
Triggered Real-Time Databases with Consistency Constraints *

Henry F. Kor@ Nandit Soparkar

Department of Computer Sciences
University of Texas at Austin
Austin, TX 78712-1188 USA

Abraham Silberschatz

Abstract

Real-time database systems incorporate the notion of
a deadline into the database system model. USU-

ally, deadlines are associated with transactions, and
the system attempts to execute a given set of trans-
actions so as to both meet the deadlines and ensure
the database consistency. This paper presents an al-
ternative model of real-time database processing in
which deadlines are associated with consistency con-
straints rather than directly with transactions. This
model leads to a predicate-baaed approach to transac-
tion management that allows greater concurrency and
more flexibility in modeling real-world systems.

1 Introduction

Real-time database systems (RTDBs) incorporate tim-
ing considerations into a database system. Not only
must the transactions execute correctly, but also, they
must complete execution within some time limit called
a deadline. Systems that incorporate strict deadlines
are called hard real-time systems while those that do
not are called soft real-time systems.

Real-time systems are usually applied for process-
control which often require a large database of infor-
mation. Hence, recent efforts have aimed at integrating
the real-time systems with database systems to facil-
itate the efficient and correct management of the re-

*Research partially supported by TARP grant 4355, NSF
grant IRI-8805215, and a grant from the IBM Corporation.

Proceedings of the 16th VLDB C‘onfcrencc
Brisbane. Australia 1990

sulting real-time database systems [18]. There are sev-
eral difficulties in accomplishing such an integration. A
database operation (read or write) takes a highly vari-
able amount of time depending on whether disk I/O,
logging, etc. are required. Furthermore, if concurrent
transactions are allowed, the concurrency control may
cause aborts or delays of indeterminate length.

Most previous work on real-time transactions as-
sumes a set of transactions and associated deadlines.
It is the responsibility of the transaction manager to
find a correct schedule for the transactions that will
ensure that the deadlines are met.

There has been extensive study of real-time systems
[19]. Formal aspects of such systems have been exam-
ined from the standpoints of scheduling (e.g., [S]) and
verification [9]. In the context of real-time databases,
[l, 2] consider alternative queuing disciplines with lock-
baaed concurrency control of real-time transactions,
and use simulation results to compare these techniques.
[16] proposes concurrency control techniques for dis-
tributed real-time systems baaed on a partitioning of
data. [15] discusses the specific time-dependent appli-
cation of stock-market trading.

The RTDB models outlined above apply time-
constraints directly to transactions, but they do not
model situations where the time-constraints apply di-
rectly to states of the systems. Time-constraints on the
states of the system enforce similar time-constraints on
transactions that are triggered by those states. As an
example, consider an RTDB application in a manu-
facturing environment. Suppose that the state of the
information maintained in the database indicates that
the temperature in a furnace has fallen below a par-
ticular threshold value. This state of the system may
necessitate the triggering of some actions that restore
the temperature to a value above the threshold. The
application may enforce a maximum period of time for
which the temperature is permitted to remain below
the threshold - and t.hat enforces a deadline on the
actions triggered by the low value. Furthermore, it
may be the case that several actions may be candidates
for the restoration of the temperature. For instance,

71

there may be actions that initiate more fuel getting
pumped-in, or actions that increase the oxygen supply,
etc. Thus, a choice may be available, and depending on
the time constraints (and other factors such as the cost
of the actions), one particular action may be initiated
to restore the temperature value. These actions are
reflected as triggered transactions within the database.

In this paper, we propose a new approach to the
modeling of an RTDB. Our approach is based on a
set of explicitly defined consistency constraints for the
database. Each transaction ensures that upon com-
pletion, the database remains in a state that satisfies
these consistency constraints. However, in addition
to such transactions that maintain correct database
states, transactions may be invoked to record the ef-
fects of some external event that is generated outside
the system. The ensuing change in the database state
may render a consistency constraint invalid, and that
constraint may need to be restored within a specific
deadline. The system restores constraints by choosing
one or more transactions from a pre-defined library of
transactions. These transactions restore certain con-
straints but may invalidate other constraints. In the
absence of further external events, the system must
eventually return the entire database to a consistent
state. In a dynamic real-time system, external events
may occur with sufficient frequency to prevent global
consistency, but the system must seek to ensure that no
constraint remains invalid for an interval longer than a
specified limit, the deadline of the constraint.

2 Transaction Model

In this section, we give an informal characterization of
real-time transactions and relate this to other work on
extended transaction models. In Section 3, we present
a formal model for reasoning about transactions and
constraints.

A real-time transaction system interacts with the ex-
ternal world in several ways. Events in the external
world are recorded in the database. Transactions in
the transaction system initiate external actions. This
leads us to partition the set of transactions in a real-
time system into three categories:

1. External-input transactions. Such a transac-
tion records in the database some event that has
occurred in the external world. Often, such a
transaction is a write-only transaction, and is usu-
ally of short-duration.

2. Internal transactions. Such a transaction ac-
cesses the database in a similar manner as any
standard database transaction except that it may

be of long-duration. The purpose of this type
of transaction is the restoration of “consistency”
that may have been violated as a result of some
external-input transaction.

3. External-output transactions. Such a transac-
tion causes some event to occur in the world exter-
nal to the system. These transactions are of short-
duration from a system perspective, although the
external actions they trigger may take a longer
time to complete. We do not permit external-
output transactions to wait for the acknowledge-
ment of completion of the external activity. In-
stead, we treat transactions of this type as per-
forming only the initiation. If further action is to
be taken as a result of completion of the external
activity, another transaction (an external-input
transaction) must record in the database the com-
pletion of the external activity, which then trig-
gers the execution of further internal or external-
output transactions.

These three types of transactions differ in their
atomicity and concurrency requirements. A write-only
external-input transaction should never wait. Its writes
should succeed immediately unless a “newer” value has
already been recorded in the database. These require-
ments are justified since the external-input transac-
tions are used to record the outside world within the
system. In a real-time application, such events need
to be recorded in the database as soon as possible so
that any resulting inconsistency may be corrected. A
consequence of this is that it may not be desirable to
ensure serializable executions even if multiple versions
of data are retained.

The notion of transactions violating the database
consistency and other transactions reading possibly in-
consistent database states is a major deviation from
the standard transaction model. We represent such
actions using the NT/PV model of [12] by defining in-
put and output conditions for each transaction. These
conditions are predicates on the database state. The
input condition is a pre-condition of transaction exe-
cution and must hold on the state that the transaction
“observes.” The output condition is a post-condition
which the transaction guarantees on the database state
at the end of the transaction provided that there is no
concurrency and the database state initially seen by the
transaction satisfies the input condition. Thus, in the
NT/PV model, as in the standard model, transactions
are assumed to be correct programs, and responsibility
for correct concurrent execution lies with the transac-
tion manager.

The actions required to restore consistency may in-
volve more than direct database access. Internal trans-

72

actions spawn external-output transactions as sub-
transactions to modify the outside world as part of
a process of restoring consistency. Other subtransac-
tions may be required to. test the results of external-
output transactions. The potential long-duration of
internal transactions make a requirement of serializ-
ability impractical [lo]. Furthermore, the nested na-
ture of these transactions requires an extension of the
transaction model to support nested transactions [14].
A serializability-based approach to nested transactions
is discussed in [14] while correctness of nested transac-
tions without the requirement of serializability is pre-
sented in [3, 7, 121.

The use of multiple versions of data is often indicated
in real-time database applications. An obvious utility
is in situations which require the monitoring of data as
it assumes different values in time; that is, the “trends”
exhibited by the values of the data are used to trigger
actions. Examples include rising temperature of a fur-
nace in a nuclear application and the change in the
distance of an approaching aircraft in radar tracking
systems.

The above considerations lead us to suggest that our
real-time transaction model may include (1) nesting,
(2) versions, and (3) correct concurrent execution with-
out the requirement of traditional serializability. We
use the NT/PV model of [12] as the basis for our work
since this model supports the above features.

Transactions in real-time systems may be submit-
ted either by users, or by external devices. In addi-
tion, transactions may also be triggered by the state of
the system. If an external-input transaction changes
the database state to an inconsistent state, an inter-
nal transaction must be run to restore consistency.
These transactions are not necessarily triggered by
an external-input transaction. Rather they may de-
pend on both the external-input transaction and the
database state. For a given inconsistent state, there
may be several transactions that are enabled for trig-
gering. The transaction system is free to choose a sub-
set of those transactions that are enabled provided that
subset is sufficient to restore consistency. This choice
is, in its most general form, computationally complex.
We explore this idea further in Section 4. Our model of
triggered transactions is related to that used in active
databases [13]. H owever, for the purposes of this pa-
per, the manner in which transactions are selected for
execution differs from active databases in that we base
the selection on the goal of consistency restoration.

The concept of triggered transactions, along with
our characterization of real-time transactions above,
provides five types of transactions: (1) external-input
transactions (non-triggered by definition), (2) triggered
internal transactions, (3) non-triggered internal trans-

actions, (4) triggered external-output transactions, and
(5) non-triggered external-output transactions.

The system model we consider in this paper may
be regarded as comprising of a set T = {tl, ta, . . . , t,,}
of predefined transaction-types, and a finite set C =
{Cl,CZ,. *. , c,} of predefined consistency constraints in
the form of conjuncts. Conjuncts are formulae consist-
ing of a disjunction of possibly negated terms. The
consistency constraint for the entire database may be
represented by P s /\r=, ci. As far as the cons&
tency constraints are concerned, for the purposes of
this paper, we restrict our attention to predicate cal-
culus rather than first-order logic since all quantifiers
will be over a finite set (the database). Some instances
of the transaction-types are triggered by the falsehood
of a conjunct, and may function to restore the truth
of the conjunct. Certain instances of the transaction-
types, upon execution, may render inconsistent some
conjuncts. Thus, the system may be regarded as con-
sisting of transaction-types and conjuncts that interact
with each other.

3 Predicate-Priority Graph

To facilitate the description of our model, and to make
the algorithmic analyses easier, we ‘define a predicate-
priority graph (PPG). The PPG captures the relation-
ships between the transaction-types and the conjuncts,
and its annotations are used to incorporate various tim-
ing constraints. A PPG is a directed bipartite graph
with a set of vertices V = T U C, where T denotes
the set of transaction-types, and C denotes the set of
conjunct vertices.

The edges in a PPG represent the triggering of
transaction-types by the falsehoods of the conjuncts,
and the invalidation of conjuncts by the transaction-
types. If an instance of a transaction-type ti may in-
validate a conjunct cj, then the directed edge (ti, cj)
appears in the graph. If a transaction-type tk ensures
the truth of a conjunct cl upon completion, then the
directed edge (cl, 26) appears in the graph. Thus, the
PPG represents the transaction-types available to the
system for restoring consistency.

We exclude non-triggered transactions in order that
the PPG may be a static structure. The only dynamic
aspect to this graph will be the markings introduced
below. The term transaction-type was used above to
emphasize that we are creating a vertex for each type
of triggered transaction, not a vertex for each execu-
tion of a specific transaction. If we had a vertex for
each actual execution, then the PPG would become a
dynamic structure. In this paper, we restrict attention
to only static PPGs. The reason is that the static sit-

73

uation is a subcase of the dynamic one: and hence, it
indicates some problems that may be encountered in
the analyses of the more general situation. As we shall
see, the analysis of the static PPG itself reveals several
computationally intractable problems that indicate the
need for heuristic approaches - and these results also
apply to the dynamic PPG.

An example of a. PPG is shown in Figure 1.
Transaction-types are represented by square vertices,
and the round vertices correspond to conjunct vertices.
In the example, an inconsistency in conjunct cl may be
resolved by executing an instance of either one of the
transaction-types ti or t2. Furthermore, the execution
of a transaction of type tl may result in the invalidation
of the conjuncts ~5, es and cr.

Let us now examine how the PPG is used. If the
database is inconsistent, the vertices corresponding to
the false conjuncts are marked. To restore consistency,
it is necessary to run an instance of the transaction-
type associated with the head of at least one out-edge
of each marked vertex. However, running these trans-
actions may lead to side-effects beyond restoring the
truth of certain previously-false conjuncts. Possibly,
these side effects will result in other conjuncts becom-
ing false. This results in further marked vertices. It
is important to note that, given a graph and a set of
marked vertices, there may exist many ways to resolve
the inconsistencies. For each marked vertex, the out-
degree indicates the number of potential options for
restoring the truth of the corresponding conjunct.

If a vertex corresponding to a conjunct is a sink (has
no out-edges), then there is no way to restore the truth
of this conjunct within the system. A non-triggered
transaction (either an external-input or a non-triggered
internal transaction) is required to restore the truth of
this conjunct. Such a situation requires either human
intervention or a “lucky” turn of events external to the
system. Thus, we require that all sinks correspond to
transaction-types.

A cycle in the PPG represents a potentially unsta-
ble situation. The situation is only potentially unsta-
ble, since an edge from a transaction-type vertex to
a conjunct vertex means only that an instance of the
transaction-type may make the conjunct false. Also,
if in restoring the truth of a conjunct, a transaction-
type vertex that is not within the cycle is chosen, the
situation may not be unstable.

A safe strategy (i.e., one that is not potentially un-
stable) for resolving an inconsistent database state can
be represented by an acyclic subgraph of the PPG such
that the subgraph contains all the marked conjunct
vertices of the PPG, retains all outedges in the PPG of
transaction-type vertices in the subgraph, and retains
at least one outedge of each conjunct vertex in the sub-

b

graph. We shall restrict attention to strategies that are
not potentially unstable.

As an example, consider the PPG of Figure I again.
The subgraph shown within the dotted outline in the
figure provides a strategy to resolve the inconsistencies
if cl and cs (and possibly any ‘or all of cs, cs, and cr)
are the only marked vertices.

We consider sub-DAGs of the PPG that resolve an
inconsistent database to have roots at all marked ver-
tices and sinks that are transaction-types. As before,
all outedges in the PPG from transaction-types in such
a DAG must be included in the DAG. The partial order
on transaction-types induced by the DAG must be ob-
served if the execution will, in fact, restore consistency
(without requiring the execution of multiple instances
of a transaction-type).

As described above, a DAG subgraph may be iden-
tified in a marked PPG so as to resolve the in-
consistencies. The subgraph should include all the
marked vertices, and all the sinks should correspond to
transaction-types with no outgoing edges. We call such
a subgraph an inconsistency-resolution subgraph (IRS)
for a given marked PPG. An IRS provides a strategy by
which the inconsistencies in the PPG may be resolved:
Executions of the transactions within an IRS that obey
the partial order imposed by the IRS will resolve the
inconsistencies.

A more formal definition a PPG and an IRS is now
provided.

Definition 1. A predicate-priority graph is a 3-
tuple (C,T, E) representing a bipartite graph with ver-
tex set CUT and edge set E E ((C x T) U (T x C)).
A marked PPG is a PPG in which a nonempty set of
vertices X E C is identified as being “marked”. q

The inconsistency-resolution subgraph (IRS) defined
below represents a strategy for restoring consistency to
the database given that the marked set of conjuncts are
false.

Definition 2. Let G = (C, T, E) be a PPG in which
the vertices in X E C are marked. An inconsistency-
resolution subgraph of G is a Stuple G’ = (C’,T’, E’)
such that,
(1) X C C’ E C, T’ E T, and E’ c E,
(2) For all edges (tj, ci) E E surh that tj E T’, we have
ci E C’ and (tj, ci) E E’,
(3) For all ci E C’, there exists a path in G’ from ci to
tk, where tk is a sink in G, and
(4) G’ is acyclic. CI

A natural question arises as to whether an IRS ex-
ists for a particular marked PPG. The following result
implies that the question is easily settled.

74

Theorem 1. Let G be a marked PPG. The problem
of deciding whether there is an IRS G’ for G is solvable
in polynomial-time.

Proof Sketch. We provide a sketch of a requisite
polynomial-time algorithm that manipulates the PPG,
G. For the ease of presentation, introduce a (pseudo)
transaction-type vertex, t’ E T, with out-edges (t’,ci)
for every ci E X, and a (pseudo) conjunct vertex, c’ E
C, with an out-edge (c’, t’).

1. whilec’ECdo

(a>

P-J)

(cl

Choose a sink transaction-type vertex, tj. If
none exists, print “No IRS exists”, and stop.

For each conjunct vertex ci such that
(ci, tj) E E, delete all edges that are adja-
cent to ci. Hence, delete ci.

Delete tj.

endwhile

2. print “IRS exists”, and stop.

With appropriate data structures, the algorithm takes

O(lCl + ITI + LJ-4) t ime, and since it finds a way to
resolve every vertex in X, it places the problem in
polynomial-time. 0

4 Timing Considerations

Timing constraints are represented in the PPG by as-
sociating a time interval with each conjunct and a time
cost with each transaction-type. The value associated
with each conjunct represents the maximum duration
of a time interval during which the corresponding con-
junct may be false. The time cost represents an es-
timate of the execution time of the transaction-type.
Typically, real-time analysis is based upon worst-case
assumptions about execution time so as to ensure the
correctness of a schedule. If we took that approach to
real-time database management, we would be forced to
make drastic assumptions about page-fault frequency,
delays due to concurrency control requirements, and
other resource-contention factors. For example, unless
detailed information about the physical-level schema is
made available to the real-time system, it is necessary
to assume that every data item reference incurs a page
fault, consisting of the write of a page frame back to
disk, the reading of the data page, plus requisite disk
access to support write-ahead logging and index page
access. The difference between the worst case and the
expected case is so large that a worst-case analysis for
real-time database transactions would find a solution

only for systems that have an economically unjusti-
fiable amount of redundant computing power. There-
fore, although the formal model developed in this paper
is independent of the determination of the execution
times, for the purposes of this paper, we consider the
expected-case estimates of the transaction-type execu-
tion times. Indeed, if the database is entirely memory-
resident (see, e.g., [17]), the differences between the
worst-case and expected time estimates are likely to
be negligible. In fact, most real-time applications have
memory-resident data.

The incorporation of time into our model is achieved
by the use the functions W, and Wr which denote
mappings from the conjuncts C and the transaction-
types T, respectively, to the set of non-negative in-
tegers. This requires the redefinition of the PPG to
incorporate the timing constraints. We term this new
PPG as a weighted PPG, while the original PPG is
termed an unweighted PPG. These terms will be used
in case of ambiguity in referring to the different types
of the PPGs.

Definition 3. A (weighted) predicate-priority
graph (PPG) . is a 5-tuple (C, T, E, W,, Wr) represent-
ing a bipartite graph with vertex set CUT and edge set
E s ((C x T) U (T x C)). W, and Wr are the time
interval and time cost functions, respectively.

Notice that an unweighted PPG can be represented
by a PPG in which W, maps all elements of T to 1, and
W, maps all elements of C to 1 (where 1 is suitably cho-
sen). Also, we can extend the notion of a marked un-
weighted PPG to a marked weighted PPG in a natural
manner. Note that the case where WK(ci) < Wr(tj) for
a conjunct ci and a transaction-type tj , it is not worth-
while to include an edge (ci, tj) in the PPG. Hence, we
shall always assume that for an edge (ci, tj) in a PPG,
it is always the case that Wn(ci) > Wr(tj).

We also need to redefine the inconsistency-resolution
subgraph for a weighted PPG. Again, the IRS rep-
resents a strategy for restoring consistency to the
database given that the marked set of conjuncts are
false.

Definition 4. Let G = (C,T, E, W,, Wr) be a
weighted PPG in which the vertices X E C are marked.
An inconsistency-resolution subgraph of G is a Ctuple
G’ = (C’, T’, E’, WL, W:) such that,
(1) X C C’ C C, T’ C T, and E’ & E,
(2) For ~11 edges (tj, ci) E E such that tj E T’, we have
ci E C’ and (tj, ci) E E’,
(3) For all ci E C’, there exists a path in G’ from ci to
tk, where tk is a sink in G,
(4) G’ is acyclic,
(5) Ws’ is the restriction of W, to C’, and W: is the

75

restriction of W, to T’, and
(6) For all ci E C’, there is an edge (ci, tj) E E’ such
that Wr(tj) 5 Wn(ci). 0

An IRS can be used to decide how to resolve the in-
consistencies, and it must ensure that each conjunct is
false for a period no longer than its time interval, on
the assumption that time costs for transaction-types
are accurate. There may exist several DAGs that may
be used for a particular marked PPG and each rep-
resents an IRS as defined above. In this case, a de-
cision needs to be made as to which particular one is
to be chosen. Intuitively, the IRS that represents the
best strategy to resolve the inconsistencies should be
the one that is selected. Although the precise defini-
tion of a good IRS is dependent on the application,
it is possible to identify certain important traits that
an IRS should possess. For example, an IRS that pro-
vides a method to restore consistency promptly should
be regarded as being better than one that implies a
slower method. Concurrency aspects for running the
restoring transaction-types need to be considered to
achieve this. Another measure of goodness could be
the choice of an IRS that renders the least number of
consistency constraints false. A third measure of good-
ness arises from the potential inaccuracy in time costs
for transaction-types. This measure is related to the
scheduling of transactions with regard to the available
slack time which, in the case of a transaction-type tj
that is chosen to resolve the inconsistency in a con-
junct Ci, is Ws(Ci) - Wr(tj). Sufficiently large slack
times “absorb” the inaccuracies of the time estimates
for transactions that are scheduled sufficiently early,
and this is further discussed in Section 5. Therefore, we
suggest that the goodness of an IRS may also be mea-
sured as a function of the amount of slack time left for
the restoration of the truth of conjuncts. The nature of
this function is application-dependent. Example func-
tions include the total slack time, the geometric mean
of slack times, and the minimum of the slack times for
each conjunct.

The conjunct-based model of real-time transactions
represented by the PPG provides the system with ad-
ditional degrees of freedom in managing a real-time
database. Not only can the concurrency and recov-
ery managers take into account the conjunct deadlines
and time costs associated with the transaction-types,
but also the system has some choice among the set of
transaction-types to use in response to a particular col-
lection of violated conjuncts that arise due to external
events. Below, we consider the computational com-
plexity of taking optimal advantage of these degrees of
freedom.

5 Selecting an IRS

The PPG and the IRS defined above allow us to pose
several important questions regarding the algorithms
that will use them. The issues related to a PPG and
an IRS are two-fold. First, an efficient selection pro-
cedure is needed to identify a good IRS, where good-
ness is related to how profitably the IRS can be used
to resolve the inconsistencies within the deadlines im-
posed. Second, once the IRS has been identified, effi-
cient approaches are needed to execute the actions of
the transaction-types specified by the IRS. For the time
being, let us disregard the effects of the PPG-imposed
partial ordering among the transaction-types and con-
currency control issues.

5.1 Selection Based on Weights

Consider an unweighted, acyclic PPG, G. We may as-
sume that the selection criterion for an IRS is obtain-
ing one that includes the fewest number of transaction-
type vertices.

Problem 1. (TUAP) The Transaction-weight Prob-
lem for a marked, unweighted, acyclic PPG is: Given
a marked, unweighted, acyclic PPG, G, and an inte-
ger K, is there an IRS, G’, such that the number of
elements in T’ is at most K? 0

Theorem 2. The TUAP problem is NP-complete.

Proof Sketch. The proof of NP-easiness is as fol-
lows. We demonstrate how to verify in polynomial-
time that a non-deterministically selected graph G’ is
an IRS with IT’1 < K. Verifying that G’ represents
an IRS is accompli<hed by checking that X C C’, and
that for every ci E C’, there exists an edge (c;, tj) E E’.
Checking that IT’1 5 K completes the verification.

We now prove NP-hardness. An instance of the NP-
complete Satisfiability problem (LO1 in [5]) is reduced
to the TUAP problem. Let P represent the conjunction
of m clauses in LOl, i.e., P z A?=“=, Ci where the clauses
are formed over n boolean variables 21, x2,. . . ,z,.
As shown in Figure 2, form an instance of a
PPG, G, withC= {p,c,q,cz ,..,, c,,,,tl,x2 ,.,., x,},
T = {pt,ct,Fq,Fxz ,..., Fx,,,Tx1,Tx2 ,..., TX,},
and X = {p}. Besides the edges explicitly shown in
Figure 2, G includes an out-edge from a vertex ci to
either Txj or to Ftj for every positive or negative lit-
eral, respectively, formed using an xj occurring in the
clause Ci of the Satisfiability problem instance. We
prove that P is a satisfiable.instance of LO1 if and only
if G contains an IRS, G’, with IT’1 5 (n+2). Note that
the construction guarantees the existence of an IRS.

Assume that a requisite IRS, G’, exists. IT’1 > (n+2)
since included in G’ are p’, c’, and at least one of Txi or

76

Fzi for every xi. Since G’ is a requisite IRS, we have
IT’1 = (n + 2). Th is implies that exactly one of the
vertices reachable from a vertex xi is included in T’.
Assign a boolean value of .T or F to the corresponding
variable xi in LO1 according as Txi or Fxi is included,
respectively, in T’. It is clear that every clause of LO1
will have one satisfied literal by this assignment.

If there is a truth assignment for every xi in the
problem instance of LO1 that satisfies P, consider a
subgraph G’ as described next. The set T’ consists of
p’, c’, and Txi or Fxi according as xi is assigned T or
F, and the set C’ = C. The subgraph G’ contains all
possible edges of G. It is easy to see that G’ is an IRS
with IT’1 5 (n + 2). 0

If we introduce the timing constraints in terms of
the functions IV, and W,, a selection criterion for an
IRS could be the minimization of the sum of the time
costs of the transaction type vertices included in the
IRS. This criterion is suggested by the need for the
“fastest” inconsistency-resolution strategy.

Problem 2. (TWP) The Transaction-weight Prob-
lem for a marked, weighted, acyclic PPG is: Given a
marked, weighted PPG, G, and an integer K, is there
an IRS, G’, such that the sum of the weights of the
elements in T’ is at most K? [7

Theorem 3. The TWP problem is NP-complete.

Proof Sketch. The TUAP problem is the TWP
problem with unit weight assignments to the elements
ofT. 0

We consider now a different, selection criterion that
is based on the number of conjuncts that may be ren-
dered false. In the case of an marked, unweighted,
acyclic PPG, a related measure of goodness would be
to find an IRS which minimizes the number of consis-
tency conjuncts that it renders false.

Problem 3. (PUAP) The Predicate-weight Prob-
lem for a marked, unweighted, acyclic PPG is: Given
a marked, unweighted, acyclic PPG, G, and an inte-
ger K, is there an IRS, G’, such that the number of
elements in C’ is at most K? 0

Theorem 4. The PUAP problem is NP-complete.

Proof Sketch. The proof of NP-easiness is the same
as that for the TUAP problem with a verification of
IC’I 5 I< replacing IT’1 < K.

To prove NP-hardness, we exhibit a similar reduction
from the problem LO1 as we did for the TUAP problem.
The instance of the PPG constructed is modified to
have the additional subgraphs at the nodes Txi and
Fxi as shown in Figure 3. Set K = (2n + m + 2). The

proof is now clearly similar to the NP-hardness proof
of the TUAP problem. 0

The above theorems indicate that the selection pro-
cedures to find optimal IRS graphs for the PPG graphs
is difficult. We conjecture that there exist interesting
cases of the PPG problems that are both of practical in-
terest and of polynomial complexity. Furthermore, we
begin to anticipate the need for heuristic approaches to
find good IRS graphs in place of the “best.” IRS graph.

5.2 Selection Based on Slack Times

Large slack times allow a greater flexibility in schedul-
ing transactions, and in time-constrained systems, this
flexibility is valuable. To analyze the PPG in terms of
slack times and scheduling, we first formalize some of
these notions.

Definition 5. The potential slack time for a con-
junct vertex ci in a PPG, G = (C,T, E, W,, Wt), is

given by Sn(ci) = W&(G) - min(,,,tj)fE(WZ(tj)). q

The slack time S,(ci) does not provide a precise
value for a conjunct ci since there is an inherent in-
accuracy associated with the W, values. Furthermore,
unless the transaction-type vertex tj. that corresponds
to the minimum weight is chosen to resolve the incon-
sistency, the potential slack time may not be realized.
However, S, does serve the purposes of approximation,
especially if the transaction-types can be assumed to
take unit time - in which case the potential slack time
is always realized subject to accurate estimates for the
transaction-type time costs.

5.2.1 Total Slack Time

The sum of the slack times associated with the conjunct
vertices of an IRS, G’, is called the total slack time of
the IRS, and is denoted by slack(G’). As mentioned
earlier, assume that some application indicates that a
selection criterion may be baaed on the maximization
of the the total ,slack time. With the S, values ss
provided, the IRS chosen directly would be the PPG
itself - clearly an unacceptable choice. Hence, we use
the method described below to limit the number of
vertices chosen while retaining the criterion of total
slack time maximization.

Definition 6. The inverse slack time associated with
a conjunct vertex ci is given by SL(ci) = 71 - SK(ci)
where 3 2 (1 + maxcjEc(SK(cj))). 0

The constraint on the value of r) is to ensure that
S;(Q) 2 1 for all ci E C. The reason why 7 is left
unspecified in the definition is explained below.

77

Suppose that an IRS, G&,, is chosen such that
the sum of the 5’; values associated with its con-
junct vertices is the smallest among all the IRSs, G’,
that are possible. Using the above definition, we
have r$2Lin] - sla&(Ghin) 5 n]C’] - sleck(G’). No-
tice that ICAin] = IC’] implies that slaclc(G&) 1
slaclc(G’), and that slaclc(GAin) = slack(G’) implies
that IC~inI 5 IC’]. Thus, for two IRSs, if the number
of conjunct vertices in each is the same, the one with a
larger total slack time is preferred by this minimization
criterion. If the total slack times of the two IRSs are
equal, then this criterion chooses the one with fewer
conjunct vertices.

As mentioned above, attempting to maximize the
total slack time without using a notion such as the in-
verse slack time leads to the selection of an unnecessar-
ily large IRS with too many conjunct vertices. This is
undesirable since the inclusion of a conjunct vertex in
an IRS implies that the inconsistency-resolution pro-
cess may cause that conjunct to become inconsistent.
Thus, there exists a trade-off between increasing the
total slack time, sZach(G’), and decreasing the number
of conjunct vertices,]C’], in the IRS. It is the value of
7 that determines the importance attached to each. A
small value of 7 gives more importance to maximizing
slack(G’), whereas a large value of 1 gives more impor-
tance to minimizing IC’]. This is clear by examining
the expression q]C’] - slack(G’) which is the sum of
the inverse slack times of the vertices in C’.

Consider a modified PPG, G, in which for all ci E C
and tj E T, we set WK(ci) = S:(ci) and WT(tj) = 1.
By introducing inverse slack times in this manner, and
choosing a desired value for 7, the question of maxi-
mizing the total slack time for an IRS reduces to the
following problem.

Problem 4. (P WP) The Predicate-weight Prob-
lem for a marked, weighted PPG is: Given a marked,
weighted, acyclic PPG, G, and an integer K, is there
an IRS, G’, such that the sum of the weights of the
elements in C’ is at most K? 0

Theorem 5. The PWP Problem is NP-complete.

Proof Sketch. The PUAP problem is the PWP
problem with unit weight assignments to the elements
inc. 0

5.2.2 Large Individual Slack Times

It may be argued that it is more germane to use
a selection criterion for an IRS based on the large-
ness of the slack times associated with the conjuncts.
That is, the cost of an IRS G’ = (C’, T’, E’, WL, Wi)
is max,,Ec,(SL(ei)). Large slack times provide the
flexibility in scheduling the inconsistency-resolving in-

stances of transaction-types which may be necessitated
by concurrency control considerations. As mentioned
earlier, if a transaction is scheduled early, the inaccu-
racies in the transaction execution time estimates are
less likely to affect the deadline requirements on the
conjunct inconsistencies. We examine slack times in
more detail in Section 6. In the discussion to follow,
we assume for simplicity that an IRS exists.

Problem 5. (IST) The Individual Slack Time Prob-
lem for a PPG is: For a given marked, weighted,
acyclic PPG, G, and an integer K, is there an IRS,
G’, such that mm,,ECj(SL(ci)) is at most K? •I

Theorem 6. The IST problem is in polynomial-
time.

Proof Sketch. Add a (pseudo) transaction-type
vertex t’ to T with outedges (t’,ci) to every ci E X.
With each vertex v E CUT, associate two values, V(v)
and tag(v). Set tag(tj) = 1 for each sink transaction-
type vertex tj, and set all the remaining V and tug
values to 0.

1. while tag(t’) = 0 do

(4

(b)

(cl

Choose vertex v with tag(v) = 0 and all suc-
cessor vertices u with tag(u).= 1.

Set the value of V(v) to max(,,u)E&V(u)) or
max(Si(v), minc,,u)EE(V(U))) according as
v E T or v E C, respectively.

tag(v) := 1.

2. if V(t’) 5 K then print “Yes” else print “No”,
and stop.

At the end of loop statement, a tagged vertex, v, has
the value V(v) that provides the cost of the subgraph
of the best IRS (in the IST sense) that is rooted at that
vertex. With the use of suitable data structures, the
algorithm runs in O(]Cl + ITI + IE]) time - thereby
placing IST in polynomial-time. 0

5.3 Discussion

The significance of the intractable results is only that
the optimal solutions are computationally very costly
to obtain. However, as in many other situations, near
optimal solutions would serve almost as well. By sac-
rificing optimality, we can make use of several ap-
proximation methods available in the literature (e.g.,
from [5]). Such h euristic methods are well-studied and
provide computationally inexpensive means to obtain
near-optimal solutions. The fact that formal analysis
of this nature is possible in our formulation is a very
encouraging indication.

78

The PPG that we have dealt with so far may be re-
garded as “static”, since the only “dynamic” aspect of
the PPG are the markings. It is possible to consider a
more complex “dynamic” *version of a PPG where the
weights may change dynamically, or the transaction-
types are replaced by transaction instances. However,
the intractability of the problems encountered in the
static case indicate that the dynamic version would
definitely pose problems that are at least as difficult.
Thus, the study of a simpler model provides a basis
for directly seeking heuristics in the more complicated
models.

6 Using the IRS

Once an IRS is chosen, the question arises as to how the
actions that it implies should be scheduled. It may be
argued that since the transactions are likely to interact,
concurrency control requirements may render the selec-
tion criteria for the IRS untenable. However, note that
the intractability of the problems encountered indicate
that additional criteria will not make the problems any
easier, and heuristic methods must be used. Therefore,
we separate the two issues of selection and scheduling
for an IRS. The detailed analysis of the use of an IRS
is beyond the scope of this paper, and we restrict our-
selves to indicating the important issues involved in
such analyses.

6.1 Scheduling, Slack Times, and
Nested Transactions

Consider a subgraph of an IRS in Figure 4. The paren-
thesized numbers give the values of IV, and IV, for the
conjunct vertices and the transaction-type vertices, re-
spectively. Assume that cz and ca become inconsis-
tent immediately after the completion of ti. The IRS
chosen does not allow any slack time for the resolu-
tion of the inconsistency in either of these conjuncts,
and hence, tz and tz are scheduled immediately. The
conjuncts cd and cz may become inconsistent imme-
diately after tz and t3 complete, respectively. Notice
that since neither c4 nor cg have any slack time, and
hence, as soon as either of them becomes inconsistent,
t4 must be scheduled. However, in this example, c4 and
cz become inconsistent within WT(t4) = 3 time units
of each other (in fact, within 1 time unit) - but not
simultaneously. Thus, if the same transaction from the
transaction-type t4 is used to resolve the inconsisten-
cies, irrespective of when it is scheduled, one of the two
conjuncts will remain inconsistent for a period greater-
than its deadline. Furthermore, assuming that c4 and
c5 do not become inconsistent within W, (t4) time units

of each other, it is the case that a single execution of
t4 will not suffice to resolve both the inconsistencies.

In a similar situation, the example in Figure 5 shows
a conjunct vertex, cl, that may become inconsistent
due to the execution of either tl or t2. Suppose that tl
makes cl inconsistent, and t2 does the same within the
next W&(ci) = 3 units of time. In this situation, no
matter when t3 is scheduled, the time period for which
cl will remain inconsistent will exceed WK(cr).

The occurrence of problems such as those illustrated
in the two examples above is not peculiar to our partic-
ular formulation. They will occur in general in systems
with timing constraints, and the problems must be ad-
dressed if real-time databases are to be realized. Our
model serves to exhibit these problems as well as to
serve as a tool by which they may be analyzed.

In the examples just discussed, notice that if the con-
juncts have larger slack times due to larger deadlines,
the problems may be alleviated. For example, if we
changed Figure 4 to have Wn(cz) = 4, and changed Fig-
ure 5 to have WK(cl) >> 3, then the scheduling of the
inconsistency-resolution transactions may be success-
fully accomplished. These examples show how large
slack times permit the transaction-types to exceed their
inherently inaccurate estimates of execution-times so
long as their instances are scheduled’ sufficiently early.

Large slack times are useful in other contexts as well.
Before transactions begin executing, it is often the case
that the resources they need must be obtained - and
this could be time-consuming. Furthermore, the dura
tion of this resource-gathering phase is indeterminate
and it depends on the other transactions that are exe-
cuting concurrently in the system. If the transactions
are triggered by conjuncts with large slack times, the
initial phase of the transactions could be safely accom-
modated by scheduling the transactions early. One way
to accomplish this to a certain extent is to identify the
conjuncts with large slack times, and to use the no-
tion of nested transactions as follows. The conjuncts
with small slack times that occur in the IRS are embod-
ied within the nested transaction-types. The conjuncts
that have been identified with large slack times serve as
triggering conjuncts for the nested transactions. Thus,
the IRS is regarded as a collection of partially ordered
nested transaction-types - most of which are triggered
by conjuncts with large slack times. Details regarding
nested transactions are available in [12, 141.

As an example, consider the PPG shown in Figure
6. We represent conjuncts that have been identified to
have large slack times by triangular vertices. In the
manner explained above, some vertices of the PPG are
shown to be grouped together by the dotted outlines to
form nested transaction-types that are denoted by ntl,
nt2, nt3, and nt4. The conjunct vertex cl may trigger

79

instances of either one of the nested transaction-types
ntl or nts. In ntl, the parent transaction of type tl
may spawn the child transactions of type t5, tc, and
t7 by making the conjuncts cs, c8, and cr inconsistent.
Similarly, nt2 has a parent transaction-type t2, an in-
stance of which may spawn child transactions of type
ts and t7. Notice that an instance of nt2 could make c8
inconsistent, and this would trigger an instance of nt4
which consists of the single transaction-type ts. The
nested transaction-type nt3 ha8 a parent transaction-
type t4, an instance of which may spawn just a single
child transaction of type t8.

6.2 Concurrency Control Issues

In the execution of the transactions indicated by an
IRS, beside8 correctness, the issue of the timing con-
straints is also of importance. We have noted above
that an inconsistency-resolution subgraph induces a
partial order on the set T’ of transaction-types. Given
that we seek the prompt restoration of consistency in a
real-time system, the need for a significant amount of
concurrency among instances of the transaction-types
in T’ is required. In this section, we briefly examine as-
pects of concurrency control protocols germane to our
model.

From the model of transactions described earlier, the
use of methods that deal with nested transactions is
indicated clearly. The subgraphs of an IRS are best
described a8 nested transaction-types with added tim-
ing constraints. Existing work on nested transactions
should be modified to handle the timing considerations
to be used in this context.

Obviously, the presence of timing constraints will af-
fect the concurrency control. The increased needs for
concurrency may be achieved using less restrictive cor-
rectness criteria a8 compared to the traditional serializ-
ability - for example, the correct concurrent execution
criteria of [12]. Our model allows for external-output
transactions and transactions with stringent timing re-
quirements. Both of these suggest that the facility for
undoing the effects of a transaction may be unavail-
able. Also, situations that may result in cascading
aborts must be avoided - which does not necessarily
preclude other transactions from “observing” data pr*
duced by uncommitted transactions since our model i:-
not the traditional one. These factors suggest that it
may be necessary to introduce the notion of compen-
sating transactions [6, 111.

Transactions that run concurrently in our system in-
teract due to the shared data that they may access.
The timing constraints imply that the delays arising
a8 a result of these interactions should be minimized.
For example, deadlock or livelock situations should be

avoided. The use of versions of data in this context also
helps to alleviate the problem. Clearly, it is important
to identify where the transactions may interact so as to
reduce the interactions to limit the delays. Thus, our
model plays the dual role of describing the transactions
as well as prescribing their design to control the con-
tention. We highlight some of the immediate facets of
transaction interaction next.

Let 5’ be an IRS of a PPG G. Let
ckl, tj,, CL,,, i?ja, . . . , ckm,tjn be a path in S. We ZiSSllllK

the NT/PV model of [12] with input and output con-
ditions (pre- and post-conditions) for each transaction-
type. Then, we expect the following to hold in many
cases. For an edge e = (cki,tji) in s, since tji is trig-
gered by the falsehood of cki, the input condition of
tj; mentions all the data items occurring in ck,. Also,
since tji makes cki true, the output condition of tj,
mentions potentially all the data items occurring in
cki. For an edge e = (tji, cki+l) in S, since tj, may
invalidate cki+l, the output condition of tj, mentions
potentially all the data items occurring in cki+l. It is
unlikely that all the data items of a conjunct will be af-
fected by one transaction-type. These observations can
be used to identify bounds on the read and write sets
of transaction-types. Such information can be used to
advantage in concurrency control. Concurrency along
paths in S could be managed by the preemptive proto-
col described in [KSM], perhaps simplified to its single-
version variant.

It is valuable to identify the potential for concur-
rency among the transaction-types that do not lie on
the same path in the IRS. Although two transaction-
type8 may not have any common conjuncts in their
pre- and post-condition sets, it may happen that they
access common data items. This is because different
conjuncts may mention common data items. Also, con-
sider an example of a PPG in which there are two out-
edge8 (cl, tl) and (cl, t2) from the same conjunct vertex
cl. It may happen that the IRS for the PPG contains
both the transaction-types tl and t2, but only one of
the two edges, say (cl, tl). This could happen if t2 is
chosen to resolve the inconsistency for some conjunct
other than cr. In such a situation, the analysis to find
common data items should include consideration for
both the edges (cl, tl) and (cl, 12). After this anal-
ysis is done, it become8 necessary to ensure that the
instances of the transaction-types that access the com-
mon data are correctly controlled by the concurrency
protocol.

Even after reducing the extent to which the
transaction-types interact, any reasonable real-time
database system will have transactions competing for
the resources. In such situations, the study of pre-
emptive protocols to manage the timing and prior-

80

ity constraints is important. Thus, the satisfactiorl
transaction-type timing constraints may result in the
sacrifice of the best overall throughput of the system.
Research along these lines, is desirable for our model,
and in this context, work such as [l] may be extendible.

7 Conclusions

We have proposed a model of real-time transaction
processing based upon deadlines associated with con-
sistency constraints. We have demonstrated that, in
general, finding a strategy for restoring database con-
sistency is computationally intractable. This negative
result does not preclude the practical use of our model.
Rather, it indicates that heuristics or suitbble “pro-
tocols” are required for transaction processing. An
analogous situation exists for standard transaction pro-
cessing, where the set of two-phase locked schedules is
usually accepted as a suitable subset of the set of se-
rializable schedules whose recognition problem is NP-
complete.

We have suggested some approaches toward the de-
velopment of practical transaction management algo-
rithms for our real-time model, but many issues re-
main to be addressed. For example, heuristics for the
selection of an acceptable inconsistency-resolution sub-
graph are needed as is the development of a complete
concurrency protocol that exploits the semantics of the
inconsistency-resolution subgraph. The introduction of
dynamic violations of consistency constraints in real-
time database systems requires the system to modify
its consistency restoration strategy as external events
occur. Rather than recomputing a complete strategy,
an incremental algorithm is desirable. Techniques of
this nature are already in use in expert database sys-
tems [4].

Acknowledgements
The authors wish to thank Robert Abbott, Hector
Garcia-Molina, and Eliezer Levy for helpful discus-
sions.

References

[I] R. Abbott and H. Garcia-Molina. Scheduling real-
time transactions. SIGMOD Record, 17(1):71-81,
March 1988.

[2] R. Abbott and H. Garcia-Molina. Scheduling real
time transactions: A performance evaluation. In
Proceedings of the Fourteenth International Con-

[31

PI

[51

PI

PI

PI

PI

PO1

WI

WI

1131

ference on Very Large Databases, Los Angeles,
pages 1-12, 1988.

C. Beeri, P. A. Bernstein, and N. Goodman. A
model for concurrency in nested transaction sys-
terns. Journal of the ACM, 36(2):230-269, April
1989.

C. Forgy. RETE: A fast match algorithm for the
many pattern/ many object pattern match prob-
lem. Artificial Intelligence, (19):17-37, 1982.

M. R. Garey and D. S. Johnson. Computers and
Intractability. W. H. Freeman and Company, New
York, 1979.

J. N’. Gray. The transaction concept: Virtues
and limitations. In Proceedings of the Seventh In-
ternational Conference on Very Large Databases,
Cannes, pages 144-154, 1981.

T. Hadzilacos and V. Hadzilacos. Transaction
synchronisation in object bases. In Proceedings
of the Seventh ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems,
Austin, pages 193-200, March 1988.

R. Holte, A. K.-L. Mok, L. Rosier, I. Tulchin-
sky, and D. Varvel. The pinwheel: A real-
time scheduling problem. In Proceedings of the
22nd Hawaii International Conference on System
Sciences, Kailua-Kona, pages 693-702, January
1989.

F. Jahanian and A. K.-L. Mok. Safety anayl-
sis of timing properties in real-time systems.
IEEE Transactions on Software Engineering, SE
12(9):890-904, September 1986.

H. F. Korth, W. Kim, and F. Bancilhon. On long
duration CAD transactions. Information Sciences,
46:73-107, October 1988.

II. F. Korth, E. Levy, and A. Silberschatz. A for-
mal approach to recovery by compensating trans-
actions. In ‘Proceedings of the Sicteenth Interna-
tional Conference on Very Large Databases, Bris-
bane, pages ? -?, August 1990.

H. F. Korth and G. Speegle. Formal model of
correctness without serializability. In Proceedings
of ACM-SIGMOD 1988 International Conference
on Management of Data, Chicago, pages 379-388,
June 1988.

D. R. McCarthy and U. Dayal. The architec-
ture of an active dat,a base management system.

81

In Proceedings of ACM-SIGMOD 1989 Interna-
tional Conference on Management of Data, Port-
land, Oregon, pages 215-224, June 1989.

[14] J. E. B. M oss. Nested transactions: An introduc-
tion. In B. Bhargava, editor, Concurrency Control
and Reliability in Distributed Systems, pages 395-
425. Van Nostrand Reinhold, 1987.

[15) P. Peinl and A. Reuter. High contention in a stock
trading database: A case study. In Proceedings
of ACM-SIGMOD 1988 International Conference
on Management of Data, Chicago, pages 260-268,
June 1988.

[16] L. Sha, R. R a jk umar, and J. P. Lehoczky. Concur-
rency control for distributed real-time databases.
SIGMOD Record, 17(1):82-98, March 1988.

[17] M. Singhal. Issues and approaches to design of
real-time database systems. SIGMOD Record,
17(1):19-33, March 1988.

[18] S. H. Son, editor. SIGMOD Record: Special Issue
on Real-Time Databases. ACM, March 1988.

1191 J. A. Stankovic. Misconceptions about real-time
computing. IEEE Computer, pages 10-19, Octo-
ber 1988.

Cl Transaction Vertices

0 Conjunct Vertices

The dotted outline shows a DAG subgraph

Figure 1: An example PPG

P T=.

0 Tr.
Y PI.

0 For.

i

0 F”r<

0) (1) (3,
Figure 4: First Erunplc of Scheduling Problerm

b,
&-------;$

Figure 5: Second Example of Scheduling Problems

82

