
Transaction Support in Read Optimized and Write Optimized File Systems-f
Margo Seltzer

Michael Stonebraker

Department of Electrical Engineering and Computer Science
University of California Berkeley, CA 94720

Abstract

This paper provides a comparative analysis of five
implementations of transaction support The lirst of the
methods is the traditional approach of implementing
transaction processing within a data manager on top of a
read optimized file system. The second also assumes a
traditional file system but embeds transaction support
inside the file system. The third model considers a tradi-
tional data manager on top of a write optimized file sys-
tem. The last two models both embed transaction sup-
port inside a write optimized file system, each using a
different logging mechanism.
Our results show that in a transaction processing
environment, a write optimized file system often yields
better performance than one optimized for reads. In
addition, we show that fik system embedded transaction
managers can perform as well as data managers when
transaction throughput is limited by I/o bandwidth.
FinaIly, even when the CPU is the critical resource, the
difference in performanee between a data manager and
an embedded system is much smaller than previous
work has shown.

1. Introduction
During the past decade several attempts have been made
to provide transaction support as part of the operating
system. Embedded support provides concurrency con-
trol and crash recovery to all applications rather than
just to the clients of the data manager, and there is a sin-
gle paradigm for application recovery and a single
implementation of this paradigm. Such systems are

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage. the VLDB copyright notice and

the title of the publication and its date appear. and notice is given

that copying is by permission of the Very Large Data Base

Endowment. To copy otherwise. or to republish. requires a fee

and/or special permission from the Endowment.

Proceedings of the 16th VLDB Conference
Brisbane, Australia 1990

described in WALK831, lMUEL833, lPU861, and
&fITC82]. All of these systems assume a traditional, or
read optimized, file system and have met with much
skepticism. The shortcomings inherent to these systems
are discussed in [STON81], D”KAI821, and [STON85].
Camelot’s distributed transaction processing system
[SPE88A] provides a set of Mach processes which pro-
vide support for nested transaction management, lock-
ing, recoverable storage allocation, and system
configuration. Atomic transactions may be implemented
by means of the recoverable storage, but requests to read
and write such storage are not locked automatically.
Thus a data server must make requests of the disk
manager to lock these regions[SPESSB]. In this way,
we see that transaction support under Camelot may be
viewed as a hybrid between a data manager and an
embedded operating system transaction manager. It is
similartoadatamanagerinthatauserprocess(data
server) is nqired to coordinate locking. On the other
hand, it is also similar to an embedded transaction
manager in that generic locking and transaction capabili-
ties are provided.
Kumar, lKUlM87J, shows that an operating system
embedded transaction manager provides substantially
worse performance than the traditionaI data manager.
He cites the lack of semantic information, the system
call locking overhead, and the size of the log as primary
causes for a 30% difference in performance between the
two systems. In [KUM891, by introducing hardware
assisted locking and better locking protocols, he finds
that the difference in performance may be reduced to 7-
10%.
By changing Kumar’s simulation model in two funda-
mental ways, the locking granularity and the buffer
management, we find that even without special hardware
support, embedded transaction managers can equal the
performance of data manager transaction support.
Specifically, in disk bound configurations, performance
is dominated by the cost of reading random data blocks.
Since both the data manager and embedded systems per-
form the same number of data reads, performance is vir-
tually the same in both models. In CPU bound
eonfigurations, the performance difference between
operating system embedded support and a data manager

t lhis research was spomod by the Naticnal Science
Foundation under contract ME’ 8715235.

174

may be expressed simply as a function of the system call
overhead and in our simulations is less than 201, even
without the locking techniques found in 1.w891.
Under high contention, using subpage locking or vari-
able page sizes, the embedded models can come within
5% of the data manager models. By using special lock-
ing techniques, the embedded systems can actually pro-
vide better performance than the data manager. Finally,
under either model (data manager or embedded), a write
optimized file system outperforms a read optimized one.
The purpose of this study is twofold. First, we wish to
characterize the performance of operating system
embedded transaction support. If such embedded sys-
tems perform as well as their database counterparts,
applications other than the data manager could reliably
access shared data. Secondly, we seek to understand the
tradeoffs between using a read optimized file system and
a write optimized one. The simulations described in this
paper isolate each of the critical resources and stress all
five models in each dimension, enabling a; characteriza-
tion of the performance of each model across a wide
range of configurations.
In the next section, our simulation model. is presented.
This is followed by a description of a write optimized
file system and the other models being examined. Then
the simulation results of our study are presented.

2. The Simulation Model
We used a stochastically generated workload to compare
the different models of transaction support The data-
base was defined to consist of a single data file with a
variable number of indices stored as B-trees. Its size
and fill factor (the fraction of each page containing valid
data) may be varied through simulation parameters.
A transaction is delined to be a sequence of retrieve,
update, insert, and delete operations. Each retrieve and
update operation affects a single data page and a search
path through a single index. A search path consists of
an access to one page in each level of the B-tree, cul-
minating with a leaf page. An insert or deiete operation
affects a single data page and a search path through each
index, since it is presumed that a key must be
inserted/deleted into/out of each index.
At any time during a simulation there are at most M
active transactions where M defines the degree of mul-
tiprogramming. At initialization, M transactions are
created, and each time a transaction commits or aborts, a
new transaction is created. A number of operations, 0,
uniformly distributed over (I - .251,1+ .251), where I is
the average transaction length, is generated. A second
parameter, F determines what percent of the 0 opera-
tions modify the database (as opposed to performing
only reads). Finally, a third parameterf identifies what
percentage of the modify operations are inserts or
deletes (as opposed to updates). Thus, a transaction may
be defined as:

0 total operations composed of:
(I -F)O retrieves
fF0 inserts/deletes
(l-j)FO updates

Each operation of a transaction is processed in the fol-
lowing manner. A data page is selected from a distribu-
tion described by two parameters d and u. The parame-
ter d indicates what percent of the database gets u per-
cent of the accesses. For example, d=2O and a=80
means that 80% of the accesses go to 20% of the data-
base. Once a data page is selected, it is loclred, read
from disk or the buffer pool, and left locked until tran-
saction commit time. To simulate index traversal, using
the same distribution as was used for the data file, one
page is selected from each level of the B-tree. These
pages are locked, mad, and unlocked either at comple-
tion of the operation (for data manager models) or at
transaction commit time (for embedded models). As
soon as one operation completes, the next operation
begins. When all the operations have completed, a syn-
chronous write forces the log to disk.
Processor speed may be varied by simulation parame-
ters, but the number of instructions required to perform
each operation is fixed. These numbers are summarized
in table 1. The instruction count for locking includes
both the lock and unlock actions. In the embedded
models, we assume that a system call is required to
obtain a lock, so the actual cost of a lock is a function of
the number of instructions for both a system call and a
lock (we assume that all unlocking may be performed by
a single system call at transaction commit time). Period-
ically, the deadlock detector runs aborting transactions
which have exceeded the parametrized timeout interval.
Another parameter defines how frequently a checkpoint
is taken. At checkpoint time, all dirty pages are forced
to disk and creation of new transactions is inhibited until
all active transactions have committed.
The total database size is derived from the dbsize,
pagesize, and fillfactor parameters respectively. Dbsize
defines the size (in megabytes) of the data file. Using
the fillfactor parameter, which defines how much data is
on each page, we determine the number of records in the
database. Then, using the number of records, the fillfac-
tor, the pagesize, and the size of a key (16 bytes), we
determine how many index pages are required, using the

1

>

Table 1: CPU cost of each operation.

175

formulas below.

t=R * K md L,= Li+l+K
F*P I F*P

where
L is the number of leaf pages
Li is the number of B-tree pages at level i
R is the number of records in the data file
K is the key size
F is the fillfactor
P is the pagesize

Once the size of each index has been calculated by sum-
ming the Li above, we multiply by the number of indices
and add the data file size to yield the total database size.
Finally, we define the buffer pool size to be 10% of this
total database size. The buffer pool uses an LRU
replacement algorithm and flushes dirty blocks to disk
asynchronously. In both [KUMAR87] and
[KUMAR89], the buffer pool is sized in terms of a
number of pages. This penalizes simulations with a
smaller page size by providing them less main memory.
By keeping the amount of main memory constant, we
find that reducing the page size can improve perfor-
mance by more than 25% in high contention environ-
ments. Table 2 summarizes the simulation parameters
available and their default values.

Statistical Parameters
parameter description default
nmlen Transactions per run moo
IUUllS Runs per data point 5

parameter
1
F
f
d/a
I
dbsize
bufsize
fillfactor

Workload Characteristics
description default

Avg aps per transaction 16
96 update operations .25
96 insert/delete SO
Request distribution 50150
Number of indices 5
Mbytesinthedatafile 1024 (1G)
Buffer pool size 10% of db
Valid fraction of page .70

Svstem Parameters
parameter I description 1 default
w-weed bo== speed (in MIPS) t 10

3. Transaction Processing Models
This analysis considers five models of transaction pro-
cessing. The first is a traditional data manager on a read
optimized file system. The second puts the same data
manager on a write optimized file system. The third
supports embedded transactions in a read optimized file
system. The fourth embeds transactions in a write optim-
ized file system, and the last also embeds transactions in
a write optimized file system, but takes advantage of the
file system’s “no-overwrite” policy to reduce the size
of the log.

3.1. The Data Manager Model
In the data manager model we assume detailed
knowledge of the structure of the database. For example,
logging may be performed at a logical, rather than a
physical level, allowing the logging of only the record
being modified instead of an entire page. In this model,
all records are assumed to be self contained, that is, their
index values are stored in the records themselves, and
index changes need not be logged explicitly. Using spe-
cial concurrency control protocols facilitating high
degrees of parallelism [BAYER77], the data manager
needs only hold index locks during the physical manipu-
lation of the in&x page (on the order of a few thousand
instructions), providing superior performance in
environments with high lock contention.
The sequence of events for accessing a random record in
the database is as follows. First, a keyed lookup is per-
formed. This requires traversing the non-leaf pages of a
B-tree by obtaining a read lock on each page, finding the
next page to access, and releasing the read lock. When a
leaf page is reached, the data page is locked and
accessed. In the case of an update (an update is defined
to change both the record and one in&x) a write-lock is
obtained on the leaf page of the B-tree. The index page
and data page are modified and the update is logged.
The change is logged by recording both a before and
after image of the record, and the index locks are
released
A transaction may be decomposed into operations whose
cost may be expressed as a combination of logging, I/O,
and locking costs. In the data manager models, the log-
ging cost is proportional to the record size. On the read
optimized file system Iogically contiguous blocks of a
file are stored contiguously on disk so that a sequential
read of a file may be performed at the sequential disk
speeds. However, since the files am not being read
sequentially in this model, there is no benefit derived
from this optimization. Therefore, even on the read
optimized file system, the I/O costs are proportional to
the random read time of the disks. On a write optimized
file system, the reads are also performed randomly, but
the writes are all performed sequentially (section 3.3
provides a detailed description of how this is achieved).
Finally, as it is assumed that the data manager maintains

176

its own lock manager, the locking cost is strictly a func-
tion of the number of locks and independent of any sys-
tem call overhead.

3.2. The Operating System’Model
As the operating system knows nothing about the inter-
nal structure of files, it cannot distinguish between data
and index updates. In order to guarantee serializability
it must perform strict two phase locking [$XAY76] on
all accessed and modified subpages. Assuming that
there are S subpages per page, in traversing the B-tree,
1ogzS subpages, selected uniformly from the filled sub-
pages within the page, are selected for locking to model
the search for a key within the page.’ To modify a leaf
page, one of the selcctcd subpages is write&&cd, and
all subpages after it on the page are also write-locked, to
allow the shuffling of keys within the page. This
requires the operating system to obtain multiple write
locks (on average half the number of filled subpages per
page) for each B-tree page moditied as compared to the
data manager’s one lock. Furthermore, since we are
assuming that all the transaction support is provided in
the operating system, each lock request requires a sys-
tem call. Although we add the cost of a system call to
each lock request in all the embedded models, this is an
artificially high penalty since the data manager will also
incur a system call each time a page, which is not
resident in the buffer pool, is requested.
The final difference between the data maiager and the
operating system embedded model is the amount of log-
ging information. Since the operating system may not
perform logical logging, we resort to physical logging
and save both before and after images of each subpage
that is modified. In the cast of inserts and deletes, this
number may become quite large since multiple subpages
per index page are modified.
We decompose the transaction costs into logging, ID,
and locking. This time, the logging cost is proportional
to the size of a subpage, the I/O costs are proportional to
the random disk access time, and the locking cost is a
function of the number of locks, the number of subpages
per page, and the system call overhead.

3.3. The Log Structured File System Model
A log-structured file system (LFS) uses the disk system
as a continuously wrapping log. Rather than modifying
files in place, newly written data pages and their describ-
ing meta data are written sequentially to the disk log. A
large number of dirty data pages, their describing meta-
data, and a summary block, identifying the file and logi-
cal block number of each dirty page, are written sequen-
tially in a single unit referred to as a segment. Figure 1
shows the allocation of three files in a log-structured file

I The log, assumes a binary search is used to locate the correct
subpage.

SyStem.

Traditional logs usuaRy provide only sequential access
for reading, but a log-structured file system builds its
metadataintothelogitself,sothatrandomretricvalis
also possible. Its structure is very similar to a UNIX fde
system lTvICKvs41. In a UNIX file system, tie location
of the blocks of a file are stored in i@ex structures
which reside on tied places on disk. These index struc-
hnesarethemeta&tawrittentotheloginLFs. Inan
LFS, the location of this meta data is not tied. All the
meta data is stored in a single file, call4 the map file.
There is one special index structure, called the super
block, which describes where the blocks of the map file
reside in the LFS. The super block may be cached in
main memory and appended to the log at checkpoint
time.
This structure makes all writes sequential while retain-
ing the ability to perform random retrieval. To locate a
block of a file, the super block (which is cached in main
memory) is accessed to find the location of the tile’s
index structure. This index structure is then mad to
determine where the blocks of that file reside. Each time
a file is written, both the newly written data and a new
version of its index structure are written, and the super-
block is updated to reflect the new location of the file’s
index structi.
Recovering a log-structured tile system is similar to
standard database recovery @AER83]. The file system

(b)

w 7 w T-r/

Flpre 1: A Log Structured File System. In figunz (a), two files have
been written, file1 and file2. Each has an index structure in the meta
data block which is allocated after it on disk. These meta data blodcs
are referenced via the supetbloclc which is also appended to the log. In

figure (b), the middle block of file2 has been modiied. A new version
of it is added to the log, as well as a new version of its meta data. Then
file3 is created, causing its blocks and meta data to be appended to the
log. Next, file1 has two more blocks appended to it. These two blocks
and a new vetxion of filel’s meta data am appended to the log. Fiiy,
another copy of the super block is apnded to the log.

177

is read backwards until the last copy of thz super block
is found Then, the summary block for each segment is
read, and the super block is updated to reflect the new
blocks written since the last checkpoint.
At some point, the disk system fills, requiring the log to
wrap. At this time some blocks in the log will be
“dead”, that is, they will have been superceded by new
versions of the block or the file will have been deleted.
A cleaning process reclaims regions of contiguous space
from the log by reading the tail of the log, discarding
“dead” blocks, appending “live” blocks back into the
log, and updating the meta-data appropriately. Space is
contirmally reclaimed from the tail of the log and allo-
cated to the head of the, log POSE891. The cost of log
wrapping has not been taken into account in our simula-
tions.
There are two characteristics of a log-structured file sys-
tem that make it desirable for transaction processing.
First, a large number of dirty pages are written to a sin-
gle, large (several megabytes), contiguous,region of the
disk Since only a single seek is performe~d to write out
a large number of dirty blocks, the “per ! write” over-
head is much closer to that of a sequential disk access
rather than that of a random disk access. Secondly,
since data is written using a “no overwrite” policy,
before images of updated pages exist elsewhere in the
file system.
In the LOG model, we take advantage of the sequential
nature of writes, but not the “no-overwrite” policy of
the log-shuctured file system. The logging and locking
information is identical to that for the operating system
model. However, the Vo component of the transaction
cost is proportional to the random disk access time for
reading, and the sequential disk access time for writing.
In LCXi2, we take advantage of both the sequential
nature of writes and the “no-overwrite” policy of the
log-structi iYe system. Instead of logging before
and after images of the subpages being mod&d, all
dirty pages are forced trr disk at commit time. However,
since a singIe page may contain subpages modified by
more than one transaction, subpages for: uncommitted
transaction may get written to disk. In order to guaran-
tee the abiIity to abort any uncommitted transactions, we
require a log which records the location of the previous
and cumznt versions of all dirty subpages. This logging
information must be forced to disk before the dirty pages
themselves. The difference between the LOG and
LOG2 models is that in LOG2, log records are very
small (16 bytes) and the total logging overhead is pro-
portionaI only to the number of subpages modified
rather than to the size of the subpages.

3.4. Model Summary
In the discussion that follows, DM refers to the data
manager on a read optimized file system, DML refers to
the data manager on a log-structured file system, OS

L

Table 3: A Comparison of Five Transaction
Processing Models.

refers to transaction support embedded in a read optim-
ized file system, LOG refers to embedded support in a
log-structured file system using a full, and LOG2 refers
to embedded support in a log-structured file system,
using the file system in place of a traditional log. For
each component of transaction cost,, logging, I/O, and
locking, table 3 indicates the parameters on which this
component of the cost is dependent for each model.

4. Simulation Results
The three potential performance bottlenecks are the
CPU, the disk system, and lock contention. By isolating
each of these resources and we can stress all five sys-
tems in each dimension, resulting in a characterization
of the performance of each model across a wide range of
configurations. The simulation configuration consisted
of a 1G data file (implying a total database size, with
indices, of 2.2G) and 10 disks. By varying the CPU
speed and the locality of accesses, CPU bound, disk
bound, and lock contention bound configurations were
analyzed. Each of the data points represents 5 runs of
10000 transactions each. The variance across the 5 runs
was approximately 1% of the average and yielded 95%
confidence intervals of approximately 2%.

4.1. CPU and Disk Bouudeduess
With a large data file (lG), 10 disks, and uniform distri-
bution of accesses, a CPU bound environment was
createdbysettingtheCPUspeedto1MIPS2. Sincethe

J This pmcersor speed is excessively slow since we arc ignoring
a great deal of software ovednd su& as quay pccssing. communi-
cation, and operating syatcm overhead. The goal is to focus oa those
wets which diier in the models rather than cm those which ate the
same.

178

access pattern is uniform, there is little contention on
either indices or the data file (the probability of conflict
between any two transactions is approximately 5%). and
there is no need to set the locking granularity (or sub-
page size) any smaller than the page size for the embed-
ded models. This differs from [KUMAR87] in that he
always assumes that the embedded models must perform
subpage locking, and subpages are 128 bytes. Figure 2
shows the results of varying the degree of multiprogram-
ming until the CPU becomes saturated. In this
configuration the two data manager models provide
better performance than any of the embedded systems.
Whereas Kumar found this difference to be 30% or
more in a CPU bound configuration, we see that at a
degree of multiprogramming of 20, the difference in
throughput between the DM and the OS results is

approximately 17% (
TDM-Tos

TDM
), and the difference

Fween DML and either LOG or LOG2 is 20% (
DML-TLOG

TDML
). This difference is explained by the fact

that we require only 1 lock per level of the B-tree while
Kumar required 4. Therefore, we find that the differ-
ence in performance is due only to the system calls
required by the file system based models.
This difference in performance, in terms of throughput,
may be expressed by the function:

T non-lb = Th OR

Tdm= [1 l+& Twnh

where
N is the number of locks required,
L is the CPU overhead for acquiring a lock,
C is the CPU overhead per transaction not

associated with locking, and
S is the cost of a system call (in ms).

For the workload simulated, Th is 1.2T,,+,, or
(1+.4S)T,,+. It is apparent that the cost of a system
call will have a tremendous impact on the performance.
Figure 3 graphically depicts this difference in perfor-
mance as the cost of a system call is varied. In the
preceding simulation a .5 ms overhead for system calls
was used, yielding a 17-20% difference in performance
between the data manager and embedded models. At
.25 ms (250 instructions), the difference between the
data manager and embedded models drops to 12%.
Although this configuration is CPU bound, the write
optimized lile system based models provide better per-
formance than the read optimized file system based
models. Comparing the DML performance with the DM
performance, we see a gap of nearly 12% (4.1 tps vs. 3.6

Throughput (in tx&second) vs
Degree of Multiprogramming 5 __ -._--_---__; -_--__-__--._- i __--_--_ _ --_-? -_--__--. --._- i i ‘;

4
1 : : : b
__-__--_--.__ I__-- -J..;

Y.

0 i io is io
Degree Multiprogramming

Figure 2: CPU Bounding under Low Contetttior~ The degree of
multiprogramming is varied in a low contention ccnfiguratkm. Due to
the system call required per lock in the OS, LOG, and LOG2 models,
the data managers pmvide the best pfotmana.

Throughput (in txnskecond) vs
Cost of System Calls

* -mm-m_s-_~~~~~-~--r __--__-_- i -----_ ~-- _-_---___ I ---‘-‘-‘-:

1 i i : : I

04 a
0.00 0.25 0.50 0.75 1.00 1.25 1.50

Cost of a System Call (in ms)
Figure 3: Effect of the Cost of System Calls. As system calls be-
cane man costly (in terms of CPU cycles), the difference in perfo-
mance between. the data manager and the embedded models widens.

179

tps), and comparing LOG2 with OS, we see a gap of
10% (3.3 tps vs. 3.0 tps). In each of these situations, the
CPU cost for both configurations is the same. Since the
configuration is not disk bound, the better performance
of the log-structured file system is unexpected. Upon
closer inspection, it becomes clear that although the
disks are under utilized, the read optimized file systems
are running at approximately 50% disk utilization while
the write optimized models are running at approxi-
mately 33% utilization.
To understand how this effects throughput, we need to
examine what happens as dirty blocks are flushed to
disk In the read optimized models, flushing a dii
block keeps the disk busy for the time of a random
access (approximately 28.3 ms)3. When dirty data
blocks are written, an incoming read request may be
delayed for up to 28.3 ms. Even if these writes are
attempted during idle disk cycles, subsequent read
requests may still queue up behind the writes and be
delayed. On the other hand, when the log based models
flush their dirty blocks, they write a large number of

-_blocks at sequential speed (1.99 ms). Therefore, the
potential delay incurred per block flushed is much less.
Even when the disks are not the bottleneck, the differ-
ence in write performance of the disk systems does

I

Throughput (in txnskecond) vs
Degree of Multiprogramming

0 20 40 a so 100

Degree Multiprogramming
Flpre 4: Msk Bounding under Low Contention. Since. then is
sufficient CPU power to support the more expensive embedded sys-
tems, the file system is the determiner of petfotmance, and we see the
write optimized file systems providing the best performance.

3 All disk times are based on the perfotmance specification of
the Fujitsu EagleM2361A ~UJI84].

impact the resulting throughput.
By increasing the processor speed to 10 MIPS, the
configuration becomes disk bound. Once again, the
degree of multiprogramming was varied to determine a
saturation point. These results are shown in figure 4,
and as expected, the log-structured models provide the
best performance, by approximately 23% (9.4 tps for
DML and 7.2 tps for DM). Furthermore, although the
configuration is disk bound, the size of the log does not
have a significant impact on performance. Both the data
manager and operating system models exhibit nearly
identical performance, even though the operating system
maintains a much larger log. As in the CPU bound case,
these results differ dramatically from [KUMAR871. He
found that in disk bound configurations the data manger
out performed the operating system embedded model
and attributed this difference to the size of the log.
Although the OS keeps a much larger log than DM, their
performance is nearly identical as shown by the overlap-
ping lines in figure 4. Similarly, DML, LOG and LOG2
exhibit nearly identical performance although these
models have different sized logs as well. Since logging
occurs at sequential speed in all the models, it is clear
that performance is dominated by the random disk
access times.
Having analyzed the extremes of disk boundedness and
CPU boundedness, we now analyze the region in
between. By varying the processor speed, the results
shown in figure 5 were obtained. Between any two
models, there are two factors which contribute to the
performance differential: the file system or size of the
log and the location of transaction support (data
manager or embedded). At 1 MIPS, the CPU bound
configuration, the file system component accounts for
lo-12% of the differential (the difference between DML
and DM or OS and LOG) and the location component
1920% (the difference between OS and DM or LOG
and DML). By 2 MIPS, that emphasis has shifted so
that the tie system component is 19-21% and the loca-
tion component is 1517% Finally, by the disk bound
point, 3 MIPS, the location component is 0 (the DM and
OS lines overlap, as do the DML, LOG, and LOG2) and
the file system accounts for a 22% difference in perfor-
mance. However, at any point along the curves, the best
performance is provided by supporting transactions
within the data manager on top of a log-structured file
system.
As was observed in the disk bound configuration, the
size of the log does not contribute significantly to the
performance of the systems. Thedifference in I/O costs
between DML and LOG is that DML is able to perform
logical logging (proportional to She record size) while
LOG performs physical logging ,@oportional to page
size). The logging difference between LOG and LOG2
is that the LOG2 model requires a log even smaller than
DML (16 bytes per modification rather than 2 records).
Since logging is always performed at sequential speeds,

180

Throughput (ii &m/second) vs CPU Speed

1 2 3 4 5

CPU Speed (in MIPS)
Figure 5: Effect of CPU Speed on Transaction Throughput. In-

creasing CPU speed moves the ca@mWion from a state of CFW
boundedness to disk boundedness. Even be&r. the systems become
canpletely diik bound (at 3 MIPS). the major factor contributing to
the performance diem&al is the file system and not the location of
transaction support.

the total time required to log a transaction is still a small
part of the total I/O time (under l%), and the resulting
performance is the same for all three systems. There-
fore, the primary benefit of the log-structured file system
implementation is its superior write performance, not its
no overwrite policy.

4.2. Lock Contention
All the preceding tests were run with a uniform access
pattern over a 1G data file. The next isske we investi-
gated was the effect of lock contention on these results.
To induce contention, the distribution of accesses to the
database was skewed. The multiprogramming level was
set to 100, the number of disks to 10, the CPU speed to
10 MIPS, and the distribution was varied from uniform
(50/50; 50% of the accesses to 50% of the database) to
extremely contention bound (99/l; 99% of the accesses
to 1% of the database). Figure 6 shows these results.
There are two factors at work here. First, since the
configuration is initially disk bound, the skewing of the
access patterns results in a higher buffer cache hit ratio
and therefore improved performance. Secondly, the
skewing of the access patterns induces hotspots in the
database, and the contention for locks degrades perfor-
mance. At the 70/30 skew point, the DM and OS lines
diverge as do the DML and LOG/LOG2 lines. The data
manager based models continue to take advantage of the

Throughput (in b&second) vs Access Skew

50 60 70 80 90 100

Access Skew
Figure 6: Effect of Skewed Access Distribution on Throughput.
Contention begins to impact performance when the skew teaches
greater than 70130. The embedded models diverge fnnn their data
manager counteqatts at thii point.

improved buffer cache hit ratio and ‘their performance
climbs steadily. The OS model also exhibits improved
performance, but not as much as the data managers since
it is starting to suffer from contention on the indices
(since index locks are held until transaction commit time
in the embedded models). The LOG and LOG2 models
actually suffer performance degradation as a result of
the increased skewing and resulting contention.
Figure 7, which shows the number of aborts for each of
the models as a function of this skewing, indicates that
the embedded models exhibit higher abort rates than the
data manager models from the 70/30 point until the 95/l
point. Since many more transactions are aborting, the
resulting throughput is lower, therefore, in a contention
bound environment the coarse grain page locking
employed by the embedded models is unsatisfactory.
We investigated three techniques to reduce the effect of
lock contention in the embedded models. First, subpage
locking, as described in section 3.2, was used. Next, the
page size was reduced and locking was performed on
full pages. Finally, a modified subpage locking tech-
nique similar to that described in [KUMAR89] was
Used.

Subpage locking reduces the locking granularity, and as
a result, the degree of contention, but not as much as
expected. Since updates to a B-tree page require
shuffling around the entries on a page, multiple subpages
get locked for each update. In addition, the pages
locked always follow the subpage on which the insert is

181

Number of Aborts (log 10 / 10000 successful) vs
Access Skew

- DM
O-4
-
0-d
bd

OS 5.0*- -_____ -_-_____- __-_ ---,- --.- --..T,e-.-.- ----, i 1-~

LOG2
DML

50 60 70 80 90 loo

Access Skew
Flpre 7: Flfect uf Access Skewing on the Number uf Aborted
Transactions. The abort rate begins climbing at a 70/30 skew for the
embedded systans, but at an 8Of.X skew for the data manager.

Throughput (in txns/second) vs
Access Skew (Subpage Locking)

------.---!----------.:-.--.------+.----.--- 2. .------. ; 1,
.-:

SO 60 70 80 90 100

Access Skew
Figure 8: Impact of Access Skewing with Subpage Loeking. By
redUCi”g the locking granularity, the embedded models can regain
some of the performance lost to contention.

being made. As a result, the distribution of write locked
subpages is skewed towards those at the end of the page.
In addition, the CPU cost per level of the B-tree is

higher since multiple subpage locks are required to find
the correct subpage. Therefore, if a high contention
environment is CPU bound, changing the locking granu-
larity will not improve performance. If the CPU is not
the bottleneck, some of the performance lost to conten-
tion may be regained.
Figure 8 shows the same contention bound environment
as figure 6, but uses subpage locking for the embedded
models. In the region between 70130 and 95/5 the
embedded models come much closer to equaling their
data manager counterparts. In the case of the read
optimized file systems (DM and OS), the difference is at
most 6% (at the 90/10 point). For the log-structured file
system, the largest gap is under 12% (also at 90/10). At
the most contention bound point, even the data manager
models exhibit extreme contention due to locking
conflicts on the data file. Since the embedded models
are able to lock subpages of the data file, at the 99/l
point, the embedded models exhibit better performance.
‘Ihe next technique to reduce contention was to decrease
the page size and lock on full pages. While decreasing
the page size does reduce contention, it may also
increase the depth of the B-tree. Increasing the depth of
the B-tree adds extra I.0 to each operation as well as
adding an additional lock request to each traversal. As a
result, we find that reducing the page size is beneficial
only if it does not increase the depth of the B-tree. In
the case of the contention bound simulations, reducing

Throughput (in txns/second) vs
Access Skew (Optimal Page size)

SO 60 70 80 90 100

Access Skew
Figure 9: Impact uf Access Skewing with Variable Page Size.
Varying the page size compensates for some of the penalty from con-
tention in the embedded systems.

182

the page size from 4K bytes to 2K bytes does not
increase the depth of the B-tree. The results in figure 9
show the same contention bound environment using
page locking and selecting the optimal page size for
each model (all the embedded models used 4096 byte
pages for skews of 50, 60, 70; 128 byte pages for 80,
and 512 byte pages for 90, 95, and 99). For the read
optimized file system, using page size to reduce conten-
tion is less effective than using subpages, since the larg-
est OS/DM differential is 22% at the 90/10 point. On
the other hand, the differential for the write optimized
file system has gone from 12% at the 90/10 point in
figure 8 to 4% at the 9O/lO point in figure 9. Further-
more, the write optimized embedded models actually
surpass the write optimized data manager at 95/S rather
than 99/l as before. Depending on the file system, vary-
ing either the subpage size or the page size is an effec-
tive mechanism for handling lock contention.
The last approach reverts to subpage locking, but avoids
the overhead of multiple locks per level and the skewing
of locked subpages. This is similar to the proposal in
[KUM89], but has lower CPU costs. In both Kumar’s
and our model, each subpage is treated as an indepen-
dent bucket of entries. In the normal case an operation
requires locating the correct subpage and modifying
only that subpage. In Kumar’s method,, this requires
keeping the smallest keys for each subpage on the tirst

Throughput (ii txn&econd) vs
Access Skew (Modified Subpage Locking)

50 60 70 so 90 100

Access Skew
Figure 10: Impact of Access Skewing with Modified Subpage
Locking. By reducing the locking gnmulatity. the emWed systems
arc able to surpass the data manager in an environment with extremely
high contention.

subpage of the page. To avoid bottlenecking on this first
page, we perform a non locking binary search across
subpages to select the correct page.
Another difference in the two algorithms is that Kumar
keeps entries in each bucket chained in a link list,
requiring linear time to search each bucket, while we
keep entries within a subpage sorted maintaining the
O(log) search time. Therefore, normal operations
require no more time using this structure than they do in
the regular full page structure.
In the case of an overflow of a subpage or a change to
the smallest key on a subpage, we lock all the subpages
within a page and reorganize. Since, on average, we
expect to move half the entries on a page, this reorgani-
zation costs the same as a normal page oriented key
insert. Whereas Kumar assumes that reorganization is
required every 600 updates, we assume reorganization is
required once in every 10 updates since we require reor-
ganization or full page locking both when buckets fill as
well as when the first key on a page is mod&d.
In the next set of simulations, we used this modified sub-
page locking. The subpage size was set at 512 bytes (8
subpages per page and approximately 22 keys per page).
These results are shown in figure 10. Since this locking
protocol offers the smaller locking granularity of sub-
page locking without the extra CPU overhead of

Number of Aborts (log 10 / 10000 successful) is
Access Skew

5.0

GJ””

r
,e3.0

4

tzo

0
r 1.0,
t
S

0.0,

_.

. -_

. __

. --

Access Skew
Flgure 11: Effect of Modified Subpage Locking on the Number of
Aborted Transactions. The new l&g mechanism redocea the
number of aborts by a factor of 10. thus allowing the high throughput
rates observed in figure 10.

183

multiple locks per update, its performance is even better
than the data manager’s, and we see the performance
difference between the data manager and embedded
models in excess of 45% at the 9515 point. Looking at
the number of aborts for the embedded models shown in
figure 11, we see that lock contention is virtually elim-
inated until the 90/10 point, and beyond that point, the
number of aborts in the embedded models is an order of
magnitude smaller than for the data managers.

5. conclusions
Independent of whether transaction support is embedded
in the tile system or implemented in the data manager,
the log structured file system offers better performance
than the traditional read optimized tile system. Its major
benefit is its improved write performance, not its no
overwrite policy. In fact, as we see from the results in
disk bound configurations, the size of the log has very
little impact on the resulting performance. This is
explained by the fact that logging always occurs at
sequential speeds and is a very small fraction of the total
I/O time.
S&e logging is not an important factor, we find that
embedded transaction support performs as well as the
data manager support in disk bound configurations.
Whether we use a read optimized or write optimized file
system, we find that the data manager and embedded
models offer nearly identical performance. As a result,
supporting transactions within the file system is a feasi-
ble solution, when the system is I/O bound.
As Kumar concluded, when the CPU is the bottleneck,
there is a penalty in embedding transaction support in a
file system. However, when lock contention is not a fac-
tor, there is no need to perform subpage locking, and the
difference in performance is directly proportional to the
cost of a system call and is usually under 20%. There-
fore, the feasibility of an embedded transaction manager
is strictly dependent on the system call overhead.
Finally, as lock contention becomes a factor in limiting
performance, all models experience some degradation,
but the data manager suffers the least due to its use of
semantic information for B-tree locking. The embedded
models may recoup most of this performance loss
through variable subpage and page size. In some cases,
where the CPU is not a critical resource, embedded sys-
tems with modified subpage locking not only recoup this
loss, but provide better throughput than the data
manager.
Except in the most CPU bound environments, there is
virtually no penalty incurred in embedding transaction
support in the operating system. It does, however,
require careful and defensive design to avoid index con-
tention as well as operating system flexibility to vary the
page and subpage sizes as needed.
There are several areas which warrant furtler investiga-
tion. We have not accounted for the cost of log

184

wrapping in the log-structured file system. This will
reduce the benefit of the log-structured lile system. but it
is not clear how great this impact will be. In addition,
the use of RAID devices lPA’lT88] will penalize the
small writes that occur in a mad optimized file system.
These issues will be examined in later research.

6. References

[BAYER771 Bayer, R., Scholnick, M., “Concurrency
Operations on B-Trees,” Acta Informatica, 1977.

lFUJI84] M2361A Mini-Disk Drive Engineering
Specifications, Fujitsu Limited, 198 4.

[GRAY761 Gray, J., Lorie, R., Putzolu, F., and Traiger,
I., “Granularity of locks and degrees of consistency
in a large shared data base.“, Modeling in Data
Base Management Systems, Elsevier North Hol-
land, New York, pp. 365-394.

[HAER83] Haerder, T. Reuter, A. “Principles of
Transaction-Oriented Database Recovery”, Com-
puting Surveys, 15(4), 237-318,1983.

[KUM87] Kumar, A., Stonebmker, M., “Performance
Evaluation of an Operating System Transaction
Manager”, Proceedings of the 13th International
Conference on Very Large Data Bases, Brighton,
England, 1987.

lKUM89] Kumar, A., Stonebraker, M., “Performance
Considerations for an Operating System Transac-
tion Manager”, IEEE Transactions on Sofnvare
Engineering, 15(6), June 1989.

&lCKU84] Marshall Kirk McKusick, William Joy, Sam
Leffler, and R. S. Fabry, “A Fast File System for
UNIX”, ACM Transactions on Computer Systems,
Vol. 2,No. 3, August 1984, pp. 181-197.

&fITC82] Mitchell, J., Dion, J., “A Comparison off
Two Network-Based File Servers”, Communica-
rionr of the ACM, 25(4), April 1982.

[MUEL83] Mueller, E. etc al., “A Nested Transaction
Mechanism for LOCUS”, Proceedings 9th Sympo-
sium on Operating System Principles, October
1983.

[OUSTSS] Ousterhout, J., Douglis, F., “Beating the I/O
Bottleneck: A Case for Log Structured File Sys-
tems”, Computer Science Division (EECS),
University of California, Berkeley, UCB/CSD
881467, October 1988.

IpUS Pu, C., Noe, J., “Design of Nested Transactions
in Eden”, Technical Report 85-12-03, Dept. of

Computer Science, Univ of Washiqton, Seattle,
WA, 1986.

pATI’88] Patterson, D. et. al., “RAID: Redundant
Arrays of Inexpensive Disks,” Proc. 1988 ACM-
SIGMOD Conference on Management of Data,
Chicago, Ill., June 1988.

BOSE891 Rosenblum, M., “The Design of LFS”,
Technical Report, Computer Science Department,
University of California, Berkeley, July, 1989.

[SPESSA] Spector, Rausch, Bruell, “Camelot: A Flexi:
ble, Distributed Transaction Processing System”,
Proceedings of Spring COMPCON 1988, February
1988.

[SPESSB] Spector, A, SwedIow, K., Guide to the
Camelot Distributed Transaction Facility, Com-
puter Science Department, Carnegie-Mellon
University, Release 1, edition 0.98(51), May 1988.

[STON81] Stonebraker, M., “Operating System Support
of Data Managers”, Communications of the ACM,
24(7), July 1981.

[STON85] Stone&raker, M., “Problems in Supporting
Data Base Transactions in an Operating System
Transaction Manager”, Operating System Review,
19(l), January 1985.

WA821 kraiger, I., “Virtual Memory Management for
Data Base Systems”, Operating System Review,
16(4), October 1982.

WALK831 Walker, Popek. English, Kline, Thie, “The
LOCUS Distributed Operating System”, Proceed-
ings 9th Symposium on Operating System Princi-
ples, October 1983.

185

