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Abstract 
paper is concerned with ways of specifying situations and 
evaluating them efficiently. The techniques described in 
this paper were developed as part of the HiPAC (High Per- 
formance Active) DBMS. a prototype active DBMS 
(DAYA88a. DAYA88b. CHAK89], parts of which have 
been implemented. However. the algebra and transforma- 
tions described in this paper can be applied more generally. 
The situation evaluation mechanism can either be a com- 
ponent integrated tightly with a DBMS. or coupled with a 
heterogeneous array of applications or databases that sig- 
nal it when specified events occur. 

We present a basis for efficiently evaluating the situation 
(event and condition) portion of situation/action rules. 
either in an active database or in a standalone situation 
monitor. A common framework handles situations involv- 
ing both database changes and nondatabase situations. We 

introduce ARelations to represent net changes to a stored 
or derived relation. We define an operator that computes 
ARelations for derived relations. Evaluation of expres- 
sions involving changes is optimized by defining incremen- 
tal forms of relational operators and by providing a chain 
rule that extends incremental computation to data derived 
by arbitrary expressions. 

1. Introduction 

An active Database Management System monitors 
situations triggered by events representing database 

updates or occurrences external to the database. This 
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We use the relational model to specify situations and 
operations - all data objects will be relations. and all 
operators will map relations to relations. The relational 
model is not essential to our approach. but it simplifies the 
representation of database changes. allows use of the rela- 
tional algebra, and avoids the need to explain the seman- 
tics of a particular object model. 

1.1 Expressing Events and Situations 

The problem addressed in this paper is the expression 
and evaluation of a single situation. A situation is an 

. event/condition pair. An event may be a combination of 
more primitive pre-defined events. Informally. a situation 
describes a logical condition to be evaluated when one or 
more of a set of pre-defined events occur. Each situation is 
associated with a set of actions to be taken depending on 
the result of evaluating the condition. 

An event is typed and associated with a relation 
scheme that describes certain data relevant to the event. 
In Example 1.1. the event of checking the status of a net- 
work link is related to a relation scheme including link 
identification. occurence. and severity information. An 

occurrence of an event is reported in a signal- a message 
that includes a signal relation (conforming to the event’s 
associated relation scheme). The signal relation contains 
information about this particular event occurrence. and 
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may also include some information obtained from the data- 
base at the time of the event. We require that signal rela- 
tions be nonempty. (If an event does not generate data, a 
dummy value is passed.) 

The condition part of a situation is a relational 
expression whose inputs are: 1)signal relations from events 
in the situation’s event set, and 2)zero or more database 
relations. The condition is evaluated when one or more 
events in the situation’s event set have occurred. The 
situation fires (i.e.. the action is invoked) if the condition 
result is a nonempty relation; the condition result is made 
available to the action. 

1.2 The Evaluator 

The situation evaluation component of the system. 
the evaluator. is kept simple by limiting its concerns. We 
depend on event detectors to detect events and send sig- 
nals. (Any piece of software/hardware that sends event 
signals is an event detector.) The signals are collected and 
sent to the evaluator. The evaluator produces a signal 
that causes invocation of the appropriate action(s). The 
signal relation of this signal may be used by the action(s). 

The major data structure used by the evaluator is a 
directed acyclic signal graph (shortened here to graph). 

that represents a situation. This is an operator graph. in 
which nodes represent relations: a leaf is bound either to 
an event (and its signal relation) or to a database relation. 
To aid in execution. nodes and edges on paths upward 
from event leaves are called active: the remainder are 
called passive. The value associated with each node is 
defined (though not necessarily computed) by the usual 
operator graph rule of bottom-up execution. 

Because situation evaluation imposes overhead on 
every database update and other primitive event. it must 
be very efficient. The challenge is that the number of 
situations may be large. and some may require disk 
accesses or extensive calculations. 

We show two situations that might be defined for a 
network-control application. We assume that a status- 
checking program examines the state of links. and occa- 
sionally sends a signal “Link-Status”. listing all interesting 
test results. Note that this situation involves an event 
that does not necessarily do a database update. and that 
the condition uses an ordinary relational operator. 

Example 1.1: Severe Failures 

Event: Link-Status with relation scheme 
[Link#, Occurrence-Type, Severity] 

Condition: Select(,,,,ity,S)(Link-Status) 

For the signal relation X(link1, occ-a, 11, 
(link2, occ-b,6)). the condition evaluates to 
f(link2, occ-b, 6)). The situation fires. and makes 
this result available to the action. 

For the next example. assume that the database contains 
a relation Link-Technology [L#, Mode] that describes 
the implementation of each link. The join query below 
combines the incoming signal with database information. 

Example 1.2: Severe Failures on Microwave 
Links. 

Event: Link-Status with relation scheme 
[Linki), Occurrence-Type, Severity] 

Condition: 
Join[Select,5,,,ity,S)(Link-Status). 

Select(~~e=~miuowave.)(lillk_Technology). 

Link-Status.Link# = Link-Technology.L# ] 

51 (Linlrz,oc~-b,6,link2,'microwave‘) 

Figure 1: Signal Graph for Example 1.2 
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Figure 1 shows the signal graph for Example 1.2. 
The figure also shows the node values that would be com- 
puted during graph execution. Note that values need not 
be computed for all the passive nodes (shown with dashed 
lines). For example, if Link-Technology is a large rela- 
tion, it is not advisable to explicitly evaluate 
Select Made=.micr,,wave. (Link-Technology). Note also 
that if the output of Select,s,v,rity,5) (Link-Status) 
had been empty. it would be unnecessary to examine any 
node above it. 

Section 2 describes operators that express situations 
involving database changes. Section 3 discusses optimiza- 
tion techniques for such situations. and general techniques 
for optimizing signal graphs. Section 4 discusses related 
work and presents our conclusions. 

2. Database Changes 

We now define a relation. called a ARelation. that can 
represent changes to another relation, and operators for 
manipulating such relations. We look at the net additions. 
deletions. and modifications to the relation instance. We 
do not look at individual operations. The goal is a unified 
treatment of changes, not separate treatments of inser- 
tions. deletions. and modifications resulting in several algo- 
rithms for generating and combining individual results. 
Section 2.1 describes conventions satisfied by Arelations 
that represent changes. and gives some basic manipulation 
operators. Section 2.2 discusses an operator that exam- 
ines updates to some of the objects underlying a derived 
relation (e.g.. view), and determines the corresponding 
change to a derived relation. Section 2.3 describes efficient 
ways of implementing this operator. both for familiar rela- 
tional operators and for arbitrary relational expressions. 

Let R denote a relation scheme specifying a set of 
attributes and let R denote a relation (or. more precisely. a 
relation instance of R) consisting of a set of tuples whose 
values are taken from the domains of the set of attributes 
of R. t.A denotes the value of attribute A for tuple t. 
Each tuple has an attribute (denoted tid) that provides a 
unique immutable identifier. We use relational operators 
\m Select, Project (which discards tuples that are 
entirely null), Join, Outerjoin, Difference, and 
Union. The unique tid makes it easier to connect tuples 
that hold values of the same object before and after 
changes: we will assume that every updatable relation 
includes the tid column that provides a unique immutable 
identifier. For readability, pairs of parentheses may be 

denoted either as “(...)” or as “I...]“. 

2.1 Representation and Basic Manipulations 

To provide a single object that captures an arbitrary 
change to a relation. we introduce the concept of a ARela- 
tion. For each relation scheme R 3 (tid. A,.. . . , A,), 
define scheme AR to be (7id. -A,.. ,-A,, tid’, A,“.. 
. , An-). When a ARelation represents changes. attribute 
names with a --sufhx (e.g., A”) refer to new attribute 
values. and attribute names with a ‘-prefix (e.g., “A) refer 
to old attribute values. In any tuple t. if both t.tid- and 
t.-tid are non-null. they must be equal: if t.tid” is null, so 
are all t.Ai’: if t.“tid is null. so are all t.-Ai. 1 I i 5 n: 
?.tid and t’.tid cannot both be null: no tid can appear in 
multiple rows (even in different columns). 

ARelations can represent tuples (or objects) where 
only the tid field is nonnull. Jointid is used to indicate a 
join that uses predicate [‘Iid=tid’]. ’ 

Example 2.1 shows a ARelation that expresses 
changes due to a transaction. A ARelation can be parti- 
tioned horizontally. i.e.. expressed as the disjoint union of 
insertions, deletions. and modifications. (For insertions. 
the *-prefix attributes are null: for deletions the ‘-suffix 
attributes are null). 

Example 2.1: Consider the Employee 
relation EMP and the transaction T: 

EMP tid Name Salary 

6123 Joe 30k 
0456 Lynn 40k 
0321 Ann 28k 

Transaction T: 

CModify(Ol23, new-tuple = (Qi23, Joe, 33k)); 
Insert (Q789, Ed, 25k); 
Delete (0456)) 

The following ARelation (here called AEMP) 
captures the changes that T makes to EMP: 

'tid 'Hame 'Salary tid' Name' Salary' 

0123 Joe 30k 0123 Joe 33k 
Q789 Ed 25k 

Q456 Lynn 40k - - 
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To express conditions that involve changes, we pro- 
vide several operators that manipulate ARelations. Here 
we describe some basic operators; the next section uses 
them to define a more powerful construct. 

We first define renaming functions that add or delete 
tildes from attribute names in a relation scheme. Let R = 
{tid. A,. A,. . . . . A,}. Then pretilde(R) = {‘tid. *A,. 

&."so a”R = pretilde(R) U postilde(R). 
‘A }, and postilde(R) = {tid”. A -. A,“. . . . . 

We define analogous renaming functions on relation 
instances. If R is a relation. pretilde(R) is the relation with 
the same tuples. but with all attribute names preceded by 
a single tilde (and similarly for postilde( R)). For relations 
where all attributes have pretildes. or all have postildes. 
untilde removes tildes from all attribute names. 

The next set of operators project the old or new tuple 
values from a ARelation. Some of the operators are illus- 
trated in Exampie 2.2. Removals' takes a ARelation 
and returns the relation consisting of tuples removed by 
either deletion or modification. Removals returns the 
corresponding relation without the “-prefix on attribute 
names. Additions' returns the relation consisting of 
tupies added by either insertion or modification. and Addi- 
tions returns the corresponding relation without ‘-suffix. 
Formally. 

Removals' = Project[AR. pretilde(R)] 
Removals = untilde[Removals'(AR) ] 
Additions'(AR) 3 Project[AR. postilde(R)] 
Additions(AR) = untilde[Additions'(AR) ] 

Example 2.2 
Remavals'(AEMP) 

'tid -Name -Salary 

Q123 Joe 
6456 Lynn 

30k 
40k 

Additions (AEMP) 
tid Name Salary 

0123 Joe 
0789 Ed 

33k 
25k 

The main use of ARelations is to represent the net 
effect of a collection of updates to a relation. In such 
cases. if the “before value” is the relation R. the updates 
will be represented as AR. and the updated relation will be 
denoted R’. We now define operators that relate these 
three values. 

Definition: The pair (R. AR) is composable if: 
(1) The relation scheme for AR is pretilde(R) u 

postilde( R); 
(2) Removals c R. : and 
(3) Additions(AR) n R = 0. 

Composability requires thar the ARelation contain 
only the net updates. The restrictions can be loosened 
somewhat, at the cost of some extra complications for 
Compose and other operators. If the restrictions are 
sufficiently loosened, a ARelation will resemble an 
undo/redo log. 

Definition: Suppose the pair (R. AR) is composable. 
Then define 
Compose(R. AR) = (R - Removals( u 

Additions(AR). 
The result will often be denoted R’. 

Example 2.3: Given EMP and AEMP as in 
Example 2.1: 

EMP' z Compose(EMP, AEMP) 

EMP' tid Name Salary 

0123 Joe 
0789 Ed 
0321 Ann 

33k 
25k 
28k 

Definition: Adifference takes any pair (RI. RJ 
of relations on the same scheme. and produces a ARela- 
tion that describes their differences. Null values are used 
to pad tuples that appear in only R, - R, or R, - R,. It 
can be expressed as the Outerjoin of tuples in R, - R, 
(supplying the ‘-prefix attributes) and R, - R, (supplying 
the ‘-suffix attributes). That is. 
Adifference(Ri.R2) E 

Outerjoin,id[pretilde(RI - R2), postilde(R2-RI)] 

The following lemmas show some of the algebraic 
properties of these operators. 

lemma 1A: 
AR= Outerjoi~[Removalsw(AR). Additions'(AR)] 

lemma 16: For any relations R, and R, having the same 
scheme, Compoee[R1. Adifference(R1. R2)] = R, 
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2.2 The Changes Operator 

We now introduce a new high-level operator. called 
Changes. to express how a derived relation (e.g., view) 
changes when at least one of its input relations changes. 
Let E denote an algebraic expression that defines a derived 
relation, and let E denote the scheme of the relation pro- 
duced by E. The output of the Changes operator is a 
ARelation with scheme AE. Changes can be useful in 
writing situations. and is easy for a compiler to recognize 
and optimize. 

Notation: Let E(R,. . . . . R,,) denote an expression defined 
on relation schemes R,...R,; let each Ri denote an arbi- 
trary relation: let ARi denote a relation that is composable 
with Ri. and let Rei denote Compose(Ri. ARi). A pair L = 
{(Ri. 1 5 i 5 n). (ARi. 1 5 i 5 n} is called a substitution 
list. 

Definition: 
Changes(E; L) = Adifference(E(R1..... R,), E(R’l.....R’,)) 

lemma 2: Let AR be composable with R. Then 
ChangesIR: (R. AR)] = AR 

The following lemma states that Changes(E: L) 
correctly computes the changes to the relation derived by 
E. 

lemma 3: 
E(R’,..... R’,)=Compose(E(R,.....R,)), Changes(E: L)) 

Example 2.4 High-Salaried Employees 
Consider the EMP and AEMP relations in Example 
2.1. To monitor changes to the view 
High-Salary-EMP = Select,Sa,ary,32k,(EI\IP). define 
the situation: 

Event: Update to El@ 
Condition: Changes(High-Salary-ElrlP; [EMP, AEMP]) 

Substituting the definition of High-Salary-EMP. the 
condition becomes Changes(Select(S,,,,y,32k,: [El@, 
AEMP]). The result of evaluating this condition for the 
updates of Example 2.1 is given by the relation 

-tid -Ilame -Salary tid- Name’ Salary- 
0123 Joe 33k 

Q456 Lynn 40k - - - 

If the user wants to monitor all changes to a view. 
there is no need to specify explicitly which base-relations’ 
updates should be monitored - in fact. encapsulation is 
improved if the system rather than the user fills in that 

list. The explicit form allows specification of a situation 
that monitors changes caused only by certain kinds of 
events (e.g.. an abstract event Hire-Employee). 

3. Optimizations 

Efficiency is critical to situation monitoring, but 
evaluation of Changes directly from its definition is very 
inefficient. requiring retrieval or materialization of Ri and 
R’i. for all i. This section describes three ways in which 
the evaluator’s performance can be improved. The first 
two subsections define transformations on expressions 
involving the Changes operator. Section 3.1 presents 
efficient “incremental” implementations of Changes(F: L) 
where F is Select, Project, or Join: Section 3.2 treats 
the case where F is an arbitrary expression. It describes a 
chain rule that obtains an incremental form of F by com- 
posing incremental forms of the operators within F. Sec- 
tion 3.3 discusses issues involved in determining execution 
strategies for signal graphs. 

3.1 Incremental Operators 

For many operations F. Changes(F: L) can be com- 
puted more efficiently than by evaluating the definition for 
Changes. These computations use ARelations heavily 
(and sometimes exclusively), instead of computing on 
database relations. which tend to be much larger. 

We study instantiations of Changes(F: L) for partic- 
ular operations F. Define the incremental form for F as 
the operator IncrF(substitution list) --> (ARelation) 
where IncrF(L) z Changes(F; L) 

If the optimizer has been informed of an efficient 
implementation for IncrF. it will use that in place of 
Changes(F: L). Many authors (e.g., [KOEN81. BLAK86]) 
have defined efficient incremental forms of Select. Pro- 
ject, and Join to deal with insertions or with deletions or 
with modifications. Here we show efficient implementa- 
tions of IncrSelect. IncrProject. and IncrJoin that 
handle an entire ARelation as a unit. 

An extensible active DBMS would allow users to 
define new incremental forms. For example, the definer of 
a new function could be invited to provide an incremental 
form, which the DBMS would then register with the 
optimizer. 
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Incremental Select: Let pred denote a predicate defined 
on R. and Select+,,,, denote the associated selection 
operator. Let ‘pred and pred- denote the predicates 
obtained from pred by replacing each attribute by its -- 
prefix (respectively. ‘-suffix) form. 

The following formulas give an implementation of 
IncrSelect that does not reference the base relation. Let 
AS G IncrSelectp,d(R.AR)). 

Sl= Select- 
s2= 

pred(Removals-(AR)) 

AS= 
Selectp,,d- (Additions'(AR)) 

Outerjoix+,(Sl. S2) /* by lemma 1A */ 

Note that Sl and S2 represent Removals" and 
Additions'(AS). respectively. The expression for 
IncrSelect can be implemented by one pass over AR. 
determining for each tuple of AR whether it induces an 
insertion. deletion. or modification to Select(R). The 
proof that the above formulas are indeed implementations 
of Changes(Selectp,dicat, (R): [R. AR]) appears in the 
appendix. 

The optimizer transforms signal graphs. replacing 
changes by efficient incremental forms. Figure 2a shows 
the initial signal graph, and Figure 2b shows the final sig- 
nal graph, for Chauges(High-Salary-Emp; [Emp. AEMP]) 
from Example 2.4. 

EMP AEMP 

Figure 2a: Initial Signal Graph of 
Situation in Example 2.4 

Incremental Project. Let A = {AI....Ak} denote a subset 
of the attributes in R. where tid E A. IncrProj(AR. A) 
ZG Changes[Project(R. A); (R. AR)]. Let the predicate 
“differ” state that for some attribute Ai in A. t.“Ai differs 
from t.Aei. Then an efficient implementation of IncrProj 
is to select tuples for which at least one attribute has 
changed. i.e., 

IncrProj(AR.A)= Select,,ifier[Project(AR.'A u A’)] 

(I> IncrSe1'%lary>32K 

Figure 2b: Optimized Signal Graph of 
Situation in Example 2.4 

Incremental Join. In the case of join. changes to the 
resulting relation can be induced by changes to either of 
the individual operands or to both of them. First. suppose 
that just R, changes. 

Let join-pred denote a predicate on R, and R,; and 
let tid, E R, and tid, E R,. respectively. Let ‘join-pred 
(join-pred’) denote th e predicate obtained from join-pred 
by replacing each attribute by its “-prefix (“-suffix) form. 
Then 
LeftIncrJoin(ARi. R,. join-pred)= 
Outerjoin( 

Pretilde[Join(Removals(ARi). R2.join-pred)]. 
Postilde[Join(Additions(ARi). R2.join-pred)]. 
(?id, = tid,*) AND (‘tid, = tid2-)) 

RightIncrJoin(Ri. AR,. join-pred) is defined simi- 
larly, for the case where just R, changes. IncrJoin. 
defined below. is used when both R, and R, change. To 
capture the interaction of simultaneous changes to R, and 
R,. the notation Both(AR1.AR2.join-pred) denotes 
Outerjoin[ 

Join(Removals"(AR1). Removals'(ARz). ‘join-pred). 
Join(Additions'(ARi). Additions-(ARZ). join-pred’). 

(“tid, = tid,‘) AND (‘tid, = tid,*) ] 

We can now express IncrJoin([Ri. R,. AR,. AR,]. 
join-pred) as 

LeftIncrJoin(ARi. Rz. join-pred) u 

RightIncrJoin(R1.AR2. join-pred) u 

Both(AR,.AR,. join-pred) 

3.2 Transforming Expressions 
Inside Changes 

The Chain Rule is an identity that is used to create 
an incremental form of an algebraic expression (denoted 
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Expr) from incremental forms of its constituent operators. 
Each application of the chain rule moves the outermost 
operator of Expr outside Changes. Where Expr is a single 
function F. recall that Changes(F. L) = IncrF(L). 
Applying the chain rule repeatedly and using this base 
case. the optimizer removes all appearances of the special 
operator Changes. We present the identity only for the 
case where the root of Expr is a unary operator (denoted 
F). so that Expr can be written as a composition of func- 
tions. denoted F ’ G. Let [RList. ARList] denote the 
substitution list L. 

Chain Rule: 
Changes (F ’ G: [RList. ARList]) = 

IncrF (G(RList), Changes(G: [RList. ARList])) 

The chain rule is proved in the appendix. There are 
three benefits to using the chain rule to open up the 
Changes expression. 1) IncrP now appears explicitly. 
and it may have an efficient implementation. 2) IncrF 
now needs to be executed only if Changes(G; [RList. 
ARList]) is non-empty. 3) It may be easier to derive 
optimizing transformations (e.g., Selections before Outer- 
joins) using the incremental forms that replace the 
Changes operator. 

We will illustrate this with an example. Consider rela- 
tion Sensor-Data[tid, Temperature, Pressure, 
other-attributes]. Let Filter denote a user-defined 
function that removes outliers and smoothes the data in a 
relation with schema [tid, Temperature, Pressure]. 
And let ProjTp denote the operator 

Project[tid Temperature. Pressure] 

Example 3: Change To Filtered Temperature/ 
Pressure 

Event: Update to Sensor-Data 
Condition: 
Changes(Filter ' ProjTp: 

[Sensor-Data. ASensor-Data]) 

If we apply the chain rule to the outermost 
operator (i.e.. Filter). we get the Condition: 
Incr-Filter[ 

ProjTP(Sensor-Data). Changes(ProjTp; 
[Sensor-Data. ASensor-Data]] 

We now replace the inner projection by its incremen- 
tal form, to obtain 

IncrFilter( 
Pro jTp(Sensor-Data). IncrProjectTp 
(Sensor-Data. ASensor-Data] 

IncrProjectTp does not need the base relation 
Sensor-Data as an input. The result is the signal graph of 
Figure 3. 

The chain rule has permitted two major improve- 
ments in the execution strategy. First. IncrFilter need 
not be evaluated if output of IncrProjTp is empty. 
Second. it exposed Changes(ProjTp; [...I) so that it could 
be replaced by IncrProjTp. 

IncrFitter 0 
,d \ 

Figure 3: Optimized Signal Graph of 
Filtered Sensor Data 

3.3 Compilation and Evaluation of Situations 

Once a final signal graph has been obtained. it is 
necessary to determine its execution strategy. A good 
execution strategy will exploit the expected small size of 
signal relations and relations derived from them. 

A leaf of the signal graph that corresponds to an 
event’s signal relation is called active. Any node or edge 
that is on a directed path from an active node is also called 
active. Other nodes and edges (Le.. those defined strictly 
over stored relations) are called passive. 

The passive/active distinction leads to the following 
simple guidelines for execution strategy: 

l For many multi-input operators (e.g.. Join, 
Changes), when the active input is 8. the result is 
0. 

l Complete evaluation of passive subgraphs is often 
unnecessary. 

l Active nodes often have much smaller relations than 
passive nodes. Furthermore. they are often com- 
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puted directly from a signal and hence require no 
disk accesses. Therefore nested-loops is often a 
good implementation for a join operator. It requires 
accessing only those of the inner-relation’s tuples 
that match a tuple from the outer relation (assuming 
that an index is available). For instance. in Example 
1.2. the Link-Technology relation may contain 
thousands of microwave links. but only the tuple for 
link2 is required for the join. 

There are two architectural approaches to finding exe- 
cution strategies. The first approach is simply to use the 
heuristics mentioned above, plus perhaps some other sim- 
ple ones (e.g., Select before Join. cheap selection predi- 
cates before expensive ones). This approach might be 
most appropriate if one did not have access to an appropri- 
ate query optimizer. 

An alternative approach is to have a DBMS query 
optimizer generate the strategies. The signal graph can be 
regarded as a query to a database that consists of data- 
base plus signal relations. Given statistics on signal rela- 
tions (i.e. their expected small size and lack of indexes). 
the optimizer will presumably select nested-loops imple- 
mentations. A further benefit is that the DBMS will sup- 
ply implementations of relational operators (selection. pro- 
jection, etc) and an interpreter for the strategies that are 
produced; otherwise we need to implement these capabili- 
ties as part of the situation evaluator. 

But there are also serious drawbacks to using a con- 
ventional DBMS - software integration and efficiency. 
Software integration may be difficult or impossible with a 
non-extensible DBMS. One must find a way to add opera- 
tors that manipulate ARelations. and to accept operator 
trees as input (rather than SQL). Efficiency is a problem 
if signals that originate in main memory need to be stored 
on disk to appear in DBMS queries. Also. existing optim- 
izers may not do a very good job of exploiting a node value 
of 0. an occurrence that may be more common in situa- 
tion evaluation than for ordinary queries. 

4. Summary 

4.1 Related Work 

Work related to condition monitoring is found spread 
over several traditional problem areas of the design of 
database management systems. Such areas include 
integrity constraint enforcement, support of views. triggers 

and alerters. rule management, and production systems in 
general. 

Recent contributions include [STON87. DARN87. 
DITT86]. [STON87] triggers condition evaluation upon 
database operations, and for a pre-defined set of other 
events (e.g.. date). Conditions are expressed in QUEL. 
and therefore can be evaluated by the regular query pro- 
cessor. [DITT86] separates events from actions and 
triggers are defined explicitly using an event, action pair. 
Our work separates events. conditions, and actions expli- 
citly and the emphasis is on optimizations and algebraic 
structure. [DARN871 describes a commercial implementa- 
tion (Sybase). Events are limited to inserts, deletes, and 
modifies, described by a structure resembling a ARelation. 
Our approach generally differs in that we have provided 
special constructs to make it easier to express situations 
involving database changes, and to optimize them. Data 
from user-defined events may be referenced in conditions. 

An algorithm to incrementally compute the changes 
on materialized views defined by Select. Project, and 
Join is described in [BLAK86]. However, that paper does 
not address the issues of representation for database 
changes (i.e. ARelations). changes to general expressions. 
and optimization of the expressions that compute the 
changes. [KOEN81] transforms programs containing data- 
base update operations so that they will maintain derived 
data. The transformations require recompiling the pro- 
gram; also, Insert. Delete, and Modify are not given a 
uniform treatment. 

4.2 Conclusions 

In this paper we have presented key concepts of a 
situation evaluator for HiPAC. The main contributions of 
this paper are: 

. a unified treatment of database updates and nonda- 
tabase events. This allows the situation evaluator 
to be implemented in any system that provides the 
desired event detectors. 

. ARelations as a compact representation for all data- 
base updates. Even transition constraints requiring 
values from different database states can be natur- 
ally expressed using Changes and Arelations. 

. an algebra for computations about database 
changes. The algebra includes efficient implementa- 
tions of incremental forms of familiar operators and 
accommodates user-defined operators. Previous 
work generally provides a separate form for inser- 
tions, deletions, and modifications. but one transac- 
tion can include all three. 
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l the Chain Rule as a key transformation in optimizing 
changes to views. With the exception of [KOEN81]. 
most previous work is limited to 
Select/Project/Join expressions; we make 
improvements even with user-defined operators. 

Promising areas for future work include: materialized 
data for condition monitoring: rules to maintain derived 
data: dispatching strategies for accumulating update 
events before evaluation: a generalized chain rule for n-ary 
functions: and simultaneous evaluation of multiple condi- 
tions. Larger problems include transposing situation 
evaluation techniques to distributed and object-oriented 
systems. 
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Appendix 

Proof of IncrSelect identity: To shorten the formulas, 

we will use D to denote Select pred and aR to denote 

Select pred(R). From the definition of Changes we have: 

Changes(uR:[R.AR]) = 

Adifference[uR. a(Compose(R. AR))]. We need to 

show that this equals the expression given for IncrSel. 
From the definition of Compose. this equals: 

Adifference(aR. 
a[(R -Removals(AR))UAdditions(AR)]) 

Substituting the definition of Adifference. we obtain: 

Onterjointid( 
(uR - u[(R -Removals( u Additions(AR)]). 

(u[(R -Removals( U Additions(AR)] -u(R))) 
Now by the distributive law of selection over difference and 

union. we pull out each selection. to obtain: 

Onterjoingd( 
u(R - [R -RemovaIs(AR) U Additions(AR)]). 
o([R -Removals U Additions(AR)]- R) ) 

This simplifies to the formula for IncrSel(AR. pred): 

Cnterjoin(u(Removals(AR)).u(Additions(AR))) 

Proof of Chain Rule: We need to show: 

Changes (F ’ G: [RList. ARList]) = 

IncrF(G(RList). Changes(G: [RList. ARList])). 

Let RHS denote the right hand side of the equality to be 

demonstrated. Substituting the definition of IncrF: 
RHS = 

Changes(F: [G(RList). Changes(G; [RList. ARList])]) 

Replace the “inner” Changes by its definition. to get: 

Changes(F: [G(RList). 

Adifference(G( RList). 

G(Compose(RList.ARList)))]). 
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Now replace the “outer” Changes by its definition: 

RHS = Adifference(F(G(RList)). 

F(Compose[G(RList). 

Adifference(G[RList]. 

G[Compose(RList. ARList)])])) 

We now apply Lemma 1B with G(RList) in the role of Rl 

and G[Compose(RList. ARList)] in the role of R2: 

RHS = Adifference[F(G(RList)). 

F(G[Compose(RList. ARList)])]. 

This expression is just Changes(F ’ G: [RList. ARList]). 
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