as a
message, which when sent to an object of the class,
returns its attribute value from the related class. Path
expressions starting from a central class can be
specified using a series of messages each of which is
sent to the object returned by the previous message in
the series.

A major drawback of existing data manipulation languages
for 00 and semantic models is that they do not maintain
the closure property because the result of a query does
not have the same structural properties as those of the
original database. In these languages, the input to a
query has an OO representation (i.e., classes and their
associations) and its output is a relation. Consequently,
the result of a query cannot be further operated on
uniformly using the same query language operators to
produce a new result. Contrary to these languages, the
relational query languages such as SQL, QUEL, or the
relational algebra maintain the closure property. A
relational query can be a single-relation query or a
multi-relation one. In either case, the result of a query
is always a relation. In other words, both of the input

Amsterdam, 1989

- 433 -

and output of a query have a relational representation.
Thus, the resulting relation can be uniformly operated on
by another query in a nested fashion or can be saved as a
view definition and manipulated uniformly as any of the
base relations.

Motivated by this limitation of the existing 00 query
languages, we have developed a new OO0 query language
called OQL, which maintains the closure property. A query
in this language, can be considered as a function that,
when applied to a database, returns a subdatabase whose
structure is comprised of sane selected classes of
objects and their associations, i.e., it has the same
structural characteristics as those of the original
database. For this reason, a resulting subdatabase can be
further operated on by another OQL query to produce
another subdatabase or it can be saved as a view
definition. The instances (objects) that satisfy the
search conditions and participate in the patterns of
object associations specified in the query (see Section
3) form the extension of the resulting subdatabase.

Another shortcoming of existing 00 query languages is
that they are oriented towards retrieval and storage
manipulation operations (i.e., system-defined operations)
in the sense that a query specifies data to be
manipulated by such operations as Retrieve, Update, and
Delete. In a behaviorally 00 data model, user-defined
operations that describe the behavior of object classes
can be defined and registered with these classes. In OQL,
a subdatabase represents a "context" in which objects of
various classes must exist before being considered for
further manipulation by different operations including
system-defined operations (e.g., Update, Display) as well
as user—defined operations (e.g., Hire—employee, Move).
Multiple operations (messages) can be issued against the
different classes of a subdatabase in the same gquery.

This paper introduces the OQL language and is organized
as follows. In Section 2, we describe the 00 view of a
university database as represented by an 00 model. In
Section 3, the concept of semantic association pattern is
introduced together with the basic operators used for
defining a subdatabase. Section 4 presents some advanced
features of OQL. The assignment operator of OQL and the
closure property are described in Section 5. Finally,
same conclusions OQL are summarized in Section 6.

2. The Object—oriented View of Databases

we shall describe first the 00 view of a university
database as modeled by the OO0 semantic association model
OSAM* [SU88]. The university schema shown in Figure 2.1
is then used in the remainder of this paper to issue some
example OQL queries. The concepts introduced in OQL can
be applied to any 00 data model that encompasses the
three structural properties described in Section 1 and
are not limited to the OSAM* model.

A database schema is represented in OSAM* as a network of
associated (inter-related) object classes. Graphically,
object classes are represented as nodes and associations
among object classes are represented as links. The
resulting diagram is called the Semantic diagram or S—
diagram. In OSAM*, there are two types of object classes:
Entity object classes (E—class) and Domain object classes
(D—class) which are represented in the S-diagram as
rectangular and circular nodes, respectively. The sole
function of a D-class is to form a domain of possible
values (e.g., integers, strings, etc.) from which
descriptive attributes of objects draw their values. An
E—class, on the other hand, forms a dawain of objects
which occur in an application's world (e.g., Faculty,
Department, etc.). EBach object of an E-class is
represented by a unique object identifier (OID).

There are five types of links (associations) in OSAM*.
T™wo of these association types appear in Figure 2.1,
namely, Aggregation (A) and Generalization (G), which are
also recognized in several other semantic and 00 models.
A class can have several types of links and more than one
link of each type emanating from it. In the S-diagram,
links of the same type that emanate fram a class are
grouped together and labeled by the letter that denotes
the association type.

As an example, in Figure 2.1, the E-class Person has two
types of links: Aggregation links with the D-classes SS#
and Name and Generalization 1links with the E-classes
Student and Teacher (i.e., Student and Teacher are
subclasses of the superclass Person). An aggregation link
represents an attribute and has the same name as the
class it connects to unless specified otherwise (e.g.,
the link labeled Major that emanates from the class
Student). Aggregation links that emanate from an E-class
and connect to D-classes represent the descriptive
attributes of that class (e.g., the attribute section# of
the class Section). A class inherits all the aggregation
assoclations that connect to or emanate from its
superclasses. Figure 2.2 shows the actual view of the
class RA in which all the associations inherited by RA
are explicitly represented. A detailed description of the
OSAM* model can be found in [SU88].

3. Object—oriented Query Language OQL

In this section, the general OQL syntax and semantics are
described and illustrative examples are given. Throughout
this paper, capital letters are used to denote E-classes
(A, B,...) and small letters with an integer appended to
each letter are used to denote abjects (or OIDs) (e.g.,
al, a2, and bl, b2, . are OIDs for objects that
belong to the classes A and B, respectively).

3.1 Definitions and Overview

An OQL query returns a subdatabase, which is a portion of
the operand database (an operand database can be the
original database or another subdatabase that has been
established by another query). Figure 3.1 shows a certain
subdatabase SDB of the original database of Figure 2.1. A
subdatabase consists of two parts: an intensional
association patterm and a set of extemsiomal association
patterns. An intensional association pattern is
represented as a npetwork of E-classes and their
associations and descriptive attributes. For example,
Figure 3.la represents the intensional association
pattern of a the subdatabase SDB, which, in this simple
case, has a linear structure that consists of the classes
Teacher, Section, and Course and their associations. By
default, all the descriptive attributes of the E-classes
of a subdatabase are also present in the subdatabase
unless specified otherwise in a Select subclause to be
described later. In Figure 3.1, however, the descriptive
attributes of the classes of SDB are not shown in order
to keep the figure simple.

An extensional association pattern is a petwork of
instances and their associations that belong to the
classes and association types of the intensional
association pattern. The set of extensional patterns of a
subdatabase can be represented in the form of an
extensional diagram. Figure 3.1b shows a possible
extensional diagram for the subdatabase SDB. (We note
that Section s3 is related to more than one Course
instance and Section s4 is not related to any Course
instance. Naturally, there is a constraint on the
database that restricts the mapping between Section and
Course to N:1 and another Non-null constraint on the
aggregation association of Course with Section. We assume

- 434 -

section#
A : Aggregation
room# A G : Generalization

textbook

classification

grade

startdate

c# title

Teaching Research
Assistant Assistant A
(TA) (RA)
books

speciaity name college

Figure 2.1: University Schema

SD8

)]
m Figure 3.1a: The Intensionat Pattern of a Subdatabase SDB

A
Teacher Section Course
11

120\
t3

Research 4,

Assistant

®y_jr

Figure 3.1b: A Possble Extensional Diagram for the Subdatabase SDB

Section
Teacher Course
2 ct
Department) s3 ct
12 s3 c2

Figure 2.2: Class RA with alt the Inherited Associations 12 s4 c3

Explicitly Represented 13 .
14 ; S c4

Figure 3.1¢: A Normalized Extensional Diagram Corresponding to Fig. 3. 1b

Figure 3.1 The Intensional and set of Extensional Patterns of a Subdatabase

- 435 -

that these constraints are waived here in order to be
able to describe the most general case.) The
interconnection of t3 and s4 in the figure is an example
of an extensional pattern, which records the fact that
object t3 is associated with object s4 (Teacher t3 is
teaching Section s4).

A npommalized extensional diagrem is an extensional
diagram in which an object may appear more than once
depending on the number of associations it has with the
objects of a neighboring class (in case of a multi-valued
association) and a separate link is used to connect it to
each object of the neighboring class. Figure 3.lc shows
the normalized extensional diagram for the same
subdatabase. In the remainder of this paper, we shall
deal with nommalized extensional diagrams only. In
addition to the graphical representation, an extensional
pattern may be represented as a tuple of OIDs. For
example, <tl,s2,cl>, <e¢3> and <s5,c4> are same of the
extensional patterns that appear in the subdatabase SDB
(Figure 3.1c).

We define an extemsional pattern type as the common
template that is shared by several extensional patterns
in a subdatabase. A pattern type is denoted by a tuple of
class names. For example, <Teacher, Section, Course) is
one of the extensional pattern types that exist in
Figure 3.1lc, which has as instances all the extensional
patterns that contain Teacher, Section, and Course
objects, i.e., the extensional patterns <tl,s2,cl?,
<t2,s3,cl>, and <t2,s3,c2>. On the other hand, the
extensional - pattern <t3,s4> whose Course—component is
Null (since the pattern does not contain any Course
object) is of the type <(Teacher,Section>. The five
extensional pattem types present in the extensional
diagram of Figure 3.lc are <Teacher,Section, Course),
(Teacher,Section>, <Section,Course>, <(Teacher>, and
<{Course>.

The philosophy underlying OQL is to allow the user to
specify, first, the desired subdatabase by specifying its
intensional pattern and the set of extensional pattern
types that are of interest and then the operation(s) to
be performed on the classes of the subdatabase. The
search engine of the underlying OO0 DBMS would establish
the subdatabase by identifying all the extensional
patterns that belong to the specified types and then
perform the operation(s).

A query block in OQL consists of a Context clause and an
Operation clause. The Context clause has two optional
subclauses: a Where subclause and a Select subclause.
This structure is shown below.
context association pattern expression
where conditions
select object classes and/or attributes
operation(s) object class(es)

In the context clause, the user specifies a desired
subdatabase by specifying its intensional pattern and
extensional pattern types of interest (both are specified
in the association pattern expression). A linear
association pattern expression has the form "A [intra-
class conditions] op B [intra—class conditions] op C
{intra-class conditions] ..." where "op" is one of the
association pattern operators to be described in Sections
3.2 and 3.3. Each operator separates two E-classes that
are directly associated in a schema. More complex
association pattern expressions that contain branching
are described in Section 4. The intra-class conditions
enclosed in brackets following a class name are optional
and are expressed in the fomm of predicates that involve
the descriptive attributes of that class.

- 436 -

The Where subclause further causes the extensional
patterns that do not satisfy some conditions to be
dropped from the Context subdatabase. The conditions that
can be specified in the where subclause are inter-class
comparison conditions, which are comparisons between some
attributes of two classes if these attributes are type
comparable, and/or comparisons between objects (equal
'=' or not equal ‘'!=') if these objects are type
comparable (i.e., belonging to the same E-class or any of
its superclasses or subclasses).

The Select subclause operates on the subdatabase returned
by the Context clause and its optional Where subclause to
produce a new subdatabase which results from “projecting"
the Context subdatabase over some classes and descriptive
attributes. A resulting subdatabase can be either saved
for further processing (Section 5) wusing the same
association pattern operators of OQL (since the closure
property is maintained) or operated on by the
operation(s) specified in an operation clause. We note
that the Select operation in OQL does not imply
displaying same data to the user as in SQL.

The Operation clause specifies a set of messages
(operation names) to be sent to the classes of the
subdatabase that is returmed by the Context expression.
Each message may be followed by one or more arguments
that identify the recipient classes. Thus, several
operations can be performed over the same or different
classes and a single operation can be performed over
several classes resulting fram a Context clause. An
operation can be either a system-defined data
manipulation operation (e.g., Display, Update, Print) or
a user—defined operation (e.g., Rotate, Order—part, Hire—
amployee) .

If the Display (Print) operation is specified in the
operation clause, it causes the values of the descriptive
attributes that appear in the subdatabase to be displayed
(printed) to the user in the form of a table. If the
Display operation is not followed by a class name as an
argument, the resulting table will be a first normal form
table defined over all identified attributes. Otherwise,
the argument class identifies a "viewpoint" based on
which the resulting descriptive data is to be organized
in the form of a non—nomalized table (i.e., a table in
which a value can be a nested table or a set). Thus, the
descriptive data are structured under the objects of the
argument class.

The operators that can be used in the association pattern
expression of the Context clause are the association
operator and the nomassociatiom operator.

3.2 The Association Operator

when the association operator (*) is applied to two
directly associated E-classes A and B in a database
(i.e., the expression "A * B"), it returns a subdatabase
whose intensional pattern consists of the two classes A
and B and their association. The resulting subdatabase
contains also the set of extensional patterns drawn from
the operand database such that each extensional pattern
contains objects of both A and B (i.e, extensional
patterns that are of the type <A,B)>). B objects that are
not associated with any A objects and A objects that are
not associated with any B objects in the operand database
are not retained in the resulting subdatabase. The
following example gqueries illustrate the use of the
association operator.

Query 3.1 Display the names of the teachers who teach
some sections and the section#'s for these sections.

context Teacher * Section

select name, section#
display Teacher

If the Context expression in this query is applied to the
subdatabase SDB of Figure 3.1, it returns a new
subdatabase whose set of extensional patterns is
{<tl,s2>, <t2,s3>, <t3,s4>}. The extensional pattern <t4>
(or <t4, Null)) is not included in this set because its
Section—camponent is Null (similarly the pattern <s5> is
not included). Figure 3.2a shows the intensional pattern
of this subdatabase where all the descriptive attributes
of the classes Section and Teacher appear with them
(i.e., by default). The Select subclause derives a new
subdatabase from the Context subdatabase. The intensional
pattern of the new subdatabase, as shown in Figure 3.2b,
consists of the classes Teacher and Section and only the
two attributes that are referenced in the Select
subclause, namely, Name of Teacher and Section# of
Section. If all the descriptive attributes of a class are
to be retained in the nubdatabase the following rule can
be applied.

Rule #]1 If all the descriptive attributes of a class are
to be retained in the subdatabase derived by the Select
subclause, the class name can be referenced in the
subclause without specifying any of its attributes, i.e.,
the default is "all attributes."

A Select subclause can also select a subset of E-
classes, thus producing a subdatabase that results from
dropping the unreferenced E-classes from the operand
subdatabase. (A class is considered "unreferenced" in a
Select subclause if none of its descriptive attributes is
referenced in it.) If a class to be dropped from the
operand subdatabase connects two classes that are to be
retained, new direct association is created between these
two retained classes in the produced subdatabase. At the
extensional level, direct links between the instances of
the two classes are inferred. For example, the
subdatabase that results from selecting the classes
Teacher and Course of the subdatabase SDB of Figure 3.1
is shown in Figure 3.3.

The display operation in the above query causes the
result to be displayed in a non-normalized tabular form
in which each tuple consists of a teacher's name and the
set of section#'s for the sections he/she teaches. This
is because the argument of the Display operation
indicates that the result is to be viewed from the point
of view of the class Teacher. We note that the result of
a Display operation does not belong to the world of
subdatabases and therefore cannot be operated on using
the OQL operators. However, the subdatabase that
corresponds to a certain displayed result can be further
operated on to produce a new subdatabase whose
descriptive attributes can be also displayed.

The definition of the association operator can be easily
generalized to the case when the association pattern
expression contains more than two classes. For example,
the expression "A * B * C" returns the extensional
patterns that are of the type <A,B,C>. It is noted here
that one can define a single extensional pattern type
using the association operator. A mechanism for defining
a richer variety of extensional pattern types in a single
expression is described in Section 3.4.

Query 3.2 Display the Department names for all
departments that offer 6000 level courses that have
current offerings (sections). Also, display the titles of
these courses and the textbooks used in each section. In
addition, print the results.

context Department * Course [6000 <= c# < 7000] *
Section

- 437 -

select name, title, textbook
display

print

Two operations are specified in the Operation clause of
this query, namely, Display and Print. These operations
are to be performed on the subdatabase returned by the
Select subclause. Also, the intra-class condition on the
C# attribute of Course is enclosed in brackets following
the class name in the Context expression. The result of
the Display or Print operation is a normalized table
since neither of the two operations is followed by a
viewpoint class.

As in Query 3.3 below, an association (or non-
association) operator can be used between any two classes
whether they are connected by a generalization or an
aggregation association. BAn association pattern
expression concerns only with whether some classes and
their instances are associated with one another or not.
It does not specify what types of associations relate
them. This is because the types of the associations
connecting them have already been explicitly defined in
the schema and restating these association types in
queries is unnecessary. The query processor of an OO DBMS
can make use of the type information stored in the
dictionary to properly interpret the queries and enforce
the relevant semantics and constraints. For example, a
link that exists between an instance of the class TA and
an instance of the class Grad is an identity link. In
other words, the semantics implied by the generalization
association here is that the two instances are actually
two different perspectives of the same real world object.

Before presenting the example query 3.3, we introduce the
following two general rules that are relevant to the
query.

Rule #2 An attribute that appears in the Select or where
subclause has to be qualified by its class name only if
it is not unique among the attributes of the classes that
are referenced in the Context clause.

Rule #3 Different aliases (range or iteration variables)
of a class can be generated in OQL by appending an
Underscore and an integer to the class name in an
association pattern expression (e.g., Grad_l is and alias
of Grad).

Query 3.3 Print the names of graduate students who teach
other graduate students in same sections. Also, print the
names of those graduate students they teach. Organize the
result from the point of view of the teaching graduate
students.

context Grad_1 * TA * Teacher * Section =
Student * Grad_ 2
select Grad_1 [name), Grad_2 [name)
print Grad 1

In this query, TA inherits the status of being related to
Section from both Teacher and Student with each of them
having its distinctive meaning. Thus, using the
expression "TA * Teacher * Section" instead of the
expression "TA * Section" is to explicitly state that we
are interested in TA as playing the role of Teacher
rather than the role of Student of a section. Also, in
this query, the Select subclause projects over the two
classes Grad_l and Grad 2 since they are the only classes
referenced in it. Thus, the intensional pattern of the
final subdatabase contains these two classes with a
derived aggregation association between them and the
attribute Name of each class.

/ ISection] _A,(’Osection# /

A room#

textbook

oo
A
degree

Figure 3.3a: Alter Projecting the Subdatabase of
Figure 3.1 over Teacher and Section
Figure 3.2a: The Result of a Context Expression of a Query

Teacher

Course
c1
[Soction] " :
A———0 section# t2 -
A

12 c2
t3s c3
[Teacher| o 14 :

Figure 3.3b: The Exiensionai Diagra esp
Figure 3.3a
Figure 3.2b: The Projection of the Subdatabase
of Fig.3.2a over some Descriptive Attributes

Figure 3.3: The Result of a Projection Operation at the

Intensional and Extensional Levels
Figure 3.2: The Effect of a Select Subclause

Figure 4.1: A Graphical Representation
of a Branching Association Pattern

- 438 -

3.3 The Non—-association Operator

We use the exclamation sign (!) to denote this operator.
When this operator is applied to two directly associated
E-classes A and B in a schema (i.e., the expression "A !
B"), it returns a subdatabase which contains only the
instances of A that are not associated with any instances
of B and the instances of B that are not associated with
any instances of A. For example, the two instances t4 and
s5 are returned in the subdatabase that results when the
expression "Teacher ! Section" is applied to the
subdatabase SDB of Figure 3.1 (i.e., it returns the
teachers who are not assigned to any sections and the
sections which are not assigned to any teacher).

The association operator has higher precedence than the
non—association operator. As an example, when the
association pattern expression "Teacher ! Section =
Course" is applied to the classes of the subdatabase SDB
of Figure 3.1, it produces a new subdatabase that
contains the following set of extensional pattems:
{<s5,c4>, <t3>, <t4>}. The pattern <t3> is retained in
this result because of the higher precedence of the
association operator over the non—association operator.
When the association operator is applied first, object s4
is not retained in the result (since it is not associated
with any Course object) causing object t3 to be not
associated with any Section object in this result. When
the non—association operator is applied next, it causes
all the Teacher objects that are associated with any
pattern of the type <Section,Course> (i.e., the objects
tl and t2) to be dropped together with these
{Section,Course)> patterns. Thus, the final result
contains the above set of extensional patterns. The
precedence of the association operator over the non—
association operator can be overridden by parentheses.
The following is an example query that uses the non—
association operator.

Query 3.4 Display the names of those graduate students
who are TA's but not RA's.

ocontext TA * Grad ! RA
select TA [name]
display

3.4 Association Pattern Subexpressions

By using only the association operator in an association
pattern expression, one can identify a single extensional
pattern type. In some situations, extensional pattemns of
different types may be desired in the resulting
subdatabase. This can be performed in OQL by enclosing a
subexpression of the association pattern expression
inside braces. This subexpression identifies a certain
extensional pattern type. For example, the expression "A
* (B * C}] * D" returns the subdatabase whose intensional
pattern consists of these four classes and whose set of
extensional patterns includes all patterns that are of
the types <A,B,C,D> and <B,C>. In other words, this
expression means to select both the instances of A,B,C
and D classes that are connected (associated) all the way
through as well as those instances of B and C that are
connected to each other but not necessarily connected to
the instances of A and/or B. The braces around B * C
capture the semantics of the Outerjoin concept [COD79].

1f, in the above expression, an extensional pattern of
the type <B,C> appears in the resulting subdatabase as
part of a larger pattern of the type <a,B,C,D>, it will
not appear independently in that resulting subdatabase.
For example, if the original database contains only the
two patterns <al,b5,c5,45> and <a3,b2,c2>, then the
expression "A * [(B * C} * D" returns the extensional
patterns <al,b5,¢5,d5> and <b2,c2>. The extensional

- 439 -

pattern <b5,c5> will not appear independently in the
result since it already appears as a part of the
extensional pattern <al,b5,c5,d5>. In general, an
extensional pattern of a certain specified type will not
appear independently in the result, if it is part of a
larger extensional pattern.

Subexpressions can be nested to several levels. For
example, the expression "{{{A} * B} * C} * D" identifies
the extensional pattern types <A, <A,B>, <A,B,C>, and
<A,B,C,D>.

Query 3.5 Display the SS#'s of all graduate students
(whether they have advisors or not) and for those
graduate students who have advisors, display their
advisors' names.

context { Grad } * Advising * Faculty
select Grad [SS#], Faculty [name]
display

The attribute Name in the Select subclause of this query
is qualified by its class name because it is not unique
among the classes referenced in the Context clause (see
Rule #2 above) and s-imi‘larly the attribute SSi.

4. Advanced Features of OQL
4.1 Branching Association Patterns

An association pattern expression may contain branches
expressed by an AND or an OR operator. There can be
several nested levels of branching. For example, the
expression "A * B * AND (C *OR (D * E, F), G * H)" is a
branching association pattern expression, which
corresponds to the intensional pattern shown in Figure
4.1. A class at which the branching occurs is called a
fork class (e.g., B and C in the above expression). An
AND operator means that, in the result, an instance from
the fork class must be associated with instances from
both of the branches, while an OR operator means that an
instance from the fork class must be associated with an
instance from at least one of the two branches. Figure
4.2 shows some association pattern expressions that
represent networks of classes and associations together
with a graphical representation of the extensional
pattern types they define.

Query 4.1 Print the name of any faculty member who is
teaching any section of a course that is offered by the
'EE' department, provided that the section is taken by at
least one graduate student who is an RA. Also, print the
ck value(s). ’

context Faculty * Section ®
and (Course * Department {name = 'EE’'], RA)
select Faculty [name], c¥
Print

OQL makes full use of the inheritance property of the
generalization association. In this query, Faculty and RA
inherit the association to. Section from their
superclasses. Hence, using the expression "PFaculty *
Section" instead of "Faculty * Teacher * Section" and the
expression "Section * RA" instead of "Section * Student *
Grad * RA" is legal.

4.2 Set Operators

The set operators Union, Intersection, and Difference can
be applied to any two union—campatible subdatabases to
produce a new subdatabase. Two subdatabases are said to
be umioo—compatible if both of them have the same
intensional association pattern defined in temms of E-
classes only and irrespective of the D-classes that may

exist in the subdatabases. Thus, the following is a legal
format for a query.

context A * {B * C * D}
union
{A*xB*C] *D
select <{classes and attributes)

The first argument to the Union operator returns a
subdatabase whose extensional patterns are of the types
<a,B,C,D> and <B,C,D> while the second argument returns a
subdatabase whose extensional patterns are of the types
<A,B,C,D> and <A,B,C>. However, both subdatabases have
the same intensional pattern that consists of the four
classes A, B, C, and D and their associatjons. The result
of the Union operation is a subdatabase that contains
extensional patterns of the three types <A,B,C,D>,
<B,C,D>, and <A,B,C>, i.e., it contains the set of all
extensional patterns that belong to either the first or
second subdatabase. The Select subclause is then applied
to the resulting subdatabase. The Difference operator
returns a subdatabase that contains the set of all
extensional patterns that belong to the first subdatabase
but not to the second subdatabase. The subdatabase
returned by the Intersection operator contains the set of
extensional patterns that belong to both subdatabases.

Set operators can be used to create views in which some
descriptive attribute values of objects do not appear
with them in the view unless these cbjects participate in
certain patterns of associations (e.g., for security
reasons). This is illustrated by the following query,
which produces a subdatabase that can be saved as a
user's view (Section 5 describes how views can be defined
and saved).

context Teacher * Section * Course [ck >= 5000]
select name, degree, section#

union

context Teacher * Section * Student * Grad
select Teacher [name, SS#}, section#

The two arguments of the Union operator are two OQL
queries that return two union-compatible subdatabases
(since the Select subclause in each query projects over
the two classes Teacher and Section, i.e., both
subdatabases have the same intensional pattern). This
means that each of the two queries returns extensional
pattems of the type (Teacher, Section> but each query
derives these patterns based on different conditions. The
class Teacher in the first subdatabase has the
descriptive attributes Name and Degree, while in the
second subdatabase it has the descriptive attributes Name
and SS#. The intensional pattems of these two
subdatabases are shown in Figure 4.3a. In the final
subdatabase, i.e., the result of the Union operation,
only the Teacher instances that appeared in both operand
subdatabases will have values for all the three
attributes Name, Degree, and SSk. Those Teacher instances
that appeared in the first subdatabase but not in the
second subdatabase shall have Null values for the Ss#
attribute in the fipal subdatabase. The same goes for
those Teacher instances that appeared in the second
subdatabase but not in the first subdatabase with respect
to Degree values. Figure 4.3b shows the intensional
pattern of the final subdatabase in which the generic
class Teacher has the attribute Name and each of the two
subclasses Teacher)l and Teacher 2 has one of the other
two attributes. The instances of the Teacher_ 1 and
Teacher_2 subclasses are those derived from the first and
second operands of the Union operator, respectively.

Note that the non—association operator of OQL can be
defined in temms of the Association and Difference
operators and using braces as follows.

At!B=({A}) * {BJ-A*B
Where "-" stands for the set difference operator
described above. The following equation shows the
equivalent expression to an expression that contains both
an association operator and a non—association operator.
A!'!BxC={A) * {B*C})~-A*B=*(C
Though the non—association operator can be defined in
terms of other OQL operators, it is provided as a shorter
notation for ease of use.

4.3 Queries with Multiple Expressions

In OQL, one can specify comparison conditions between
attribute values or between objects of two different
classes that appear in two different association pattern
expressions. In this case, the two expressions shall be
separated by a comma in the Context clause. Before
presenting Query 4.2 which contains multiple association
pattern expressions, we give the following rule that is
relevant to the query.

Rule #4 If the association operator is used between two
classes that are connected by more than one association
(in this case the association 1links have to be
distinctively named in the schema), then the name of the
intended association needs to be specified after the
association operator.

For example, there are two associations between the
classes Undergrad and Department (Figure 2.1): the
association labeled Minor and the inherited association
labeled Major. Hence, the expression "Undergrad #Major
Department" is used to refer to undergraduate students
and their major departments.

Query 4.2 Display the pames of all the undergraduate
students minoring in the major department of the
undergraduate student whose SS# = xox. Display also the
name of the department.

ocontext Undergrad_)l #Minor Department_1,
Undergrad 2 [SS# = xoxx] ®Major Department 2
where Department 1 = Department_2
select Undergrad_1 [name], Department 1 [name)
display

The two association pattern expressions of the Context
clause in the above query create two subdatabases. The
two subdatabases are then linked by the condition stated
in the where subclause to produce a new subdatabase to
which the Select subclause is applied. Also, in this
query, the camparison in the Where subclause is performed
between two type—camparable cbjects (i.e., objects that
belong to the same class or to two different classes of
the same generalization hierarchy).

5. Assigmment Operator and Closure Property

The assignment operator ":=" can be used to save the
subdatabase that is returned by a query. For example, the
expression "X := ocontext A * B * (" creates the
subdatabase X whose intensional pattern consists of the
classes A, B, and C, their associations, and their
descriptive attributes and whose extensional patterns are
the ones that are of the type <A,B,C>. To save a
subdatabase permanently (1.e, not only for the duration
of the query session), the key word sawe is used before
the subdatabase name (e.g., sawe X := Qontext A * B * C).

A class that appears in a subdatabase can be referenced
in the ocontext of that subdatabase (i.e., only the
instances of that class that appear in the subdatabase
are considered) by qualifying its name with the
subdatabase name using a colon (e.g., X:C). If not
qualified by a subdatabase name the "base" class is

- 440 -

A AND (B, C)AND * D

A AND (B, C) OR* D

A“OR(B.C)OR*D

Figure 4.2: Extentional Pattern Types Specified by Context
Expressions that Form Networks

dogree ion#
rame (\P (\sect
@ rl'eache;l-—-—‘sembnl

Figure 4.3a Two Union-compatible Subdatabases

name R Rsacﬂon*
l'reacmrl,__lseﬂbn I

degreeG

SS#
Teacher_1 eacher_2

Figure 4.3b: The Result of applying the UNION Operation
to the two subdatabases represented in Figure 4.3a

Figure 4.3: An example of applying a set operator 1o two
union compatble subdatabases

- 441 -

v

1
OCH*
e
G ‘\Ossa
'~
name

Figure 5.1: The Intensional Pattern of the View V1
Defined by an OQL Query

assumed. For example, if the class C in the original
database is associated with the class D and D is
associated with E, then the following query creates the
subdatabase Y that consists of the class C derived fram
the subdatabase X and the class E derived from the
original database together with all of their descriptive
attributes (refer to Rule #1 in Section 3.2).
save Y :~ context X:C * D * E
select X:C, E

This query operates on two databases, the subdatabase X
and the original database and produces a single
subdatabase (Y) whose intensional pattern consists of the
classes C and E and a derived association between them.
The subdatabase Y can be used by another query to produce
yet another subdatabase.

Another consequence of maintaining the closure property
in OQL is that nested association pattern expressions can
be used. For example, the following two expressions are
equivalent (where X is as defined before and assuming
that B is directly associated with each of the classes A,
Cc, J, and K).

Z := ocontext J * X:B * K

Z :=context J * (A *B * C):B *X

In the second expression, "A * B * C" is a nested
association pattern expression that identifies a certain
subdatabase whose B component 1s referenced by the outer
association pattern expression.

Query 5.1 Define the user's view V1 that consists of the
classes Course, Student and Grad such that a Course
instance must have been taken by the Student instance who
may or may not be a graduate student provided also that
the Course instance belongs to the EE department. The
attributes C¥, SS#, and Name must appear with the classes
Course, Student and Grad, respectively.

sawe V1 := context { Department {name = 'EE'] ® Course *
Transcript * Student)} * Grad
select c#, Student [SS¥], Grad [name)

The intensional pattern of the subdatabase V1 is shown in
Figure 5.1, where a generalization association connects
Student to Grad. In this subdatabase, only graduate
students shall have values for the attribute Name, even
though, in the original database, all students may have
Name values.

6. Conclusion

In this paper, we have introduced the query language OQL
for manipulating OO0 databases. A query in OQL returns a
subdatabase, which has structural properties that are
similar to those of the original database (i.e., it
contains multiple classes and associations). In other
words, the closure property is preserved. Thus, the
result of a query can be an operand of another query.

The distinguishing features of OQL are summarized as

follows.

1. A subdatabase returned by a query represents a
“context" under which some operations can be specified
and executed. In an OQL query, the specification of
the Context subdatabase is separated from the
specification of the operations on that subdatabase.
This allows different operations to be performed on
different object classes in the specified context.

2. Set operations can be performed on Union—compatible
subdatabases. The result of a set operation is a new
subdatabase that can be further manipulated in the
nomal way.

3. The association operators and the AND/OR operators
allow very complex association patterns to be
specified in a simple way. The same functionality
would be specified in SQL, for example, by a complex
nesting of Select—Fram-where blocks.

- 442 -

4. Comparison operators (i.e., '=' and '!=') can be used
to compare objects that belong to E—classes directly
without referencing their attributes.

5. OQL makes full use of the inheritance property of the
generalization association. A class inherits all the
associations that emanate from or connect to its
superclasses.

OQL 1is particularly suited for implementation on a
graphics system. A query can be specified by browsing the
S-diagram of object classes and pointing and traversing
object classes to enter qualification conditions and
association operators. An implementation of OQL on a SUN
workstation is reported in a master's thesis [TY88].

Acknowledgement

This research is supported by the Navy Manufacturing
Technology Program through the National Institute of
Standards and Technology (formerly the National Bureau of
standards) grant number 60NANB4D0017, the Florida High
Technology and Industry Council grant number UPN
85100316, and the National Science Foundation grant
number DMC-8814989.

REFERENCES

BANSS8 Jay Banerjee, Won Kim and Kyung—Chang Kim, "Queries
in Object-Oriented Databases," Proceedings of the
Fourth 1International Conference on Data
Engineering, California, 1988, pages 31-38.

BAT85 D. Batory and W. Kim, "Modeling Concepts for VLSI
CAD objects," ACM Transactions on Database Systems,
vol. 10, No. 3, September 1985, pages 322-346.

COD79 E. Codd, "Extending the Database Relational Model
to Capture More Meaning," ACM TODS, Vol. 4, No. 4,
December 1979, Pages 397-434.

DIT86 K.R. Dittrich, "Object-oriented Database Systems:
the Notion and Issues," Proceedings of the
International Workshop on Object-Oriented Database
Systems, California, September 1986, Pages 2-4.

HAMB1 M. Hammexr and D. McLeod, "Database Description with
SPM: A Semantic Association Model," ACM TODS, vol.
6, No. 3, September 1981, pages 351-386.

HUL87 R. Hull and R. King, "Semantic Database Modeling:
Survey, Aplications, and Research Issues," XM
Computing Surveys, pages 201-260, Vol.19, No.3,
September 1987.

KIN84 Roger King, "A Database Management System Based on
an Object-Oriented Model," Proceedings of FIWEDS,
South Carolina, October 1984.

MAC85 R. MacGregor, "“ARIEL—A Semantic Front-End to
Relational DBMSs," Proceedings of VIDB 85, pages
305-315.

SHIB1 D. Shipman, "The Functional Data Model and the Data
Language DAPLEX," ACM TODS, Vol. 6, No. 1, March
1981, pages 140-173.

sU86 S. Su., "Modeling Integrated Manufacturing Data
with SAM*," IEEE Camp., January 1986, pages 34-49.

sSU88 S. Su, V. Krishnamurthy, and H. Lam, "An Object-—
oriented Semantic Association Model (OSAM*),"
appearing in: A.I. in Industrial Engineering. and
Manufacturing: Theoretical Issues and Applications,
S. Kumara, A. L. Soyster, and R. L. Kashyap (eds.),
American Institute of Industrial Engineering, 1988.

TY88 Frederick Ty, "G-OQL: Graphics Interface to the
Object-Oriented Query Language OQL," Master thesis,
University of Florida, 1988.

XIA89 Daozhong Xia, "The Implementation of OSAM* KBMS
Prototype in Vbase," an Internal. Report, Database
Systems Research and Development Center, University
of Florida, 1989.

7AN83 C. Zaniolo, "The Database Language GEM,"
Proceedings of the ACM SIGMOD Intl. Con. on the
Management of Data, 1983.

