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ABSTRACT 

In this paper, we describe a new indexing technique, 
the time indez, for improving the performance of cer- 
tain classes of temporal queries. The time index can be 
used to retrieve versions of objects that are valid dur- 
ing a specific time period. It supports the processing 
of the temporal WHEN operator and temporal aggre- 
gate functions efficiently. The time indexing scheme 
is also extended to improve the performance of the 
temporal SELECT operator, which retrieves objects 
that satisfy a certain condition during a specific time 
period. We will describe the indexing technique, and 
its search and insertion algorithms. We also describe 
an algorithm for processing a commonly used temporal 
JOIN operation. Some results of a simulation for com- 
paring the performance of the time index with other 
proposed temporal access structures are presented. 

1 Introduction 

Research in temporal databases has been mostly 
concerned with defining data models and operations 
that incorporate the time dimension. Extensions to 
the relational data model and its operations for han- 
dling temporal data have been presented in [CT85, 
SA85, Sno87, CC87, Gad88, GY88, NA87]. In addi- 
tion, some work has been concerned with defining tem- 
poral extensions to conceptual data models and query 
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languages [SS87, EW90]. These temporal data models 
define powerful operations for specifying complex tem- 
poral queries. There has been relatively less research 
in the area of defining efficient storage structures and 
access paths for temporal data [Lum84, Ahn86, AS88, 
SG89, GSsu, RS87, KS89, LSSS]. These proposals do 
not discuss indexing schemes for supporting the high- 
level temporal operators defined in [GY88, EW90]. 
This paper describes indexing techniques for improv- 
ing the efficiency of temporal operations, such as when, 
select, and join [GY88], temporal selection and tempo- 
ral projection [EW90], and aggregation functions. 

The storage techniques for temporal data proposed in 
[AS88, Lum84] d in ex or link the versions of each in- 
dividual object separately. In order to retrieve object 
versions that are valid during a certain time period, it 
is necessary to first locate the first (current) version of 
each object, and then search through the version in- 
dex (or list,) of each object separately. In comparison, 
our time index will lead directly to the desired versions 
without having to search the version index of each in- 
dividual object separately. The method proposed in 
[RS87] allows a search based on time using a multi- 
dimensional partitioned file, in which one of the dimen- 
sions is the time dimension. In their scheme tempo- 
ral data items are associated with a time point rather 
than a time interval, and hence is not useful when time 
intervals are assumed. Other work ([LSSS, KS89]) dis- 
cusses indexing historical data when optical disks are 
available, and is mainly concerned with the index be- 
haviour as older data is transferred to optical disk. 

We consider our time index to be a basic indexing tech- 
nique for temporal data. It can be combined with a 
conventional attribute indexing scheme to efficiently 
process temporal selections and temporal join opera- 
tions. Figure 1 shows a simple example of a tempo- 
ral database consisting of two relations. We will use 
this example to illustrate the structure of our time in- 
dex. Section 2 describes the index access structure, 
and presents the search and insertion algorithms. Sec- 
tion 3 discusses how the basiq time index can be ex- 



tended to improve the efficiency of additional temporal 
operations. Section 4 includes some performance sim- 
ulation results for the time index. Finally, Section 5 
presents conclusions and directions for future research. 

The EMPLOYEE table 

’ Dept Manager Valid-Time 
A Smith P, 31 
A Thomas P> 91 
A Chang [lo, now] 
B Cannata [0, 6] 
B Martin P, nowI 
c Roberto [0, now] 

The DEPARTMENT table 

Figure 1: A Temporal Database 

2 The Time Index Access Struc- 
ture 

In this section, we first give a storage model for 
temporal data based on the object versioning approach’ 
[SA85]. The time indexing technique can be adapted 
to other temporal database proposals, such as time 
normalization [NA87] or attribute versioning [GY88]. 
We use object versioning because it is a simpler ap- 
proach for storage management, and allows us to con- 
centrate our presentation on the properties of the time 
index itself. In Section 2.2, we will describe our time 
index, and provide search, insertion, and deletion algo- 
rithms. Sections 2.3 and 2.4 show how the time index 
may be used to efficiently process the temporal WHEN 
operator and aggregate functions. 

2.1 The Temporal Storage Model 

The time dimension is represented, as in [GY88, 
CW83, Gad881 and others, using the concepts of dis- 
crete time points and time intervals. A time interval, 
denoted by [tl,tz], is defined to be a set of consec- 
utive equidistant time instants (points), where tr is 
the first time instant and tr is the last time instant of 
the interval. The time dimension is represented as a 
time interval [O,now], where 0 represents the starting 
time of our database mini-world application, and now 
is the current time, which is continuously expanding. 
The distance between two consecutive time instances 
can be adjusted based on the granularity of the ap- 
plication to be equal to months, days, hours, minutes, 
seconds, or any other suitable time unit. A single dis- 
crete time point t is easily represented as an interval 
[t,tJ, or simply [t]. 

We will assume an underlying record-based storage 
system which supports object versioning. Records are 
used to store versions of objects. In addition to the 
regular record attributes, Ai, each record will have an 
interval attribute, called valid-time, consisting of two 
sub-attributes t, (valid start time) and t, (valid end 
time). The valid-time attribute of an object version is 
a time interval during which the version is valid. In ob- 
ject versioning, a record T with r.valid-time.t, = now 
is considered to be the current version of some ob- 
ject. However, numerous past versions of the object 
can also exist. We assume that the versions of an ob- 
ject are linked to the current version using one of the 
basic storage techniques (chaining, clustering, acces- 
sion list) proposed in [AS88, Lum84]. In addition, we 
assume that the current version of an object can be 
efficiently located from any other version; for exam- 
ple, by using a pointer to a linked list header, which 
in turn points to the current version. 

Whenever an object o is updated with new attribute 
values, the current version, r, becomes the most recent 
past version, and a new current version T’ is created 
for o. If the valid time of the update is t,, then the 
update is executed as follows: 

r.vaZid-time& + (t,, - 1) ; 
create a new object version T’ by setting T) + T ; 
for each modified regular attribute Ai 

set T’.& t the new attribute value ; 
set r’.valid-time.t, c t, ; 
set r’.valid-time.& + now ; 

1This approach is called tuple versioning in [SASS] 
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Such a database is called append only since older ob- 



ject versions are never deleted, so the file of records 
continually has object versions appended to it. An 
operation to delete an object o at time td is executed 
as follows: 

find the current version T of the object o; 
set r.valid_time.t, + td ; 

Finally, an operation to insert an object o at time ti is 
executed as follows: 

create the initial version T for o ; 
set r.valid-time.t, +- ti ; 
set r.valid-time& + now ; 

Because the append-only nature of such a temporal 
database will eventually lead to a very large file, we as- 
sume that a purge(&) operation is available. This op- 
eration purges all versions r with r.valid-time& < t, 
by moving those versions to some form of archival stor- 
age, such as optical disk or magnetic tape. 

2.2 Description of the Time Index 

Conventional indexing schemes assume that there 
is a total ordering on the index search values. The 
properties of the temporal dimension make it difficult 
to use traditional indexing techniques for time index- 
ing. First, the index search values, the valid-time at- 
tribute, are intervals rather than points. The valid-time 
intervals of various object versions will overlap in ar- 
bitrary ways. Because one cannot define a total or- 
dering on the interval values, a conventional index- 
ing scheme cannot be used. Second, because of the 
nature of temporal databases, most updates occur in 
an append mode, since past versions are kept in the 
database. Hence, deletions of object versions do not 
generally occur, and inSertions of new object versions 
occur mostly in increasing iime value. In addition, the 
search condition typically specifies the retrieval of ver- 
sions that are valid during a particular time interval. 

A time index is defined over an object versioning record- 
based storage system, TDB, which consists of a col- 
lection of object versions, TDB = {el, ez, . . ..e.}, and 
supports an interval-based search operation. This op- 
eration is formally defined as follows. 

Given a Search Interval, 1s = [ta, ta], find the follow- 
ing set of versions: 

S(Is) = {ej E TDB 1 (ej.validfime n Is) # 0 } 

A simple but inefficient implementation of this search 

operation is to sequentially access the entire storage 
system, TDB, using linear search, and to retrieve those 
records whose valid-time intersects with Is. Such a 
search will require O(N*M) accesses to the storage sys- 
tem, where N is the number of objects and M is the 
maximal number of versions per object. 

Notice that the interval-based search problem is identi- 
cal to the k-dimensional spatial search problem, where 
k = 1. There have been a number of index meth- 
ods proposed for k-dimensional spatial search [Gut84, 
OSD87], which are not suitable for the time dimension 
for the reasons discussed below. These index meth- 
ods support spatial search for 2-dimensional objects 
in CAD or geographical database applications. The 
algorithms proposed in [Gut84, OSD87] use the con- 
cept of a region to index spatial objects. A search 
space is divided into regions which may overlap with 
each other. A sub-tree in an index tree contains point- 
ers to all spatial objects located in a region. Since 
spatial objects can overlap with each other, handling 
the boundary conditions between regions is quite com- 
plex in these algorithms. In temporal databases, there 
can be a very high degree of overlapping between the 
valid-time intervals of object versions. A large num- 
ber of long or short intervals can exist at a particular 
time point. Furthermore, the search space is continu- 
ously expanding and most spatial indexing techniques 
assume a fixed search space. In addition, temporal 
objects are appended mostly in increasing time value, 
making it difficult to maintain tree balance for tra- 
ditional indexing trees. Because of these differences 
between temporal and spatial search, we do not con- 
sider the spatial algorithms in [Gut84, OSD87] to be 
suitable for temporal data if they are directly adapted 
from 2-dimensions to a single dimension. 

The idea behind our time index is to maintain a set 
of linearly ordered indexing points on the time dimen- 
sion. An indexing point is created at the time points 
where (a) a new interval is started, or (b) the time 
point immediately after an interval terminates. The 
set of all indexing points is formally defined as follows: 

(PRl) BP = {ti 1 3ej E TDB ((ti = ej.validfime.t,) 
V (ti = ej.validAime.t, + 1))) U {now} 

The concept of indexing points is illustrated in 
Figure 2 for the temporal data shown in the EM- 
PLOYEE table of Figure 1. In Figure 2, e;j refers to 
version j of object ei. There exist 9 indexing points in 
BP for all employee versions, BP = {0,2,4,6,8,10,11, 
12,now). Time point 2 is an index point since the 
version e41 st&ts at 2. Time point 6 is an index point 
since egl terminates at 5. 
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Figure 2: Versions of EMPLOYEE Objects, 
and a Time Index 

Before proceeding to describe our index structure, we 
define some additional notation that will be useful in 
our discussion. Let tj be an arbitrary time point, 
which may or may not be a point in BP. We define t? 

(tJ) to be the point in BP such that ty < tj (tj < t$) 
and there does not exist a point t, E BP such that 
ti < t, < tj (tj < t, < tr). In other words, t? (t:) 
is the point in BP that is immediately before (after) 
tj. We also define t?= as follows: 

1. If there exists a point i!k E BP such that tj = tk, 
then ti= = tk. 

2. Otherwise, tj-= = ti 

Since all the indexing points ti in BP can be totally 
ordered, we can now use a regular B+-tree [Com79, 
EN891 to index these time points. Each leaf node en-’ 
try of the B+-tree at point t; is of the form: 

[tj, bucket] 

where bucket is a pointer to a bucket containing point- 
ers to object versions. Each bucket B(ti) in our index 
scheme is maintained such that it contains pointers to 

B(4) = {el2, e21, ed 
= {ej E TDB 1 ([4,5] C_ ej.vdidtime)} 

In a real temporal database, there can be a large num- 
ber of object versions in each bucket, and many of 
those may be repeated from the previous bucket. For 
example, in Figure 2 the object version els appears 
in multiple consecutive buckets. To reduce this re- 
dundancy and make the time index more practical, an 
incremental scheme is used. Rather than keeping a 
full bucket for each time point entry in BP, we only 
keep a full bucket for the first entry of each leaf node. 
Since most versions will continue to be valid during 
the next indexing interval, we only keep the incremen- 
tal changes in the buckets of the subsequent entries 
in a leaf node. For instance, in Figure 3 the entry at 
point 10 stores {+esi, -ea2} in its incremental bucket 
indicating es1 starts at point 10 and eas terminates at 
the point immediately before point 10. Hence, the in- 
cremental bucket B(t;) for a non-leading entry at time 
point ti can be computed as follows: 

B(ti) = B(tl) ” (UtjEBp,t,<tj<ti SA(tj)) 
- (UtjEBP,t,<tj<ti SE(tj)) 

where B(tl) is the bucket for the leading entry in the 
leaf node where point t; is located, SA(tj) is the set 
of object versions whose start time is tj and SE(tj) is 
the set of object versions whose end time is tj - 1. 

We now describe our search algorithm as follows: 

1. Suppose the time search interval is IS = [ta, ta]. 
Perform a range search on the B+-tree to find 

(Cl) PI(Is) = {ti E BP/t, _< ti 5 tb) u {t,=} 

2. Then compute the following set as the result of 
the algorithm. 

(C2) T&z) = &PI B(h) 
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Figure 3: Storing Incremental Changes in the Time Index Buckets 

Insertion or deletion of a new object version should 
maintain the properties (PRl) and (PR2). The algo- 
rithms for inserting and deleting an object version ek 
are shown in Algorithm A. Note that, in general, vex- 
sion deletion will not occur in append-only databases 
except for an exception such as correction of an error. 

It is easy to argue that (PRl) and (PR2) are main- 
tained after each execution of the Insert or Delete op- 
eration. We will not show the proof argument here 
due to the lack of space. 

2.3 Using the Time Index for Process- 
ing the WHEN Operator 

The time index can be used to efficiently process 
the WHEN operator [GY88] with a constant projec- 
tion time interval. An example of the type of query 
is: List the salary history for all employees during the 
time interval [4, 51. The result of such a query can 
be directly retrieved using the time index on the EM- 
PLOYEE object versions shown in Figure 3. We will 
discuss in Section 3 how an extension to the time index 
will permit efficient processing of temporal SELECT 
operations. Notice that a simple query such as the one 
given above is very expensive to process if there was 
no index on time. 

2.4 Using the Time Index for Process- 
ing Aggregate Functions 

In this section we will describe how the time in- 
dex scheme is used to process aggregate functions at 
different time points or intervals. In non-temporal 
conventional database, the aggregate functions, such 

. as COUNT, EXISTS, SUM, AVERAGE, MIN, and 

Insert(ek) 
begin 

t, + ek.validfime.t, ; 
tb c ek.valid-time.& -k 1 ; 
search the B+-tree for t,; 
if (lfound) then 

insert t, in the B+-tree; 
if entry at t, is not a leading entry in a leaf node 

add ek into SA(t,); 
search the B+-tree for tt,; 
if (-lfound) then 

insert tb in the B+-tree; 
if entry at tb is not a leading entry in a leaf node 

add ek into SB(tb); 
for each leading entry tl of a leaf node 
where t, 5 tr < tb 

end 
add ek in B(tl); 

Delete(ek) 
begin 

t, + ek.validlime.t, ; 
tt, + ek.valid-time.& + 1 ; 
search the B+-tree for t - a, 
if entry at t, is not a leading entry in a leaf node 

remove ek from SA(t,); 
search the B+-tree for tb; 
if entry at tb iS not a leading entry in a leaf node 

remove e& from SE(&); 
for each leading entry tJ of a leaf node 
where t, 5 tl < tb 

remove ek from B(i!l); 

end 
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MAX are applied to sets of objects or attribute valuks 
of sets of objects. In temporal databases, an aggregate 
function is applied to a set of temporal entities over an 
interval. For instance, the query ‘GET COUNT EM- 
PLOYEE : [3, 81’ [EW90] should count the number of 
employees at each time point during the time interval 
[3, 81. The result of the temporal COUNT function is 
a function mapping from each time point in [3, 81 to 
an integer number that is the number of employees at 
that time point. For instance, the above query is eval- 
uated to the following result if applied to the database 
shown in Figure 1: 

{ [3] ---t 4, 14, 51 + 3, P, 71 ---) 2, PI --+ 3 > 

Our time index can be easily used to process such ag- 
gregate functions. Let 1s be the interval over which 
the temporal aggregate function is evaluated. The 
query performs a range search to find Pl(1~). Each 
point in Pl(ls) p re resents a point of state change 
in the database. That is, the database mini-world 
changes its state at each change point and stays in 
the same state until the next change point. Therefore 
the aggregate function only needs to be evaluated for 
the points in Pl(ls). The query is evaluated by ap- 
plying the function on the bucket of object versions at 
each point. If the incremental index shown in Figure 
3 is used, the running count from the previous change 
point is updated at the current change point by adding 
the number of new versions and subtracting the num- 
ber of removed versions at the change point. Similar 
techniques can be used for other aggregate functions 
that must be computed at various points over a time 
interval. 

3 Extensions of the Time Index 
for Other Temporal Operators 

The basic indexing scheme can be extended to 
support other important temporal operators, such as 
temporal selection [EW90, GY88]. In a non-temporal 
database, a common form of a selection condition is to 
compare an attribute with a constant or with a range; 
for example, ‘EMPLOYEE.Dept = B’ or ‘20K < EM- 
PLOYEE.Salary < 30K’. Such conditions evaluate to 
a boolean value for each object. In a temporal data- 
base, however, a 6 comparison condition evaluates to a 
function which maps from [O, now] to a boolean value. 
For instance, the condition ‘EMPLOYEE.Dept = B’ 
when evaluated on empl of Figure 1 will have the fol- 
lowing result: 

{ [0, 31 -+ FALSE, [4, now] -+ TRUE } 

A complete temporal selection should specify not only 
a condition but also when the condition holds. For 
example, to select employees who had worked in de- 
partment B during the time period [3, 4], a SELECT 
condition should be specified as: 

[EMPLOYEE.Dept = ‘B’ 1 n [3, 4] # 0 

The notation [cl, where c is a 8 comparison condition, 
represents the time intervals during which c evaluates 
to TRUE for each object. A search for objects that 
satisfy such a temporal condition can be formulated 
as a spatial search problem, as illustrated in Figure 
4. The search space has two dimensions: the attribute 
dimension and the time dimension. A vertical line rep- 
resents an object version whose search value consist of 
a point value on the attribute dimension and an inter- 
val value on the time dimension. A two-dimensional 
range is specified by a rectangle. For ir stance, the dot- 
ted rectangle in Figure 4 specifies the search condition: 

1[ ‘B’ <= EMPLOYEE.Dept <= ‘C’ 1 n [6, 9] # 0 

A search involves the retrieval of all object versions 
that intersect with the search rectangle. 

These types of operations combine selection based on 
a time interval with a selection based on conditions 
involving attribute values. If the condition to be satis- 
fied is based on the value of a single attribute, we can 
use a traditional B+-tree index constructed on that 
attribute, which searches for the current version of 
each object that satisfies the (attribute) search condi- 
tion. In current proposed storage structures [Lum84, 
Ahn86], the current version of an object can be used 
to access past (‘and possibly future) versions of the ob- 
ject using various techniques such as clustering, reverse 
chaining, or an accession list. These proposed struc- 
tures work well only if the index search field is a non- 
temporal attribute of the objects; that is, an attribute 
whose value does not change with time. The reason 
is that for conditions on temporal (time-varying) at- 
tributes, the attribute value of an object may have 
been changed so that it is not possible to access a past 
version that used to satisfy the search criterion via the 
current version. In order to solve this problem, the in- 
dex must in&de dir&t pointers to all past and present 
object versions that have the search attribute value. 
This can result in a very large number of pointers in 
the leaf nodes of the index. It is then still necessary to 
search through all these versions and to check whether 
each version satisfies the time condition. 
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Figure 4: Two-Dimensional Search 

3.1 The Two-Level Combined Attribute 
Time Index 

To solve this problem, our approach is to use a 
two-level indexing scheme. The top-level index is a 
B+-tree built on a search attribute; for example, the 
Dept attribute of EMPLOYEE in Figure 1. Each leaf 
node entry of the top-level index tree includes a value 
of the search attribute and a pointer to a time indec. 
Hence, there is a time index tree for each attribute 
value. The internal structure of each time index tree 
is similar to the basic time index described in Section 
2. 

Figure 5 shows the combined index structure for the 
EMPLOYEE table shown in Figure 1. The top-level 
index tree is built on the Dept attribute. Since there 
are three departments, A, B, and C, there are three 
time index trees for them. Figure 5 only shows the 
time index tree for department B, which indexes ver- 
sions of EMPLOYEE objects that have a Dept at- 
tribute value of ‘B’. 

3.2 Processing the Temporal Select Op- 
erator 

We now describe how to use the two-level index 
scheme to process a temporal SELECT condition such 
as: 

TimcIndsxT~fordcp.A 
\ 

\ TiihkxTrecforDcpt.B 

Figure 5: Two-Level Combined Attribute/Time Index 

d Employee.Dept = ‘B’ ]I n [3, 41 # 0 

This selects all employees who worked for department 
B during the time interval 13, 41. The first step is to 
search the top level (the Dept attribute) index for the 
Dept value ‘B’. This leads to the time index for depatt- 
ment B, which is then searched for the time interval 
[3, 41. As a result, the appropriate object versions are 
retrieved. 

Note that each of these retrieved versions records a 
partial history of a selected object. However, in most 
temporal data models ([GY88]), the SELECT opera- 
tor should return the full set of versions (the entire his- 
tory) for each selected object. Hence, it is necessary to 
assume that versions of each object will contain back 
pointers to access the current version as part of the 
basic temporal access structure. Any one of the tra- 
ditional version access structures for object versions 
(such as clustering, accession list, or reverse chaining) 
can then be used to retrieve the entire version history 
via the current object for the selected objects. 

3.3 Using the Time Index to Process 
Temporal JOIN operations 

The time index can also be used to improve the 
efficiency of certain temporal join operations. There 
have been several temporal join operations discussed in 
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[SG89]. However, most of these join operations are de- 
fined for joining together a temporal object that is VeT- 
tically partitioned into several relations via time nor- 
malization. For example, the attributes of temporal 
EMPLOYEE objects would be partitioned into several 
relations, where each relation would hold the primary 
key and those attributes (usually a single one) that are 
always modified synchronously. There would be a re- 
lation for EMPSALARY, one for EMP-JOB, and so 
on. The EVENT JOIN [SG89] is used to build back 
the temporal objects from the partitioned relations. 

A time index can be used to increase the efficiency 
of join operations. This includes more general types 
of join operations that correspond to the NATURAL 
JOIN operation of a non-temporal database. This type 
of operation joins the tuples of two relations based 
upon an equality join condition on attribute values 
during a common time interval Hence, the result of 
the join would include an object version whenever two 
object versions have the same join attribute value, and 
the intersection of the valid time periods during which 
the join attributes are equal is not empty. The valid 
time of the resulting join object would be the intersec- 
tion of the valid times of the two joined object versions. 
For example, consider the database shown in Figure 
1, where two relations EMPLOYEE and DEPART- 
MENT are shown. Suppose we want to execute a 
join operation to retrieve the time history of employees 
working for each department manager. In this case, we 
want to join each department object with the appro- 
priate EMPLOYEE objects during the time periods 
when the employees worked for that department. The 
result of the join would be as shown in Figure 61 

We C~II use a two-level time index on the Dept at- 
tribute of EMPLOYEE to retrieve the employee ver- 
sions working for each department during specific time 
periods. The join algorithm outline is shown in Algo- 
rithm B. 

Name [ Dept 1 Valid-Time [ Manager 
empl ] A I w, 31 1 Smith 

1 emp4 1 A 1 k3,9i hh t omas 
emp4 A [‘lo, how] 
emp5 B [lo, now] 
emp6 C [12, now] 
emp7 C [ll, now] 

Chang 
Martin 
Roberto 
Roberto 

Figure 6: Result of Temporal Join 

Using the time index would increase the efficiency of 
locating the EMPLOYEE object versions based on 
a particular Dept value and time interval combina- 
tion. Hence, the versions of DEPARTMENT and EM- 
PLOYEE to be joined can be directly located. The 
intersection of their valid time intervals is then calcu- 
lated for the result of the join. 

4 Performance Evaluation 

We simulated the performance of the time index 
in order to compare it with traditional temporal ac- 
cess structures. Some of the results of the simulation 
are shown in Figures 7 to 12. The database had 1000 
objects, and versions where added based on an expo- 
nential distribution for interarrival time. New versions 
were assigned to objects using a uniform distribution. 
Objects where also inserted and deleted using an ex- 
ponential distribution with a much larger interarrival 
time than that for version creation. 

for each DEPARTMENT object do 
begin 
for each version of the DEPARTMENT object do 

begin 
retrieve the Dept value, and valid time [tl, t2] of the version; 
use the EMPLOYEE top-level index to locate the time index for the Dept value; 
use the time index to retrieve EMPLOYEE versions whose time interval overlaps [tl, t2]; 
join each EMPLOYEE version to the DEPARTMENT version; 
end; 

end; 
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Figure 7 compares the performance of a time index 
with the traditional access structures of clustering (all 
versions of an object are clustered on disk blocks) and 
using an accession list (each object has an accession 
list to access its versions based on time) [AS88]. The 

number of block accesses needed for an interval query 
is calculated (an interval query retrieves all versions 
valid during a particular time period). Figure 7 shows 
how performance for clustering and accession list de- 
teriorates as the number of versions per object grows, 
whereas using a time index maintains a uniform per- 
formance. 

Figure 8 shows the storage requirements for a basic 
time index. As we can see, the B+ -tree itself does not 
require much storage but the buckets for leading en- 
tries in each leaf node require too much storage. This 
led us to simulate the case where each leaf node in the 
tree has two and four disk blocks in order to reduce 
the total number of buckets for leading entries. As can 
be seen in Figures 9 and 10, this led to an apprecia- 
ble reduction in the storage requirements for the time 
index. Our simulation also showed that this did not 
adversely affect the performance of an interval query. 

Figure 11 simulates the two-level time index perfor- 
mance for a temporal selection query (select all em- 
ployees who work in a particular department during a 
particular time period). This temporal selection shows 
the most dramatic improvement over traditional access 
structures, since only 16 block accesses were needed 
using a two-level index compared to over 1000 block 
accesses with traditional structures. Because of this 
promising result, we simulated the performance of an 
interval query (Figure 11) using a two-level index, and 
the result was only about 30% higher than when using 
a regular (single-level) time index. This suggests that 
it may be sufficient to have only two-level time indexes 
on the various attributes. The storage requirements 
for the two-level index are also considerably less than 
for a regular time index because the versions are dis- 
tributed over many time trees (Figure 12) leading to 
smaller buckets for leading entries in the leaf nodes. 

5 Conclusions and Future Di- 
rections 

We described a new indexing technique, the time 
indez, for temporal data. The index is different from 
regular B+-tree indexes because it is based on objects 
whose search values are intervals rather than points. 

We create a set of indexing points based on the start- 
ing and ending points of the object intervals, and use 
those points to build-an indexing structure. At each 
indexing point, all object versions that are valid dur- 
ing that point can be retrieved via a bucket of point- 
ers. We used incremental buckets to reduce the bucket 
sizes. Search, insertion, and deletion algorithms are 
presented. 

Our structure can be used to improve the performance 
of several important operations associated with tempo- 
ral databases. These include temporal selection, tem- 
poral projection, aggregate functions, and certain tem- 
poral joins. We showed how our index structure can 
be used to process each of the above temporal oper- 
ations. Previous proposals for temporal access struc- 
tures are mainly concerned with linking together the 
versions of a particular object, and dc not provide for 
efficient access strategies for the types of temporal op- 
erations discussed above. Results from simulating the 
behaviour of our access structure, and comparing its 
performance with the other proposed techniques show 
that the two-level time index is a very promising access 
structure for temporal selection queries. The one-level 
time index is efficient for interval queries, but requires 
much storage space; the storage space can be reduced 
by having larger leaf nodes in the B+ - tree to re- 
duce the number of leading buckets. Our time index 
is hence a secondary access path that can be used to 
locate temporal objects efficiently without having to 
perform a search through the whole database when 
certain temporal operations are specified. 

Appendix A 

In this Appendix, we prove the correctness of the search 
algorithm for the time index. 

Theorem: S(1.s) = T(ls). 

Proof: (3) Assume ej E S(ls). We will show ej E 
T(lz). The condition ej.vulidAime n Is # 8 implies 
that one of the following cases is true. 

Case 1: t, 5 ej.valid-time.t, 5 tf,. 

By (C2), it suffices to show both of the following two 
conditions hold: ej.valid-time.t, E PI(Is) and ej E 
B(ej.valid-time.t,). From the way Pl(Is) is con- 
structed (PRl), the first condition holds. We now 
show the second condition is also true. By (PR2), it 
suffices to show [ej .valid_time.t,, ej .valid-time.tf - l] 
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c ej .valid-time = [ej .valid-time.t,, ej .valid-time.t,]. 
Since these two intervals have the same starting point, 
it suffices to showej.valid-time.t$-1 5 ej.valid-time.t,. 
This is proved by contradiction. Assume ej.validfime.t, 
< ej.valid-time.tt - 1, or ej.validfime.t, + 1 < 
ej.valid-time.tt. By (PR2), ej.valid-time.t, f 1 is a 
point in BP. It is a contradiction since there cannot ex- 
ist a point between ej .valid-time.t, and ej.valid-time.tz. 

Case 2: ej.valid-time.t, < t, 5 ej.valid-time.t, 5 tb, 

It can be easily shown by contradiction that [t;, t, - 
l] C ej.1. By (PR2) and (C2), ej E B(t,) C T(1.s). 
Case 3: ej.valid-time.t, < t, _< tb < ej.valid-time.t,. 
The argument is similar to Case 2. 

(e) Assume ej E T(ls). By (C2), at least one of the 
following two cases are true. 
Case 1: 3tk E PI(Is)(ej E B(tk)) . 

By (PR2), [tk,tk+ - l] E. ej.I. By (Cl), tk must be a 
point between t, and tb; that is, tk E 1s. Since tk is 
contained in both ej.J and Is, ej.valid-time n Is # 0 
holds. Hence ej E S(Is). 
Case 2: t?j E B(t,=). 

From the way t;= is computed, there are two possi- 
bilities. 
Case 2.1: 3, E BP(t, = ta). 

In this case, t,= = pm. Since ej E B(p,,&), by (PR2), 
[tm, t$, - l] C ej.J follows. Since t, = t,, t, is con- 
tained in both ej.J and Is. Thus ej.JnIs # 0 follows. 
Therefore ej E S(Is). 
Case 2.2: $t,,, E BP(t, = to). In this case, there ex- 

ists a point tl in BP such that tl = t;= = t;. It can 

be easily shown that tl < t, < t;'. Since ej E B(tl), 

by (PR2), [tl,tfr - l] C ej.J follows. Since t, > tl, 

wl+ - l] C_ [tl,t,' - l] C ej.J holds. (Note that, by 

the fact t, < t:, the length of the interval [ta, tr - l] 
is at least one.) Again, since t, is contained in both 
ej.J and Is, ej.J n Is # 0 follows. Thus ej E S(Is). 
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