
THE TIME INDEX:
AN ACCESS STRUCTURE FOR TEMPORAL DATA

Ramez Ehnasri’ I*, Gene T. J. Wuu2, and Yeong-Joon Kim’

‘Department of Computer Science, University of IIouston, IIouston, TX 77204
‘Bell Communications Research, 444 IIoes Lane, Piscat.away, NJ 08854

ABSTRACT

In this paper, we describe a new indexing technique,
the time indez, for improving the performance of cer-
tain classes of temporal queries. The time index can be
used to retrieve versions of objects that are valid dur-
ing a specific time period. It supports the processing
of the temporal WHEN operator and temporal aggre-
gate functions efficiently. The time indexing scheme
is also extended to improve the performance of the
temporal SELECT operator, which retrieves objects
that satisfy a certain condition during a specific time
period. We will describe the indexing technique, and
its search and insertion algorithms. We also describe
an algorithm for processing a commonly used temporal
JOIN operation. Some results of a simulation for com-
paring the performance of the time index with other
proposed temporal access structures are presented.

1 Introduction

Research in temporal databases has been mostly
concerned with defining data models and operations
that incorporate the time dimension. Extensions to
the relational data model and its operations for han-
dling temporal data have been presented in [CT85,
SA85, Sno87, CC87, Gad88, GY88, NA87]. In addi-
tion, some work has been concerned with defining tem-
poral extensions to conceptual data models and query

*This work is supported by Bellcore and by Texas ARP grant
00365208LARP

Pcrmihsion to copy uithout rcc all or part OK this mathal i5

grantctl provided that the copich arc not matlc or di~trihutcd lijt-

direct commcrcinl ad\;1ntagc. the VLDB copyright notice and

the title of the publication and it3 date appear. and notice i\ gi\cn

that cop)ing is h\ permission of the Vcq L;lrye I)ata Hax

Endmment. To copy othcrukc. or to repuhliAh. rcquiw ;I l’cc

and/or special permission I‘rom the Eniio~mcnt.

Proceedings of the 16th VLDB Conference
Brisbane. Australia 1990

languages [SS87, EW90]. These temporal data models
define powerful operations for specifying complex tem-
poral queries. There has been relatively less research
in the area of defining efficient storage structures and
access paths for temporal data [Lum84, Ahn86, AS88,
SG89, GSsu, RS87, KS89, LSSS]. These proposals do
not discuss indexing schemes for supporting the high-
level temporal operators defined in [GY88, EW90].
This paper describes indexing techniques for improv-
ing the efficiency of temporal operations, such as when,
select, and join [GY88], temporal selection and tempo-
ral projection [EW90], and aggregation functions.

The storage techniques for temporal data proposed in
[AS88, Lum84] d in ex or link the versions of each in-
dividual object separately. In order to retrieve object
versions that are valid during a certain time period, it
is necessary to first locate the first (current) version of
each object, and then search through the version in-
dex (or list,) of each object separately. In comparison,
our time index will lead directly to the desired versions
without having to search the version index of each in-
dividual object separately. The method proposed in
[RS87] allows a search based on time using a multi-
dimensional partitioned file, in which one of the dimen-
sions is the time dimension. In their scheme tempo-
ral data items are associated with a time point rather
than a time interval, and hence is not useful when time
intervals are assumed. Other work ([LSSS, KS89]) dis-
cusses indexing historical data when optical disks are
available, and is mainly concerned with the index be-
haviour as older data is transferred to optical disk.

We consider our time index to be a basic indexing tech-
nique for temporal data. It can be combined with a
conventional attribute indexing scheme to efficiently
process temporal selections and temporal join opera-
tions. Figure 1 shows a simple example of a tempo-
ral database consisting of two relations. We will use
this example to illustrate the structure of our time in-
dex. Section 2 describes the index access structure,
and presents the search and insertion algorithms. Sec-
tion 3 discusses how the basiq time index can be ex-

tended to improve the efficiency of additional temporal
operations. Section 4 includes some performance sim-
ulation results for the time index. Finally, Section 5
presents conclusions and directions for future research.

The EMPLOYEE table

’ Dept Manager Valid-Time
A Smith P, 31
A Thomas P> 91
A Chang [lo, now]
B Cannata [0, 6]
B Martin P, nowI
c Roberto [0, now]

The DEPARTMENT table

Figure 1: A Temporal Database

2 The Time Index Access Struc-
ture

In this section, we first give a storage model for
temporal data based on the object versioning approach’
[SA85]. The time indexing technique can be adapted
to other temporal database proposals, such as time
normalization [NA87] or attribute versioning [GY88].
We use object versioning because it is a simpler ap-
proach for storage management, and allows us to con-
centrate our presentation on the properties of the time
index itself. In Section 2.2, we will describe our time
index, and provide search, insertion, and deletion algo-
rithms. Sections 2.3 and 2.4 show how the time index
may be used to efficiently process the temporal WHEN
operator and aggregate functions.

2.1 The Temporal Storage Model

The time dimension is represented, as in [GY88,
CW83, Gad881 and others, using the concepts of dis-
crete time points and time intervals. A time interval,
denoted by [tl,tz], is defined to be a set of consec-
utive equidistant time instants (points), where tr is
the first time instant and tr is the last time instant of
the interval. The time dimension is represented as a
time interval [O,now], where 0 represents the starting
time of our database mini-world application, and now
is the current time, which is continuously expanding.
The distance between two consecutive time instances
can be adjusted based on the granularity of the ap-
plication to be equal to months, days, hours, minutes,
seconds, or any other suitable time unit. A single dis-
crete time point t is easily represented as an interval
[t,tJ, or simply [t].

We will assume an underlying record-based storage
system which supports object versioning. Records are
used to store versions of objects. In addition to the
regular record attributes, Ai, each record will have an
interval attribute, called valid-time, consisting of two
sub-attributes t, (valid start time) and t, (valid end
time). The valid-time attribute of an object version is
a time interval during which the version is valid. In ob-
ject versioning, a record T with r.valid-time.t, = now
is considered to be the current version of some ob-
ject. However, numerous past versions of the object
can also exist. We assume that the versions of an ob-
ject are linked to the current version using one of the
basic storage techniques (chaining, clustering, acces-
sion list) proposed in [AS88, Lum84]. In addition, we
assume that the current version of an object can be
efficiently located from any other version; for exam-
ple, by using a pointer to a linked list header, which
in turn points to the current version.

Whenever an object o is updated with new attribute
values, the current version, r, becomes the most recent
past version, and a new current version T’ is created
for o. If the valid time of the update is t,, then the
update is executed as follows:

r.vaZid-time& + (t,, - 1) ;
create a new object version T’ by setting T) + T ;
for each modified regular attribute Ai

set T’.& t the new attribute value ;
set r’.valid-time.t, c t, ;
set r’.valid-time.& + now ;

1This approach is called tuple versioning in [SASS]

2

Such a database is called append only since older ob-

ject versions are never deleted, so the file of records
continually has object versions appended to it. An
operation to delete an object o at time td is executed
as follows:

find the current version T of the object o;
set r.valid_time.t, + td ;

Finally, an operation to insert an object o at time ti is
executed as follows:

create the initial version T for o ;
set r.valid-time.t, +- ti ;
set r.valid-time& + now ;

Because the append-only nature of such a temporal
database will eventually lead to a very large file, we as-
sume that a purge(&) operation is available. This op-
eration purges all versions r with r.valid-time& < t,
by moving those versions to some form of archival stor-
age, such as optical disk or magnetic tape.

2.2 Description of the Time Index

Conventional indexing schemes assume that there
is a total ordering on the index search values. The
properties of the temporal dimension make it difficult
to use traditional indexing techniques for time index-
ing. First, the index search values, the valid-time at-
tribute, are intervals rather than points. The valid-time
intervals of various object versions will overlap in ar-
bitrary ways. Because one cannot define a total or-
dering on the interval values, a conventional index-
ing scheme cannot be used. Second, because of the
nature of temporal databases, most updates occur in
an append mode, since past versions are kept in the
database. Hence, deletions of object versions do not
generally occur, and inSertions of new object versions
occur mostly in increasing iime value. In addition, the
search condition typically specifies the retrieval of ver-
sions that are valid during a particular time interval.

A time index is defined over an object versioning record-
based storage system, TDB, which consists of a col-
lection of object versions, TDB = {el, ez,e.}, and
supports an interval-based search operation. This op-
eration is formally defined as follows.

Given a Search Interval, 1s = [ta, ta], find the follow-
ing set of versions:

S(Is) = {ej E TDB 1 (ej.validfime n Is) # 0 }

A simple but inefficient implementation of this search

operation is to sequentially access the entire storage
system, TDB, using linear search, and to retrieve those
records whose valid-time intersects with Is. Such a
search will require O(N*M) accesses to the storage sys-
tem, where N is the number of objects and M is the
maximal number of versions per object.

Notice that the interval-based search problem is identi-
cal to the k-dimensional spatial search problem, where
k = 1. There have been a number of index meth-
ods proposed for k-dimensional spatial search [Gut84,
OSD87], which are not suitable for the time dimension
for the reasons discussed below. These index meth-
ods support spatial search for 2-dimensional objects
in CAD or geographical database applications. The
algorithms proposed in [Gut84, OSD87] use the con-
cept of a region to index spatial objects. A search
space is divided into regions which may overlap with
each other. A sub-tree in an index tree contains point-
ers to all spatial objects located in a region. Since
spatial objects can overlap with each other, handling
the boundary conditions between regions is quite com-
plex in these algorithms. In temporal databases, there
can be a very high degree of overlapping between the
valid-time intervals of object versions. A large num-
ber of long or short intervals can exist at a particular
time point. Furthermore, the search space is continu-
ously expanding and most spatial indexing techniques
assume a fixed search space. In addition, temporal
objects are appended mostly in increasing time value,
making it difficult to maintain tree balance for tra-
ditional indexing trees. Because of these differences
between temporal and spatial search, we do not con-
sider the spatial algorithms in [Gut84, OSD87] to be
suitable for temporal data if they are directly adapted
from 2-dimensions to a single dimension.

The idea behind our time index is to maintain a set
of linearly ordered indexing points on the time dimen-
sion. An indexing point is created at the time points
where (a) a new interval is started, or (b) the time
point immediately after an interval terminates. The
set of all indexing points is formally defined as follows:

(PRl) BP = {ti 1 3ej E TDB ((ti = ej.validfime.t,)
V (ti = ej.validAime.t, + 1))) U {now}

The concept of indexing points is illustrated in
Figure 2 for the temporal data shown in the EM-
PLOYEE table of Figure 1. In Figure 2, e;j refers to
version j of object ei. There exist 9 indexing points in
BP for all employee versions, BP = {0,2,4,6,8,10,11,
12,now). Time point 2 is an index point since the
version e41 st&ts at 2. Time point 6 is an index point
since egl terminates at 5.

3

=mP 1 ell e 12 an object versions whose valid-time contains the in-
*

cmp 2 61 terval [ti,t: - l]. Such a property can be formally

-%
ehl e3, specified as follows:

-

-p4
e41 e42 - + (PR2) B(&) = {ej E TDB] ([ti, t:--l] c ei.valid-time)}

mPS eS1 c ~ Figure 2 shows a B +-tree of order 3, which in-
emp6 e61 -

e71
dexes the BP set of points of the EMPLOYEE ver-

emp7 c sions. Each node in the B+-tree contains at most two
search values and three pointers. Consider the leaf en-

01234S6789 10 11 12 13 now try for search time point 4, for instance; (PRZ) indeed
+I:;;:;;;;;;;;* holds.

Figure 2: Versions of EMPLOYEE Objects,
and a Time Index

Before proceeding to describe our index structure, we
define some additional notation that will be useful in
our discussion. Let tj be an arbitrary time point,
which may or may not be a point in BP. We define t?

(tJ) to be the point in BP such that ty < tj (tj < t$)
and there does not exist a point t, E BP such that
ti < t, < tj (tj < t, < tr). In other words, t? (t:)
is the point in BP that is immediately before (after)
tj. We also define t?= as follows:

1. If there exists a point i!k E BP such that tj = tk,
then ti= = tk.

2. Otherwise, tj-= = ti

Since all the indexing points ti in BP can be totally
ordered, we can now use a regular B+-tree [Com79,
EN891 to index these time points. Each leaf node en-’
try of the B+-tree at point t; is of the form:

[tj, bucket]

where bucket is a pointer to a bucket containing point-
ers to object versions. Each bucket B(ti) in our index
scheme is maintained such that it contains pointers to

B(4) = {el2, e21, ed
= {ej E TDB 1 ([4,5] C_ ej.vdidtime)}

In a real temporal database, there can be a large num-
ber of object versions in each bucket, and many of
those may be repeated from the previous bucket. For
example, in Figure 2 the object version els appears
in multiple consecutive buckets. To reduce this re-
dundancy and make the time index more practical, an
incremental scheme is used. Rather than keeping a
full bucket for each time point entry in BP, we only
keep a full bucket for the first entry of each leaf node.
Since most versions will continue to be valid during
the next indexing interval, we only keep the incremen-
tal changes in the buckets of the subsequent entries
in a leaf node. For instance, in Figure 3 the entry at
point 10 stores {+esi, -ea2} in its incremental bucket
indicating es1 starts at point 10 and eas terminates at
the point immediately before point 10. Hence, the in-
cremental bucket B(t;) for a non-leading entry at time
point ti can be computed as follows:

B(ti) = B(tl) ” (UtjEBp,t,<tj<ti SA(tj))
- (UtjEBP,t,<tj<ti SE(tj))

where B(tl) is the bucket for the leading entry in the
leaf node where point t; is located, SA(tj) is the set
of object versions whose start time is tj and SE(tj) is
the set of object versions whose end time is tj - 1.

We now describe our search algorithm as follows:

1. Suppose the time search interval is IS = [ta, ta].
Perform a range search on the B+-tree to find

(Cl) PI(Is) = {ti E BP/t, _< ti 5 tb) u {t,=}

2. Then compute the following set as the result of
the algorithm.

(C2) T&z) = &PI B(h)

6
II

t”12*“21.=31)

I

(e12*e32.e42] ie12.e42ee51 @12.e42.e51s

e71) e7, *e61)

t+e41) (- e21 I
I- e32 ,+esl)

I+ e6l)

Figure 3: Storing Incremental Changes in the Time Index Buckets

Insertion or deletion of a new object version should
maintain the properties (PRl) and (PR2). The algo-
rithms for inserting and deleting an object version ek
are shown in Algorithm A. Note that, in general, vex-
sion deletion will not occur in append-only databases
except for an exception such as correction of an error.

It is easy to argue that (PRl) and (PR2) are main-
tained after each execution of the Insert or Delete op-
eration. We will not show the proof argument here
due to the lack of space.

2.3 Using the Time Index for Process-
ing the WHEN Operator

The time index can be used to efficiently process
the WHEN operator [GY88] with a constant projec-
tion time interval. An example of the type of query
is: List the salary history for all employees during the
time interval [4, 51. The result of such a query can
be directly retrieved using the time index on the EM-
PLOYEE object versions shown in Figure 3. We will
discuss in Section 3 how an extension to the time index
will permit efficient processing of temporal SELECT
operations. Notice that a simple query such as the one
given above is very expensive to process if there was
no index on time.

2.4 Using the Time Index for Process-
ing Aggregate Functions

In this section we will describe how the time in-
dex scheme is used to process aggregate functions at
different time points or intervals. In non-temporal
conventional database, the aggregate functions, such

. as COUNT, EXISTS, SUM, AVERAGE, MIN, and

Insert(ek)
begin

t, + ek.validfime.t, ;
tb c ek.valid-time.& -k 1 ;
search the B+-tree for t,;
if (lfound) then

insert t, in the B+-tree;
if entry at t, is not a leading entry in a leaf node

add ek into SA(t,);
search the B+-tree for tt,;
if (-lfound) then

insert tb in the B+-tree;
if entry at tb is not a leading entry in a leaf node

add ek into SB(tb);
for each leading entry tl of a leaf node
where t, 5 tr < tb

end
add ek in B(tl);

Delete(ek)
begin

t, + ek.validlime.t, ;
tt, + ek.valid-time.& + 1 ;
search the B+-tree for t - a,
if entry at t, is not a leading entry in a leaf node

remove ek from SA(t,);
search the B+-tree for tb;
if entry at tb iS not a leading entry in a leaf node

remove e& from SE(&);
for each leading entry tJ of a leaf node
where t, 5 tl < tb

remove ek from B(i!l);

end

5

MAX are applied to sets of objects or attribute valuks
of sets of objects. In temporal databases, an aggregate
function is applied to a set of temporal entities over an
interval. For instance, the query ‘GET COUNT EM-
PLOYEE : [3, 81’ [EW90] should count the number of
employees at each time point during the time interval
[3, 81. The result of the temporal COUNT function is
a function mapping from each time point in [3, 81 to
an integer number that is the number of employees at
that time point. For instance, the above query is eval-
uated to the following result if applied to the database
shown in Figure 1:

{ [3] ---t 4, 14, 51 + 3, P, 71 ---) 2, PI --+ 3 >

Our time index can be easily used to process such ag-
gregate functions. Let 1s be the interval over which
the temporal aggregate function is evaluated. The
query performs a range search to find Pl(1~). Each
point in Pl(ls) p re resents a point of state change
in the database. That is, the database mini-world
changes its state at each change point and stays in
the same state until the next change point. Therefore
the aggregate function only needs to be evaluated for
the points in Pl(ls). The query is evaluated by ap-
plying the function on the bucket of object versions at
each point. If the incremental index shown in Figure
3 is used, the running count from the previous change
point is updated at the current change point by adding
the number of new versions and subtracting the num-
ber of removed versions at the change point. Similar
techniques can be used for other aggregate functions
that must be computed at various points over a time
interval.

3 Extensions of the Time Index
for Other Temporal Operators

The basic indexing scheme can be extended to
support other important temporal operators, such as
temporal selection [EW90, GY88]. In a non-temporal
database, a common form of a selection condition is to
compare an attribute with a constant or with a range;
for example, ‘EMPLOYEE.Dept = B’ or ‘20K < EM-
PLOYEE.Salary < 30K’. Such conditions evaluate to
a boolean value for each object. In a temporal data-
base, however, a 6 comparison condition evaluates to a
function which maps from [O, now] to a boolean value.
For instance, the condition ‘EMPLOYEE.Dept = B’
when evaluated on empl of Figure 1 will have the fol-
lowing result:

{ [0, 31 -+ FALSE, [4, now] -+ TRUE }

A complete temporal selection should specify not only
a condition but also when the condition holds. For
example, to select employees who had worked in de-
partment B during the time period [3, 4], a SELECT
condition should be specified as:

[EMPLOYEE.Dept = ‘B’ 1 n [3, 4] # 0

The notation [cl, where c is a 8 comparison condition,
represents the time intervals during which c evaluates
to TRUE for each object. A search for objects that
satisfy such a temporal condition can be formulated
as a spatial search problem, as illustrated in Figure
4. The search space has two dimensions: the attribute
dimension and the time dimension. A vertical line rep-
resents an object version whose search value consist of
a point value on the attribute dimension and an inter-
val value on the time dimension. A two-dimensional
range is specified by a rectangle. For ir stance, the dot-
ted rectangle in Figure 4 specifies the search condition:

1[‘B’ <= EMPLOYEE.Dept <= ‘C’ 1 n [6, 9] # 0

A search involves the retrieval of all object versions
that intersect with the search rectangle.

These types of operations combine selection based on
a time interval with a selection based on conditions
involving attribute values. If the condition to be satis-
fied is based on the value of a single attribute, we can
use a traditional B+-tree index constructed on that
attribute, which searches for the current version of
each object that satisfies the (attribute) search condi-
tion. In current proposed storage structures [Lum84,
Ahn86], the current version of an object can be used
to access past (‘and possibly future) versions of the ob-
ject using various techniques such as clustering, reverse
chaining, or an accession list. These proposed struc-
tures work well only if the index search field is a non-
temporal attribute of the objects; that is, an attribute
whose value does not change with time. The reason
is that for conditions on temporal (time-varying) at-
tributes, the attribute value of an object may have
been changed so that it is not possible to access a past
version that used to satisfy the search criterion via the
current version. In order to solve this problem, the in-
dex must in&de dir&t pointers to all past and present
object versions that have the search attribute value.
This can result in a very large number of pointers in
the leaf nodes of the index. It is then still necessary to
search through all these versions and to check whether
each version satisfies the time condition.

6

1 --
ell

2 --

3 --

4 --

5 --

6 --

1 --

8 --

9 --

10 --
e,,

11 --

12 --

now ’ T

Figure 4: Two-Dimensional Search

3.1 The Two-Level Combined Attribute
Time Index

To solve this problem, our approach is to use a
two-level indexing scheme. The top-level index is a
B+-tree built on a search attribute; for example, the
Dept attribute of EMPLOYEE in Figure 1. Each leaf
node entry of the top-level index tree includes a value
of the search attribute and a pointer to a time indec.
Hence, there is a time index tree for each attribute
value. The internal structure of each time index tree
is similar to the basic time index described in Section
2.

Figure 5 shows the combined index structure for the
EMPLOYEE table shown in Figure 1. The top-level
index tree is built on the Dept attribute. Since there
are three departments, A, B, and C, there are three
time index trees for them. Figure 5 only shows the
time index tree for department B, which indexes ver-
sions of EMPLOYEE objects that have a Dept at-
tribute value of ‘B’.

3.2 Processing the Temporal Select Op-
erator

We now describe how to use the two-level index
scheme to process a temporal SELECT condition such
as:

TimcIndsxT~fordcp.A
\

\ TiihkxTrecforDcpt.B

Figure 5: Two-Level Combined Attribute/Time Index

d Employee.Dept = ‘B’]I n [3, 41 # 0

This selects all employees who worked for department
B during the time interval 13, 41. The first step is to
search the top level (the Dept attribute) index for the
Dept value ‘B’. This leads to the time index for depatt-
ment B, which is then searched for the time interval
[3, 41. As a result, the appropriate object versions are
retrieved.

Note that each of these retrieved versions records a
partial history of a selected object. However, in most
temporal data models ([GY88]), the SELECT opera-
tor should return the full set of versions (the entire his-
tory) for each selected object. Hence, it is necessary to
assume that versions of each object will contain back
pointers to access the current version as part of the
basic temporal access structure. Any one of the tra-
ditional version access structures for object versions
(such as clustering, accession list, or reverse chaining)
can then be used to retrieve the entire version history
via the current object for the selected objects.

3.3 Using the Time Index to Process
Temporal JOIN operations

The time index can also be used to improve the
efficiency of certain temporal join operations. There
have been several temporal join operations discussed in

7

[SG89]. However, most of these join operations are de-
fined for joining together a temporal object that is VeT-
tically partitioned into several relations via time nor-
malization. For example, the attributes of temporal
EMPLOYEE objects would be partitioned into several
relations, where each relation would hold the primary
key and those attributes (usually a single one) that are
always modified synchronously. There would be a re-
lation for EMPSALARY, one for EMP-JOB, and so
on. The EVENT JOIN [SG89] is used to build back
the temporal objects from the partitioned relations.

A time index can be used to increase the efficiency
of join operations. This includes more general types
of join operations that correspond to the NATURAL
JOIN operation of a non-temporal database. This type
of operation joins the tuples of two relations based
upon an equality join condition on attribute values
during a common time interval Hence, the result of
the join would include an object version whenever two
object versions have the same join attribute value, and
the intersection of the valid time periods during which
the join attributes are equal is not empty. The valid
time of the resulting join object would be the intersec-
tion of the valid times of the two joined object versions.
For example, consider the database shown in Figure
1, where two relations EMPLOYEE and DEPART-
MENT are shown. Suppose we want to execute a
join operation to retrieve the time history of employees
working for each department manager. In this case, we
want to join each department object with the appro-
priate EMPLOYEE objects during the time periods
when the employees worked for that department. The
result of the join would be as shown in Figure 61

We C~II use a two-level time index on the Dept at-
tribute of EMPLOYEE to retrieve the employee ver-
sions working for each department during specific time
periods. The join algorithm outline is shown in Algo-
rithm B.

Name [Dept 1 Valid-Time [Manager
empl] A I w, 31 1 Smith

1 emp4 1 A 1 k3,9i hh t omas
emp4 A [‘lo, how]
emp5 B [lo, now]
emp6 C [12, now]
emp7 C [ll, now]

Chang
Martin
Roberto
Roberto

Figure 6: Result of Temporal Join

Using the time index would increase the efficiency of
locating the EMPLOYEE object versions based on
a particular Dept value and time interval combina-
tion. Hence, the versions of DEPARTMENT and EM-
PLOYEE to be joined can be directly located. The
intersection of their valid time intervals is then calcu-
lated for the result of the join.

4 Performance Evaluation

We simulated the performance of the time index
in order to compare it with traditional temporal ac-
cess structures. Some of the results of the simulation
are shown in Figures 7 to 12. The database had 1000
objects, and versions where added based on an expo-
nential distribution for interarrival time. New versions
were assigned to objects using a uniform distribution.
Objects where also inserted and deleted using an ex-
ponential distribution with a much larger interarrival
time than that for version creation.

for each DEPARTMENT object do
begin
for each version of the DEPARTMENT object do

begin
retrieve the Dept value, and valid time [tl, t2] of the version;
use the EMPLOYEE top-level index to locate the time index for the Dept value;
use the time index to retrieve EMPLOYEE versions whose time interval overlaps [tl, t2];
join each EMPLOYEE version to the DEPARTMENT version;
end;

end;

8

0 ACCeSSIOn List
0 tlustermg
n lime Index wltn ACCeSSlOn LlSt
q Time lnoex with Clusterlng

iepe~a for Fw

Fbuel. Bbb~brhWvUQ*(I

low
Bbe

3000

2500

2000

1500

1000

04
5.03 9.59 13.79 17.59 21.35 24.84 27.93

AVWSQONUdUdV-~~

0 AccessIon List Time Index
0 Time index EbTree Storage
l Clustering Tlme Index
0 Data File Blocks

UQCM for F1pytg2

6000

5000

4000

3000

2000

1000

0

5000 10000 15000 20000 25000 30000 35000
TOUNUO95IOlVUSbN

0 Data File Blocks
0 Time Index (I -block leaf nodes) l Two-Level Time Index

0 Time Index (2-!JIOCk leaf nodes) l Regular Tlme Index
m Time Index (4-DlOCk leaf nodes) 0 Data File Block9

0000
I

OT I 01 4
5000 10000 15000 20000 25000 30000 35000 5000 10000 15000 20000 25000 30000

ToldNunbefdVrnlon ToUNunberdVenhW4

0
0
l
q

0
0

i
A

TOId
ebch

Data File Blocks

Time Index (I-block leaf nodes)

Time Index (2-block leaf nodes)

Time Index (4-block leaf nodes)

2000

1000

0.
5000 10000 15000 20000 25000 30000 35000

ToCllNMbrdV9nkN19

ACceSSiOn List Tune Index
Clustering Tlme lnaex

Two-Level Tlme Index

Interval Query (Two-Level Index)

Regular Tlme Index

9.9s 13.79 17.99 2j.59
Avmq,mNunbndV~~EdiQ

24.94

9

Figure 7 compares the performance of a time index
with the traditional access structures of clustering (all
versions of an object are clustered on disk blocks) and
using an accession list (each object has an accession
list to access its versions based on time) [AS88]. The

number of block accesses needed for an interval query
is calculated (an interval query retrieves all versions
valid during a particular time period). Figure 7 shows
how performance for clustering and accession list de-
teriorates as the number of versions per object grows,
whereas using a time index maintains a uniform per-
formance.

Figure 8 shows the storage requirements for a basic
time index. As we can see, the B+ -tree itself does not
require much storage but the buckets for leading en-
tries in each leaf node require too much storage. This
led us to simulate the case where each leaf node in the
tree has two and four disk blocks in order to reduce
the total number of buckets for leading entries. As can
be seen in Figures 9 and 10, this led to an apprecia-
ble reduction in the storage requirements for the time
index. Our simulation also showed that this did not
adversely affect the performance of an interval query.

Figure 11 simulates the two-level time index perfor-
mance for a temporal selection query (select all em-
ployees who work in a particular department during a
particular time period). This temporal selection shows
the most dramatic improvement over traditional access
structures, since only 16 block accesses were needed
using a two-level index compared to over 1000 block
accesses with traditional structures. Because of this
promising result, we simulated the performance of an
interval query (Figure 11) using a two-level index, and
the result was only about 30% higher than when using
a regular (single-level) time index. This suggests that
it may be sufficient to have only two-level time indexes
on the various attributes. The storage requirements
for the two-level index are also considerably less than
for a regular time index because the versions are dis-
tributed over many time trees (Figure 12) leading to
smaller buckets for leading entries in the leaf nodes.

5 Conclusions and Future Di-
rections

We described a new indexing technique, the time
indez, for temporal data. The index is different from
regular B+-tree indexes because it is based on objects
whose search values are intervals rather than points.

We create a set of indexing points based on the start-
ing and ending points of the object intervals, and use
those points to build-an indexing structure. At each
indexing point, all object versions that are valid dur-
ing that point can be retrieved via a bucket of point-
ers. We used incremental buckets to reduce the bucket
sizes. Search, insertion, and deletion algorithms are
presented.

Our structure can be used to improve the performance
of several important operations associated with tempo-
ral databases. These include temporal selection, tem-
poral projection, aggregate functions, and certain tem-
poral joins. We showed how our index structure can
be used to process each of the above temporal oper-
ations. Previous proposals for temporal access struc-
tures are mainly concerned with linking together the
versions of a particular object, and dc not provide for
efficient access strategies for the types of temporal op-
erations discussed above. Results from simulating the
behaviour of our access structure, and comparing its
performance with the other proposed techniques show
that the two-level time index is a very promising access
structure for temporal selection queries. The one-level
time index is efficient for interval queries, but requires
much storage space; the storage space can be reduced
by having larger leaf nodes in the B+ - tree to re-
duce the number of leading buckets. Our time index
is hence a secondary access path that can be used to
locate temporal objects efficiently without having to
perform a search through the whole database when
certain temporal operations are specified.

Appendix A

In this Appendix, we prove the correctness of the search
algorithm for the time index.

Theorem: S(1.s) = T(ls).

Proof: (3) Assume ej E S(ls). We will show ej E
T(lz). The condition ej.vulidAime n Is # 8 implies
that one of the following cases is true.

Case 1: t, 5 ej.valid-time.t, 5 tf,.

By (C2), it suffices to show both of the following two
conditions hold: ej.valid-time.t, E PI(Is) and ej E
B(ej.valid-time.t,). From the way Pl(Is) is con-
structed (PRl), the first condition holds. We now
show the second condition is also true. By (PR2), it
suffices to show [ej .valid_time.t,, ej .valid-time.tf - l]

10

c ej .valid-time = [ej .valid-time.t,, ej .valid-time.t,].
Since these two intervals have the same starting point,
it suffices to showej.valid-time.t$-1 5 ej.valid-time.t,.
This is proved by contradiction. Assume ej.validfime.t,
< ej.valid-time.tt - 1, or ej.validfime.t, + 1 <
ej.valid-time.tt. By (PR2), ej.valid-time.t, f 1 is a
point in BP. It is a contradiction since there cannot ex-
ist a point between ej .valid-time.t, and ej.valid-time.tz.

Case 2: ej.valid-time.t, < t, 5 ej.valid-time.t, 5 tb,

It can be easily shown by contradiction that [t;, t, -
l] C ej.1. By (PR2) and (C2), ej E B(t,) C T(1.s).
Case 3: ej.valid-time.t, < t, _< tb < ej.valid-time.t,.
The argument is similar to Case 2.

(e) Assume ej E T(ls). By (C2), at least one of the
following two cases are true.
Case 1: 3tk E PI(Is)(ej E B(tk)) .

By (PR2), [tk,tk+ - l] E. ej.I. By (Cl), tk must be a
point between t, and tb; that is, tk E 1s. Since tk is
contained in both ej.J and Is, ej.valid-time n Is # 0
holds. Hence ej E S(Is).
Case 2: t?j E B(t,=).

From the way t;= is computed, there are two possi-
bilities.
Case 2.1: 3, E BP(t, = ta).

In this case, t,= = pm. Since ej E B(p,,&), by (PR2),
[tm, t$, - l] C ej.J follows. Since t, = t,, t, is con-
tained in both ej.J and Is. Thus ej.JnIs # 0 follows.
Therefore ej E S(Is).
Case 2.2: $t,,, E BP(t, = to). In this case, there ex-

ists a point tl in BP such that tl = t;= = t;. It can

be easily shown that tl < t, < t;'. Since ej E B(tl),

by (PR2), [tl,tfr - l] C ej.J follows. Since t, > tl,

wl+ - l] C_ [tl,t,' - l] C ej.J holds. (Note that, by

the fact t, < t:, the length of the interval [ta, tr - l]
is at least one.) Again, since t, is contained in both
ej.J and Is, ej.J n Is # 0 follows. Thus ej E S(Is).

References

[Ahn86]

[AS881

[CC871

[Corn791

[CT851

[CW83]

[EN891

[EW90]

[Gad881

[GSsu]

[Gut841

[GY88]

[KS891

I. Ahn. Towards an implementation of data-
base management systems with temporal
support. In IEEE Data Engineering Con-
ference, February 1986.

I. Ahn and R. Snodgrass. Patitioned storage
for temporal databases. Information Sys-
tems, 13(4), 1988.

J. Clifford and A. Croker. The historical
data model: an algebra based on lifespans.
In IEEE Data Engineering Conference, Feb-
ruary 1987.

D. Comer. The ubiquitous b-tree. ACM
Computing Surveys, 11(12), June 1979.

J. Clifford and A. Tansel. On an algebra for
historical relational databases: Two views.
In ACM SIGMOD Conference, May 1985.

J. Clifford and D. Warren. Formal semantics
for time in databases. ACM TODS, 8(2),
June 1983.

R. Elmasri and S. Navathe. Fundamentals
of Database Systems. Benjamin/Cummings,
1989.

R. Elmasri and G. Wuu. A temporal model
and language for er databases. In IEEE Data
Engineeting Conference, February 1990.

S. Gadia. A homogeneous relational model
and query language for temporal databases.
ACM TODS, 13(4), December 1988.

S. Gunadhi and A. Segev. Efficient Indexing
Methods for Temporal Relations. Submitted
to IEEE Knowledge and Data Engineering.

A. Guttman. R-trees: A dynamic index
structure for spatial searching. In A CM SIG-
MOD Conference, May 1984.

S. Gadia and C. Yeung. A generalized model
for a temporal relational database. In ACM
SIGMOD Conference, June 1988.

C. Kolovson and M. Stonebraker. Index-
ing techniques for historical databases. In
IEEE Data Engineering Conference, Febru-
ary 1989.

11

[LS89] D. Lomet and B. Salzberg. Access meth-
ods for multiversion data. In ACM SIGMOD
Conference, June 1989.

[Lum84] V. Lum et al. Design dbms support for
the temporal dimension. In ACM SIGMOD
Conference, April 1984.

[NA87] S.B. N avathe and R. Ahmed. A temporal re-
lational model and a query language. In In-
fomnation Sciences, North-Holland, Vol. 49,
No. 1, 2, and 3, 1989.

[OSD87] K. Ooi, B. McDonell and R. Sacks-Davis.
Spatial kd-tree: Indexing mechanism for spa-
tial database. In IEEE COMPSAC 87, 1987.

ww

[SA85]

[SGSS]

[Sno87]

[SS87]

D. Rotem and A. Segev. Physical organisa-
tion of temporal data. In IEEE Data Engi-
neering Conference, 1987.

R. Snodgrass and I. Ahn. A taxonomy of
time in databases. In ACM SIGMOD Con-
ference, May 1985.

A. Segev and H. Gunadhi. Event-join op-
timization in temporal relational databases.
In Very Large Databases Conference, August
1989.

R. Snodgrass. The temporal query language
tquel. ACM TODS, 12(2), June 1987.

A. Segev and A. Shoshani. Logical modeling
of temporal data. In ACM SIGMOD Con-
fexnce, June 1987.

12

