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ABSTRACT 

In the engineering and scientific marketplaces, the 
workstation-server model of computing is emerging as the stan- 
dard of the 1990s. Implementing an object-oriented database sys- 
tem in this environment immediately presents the design choice of 
how to partition database functionality between the server and 
workstation processor. To better understand the alternatives to 
this fundamental design decision, we analyze three different 
workstation-server architectures. The three approaches are 
labeled object server, in which individual objects pass between 
the server and workstation, puge server, in which a disk page is 
the unit of transport and the server buffers pages, andfrle server, 
where whole pages are transferred as well, but they are accessed 
directly by the workstation process via a remote file service 
(namely, NFS). 

Our main conclusions are that the page-server and file-server 
architectures benefit most from clustering, that the relative perfor- 
mance of the page- and object-server architectures is very sensi- 
tive to the degree of database clustering and the size of the 
workstation’s buffer pool relative to the size of the database, and 
that, while the file-server architecture dominates the page-server 
architecture on read-intensive operations, the opposite is true on 
write-intensive operations. 

1. Introduction 
While relational database systems were the technology of the 

1980s. over past l-2 years object-oriented database systems have 
emerged as a key database technology of the 1990s. If one 
reflects on the commercialization of relational database systems, 
it took a full ten years to turn the first prototypes (INGRES and 
System R in 1976 [Ston76. Astr76]) into products that conserva- 
tive customers willingly used. Given the relative complexity of 
object-oriented database systems, it is likely to take ten yeas 
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before the technology of object-oriented database systems 

becomes solidified. The situation is further complicated by the 
emergence of the workstation-server model of computing as the 
standard of the 1990s in the engineering and scientific market 
places. In the past, the tendency has been to run database 
software primarily on a shared-server that is accessed via a high- 
level query language such as SQL. A key premise of this study is 
that since the widespread use of 10 and 20 MIPS workstations 
concentrates the majority of the available CPU cycles in the 
workstations, and not in the server, such a distribution of func- 
tionality is no longer viable. 

In addition, OODBMSs differ significantly from relational 
systems in the way that they manipulate data. With an 
OODBMS, a fair amount of an application is incorporated into the 
methods of the classes. In addition, while OODBMSs also pro- 
vide support for associative queries over sets of objects [A&%9], 
applications employing an OODBMS typically have a large .navi- 
gational component. One might simply run all applications pro- 
grams on a centralized server. Such an approach simply is not 
commercially viable as OODBMSs tend to be used for applica- 
tions (e.g., CAD systems) that require the computational and 
graphical interface that only a dedicated workstation per user can 
provide. Since a distributed architecture is required, we have 
undertaken in this paper to examine how the functionality of an 
OODBMS should be distributed between a workstation and a 
server. 

This paper is organized as follows. Section 2 describes and 
compares three alternative workstation-server architectures for an 
OODBMS. Section 3 presents our prototypes of these architec- 
tures. The benchmark used fo evaluate these designs is given in 
Section 4 and the results of applying it to the three prototype sys- 
tems are presented in Section 5. Related work and our conclu- 
sions are contained in Sections 6 and 7. 

2. Three Alternative Workstation/Server Architec- 
tures 

2.1. Introduction 
There appear to be at least three markedly different 

approaches for architecting an OODBMS in a workstation-server 
environment. One alternative is the object server approach, so 
named because the unit of transfer between the server and the 
workstation is an object. In this architecture the server under- 
stands the concept of an object and is capable of applying 
methods to objects. The V1.0 prototype of O2 [Banc88, Deux90], 
the Orion 1 prototype [Kim90], and some pre-release versions of 
Gemstone [Cope841 employ an object-server architecture. 
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An alternative is the page server approach, in which the 
server deals only with pages and does not understand the seman- 
tics of objects. In addition to providing the storage and retrieval 
of database pages, the server also provides concurrency control 
and recovery services for the database software running on the 
workstations. This architecture is currently being used by the 
Observer [Horn871 and Exodus [Care891 prototypes. 

The third design, the file server approach, represents a further 
simplification of the page-server architecture in which the works- 
tations use a remote file service, such as NFS [Sun88], to access 
database pages directly. As with the page-server design, the 
server in this architecture provides concurrency control and 
recovery services. The current version of Gemstone uses this 
architecture when configured for a workstation-server environ- 
ment. 

The following subsections compare these alternatives from the 
viewpoint of how each affects the implementation of the func- 
tionality that an OODBMS must provide. We have decided to 
concentrate our efforts on first deciding which of the three basic 
architectures provides the best overall performance and have 
ignored certain equally important issues, such as what is the best 
recovery strategy for any particular architecture. 

2.2. The Object-Server Architecture 
In the object-server architecture, most of the OODBMS func- 

tionality is replicated on the workstation and the server as shown 
in Figure 1 (one of many possible variations of this architecture) 
In addition, both maintain caches of recently accessed objec&. 
When the workstation needs an object it ftrst searches its local 
object cache. If the object is not found it requests the object from 
the server. If the object is not in the server’s cache, the server 
retrieves the object from disk and returns it to the requesting 
workstation. The unit of transfer between the workstation and the 
server is an individual object. 
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Figure 1 

This architecture has a number of advantages. First, both the 
server and workstation are able to run methods. A method that 
selects a small subset of a large collection can execute on the 
server, avoiding the movement of the entire collection to the 
workstation. This ability is most valuable when there is no index 
that supports the selection. In addition, one can balance the sys- 
tem workload by moving work from the workstation to the server 
[Vele89]. Another advantage is that the server knows exactly 
which objects are accessed by each application. Hence, con- 
currency control can be almost completely centralized in the 
server. Furthermore, the implementation of object-level locking 
is straightforward. The design might also lower the cost of 
enforcing constraints that relate objects manipulated by an appli- 
cation with other objects in the database, for example, a constraint 
that says that the subpart graph of a mechanical assembly is acy- 
clic. Instead of moving all the objects involved in the constraint 
to the workstation, the constraints may be checked at the server. 

This design suffers from some serious problems. First, in the 
worse case there may be one remote procedure call (RPC) per 
object reference, although hopefully the hit rate on the 
workstation’s object cache will be high enough to satisfy most 
requests. For the server to transfer more than a single object at a 
time, it must be capable of figuring out which objects belong with 
one another, replicating the work that any clustering mechanism 
did when it placed objects together on a disk page. 

Another major problem is that this architecture complicates 
the design of the server. Instead of having the server supply just 
the functionality that it alone can supply (e.g., sharing, con- 
currency control, recovery), the server must be capable of execut- 
ing arbitrary user methods. In the case of the V1.0 O2 prototype, 
this meant the use of System V semaphores to coordmate access 
to shared memory (read: expensive and slow) for the server’s 
object cache and lock table. A related problem arises when a 
method is applied to a group of objects that are currently distri- 
buted among the workstation’s cache, the server’s cache, and the 
disk drives which hold the database. This problem is complicated 
by the possibility that the same object, in possibly different ver- 
sions, may be in both caches as well as on the disk simultane- 
ously. Thus, a method cannot blithely execute on the server, 
without first addressing such cache inconsistencies. 0 V1.0 and 
Orion adopted different solutions to this problem. In 

4- 
when a 

method runs on the server, the workstation first ushes all 
modified objects in its cache back to the server. The Orion-l pro- 
totype executes the method on both the workstation and server 
[Kim90]. Since this strategy can result in duplicate copies of an 
object in the result, a postprocessing step of duplicate elimination 
is required. 

There are also several minor problems with this design. First. 
it may hinder locking at the page level as an alternative to object- 
level locking since neither the workstation nor server software 
really deals with pages. Second, objects tend to get copied multi- 
ple times. For example, an object may have to be copied from the 
server’s page-level buffer pool into its object cache before it can 
be sent to a workstation. Another copy may take place on the 
workstation if the object cannot be stored directly into the object 
cache by the networking software. Finally, since the software on 
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a workstation simply requests an object from the server without 
generally being aware of the size of the objecb large, multipage 
objects may move in their entirety, even if the application needed 
to access only a few bytes. 

Finally, this design could‘be out of step with technology 
trends. Within l-2 years, 10 MIP workstations will become 
increasingly common and most (>90%) of the computing power 
will end up being concentrated in the workstations and not in the 
server. In such a situation it makes no sense to move work from 
the workstation to the server. Likewise, over the next 5-10 years, 
FDDI will probably replace Ethernet as the standard technology 
for local area networks. While the cost of sending a message is 
already almost entirely due to software overhead and not 
transmission time, the overhead component will delinitely dom- 
inate in the future. 

2.3. Page-Server Architecture 
Figure 2 shows one possible architecture for a page server. In 

this architecture, the server basically consists of a large buffer 
pool, the I/O level of a storage system for managing pages and 
files, plus concurrency control and recovery servers. The upper 
levels of the OODBMS software run exclusively on the worksta 
tion and the unit of transfer between the workstation and server is 
a disk page. When the server receives a request for a data page, it 
first sets the appropriate lock on the page. Next, if the desired 
page is not in the server’s buffer pool, the server retrieves the 
page from the disk and returns it to the workstation. 

Buffering on the workstation can be done either in terms of 
pages or objects or both. The advantage of an object cache is that 
buffer space on the workstation is not wasted holding objects that 
have not actually been referenced by the application. If an object 
cache is used, then there is a cost to copy each object from the 
incoming data page into the local object cache. Furthermore, if an 
object in the object cache is later updated, the page on which the 
object resides may have to be retrieved from the server again 
(which, in turn may incur an I/O operation). 
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Like the object server, this design has its advantages and 
disadvantages. Its primary advantage is that it places most of the 
complexity of the OODBMS in the workstation, where the major- 
ity of the available CPU cycles are concentrated, leaving the 
server to perform the tasks that it alone can perform - con- 
currency control and recovery. Since entire pages are transferred 
intact between the workstation and the server, the overhead on the 
server is minimized. While on first glance this approach may 
appear wasteful if only a single object on the page is needed, in 
fact the cost (in terms of CPU cycles) to send 4K bytes is not 
much higher than the cost of sending 100 bytes. Furthermore, if 
the clustering mechanism has worked properly, then a significant 
fraction of the objects on each page will eventually end up being 
referenced by the client. Finally, by minimizing the load each 
individual workstation places on the server, one can support more 
workstations off a single server - delaying for a long as possible 
the complexities associated with supporting multiple servers. 

While its simplicity makes this design very attractive, it is not 
without disadvantages. First, methods can be evaluated only on 
the workstation. Thus, a sequential scan of a collection requires 
that all the pages in the collection be transferred to the worksta- 
tion. While this limitation sounds disastrous, there are several 
mitigating factors. Fist, the server does the same amount of diik 
I/O as with the object server design and, in the case of an indexed 
selection, only those pages containing relevant objects will be 
transferred to the workstation. Furthermore, the page server 
avoids all problems that the object-server architecture encounters 
when executing methods on the server. A second disadvantage is 
that object-level locking may be difficult to implement, especially 
merging simultaneous changes to the same page by two or more 
workstations. In addition, implementing non-2PL B-tree locking 
protocols may be complex in this environment. 

Finally, the performance of this design, both relative to the 
other architectures and in absolute terms, may be dependent on 
the effectiveness of the clustering mechanism. In Section 5, we 
examine how clustering affects the performance of this design. 

2.4. The File-Server Architecture 
The final workstation-server architecture is a variation of the 

page-server design in which the workstation software uses a 
remote file service such as NFS to read and write database pages 
directly. Figure 3 shows such an architecture. 

There are several reasons why such an architecture is attrac- 
tive. Fist, it provides many of the advantages of the page-server 
architecture, such as minimizing the overhead placed on the 
server by the workstation. Also, since NFS runs in the operating 
system kernel, by using it to read and write the database, user- 
level context switches can be avoided completely, improving the 
rate at which data can be retrieved by a remote workstation. 
Finally, because of its widespread use, NFS will continue to 
evolve and be improved. Basing a system on NFS takes advan- 
tage of these improvements. 

In addition to the problems it inherits from the page-server 
architecture, this architecture has some other serious problems. 
First, NFS writes are known to be slow. Because it is a stateless 

109 



WORKSTATIONi 

r 1 

I APPLICATION 
PROGRAM I 

SERVER 

PAGE BUFFER 

NPS 
--- 

Figure 3 

protocol built on top of UDP, a write operation to a remotely 

mounted NFS file is flushed to disk’ before the request is ack- 
nowledged. Second, since read operations in this architecture 
bypass the server software completely, it is not possible to com- 
bine the request for a page with the request for a lock on a page. 
Sending a separate lock request message negates some of the 
benefits of using NFS in the first place, as the cost of the lock 
request is likely to be very close to the cost of simply requesting 
the page and setting the lock as a side effect. A similar problem 
occurs with coordiiating the allocation of disk space on the 
server. Since sending a request to the server for an individual 
page is too expensive, the most reasonable solution is to have the 
server allocate groups of pages at a time, instead of workstations 
requesting a single page at a time. 

3. F’rototyping The Workstation-Server Architectures 

3.1. introduction 
This section describes our prototypes of the three alternative 

architectures. The basis for each of these prototypes was a 
stripped-down, single-user version of WiSS [Chou85]. We 
elected to use WiSS because it is currently being used as part of 
two different OODBMSs (the 02 system from Altair and the 
ObjectStore system from Object Sciences). WiSS consists of four 
distinct levels. The lowest level, Level 0, deals with the aspects 
of physical IQ including allocation of disk extents (collections of 
physically contiguous pages) to files. The next level, Level 1, is 
the buffer manager which uses the read and write operations of 
Level 0 to provide buffered I/Y) to the higher levels of the system. 
Pages in the buffer pool are managed using an LRU replacement 
strategy. Level 2 is the storage-structure level. This level imple- 
ments sequential files, B+-trees, and long data items. This level is 
also responsible for mapping references to records to the 

r Actually not only is the updated bleck flushed to disk bet also the 
inode (a Unix file system data structure) which points to the updated 
block. Thus, each data page write actually involves two disk ~/OS. As a 
solution to this problem, Legato, Menlo Park, CA., has recently intro- 
duced a stable RAM board for Sun servers which is used to buffer writes. 

appropriate references to pages buffered by Level 1. Finally, 
Level 3 implements the access methods, which provide the primi- 
tives for scanning a file via a sequential, index, or long-data item 
SCanS. 

As discussed in more detail below, the object and page 
servers required that we split the functionality provided by WiSS 
into two processes, termed the client and server processes. In the 
target environmenf the database resides on disks attached to the 
machine running the server process and the client process runs on 
each workstation. To provide the interprocessor communication 
necessary to implement such a system, we used the Sun RPC 
tools, including Rpcgen [Sun88], which automatically generates 
the necessary procedure stubs given a data file that describes the 
message formats and the procedure names with which you wish to 
communicate remotely. While this RPC package provides sup- 
port for communications using both TCP and UDP, we elected to 
use UDP since we had no need to send streams of data larger than 
8 Kbytes. 

3.2. File Server 
As described in Section 2, the simplest way of having a 

number of workstations share data is to run all the database 
software on the workstation and use NFS to access the database 
on a shared server. Since for these experiments we elected to 
ignore issues of concurrency control, recovery, and coordinating 
the allocation of disk space, prototyping this architecture simply 
meant running WiSS on one processor with’its disk volume on a 
remotely mounted file system belonging to the server, as shown in 
Figure 4. When Level 0 of WiSS makes an I/O request to read or 
write a page, the NFS software takes care of executing the request 
on the server on behalf of the workstation. 

A key motivation for prototyping thii design is that it provides 
a lower bound on how fast remote data can be accessed. While 
NFS, like the version of the Sun RPC protocol that we used, is 
also implemented on top of UDP, data transfers occur between 
two kernels instead of between two user-level processes. As illus- 
trated by the results in Section 5, this difference can have a 
significant effect on the execution of certain kinds of queries. 
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3.3. Page Server 
We prototyped the page server architecture as shown in Figure 

5. The server process consists of Levels 0 and 1 of WiSS plus an 
RPC interface to all the routines+t these two levels. The worksta- 
tion process consists of all the levels of WiSS except for Level 0, 
which was replaced by an thin layer that executes requests to 
Level 0 by sending a remote procedure call to the server process. 
The upper levels of WiSS were completely unaffected by these 
changes. While our current implementation of this design does 
not provide concurrency control and recovery services, the server 
does support simultaneous workstation processes. 

In a complete implementation of this design, each request for a 
page would also specify the lock mode desired by the workstation 
(e.g., S, X, IX, . ..). avoiding the overhead of a second message to 
set a lock. In addition to a centralized lock table on the server, 
each workstation would also maintain a local cache of the locks it 
holds to minimize lock calls to the server. 
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The success of the page-server design is predicated on two 
factors: the extent to which “related’ objects are clustered 
together on a page and the relative cost of fetching an individual 
object versus a page of objects. As illustrated by Table 1, most of 
the cost of obtaining a page from the server is in the overhead of 
the RPC and communications protocols and not in transmission 

and copying costs.’ 

Size of Reply Message Execution Time 

8000 bytes 28.4 ms. 

Table 1 

* These times were gathered between two Sun 3/80 processors (3 
MIPS, 68030 CPUs) running the Sun RPC software and Version 4.0.3 of 
the SunOS. The size of the RF’C request message was 8 bytes. 

3.4. Object Server 
While the server process in the page-server architecture only 

understands pages, in the object-server &sign, it understands 
objects and files or collections of objects. Our object-server pro- 
totype is depicted in Figure 6. The server process consists of all 
the layers of WiSS plus an RPC interface to Level 3 of WiSS. 
The workstation process consists of the application code, a special 
version of Level 3 of WiSS, and an object cache. This version of 
Level 3 serves as an interface to the local object cache and to the 
services provided by the server process through the RPC software. 
Operations on files (e.g., create/destroy, open/close) are passed 
directly to the server. Operations on objects (really WiSS 
records) are handled as follows. In the case of a “read object” 
call, the Interface Layer first checks whether the object is in the 
local object cache. If so. the object is returned directly to the 
application code. When a miss on the local cache occurs, the 
Interface Layer first makes space available in the local cache 
(perhaps by writing an dirty object back to the server) and then 
requests the desired object from the server. When a new object is 
created, a “write-through” cache protocol is used because WiSS 
uses physical object-ids and the server is needed to place the 
object on a page of the appropriate file and assign an object-id. 
The new object remains in the cache but it is marked as clean. 
Updates to objects residing in the cache are handled simply by 
marking the object dirty and flushing any remaining dirty objects 
to the server at commit time. 
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3.5. Concurrency Control and Recovery 
To complete this project in a reasonable time, it was not possi- 

ble to include concurrency control or recovery services in our pro- 
totypes. We feel, however, that the results obtained are neverthe- 
less representative of the relative performance of the three archi- 
tectures. With respect to concurrency control, in the object- and 
page-server designs, the request for a lock, and the request for a 
object or page can be combined into a single message. If the 
server grants the lock the reply message contains both the grant 
and the requested object or page. When this mechanism is corn- 
bined with a local cache of locks already obtained, no extra 
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messages are required to add locking to these two designs. Since 
lock requests camrot be combined with I/O requests in the file- 
server design, the results obtained for this design are undoubtably 
biased in favor of it (unless optimistic concurrency control 
suffices). 

With respect to recovery services, the performance impact of a 
recovery mechanism such as write-ahead logging would be identi- 
cal on each design. For example, assume that log records are gen- 
erated as objects are updated and that log records are grouped into 
page-size chunks for transmission to the server. Since such a 
design is compatible will ah three architectures, we contend that 
omitting recovery services does not affect the relative perfor- 
mance of the three designs significantly. 

One final issue that must be addressed in complete implemen- 
tations of these three architectures is how to maintain consistency 
among the different buffer pools. With respect to objects or pages 
for which locks are held until the end of transaction (the normal 
case), consistency is insured by the semantics of standard locking 
protocols. The one case where problems might arise is with 
object-level locking in the page- or file-server designs. If write 
locks by multiple transactions are allowed on objects in the same 
page, then combining the changes of those transactions in the 
server is non-trivial. In the case of objects or pages which are 
locked in a non-2PL fashion (such as is typically done for index 
pages to improve performance), a number of possible solutions 
are possible. For example, by invalidating the local copy of an 
object when the lock is released, consistency can be. insured at the 
expense of reduced performance. While there are certainly better 
solutions, they appear to be applicable to all three designs. Thus, 
we felt that omitting cache consistency would not seriously affect 
our results. 

4. The Altair Complex-Object Benchmark 

4.1. Introduction 
To evaluate the performance of the alternative workstation- 

server architectures, the obvious alternatives were to use an exist- 
ing benchmark or to design a benchmark specific for this evalua- 
tion. In terms of existing benchmarks, the Sun [Catt88] and 
Hypermodel [Ande90] benchmarks appeared to be the most rea- 
sonable alternatives. We opted against the Sun benchmark 
because it forms complex objects by choosing random objects to 
relate to one another. Since one measurement we wanted was the 
impact of the degree of clustering of the components of a complex 
object on the performance of the alternative designs, the Sun 
benchmark was not appropriate. Recently, a new version of the 
Sun Benchmark has been designed [Cat.@01 which would have 
been much better suited for our purposes. 

Initially, the Hypermodel benchmark appeared a better match 
to our objectives because it provides both clustered and non- 
clustered groupings of objects. The problem with this benchmark 
is that it consists of a very large number of queries. Since we 
were afraid of being overwhelmed by results if we used the full 
Hypermodel benchmark and did not understand which subset to 
select, we elected to design a new benchmark that was tailored to 
the task of evaluating the alternative workstation-server designs. 

4.2. Database Design 
The basis for the Altair Complex-Object Benchmark (ACOB) 

is a set of 1500 complex objects. Each object is composed of 7 

WiSS records with the structure shown in Figure 7.3 Each record 
is 112 bytes long. The key field is an integer whose value ranges 
between 1 and 1500, corresponding to the physical order of the 
objects in the file. The seven records that form each complex 
object are organized in the form of binary tree of depth 2, as 
shown in Figure 8. Ail inter-record (and inter-object) references 
are in terms of physical record IDS. When an object is initially 
created, all 7 records are placed on the same data page. Since an 
update to a complex object may have the unavoidable side-effect 
of moving one or more of its component records to a different 
page, our benchmark provides a mechanism by which a fraction 
of the records within an object can be “smeared” to other pages in 
order to explore the effect of such updates on the performance of 
the different server architectures. Smearing is discussed in more 
detail later. 

(4 BY-) (4Bytes) @RYW @Bytes) (88 BY-) 
wlssREcoRD KEy LEFr RIGHT DUMMY 

HEADER cmLDcHILD STRING 
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With 4 Kbyte pages, 5 complex objects (consisting of 7 
records each) will fit on a single page and the set of 1500 objects 
spans 300 pages (approximately 1.2 megabytes). While the size 
of each set could be criticized as being too small to be realistic, 
one of the things we’wanted to explore was the relative perfor- 
mance of the different architectures when the entire working set 
of the application fit in the workstation’s buffer pool. A 
significantly larger set size would have made such a test 

s The design of this benchmark is influenced by the data model of 
the O2 database system [Deux90], which distinguishes between values and 
objects. In an O2 database, an object may have a complex stmcture 
without forcing each sub-component to be an object. Thus, it made sense 
for us to distinguish inter-object and intra-pbject references and treat them 
differently. In particular, we justify putting the 7 records of an object on 
one page as we imagine them all to be part of the value of one object, and 
hence would be created together when the object is created. 
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impossible. However, in order to minimize the effect of operating 
system buffering of database pages, 5 identical sets of 1500 
objects were used for the experiments described below, producing 
a total database size of about 6 megabytes. 

The ACOB database is co&ructed in three phases. The first 
phase allocates all the records of all the objects, forming the 
intra-object references and filling in all the record fields. In real 
object-oriented databases, objects frequently reference one 
another in either the form of aggregation relationships (e.g., a part 
and its component subparts) or M:N relationships between each 
other (e.g., suppliers and parts) [Ande90]. To simulate such rela- 
tionships, in the second phase we anuch two objects to each of the 
four leaf records in every complex object (via the “left” and 
“right” fields found in each record), as shown in Figure 9. (Each 
triangle in Figure 9 represents one complex of 7 records, as in 
Figure 8.) These attached objects are termed “components”. 

As mentioned before, we want to gauge the impact of physical 
clustering of complex objects on the performance of the different 
server designs. To study this effect, the second phase accepts a 
parameter called the clustering factor. Our notion of clustering 
is defined as follows. If object A references object B, then we say 
object B is clustered near object A if B is located within a “clus- 
tering region” around A. For example, if the size of the clustering 
region is 5 pages, B is considered to be clustered near A if B is on 
the same page as A or on either of the two pages physically 
preceding or following the page upon which A resides. Section 5 
explores the effect of varying the size of the clustering region on 
the relative performance of the different architectures. 

The clustering factor, f, can be varied from 0 to 100 and is 
employed as follows during the second phase of database crea- 
tion. When the objects to attach to an object X are being selected, 
objects that are “clustered’ nearby X are selected f% of the time. 
That is, for each attached object a random value between 0 and 99 
is generated and if this random value is less than the value of the 
clustering factor, one of the objects that are clustered near X is 
selected at random. Otherwise, a random object from the set of 
1500 objects is selected. 

The thiid (optional) phase in creating the database is to 
“smear” a fraction of the records that comprise each complex 
object. Smearing simulates the dispersal of records in an object 
over different data pages caused by database updates (either 
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because an updated record was too long to still to fit on its current 
page or because an alternative version of a record was created and 
the new version does not fit on the same page with the other 
records of the object). If smearing is selected, one quarter of the 
objects (chosen at random) are modiied as follows. With a pro- 

bability of 02i4, each of the two interior records and each of the 
four leaf records are “moved’ to another page in the database. As 
illustrated by Figure 10, this “move” is accomplished by swapping 
the record with a corresponding record of another randomly 
selected object. For example, in Figure 10. we have smeared 
object A by exchanging its right child with the left child of B. 

_____--______._____.----_1 L_.________..-____________ 
PAGE i PAGE j 

“Smearing” of Interior Nodes within Two Complex Ob 
Figure 10 
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4.3. Queries 

Sequential Scan 
The “scan” query reads all the complex objects in a set in their 

physical order. For each object, a breadth-first traversal algorithm 

is used to read the seven records that comprise the object’. This 
query does not, however, read any of the attached components of 
an object. Thus, each record is accessed exactly once. As records 
are accessed, they are copied into the address space of the applica- 
tion program. If the records of an object have been “smeared”, 
readii an object may require access to more than one disk page. 

This query has been included because it simulates reading all 
instances of a class. Without smearing, the query is a very good 
test of the instruction path length of each design as accesses to the 
database are strictly sequential, maximizing the chance that the 
performance of the CPU will be the limiting factor. This query, 
with its sequential I/O activity, was also designed to help under- 
stand the relative costs of accessing data on a disk diiectly 
attached to the processor (i.e., WiSS running on a local disk) and 
accessing it remotely (i.e., each of the server designs). The 
degree of database clustering does not have any effect on the 

4 ‘lbe probability of being moved is computed individually on each 
node. However, since smearing involves swapping an internal record of 
one object with an internal record of another object, approximately 3/8ths 
of the objects are actually affected by the smearing process. 

’ In our implementation of this benchmark, the record IDS of the 
root records are stored in a separate set. In the case of the sequential scan 
query, the execution times presented in Section 5 include the time neces- 
sary to read the elements of this set. For the Random Read and Random 
Update queries, this set of root record IDS was read into an in-memory ar- 
ray as a separate processing step. The processing time for this step is not 
included in the execution times presented for these queries. 
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execution time of this query. 

Random Read 
The second query “processes” 300 randomly selected complex 

objects and their components. The following sequence of opera- 
tions is applied to each object selected. First, the root record of 
the object is read. Then, a partial, depth-first traversal is per- 
formed up to a tree depth of 6 (the root record is considered to be 
at depth 0) such that an average of 44 records from among those 
in the object, its 8 attached components and the 64 root records of 
each of their attached components are read. This partial traversal 
is performed by electing to perform each stage of the depth-first 
traversal with a probability of 0.8. Thus, the expected number of 
re 

2 
rds read at each level is 1 root + 0.8 of the children at depth 1, 

0.8 of the records at depth 2, . . . , and 0.86 of the records at depth 
6. Of the expected 44 records reads, 17 are at level 6. Our selec- 
tivity factor on this query (and also the next) is related to the 
structural density parameter of Chang and Katz [Chan89]. Our 
selectivity of 0.8 appears to be in the middle of the range of struc- 
tural densities actually observed in traces of access patterns from 
a suite of VLSI tools. 

This query was designed to simulate those applications in 
which a user ‘,‘checks out” a collection of complex objects and 
selected subcomponents at the beginning of a transaction or ses- 
sion. As we will see in Section 5, the extent to which the database 
is clustered has a significant effect on the execution time of this 
query for both the page and file-server designs. 

Random Update 
The third query is basically an update version of the Random 

Read query. Again 300 random objects are selected for process- 
ing but, in this query, the records at depth 6 that are selected for 
reading are also updated. On the average, for each complex 
object processed, 17 records are updated (out of the 44 records 
read). These updates are performed in place by overwriting the 
record with a copy of itself. Thus, the structure of the database is 
not changed. 

This query was designed to help understand some of the possi- 
ble benefits of transferring individual objects between the works- 
tation and the server. With the page- and file-server designs, 
complete pages, containing perhaps only a single updated record, 
must be transferred back to the server from the workstation. In 
the case of the object server, only the updated objects need to be 
transferred back to the server. On the other hand, since the 
updated object must be placed back on the proper data page, but 
this page may no longer be in the server’s page cache. In that 
case, the page must ftrst be reread from the disk before the 
updated object can be added to it. This query is affected by the 
degree to which the database has been clustered and the extent to 
which the records in each object have been smeared. 

4.4. Benchmark Organization 
Using the load program plus the three queries described in the 

previous section, we then composed the actual benchmark that 
was used to evaluate the different server designs. This benchmark 

consisted of the following four steps that were always executed in 
the order described below. The random number seed was set to 
the same value at the start of each step. As described in Section 5, 
a wide number of versions of this benchmark were constructed by 
varying such parameters as the degree of clustering, whether 
smearing was selected or not, and the size of the workstation and 
server buffer pools. 

(1) Build five identical sets of 1500 complex objects each 
with the same degree of database clustering and the same 
choice (either on or off) of smearing. The eve sets are 
assigned names A to E corresponding to the order in 
which they were constructed (thus A is the first set built 
and E is the last set built). 

(2) The second step in the benchmark is to apply the scan 
query on sets A through E in order. The reason for this 
ordering is to attempt to minimize the extent to which 
buffering of pages by the operating system affects the 
results obtained. We elected to use five sets of objects 
based on the relative sizes of the set of objects and the 
operating system buffer pool. The Sun 3/80 used as a 
server for our experiments had only 8 megabytes of 
memory. With a server with more memory we would 
have either increased the number of objects in each set or 
expanded the number of sets employed. 

(3) The third step is to run the random read query on sets A 
through E, in order. 

(4) The fourth step is to run the random update query on sets 
A through E, in order. 

In addition, the benchmark as run contained a fifth step in 
which the sequential scan, read, and update queries were run one 
after another on each set. The motivation was to explore how 
well the different designs utilized their local cache. The results of 
that step have been omitted from this version of the paper for 
space reasons; they can be found in the full version [DeWi90]. 

5. Performance Evaluation 
In this section we present the results of our performance 

evaluation of the three prototypes using a single-site version of 
WiSS as a reference point. In Section 5.1. we describe the 
hardware environment used to conduct our experiments. Results 
obtained while building the ACOB database are contained in Sec- 
tion 5.2. Section 5.3 describes our clustering and smearing exper- 
iments. Finally, in Section 5.4, we explore how the size of the 
buffer pools on the workstation affects the architectures individu- 
ally and comparatively. 

5.1. Test Environment 

For our experiments we used two Sun 3J806 workstations, each 
running Version 4.0.3 of the Sun operhting system. Each machine 
had 8 megabytes of memory and two 100 megabyte disk drives 

6 ‘he Sun 3/80 uses a 68030 CPU and is rated at 3 MIPS. 
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(Quantum ProDrive 105s). While the machines were run in the 
normal, multiuser mode, during the tests they were not used for 
any other activity. The database was always constructed on the 
same disk drive on the server machine to insure that any differ- 
ences among the different drives did not affect the results 
obtained. 

In conliguring the different systems, we encountered a number 
of problems relating to buffer space allocation. The first problem 
was deciding how much buffer space to allocate to WiSS and the 
file-server prototype. Given that the default configuration for the 
page- and object-server designs was a 50-page (4 Kbyte pages) 
buffer pool on both the workstation and the server, one option 
would have been to use loo-page buffer pools with both WiSS 
and the file-server prototype. However, this choice did not seem 
quite fair, because in a real environment the buffer space on the 
server of the page- and object-server designs would be shared 
among multiple workstations. In addition, 50-page buffer pools 
on both the workstation and the server are not as effective as a 
single lOO-page buffer pool. Since there was no obvious “right” 
solution, we decided to use the same-size buffer pool as was used 
in the workstation process of the page- and object-server proto- 

types. 

The second problem encountered was limiting the amount of 
buffering performed by the operating system as the virtual 
memory manager of SunOS V4.0 treats both program and data 

pages uniformly? While this “feature” did not affect buffering on 
the workstation of the page- and object-server prototypes, its 
impact on the file-server server prototype was to provide it with 
an effective buffer pool size of approximately 1,500 pages! Since 
there is no clean way of turning this feature off, when running the 
file-server prototype we used a modified’ kernel on the worksta- 
tion processor that artificially limited the size of physical memory 
to 292 pages. This value was chosen so that there was enough 
physical memory to hold the Unix kernel, the benchmark program, 
a 50 page WiSS buffer pool, a 10 page NFS buffer pool, and the 
standard Unix utility programs. 

We elected, however, not to “reduce” the size of physical 
memory on the processor to which the disk holding the database 
was attached since each design had an equal opportunity to use 
this memory for buffering. More importantly, restricting the 
amount of memory on the server would have made the benchmark 
much more I/O intensive and this change might have masked 
interesting differences among the architectures. The reader 
should, however, keep this fact in mind when interpreting the 
results presented throughout this paper. 

’ Other versions of Unix typically allocate 10% of the physical 
memory available for buffering data pages and reserve the rest of memory 
for program pages. 

* This was done by using adb to set the value of -physmem in 
vmunix to 0x175. 

5.2. Database Build Time 

In Table 2, the time for each of the four prototypes to build an 
unsmeared database with 30% and 90% clustering factors is 
presented. Several observations are in order. First, each system is 
affected only slightly by the clustering factor. While both the file- 
and page-server designs are slower than WiSS, the results are not 
out of line, considering that both are building the database on a 
disk attached to a remote processor. The most startling result is 
that the object-server prototype is almost a factor of 6 slower than 
the file- and page-server prototypes. As will become evident in 
the other tests presented below, when the object server’s cache is 
ineffective (as with the build test), its performance is always 
much worse than the other designs because of the high cost of 
transferring objects individually. We omitted the times to build a 
smeared database (which are somewhat higher), because the rela- 
tive performance of the different systems remained the same. 

System 1 30% Clustering 1 90% Clustering1 

WiSS 
Factor Factor 

I 223.0 sets. I 22.6 sea. 
File Server 47.8 sets. 48.4 sea. 
Page Server 43.6 sets. 41.4 sets. 
Object Server 236.8 sets. 233.8 sea. 

Table 2 

5.3. Clustering and Smearing Tests 
For the next collection of tests, we fixed the workstation and 

server buffer pools each at 50 pages and varied the clustering fac- 
tor from 10% to 90%. The WiSS and file-server buffer pools 
were also set at 50 pages. The clustering region was fixed at 5 
pages. Figures 11 through 16 present the results that we obtained 
for the three benchmark queries (see Section 4.3) on both 
unsmeared and smeared databases. 

Scan Query 
Consider !irst the results obtained for the scan query (Figures 

11 and 12). As expected, each design is unaffected by the cluster- 
ing factor since this query reads each object in its entirety, but 
none of an object’s component objects. The most startling result 
is the object server’s extremely poor performance relative to the 
other designs. With an unsmeared database, the page server is 
approximately 11 times faster than the object server. The source 
of this difference is the high cost associated with fetching each of 
the 7 records composing an object with a separate RPC operation. 
With the page-server design, 300 pages are fetched from the 
server by the workstation, one RPC call per page. With the 
object-server design, a total of 10,500 RPC calls are made. In 
order to make the object server competitive on such queries, each 
RPC call must fetch more than a single record. One possible 
solution would be for the server to return all 7 records of a object 
in a single RPC call. This change, however, would require that 
the server understand the structure of an object - significantly 
complicating its design. 
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Figure 11: Scan Query, Unsmeared DB 
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Figure 12: Scan Query, Smeared DB 

When the database is smeared, the performance of the object- 
server design is relatively unaffected while the page and file- 
server prototypes slow down~significantly. Part of this increase 
comes from a five-fold increase in the number of disk I/O opera- 
tions required (to approximately 1500). However, this factor 

accounts for only 6 seconds9 of the approximately 18 and 30 
second increases observed for the file- and page-server architec- 
tures, respectively. The remainder represents the cost of fetching 
an additional 1200 pages from the server. For the page-server 
architecture, the cost of retrieving 1200 pages via the RPC 
mechanism can be estimated from Table 1 to be approximately 22 
seconds. The 12 second difference between the two illustrates 

9 This is the increase observed for WiSS. 

how much more efficient NFS is than a user-level RPC mechan- 
ism. 

The object server is unaffected because it fetches the same 
number of records whether the database is smeared or not and the 
increased I/O activity on the part of the server is masked by the 
cost of doing object-at-a-time fetches. 

Random Read Query 
Next consider the performance of the random read query for 

both smeared and unsmeared databases (Figures 13 and 14, 
respectively). As the clustering factor is increased from 10% to 
90%. the number of disk I/OS performed by each design to exe- 
cute the query decreases (the buffer pool hit rate improves by 
approximately 30%). This reduction improves the performance of 
WiSS by about 35%. 

The behavior of the object- and page-server designs (both in 
absolute terms and relative to one another) is more complicated. 
First, while both systems have 50-page buffer pools in both the 
workstation and the server (increasing the probability that an 
object will be found in one of the two buffer pools), it turns out 
that buffer size is not the dominant factor. Instead their behavior 
is dominated by the costs associated with RPC access to the 
server. The execution of this query involves 14,623 references to 
WiSS records (this is independent of the clustering factor). With 
a 10% clustering’factor, the object server observes a cache hit rate 
of 0.181. When the clustering factor is increased to 90%, the 
cache hit rate increases to 0.251. The result is that 1024 fewer 
objects are requested from the server (10,953 instead of 11,977) 
producing an estimated RPC savings of only 8 seconds (the total 
improvement in response time is 13 seconds). The remaining 5 
seconds is due primarily to the reduction in the number of disk 
I/OS performed by the server. 

With the page-server design, as the clustering factor is 
increased from 10% to 90%, the buffer cache hit rate increases 
from 0.66 to 0.86, resulting in a savings of 3150 RPCs (from 5443 
to 2293). This savings translates into an estimated RPC savings 
of approximately 58 seconds (consider the RPC times in Table 1, 
Section 3.3). The remaining 6 seconds improvement in response 
time is because the server does fewer I/OS. 

The differences in performance between the page- and file- 
server designs is primarily due to the difference in cost between 

fetching a page via NFS and with an RPC call.” When the clus- 
tering factor is low (or the database is smeared as in Figure 14), 
the page-server design is forced to do a large number of RPC 
accesses, each of which is more expensive than accessing a page 
via NFS. 

In general, the performance of the page- and file-server 
designs are very sensitive to the database clustering factor. The 
page-server design has worse performance than the object-server 

” This difference is not the result of extra copies, as we modified 
the output of rpcgen to eliminate the the copy normally introduced by the 
rpcgen software. 
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Figure 13: Random Read Query, Unsmeared DB 
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Figure 14: Random Read Query, Smeared DB 

design with either a smeared database or a low clustering factor, 
simply because each page retrieved from the server ends up fetch- 
ing relatively few objects that get referenced before the page is 
removed from the buffer pool. On the other hand, the object 
server fetches only those objects it actually references. Hence, its 
performance is relatively immune to the clustering factor or 
smearing. In a multiuser environment, this immunity would 
likely change if the bottleneck switches from being the RPC 
mechanism to the disk arm (i.e., if each object fetched results in a 
random disk access). 

Random Update Query 

Like the random read query, this query randomly selects 300 
objects for processing, but, in this case, the records at depth 6 that 
are selected for reading during the traversal are also updated. On 

the average, for each complex object processed, 17 records are 
updated. The results are contained in Figures 15 and 16 for 
unsmeared and smeared databases, respectively. 

This query illustrates the extremely poor performance of 
writes using NFS - the file server being more than a factor of 8 
slower than WiSS at a clustering factor of 10%. As the clustering 
factor is increased from 10 to 90%, the response time for the file- 
server design improves to being only a factor of 5 worse than 
WiSS for an unsmeared database and a factor of 7 worse for a 
smeared database. This improvement occurs because with a 
higher clustering factor the chance that a page ends up being writ- 
ten more than once decreases. It is important to keep in mind that 
these results reflect the performance of a file-server design imple- 
mented using NFS. A different remote file service might behave 
quite differently. 

The clustering factor and smearing again significantly affect 
the performance of the page-server design and, since pages flow 
both directions between the workstation and the server, the impact 
is magnified. Furthermore, the same page may end up being writ- 
ten back to the server more than once. 

This query is the only one where the object-server &sign 
really exhibits significantly better performance than the other two 
designs. By fetching only those objects that are actually refer- 
enced by the application and writing back only the objects actu- 
ally modified, the performance of the object-server design is rela- 
tively insensitive to clustering and smearing. 

This query also illustrates that page writes with NFS are more 
expensive than page writes with RPC (at a clustering factor of 
10%. the response time for the file server is about 20% higher 
than that of the page server). This difference is due to NFS being 
a stateless protocol: it performs the write operation before ack- 
nowledging the message. With an unsmeared database, the differ- 
ence in response times decreases slightly as the clustering level is 
increased, because fewer pages are written more than once. 
(Recall that, at each clustering factor level, the same number of 
pages are being written by both architectures.) 

Sensitivity to the Clustering Region Size 

After observing the results presented above, we were curious 
as to the sensitivity of our results to the size of the clustering 
region. To test this sensitivity, we repeated the three queries 
using an unsmeared database and with clustering regions of 1 and 
9 pages. (Recall that’our definition of clustered states that an 
object B is clustered near an object A if B lies within the cluster- 
ing region surrounding A.) We used only an unsmeared database 
because the results in Figures 11 through 16 indicate that the pri- 
mary effect of smearing is to shift the file and page server curves 
by a nearly constant amount and not to change their fundamental 
shapes. The most interesting results we obtained are presented in 
Figures 17 and 18. 

Figure 17 presents the execution time of the random read 
query for the page- and object-server designs for the three sizes of 
clustering regions. These results demonstrate that the relative per- 
formance of the different systems is indeed sensitive to the size of 
the clustering region. With a clustering region size of 5 pages, the 
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Figure 15: Random Update Query, Unsmeared DB 
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Figure 16, Random Update Query, Smeared DB 

performance of the page server is better than that of the object 
server ollry when the clustering factor is above 55%. When the 
cIustering region is shrunk fo one page, the crossover point drops 
to a clustering factor of about 30% and when it is increased to 9 
pages the crossover point climbs to about 65%. These results 
reveal that the page server’s performance remains very sensitive 
to the clustering factor, regardless of the size of the clustering 
region. However, they also reveal that the performance of the 
page server will be superior if either the degree of database clus- 
tering can be kept above 60% or if the region of clustering can be 

restricted to consist of only a few” pages. 

” Actually, we speculate that the absolute size of the clustering re- 
gion may not matter. Rather the key is probably the size of the clustering 
region relative to the size of the workstation’s buffer pool. 

Figure 18 presents the execution time of the random update 
query for the page- and file-server architectures (the object 
server’s execution time is a fairly constant 125 seconds). Here 
changing the size of the clustering region simply shifts the posi- 
tions of the page- and file-server architectures. and does not 
change their fundamental shape or spacing. Perhaps the most 
interesting result is that with a clustering region of 1 page, the 
page server outperfomrs the object server when the clustering fac- 
tor is above 65%. 
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Figure 17: Random Read Query 
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Figure 18: Random Update Query 

5.4. Impact of Workstation Buffer .Space 
For our final set of experiments, we selected two clustering 

factors (30% and 90%) and varied the size of the buffer pool on 
the workstation from 50 pages to 300 pages (the size of a set of 



1,500 objects). l2 For the page- and object-server designs, the 
server’s buffer pool was fixed at 50 pages. The results are 
displayed in Figures 19 through 22. (As expected, the size of 
workstation buffer pool has no effect on the performance of the 
sequential scan query and the results obtained are not shown). 

With the object-server design, response time actually 
increases. The only explanation we can offer is that this increase 
is an artifact of how the hash table for the object cache was organ- 
ized. However, the random read and random updat8 queries offer 
some interesting results. First, while the performance of the page- 
and file-server architectures both improve as the size of the buffer 
pool increases, the performance of the object server levels off 
once the buffer pool has been increased to 150 pages. At this 
point the cache size is no longer the limiting factor; the objects 
referenced by the query will all fit in the cache. Instead, the per- 
formance of the object server is limited by the cost of transferring 
objects using RPC. Since the other designs cache full pages in 
their buffer pools, their performance continues to improve. One 
would not expect any improvement beyond a buffer pool size of 
300 pages. 

For the random read query, the relative difference between the 
page server and file server diminishes as the size of the buffer 
pool is increased because fewer and fewer remote accesses are 
necessary. Hence, the performance advantage provided by using 
NFS decreases. 

In the case of the random update query, we observe the fol- 
lowing. First, the file server is more sensitive than the page server 
to the size of the workstation buffer pool. At small buffer sizes, 
page-write costs are the dominating factor for the file server. 
However, when the whole database fits into memory, the benefits 
of using NFS for reads compensate for the more expensive write 
operations, because no pages are written more than once. 

Second, the object server performs much better than the page 
server when the buffer size is small. At a 30% clustering factor, 
the buffer size has to be almost the size of the database before the 
page- and file-server designs outperform the object server. We 
conclude that more memory is not a reasonable substitute for 
effective clustering - unless the entire database will fit in main 
memory. With a 90% clustering factor, the performance of all 3 
designs is very close. 

For both queries, we observe that the page server is more sen- 
sitive to the size of the workstation buffer pool than to clustering 
(even considering the various clustering region sizes). Except 
with a 300-page buffer pool, it was never the case that the pages 
referenced by a query would fit entirely in the buffer pool, even at 
a high clustering factor. Large buffer sizes do a better job at com- 
pensating for the lack of effective clustering than the opposite 
(i.e., effective clustering compensating small buffer sizes). For 
example, with the random read query, a 200-page buffer with a 
30% clustering factor performs better than a 50 page buffer with a 
90% clustering factor. This behavior is even more noticeable 

I2 In the case of the file server prototype, in addition to increasing 
the size of the buffer pool in 50 page increments, we also increased the 
“size” of the physical memory of the workstation in 50 page increments. 
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Figure 20: Random Read Query, 90% Clustering Factor 

with the random update query. 

6. Related Work 
The previous work most similar to ours is a study by Hagmann 

and Ferrari [Hagm86]. They split the functionality of the univer- 
sity version of the INGRES system in various ways between two 
machines and measured CPU, disk and network usage. Our 
investigation departs from theirs in several respects. First, their 
work was aimed at determining the best partitioning of database 
function between a shared central processor and a dedicated 
back-end machine. They mention workstation-server environ- 
ments, but the results are interpreted mainly relative to an 
environment with a pair of central machines. Second, their 
benchmark is indicative of relational data-processing loads. 
Finally, they did not experiment with the sensitivity of their 
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oriented operating systems [Marq89]. 
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Figure 21: Random Update, 30% Clustering Factor 
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Figure 22: Random Update, 90% Clustering Factor 

various software configurations to physical aspects of the data or 
to system parameters. The AIM-P database project also investi- 
gated the workstation-server linkage [Depp87]. Their high-level 
view is of two independent database systems taking advantage of 
a common physical format to speed transfers in a check-out model 
for long transactions, which differs from our view of partitioning 
the functionality of a single database system across two machines. 
However, the AIM-P techniques for concurrency control and 
update of auxiliary access structures might work in our context. 
Stamos [Stam84] simulated the behavior of different memory 
architectures in a non-distributed, single-user object manager, 
using different strategies for clustering. His conclusions are simi- 
lar to some of ours, namely, that page buffering is more sensitive 
to clustering than object buffering, and that object buffering 
shows better performance than page buffering only when buffer 
space is very limited. Similiar issues arise in the design of object- 

7. Conclusions 
Our main conclusions of these experiments are as follows: 

(1) The object-server architecture is relatively insensitive to clus- 
tering. It is sensitive to workstation buffer sizes up to a certain 
point, after which the cost of fetching objects using the RPC 
mechanism dominates. For the object-server to be viable, it must 
incorporate some mechanism for passing multiple objects or 
values in each message between the workstation and the server. 
While it is easy to find instances where this bundling is feasible 
(e.g., a set selection or displaying the complete state of a complex 
object), we know no general method for predicting object refer- 
ences, especially those made from a method. In particular, we do 
not see a means to provide such a capability that could provide 
automatic bundling for most of the queries in either the 
Hypermodel[Ande90] and Sun [Catt88, Catt90] benchmarks short 
of processing the queries on the server itself. 

(2) The page-server architecture is very sensitive to the size of 
the workstation’s buffer pool and to clustering when traversing or 
updating complex objects. While the page-server architecture is 
far superior on sequential scan queries, the object server architec- 
ture demonstrates superior performance when the database is 
poorly clustered or the workstation’s buffer pool is very small 
relative to the size of the database. 

(3) The file server’s performance is very ‘good when reading 
pages of the database using NFS, but, writes are slow. On the 
update query, the file server is very sensitive to the size of the 
workstation buffer pool (even more so than the page server). 

The observations above lead us to postulate: 

(1) There is no clear winner. A page-server approach seems 
beneficial with good clustering and a large workstation buffer 
pool. An object-server approach will perform poorly with appli- 
cations that scan large data sets, but it will perform better than a 
page server for applications performing updates and running on 
workstations having small buffer pools. 

(2) A file server approach based solely on NFS is ruled out 
mainly because of its expensive, non buffered writes. Its need for 
separate messages for locking is also a problem. 

(3) A hybrid architecture may be ncccssary to maximize overall 
performance. The “naive ideal’ is (i) to read pages through NFS 
and (ii) to write individual objects back. Each point has a 
corresponding drawback. For (i), the aforementioned con- 
currency control problem, and for (ii) the need for an object cache 
on the workstation. 
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