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Abstract 

This paper provides a comparative analysis of five 
implementations of transaction support The lirst of the 
methods is the traditional approach of implementing 
transaction processing within a data manager on top of a 
read optimized file system. The second also assumes a 
traditional file system but embeds transaction support 
inside the file system. The third model considers a tradi- 
tional data manager on top of a write optimized file sys- 
tem. The last two models both embed transaction sup- 
port inside a write optimized file system, each using a 
different logging mechanism. 
Our results show that in a transaction processing 
environment, a write optimized file system often yields 
better performance than one optimized for reads. In 
addition, we show that fik system embedded transaction 
managers can perform as well as data managers when 
transaction throughput is limited by I/o bandwidth. 
FinaIly, even when the CPU is the critical resource, the 
difference in performanee between a data manager and 
an embedded system is much smaller than previous 
work has shown. 

1. Introduction 
During the past decade several attempts have been made 
to provide transaction support as part of the operating 
system. Embedded support provides concurrency con- 
trol and crash recovery to all applications rather than 
just to the clients of the data manager, and there is a sin- 
gle paradigm for application recovery and a single 
implementation of this paradigm. Such systems are 
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described in WALK831, lMUEL833, lPU861, and 
&fITC82]. All of these systems assume a traditional, or 
read optimized, file system and have met with much 
skepticism. The shortcomings inherent to these systems 
are discussed in [STON81], D”KAI821, and [STON85]. 
Camelot’s distributed transaction processing system 
[SPE88A] provides a set of Mach processes which pro- 
vide support for nested transaction management, lock- 
ing, recoverable storage allocation, and system 
configuration. Atomic transactions may be implemented 
by means of the recoverable storage, but requests to read 
and write such storage are not locked automatically. 
Thus a data server must make requests of the disk 
manager to lock these regions[SPESSB]. In this way, 
we see that transaction support under Camelot may be 
viewed as a hybrid between a data manager and an 
embedded operating system transaction manager. It is 
similartoadatamanagerinthatauserprocess(data 
server) is nqired to coordinate locking. On the other 
hand, it is also similar to an embedded transaction 
manager in that generic locking and transaction capabili- 
ties are provided. 
Kumar, lKUlM87J, shows that an operating system 
embedded transaction manager provides substantially 
worse performance than the traditionaI data manager. 
He cites the lack of semantic information, the system 
call locking overhead, and the size of the log as primary 
causes for a 30% difference in performance between the 
two systems. In [KUM891, by introducing hardware 
assisted locking and better locking protocols, he finds 
that the difference in performance may be reduced to 7- 
10%. 
By changing Kumar’s simulation model in two funda- 
mental ways, the locking granularity and the buffer 
management, we find that even without special hardware 
support, embedded transaction managers can equal the 
performance of data manager transaction support. 
Specifically, in disk bound configurations, performance 
is dominated by the cost of reading random data blocks. 
Since both the data manager and embedded systems per- 
form the same number of data reads, performance is vir- 
tually the same in both models. In CPU bound 
eonfigurations, the performance difference between 
operating system embedded support and a data manager 
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may be expressed simply as a function of the system call 
overhead and in our simulations is less than 201, even 
without the locking techniques found in 1.w891. 
Under high contention, using subpage locking or vari- 
able page sizes, the embedded models can come within 
5% of the data manager models. By using special lock- 
ing techniques, the embedded systems can actually pro- 
vide better performance than the data manager. Finally, 
under either model (data manager or embedded), a write 
optimized file system outperforms a read optimized one. 
The purpose of this study is twofold. First, we wish to 
characterize the performance of operating system 
embedded transaction support. If such embedded sys- 
tems perform as well as their database counterparts, 
applications other than the data manager could reliably 
access shared data. Secondly, we seek to understand the 
tradeoffs between using a read optimized file system and 
a write optimized one. The simulations described in this 
paper isolate each of the critical resources and stress all 
five models in each dimension, enabling a; characteriza- 
tion of the performance of each model across a wide 
range of configurations. 
In the next section, our simulation model. is presented. 
This is followed by a description of a write optimized 
file system and the other models being examined. Then 
the simulation results of our study are presented. 

2. The Simulation Model 
We used a stochastically generated workload to compare 
the different models of transaction support The data- 
base was defined to consist of a single data file with a 
variable number of indices stored as B-trees. Its size 
and fill factor (the fraction of each page containing valid 
data) may be varied through simulation parameters. 
A transaction is delined to be a sequence of retrieve, 
update, insert, and delete operations. Each retrieve and 
update operation affects a single data page and a search 
path through a single index. A search path consists of 
an access to one page in each level of the B-tree, cul- 
minating with a leaf page. An insert or deiete operation 
affects a single data page and a search path through each 
index, since it is presumed that a key must be 
inserted/deleted into/out of each index. 
At any time during a simulation there are at most M 
active transactions where M defines the degree of mul- 
tiprogramming. At initialization, M transactions are 
created, and each time a transaction commits or aborts, a 
new transaction is created. A number of operations, 0, 
uniformly distributed over (I - .251,1+ .251), where I is 
the average transaction length, is generated. A second 
parameter, F determines what percent of the 0 opera- 
tions modify the database (as opposed to performing 
only reads). Finally, a third parameterf identifies what 
percentage of the modify operations are inserts or 
deletes (as opposed to updates). Thus, a transaction may 
be defined as: 

0 total operations composed of: 
(I -F)O retrieves 
fF0 inserts/deletes 
(l-j)FO updates 

Each operation of a transaction is processed in the fol- 
lowing manner. A data page is selected from a distribu- 
tion described by two parameters d and u. The parame- 
ter d indicates what percent of the database gets u per- 
cent of the accesses. For example, d=2O and a=80 
means that 80% of the accesses go to 20% of the data- 
base. Once a data page is selected, it is loclred, read 
from disk or the buffer pool, and left locked until tran- 
saction commit time. To simulate index traversal, using 
the same distribution as was used for the data file, one 
page is selected from each level of the B-tree. These 
pages are locked, mad, and unlocked either at comple- 
tion of the operation (for data manager models) or at 
transaction commit time (for embedded models). As 
soon as one operation completes, the next operation 
begins. When all the operations have completed, a syn- 
chronous write forces the log to disk. 
Processor speed may be varied by simulation parame- 
ters, but the number of instructions required to perform 
each operation is fixed. These numbers are summarized 
in table 1. The instruction count for locking includes 
both the lock and unlock actions. In the embedded 
models, we assume that a system call is required to 
obtain a lock, so the actual cost of a lock is a function of 
the number of instructions for both a system call and a 
lock (we assume that all unlocking may be performed by 
a single system call at transaction commit time). Period- 
ically, the deadlock detector runs aborting transactions 
which have exceeded the parametrized timeout interval. 
Another parameter defines how frequently a checkpoint 
is taken. At checkpoint time, all dirty pages are forced 
to disk and creation of new transactions is inhibited until 
all active transactions have committed. 
The total database size is derived from the dbsize, 
pagesize, and fillfactor parameters respectively. Dbsize 
defines the size (in megabytes) of the data file. Using 
the fillfactor parameter, which defines how much data is 
on each page, we determine the number of records in the 
database. Then, using the number of records, the fillfac- 
tor, the pagesize, and the size of a key (16 bytes), we 
determine how many index pages are required, using the 

1 

> 

Table 1: CPU cost of each operation. 
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formulas below. 

t=R * K md L,= Li+l+K 
F*P I F*P 

where 
L is the number of leaf pages 
Li is the number of B-tree pages at level i 
R is the number of records in the data file 
K is the key size 
F is the fillfactor 
P is the pagesize 

Once the size of each index has been calculated by sum- 
ming the Li above, we multiply by the number of indices 
and add the data file size to yield the total database size. 
Finally, we define the buffer pool size to be 10% of this 
total database size. The buffer pool uses an LRU 
replacement algorithm and flushes dirty blocks to disk 
asynchronously. In both [KUMAR87] and 
[KUMAR89], the buffer pool is sized in terms of a 
number of pages. This penalizes simulations with a 
smaller page size by providing them less main memory. 
By keeping the amount of main memory constant, we 
find that reducing the page size can improve perfor- 
mance by more than 25% in high contention environ- 
ments. Table 2 summarizes the simulation parameters 
available and their default values. 

Statistical Parameters 
parameter description default 
nmlen Transactions per run moo 
IUUllS Runs per data point 5 

parameter 
1 
F 
f 
d/a 
I 
dbsize 
bufsize 
fillfactor 

Workload Characteristics 
description default 

Avg aps per transaction 16 
96 update operations .25 
96 insert/delete SO 
Request distribution 50150 
Number of indices 5 
Mbytesinthedatafile 1024 (1G) 
Buffer pool size 10% of db 
Valid fraction of page .70 

Svstem Parameters 
parameter I description 1 default 
w-weed bo== speed (in MIPS) t 10 

3. Transaction Processing Models 
This analysis considers five models of transaction pro- 
cessing. The first is a traditional data manager on a read 
optimized file system. The second puts the same data 
manager on a write optimized file system. The third 
supports embedded transactions in a read optimized file 
system. The fourth embeds transactions in a write optim- 
ized file system, and the last also embeds transactions in 
a write optimized file system, but takes advantage of the 
file system’s “no-overwrite” policy to reduce the size 
of the log. 

3.1. The Data Manager Model 
In the data manager model we assume detailed 
knowledge of the structure of the database. For example, 
logging may be performed at a logical, rather than a 
physical level, allowing the logging of only the record 
being modified instead of an entire page. In this model, 
all records are assumed to be self contained, that is, their 
index values are stored in the records themselves, and 
index changes need not be logged explicitly. Using spe- 
cial concurrency control protocols facilitating high 
degrees of parallelism [BAYER77], the data manager 
needs only hold index locks during the physical manipu- 
lation of the in&x page (on the order of a few thousand 
instructions), providing superior performance in 
environments with high lock contention. 
The sequence of events for accessing a random record in 
the database is as follows. First, a keyed lookup is per- 
formed. This requires traversing the non-leaf pages of a 
B-tree by obtaining a read lock on each page, finding the 
next page to access, and releasing the read lock. When a 
leaf page is reached, the data page is locked and 
accessed. In the case of an update (an update is defined 
to change both the record and one in&x) a write-lock is 
obtained on the leaf page of the B-tree. The index page 
and data page are modified and the update is logged. 
The change is logged by recording both a before and 
after image of the record, and the index locks are 
released 
A transaction may be decomposed into operations whose 
cost may be expressed as a combination of logging, I/O, 
and locking costs. In the data manager models, the log- 
ging cost is proportional to the record size. On the read 
optimized file system Iogically contiguous blocks of a 
file are stored contiguously on disk so that a sequential 
read of a file may be performed at the sequential disk 
speeds. However, since the files am not being read 
sequentially in this model, there is no benefit derived 
from this optimization. Therefore, even on the read 
optimized file system, the I/O costs are proportional to 
the random read time of the disks. On a write optimized 
file system, the reads are also performed randomly, but 
the writes are all performed sequentially (section 3.3 
provides a detailed description of how this is achieved). 
Finally, as it is assumed that the data manager maintains 
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its own lock manager, the locking cost is strictly a func- 
tion of the number of locks and independent of any sys- 
tem call overhead. 

3.2. The Operating System’Model 
As the operating system knows nothing about the inter- 
nal structure of files, it cannot distinguish between data 
and index updates. In order to guarantee serializability 
it must perform strict two phase locking [$XAY76] on 
all accessed and modified subpages. Assuming that 
there are S subpages per page, in traversing the B-tree, 
1ogzS subpages, selected uniformly from the filled sub- 
pages within the page, are selected for locking to model 
the search for a key within the page.’ To modify a leaf 
page, one of the selcctcd subpages is write&&cd, and 
all subpages after it on the page are also write-locked, to 
allow the shuffling of keys within the page. This 
requires the operating system to obtain multiple write 
locks (on average half the number of filled subpages per 
page) for each B-tree page moditied as compared to the 
data manager’s one lock. Furthermore, since we are 
assuming that all the transaction support is provided in 
the operating system, each lock request requires a sys- 
tem call. Although we add the cost of a system call to 
each lock request in all the embedded models, this is an 
artificially high penalty since the data manager will also 
incur a system call each time a page, which is not 
resident in the buffer pool, is requested. 
The final difference between the data maiager and the 
operating system embedded model is the amount of log- 
ging information. Since the operating system may not 
perform logical logging, we resort to physical logging 
and save both before and after images of each subpage 
that is modified. In the cast of inserts and deletes, this 
number may become quite large since multiple subpages 
per index page are modified. 
We decompose the transaction costs into logging, ID, 
and locking. This time, the logging cost is proportional 
to the size of a subpage, the I/O costs are proportional to 
the random disk access time, and the locking cost is a 
function of the number of locks, the number of subpages 
per page, and the system call overhead. 

3.3. The Log Structured File System Model 
A log-structured file system (LFS) uses the disk system 
as a continuously wrapping log. Rather than modifying 
files in place, newly written data pages and their describ- 
ing meta data are written sequentially to the disk log. A 
large number of dirty data pages, their describing meta- 
data, and a summary block, identifying the file and logi- 
cal block number of each dirty page, are written sequen- 
tially in a single unit referred to as a segment. Figure 1 
shows the allocation of three files in a log-structured file 

I The log, assumes a binary search is used to locate the correct 
subpage. 

SyStem. 

Traditional logs usuaRy provide only sequential access 
for reading, but a log-structured file system builds its 
metadataintothelogitself,sothatrandomretricvalis 
also possible. Its structure is very similar to a UNIX fde 
system lTvICKvs41. In a UNIX file system, tie location 
of the blocks of a file are stored in i@ex structures 
which reside on tied places on disk. These index struc- 
hnesarethemeta&tawrittentotheloginLFs. Inan 
LFS, the location of this meta data is not tied. All the 
meta data is stored in a single file, call4 the map file. 
There is one special index structure, called the super 
block, which describes where the blocks of the map file 
reside in the LFS. The super block may be cached in 
main memory and appended to the log at checkpoint 
time. 
This structure makes all writes sequential while retain- 
ing the ability to perform random retrieval. To locate a 
block of a file, the super block (which is cached in main 
memory) is accessed to find the location of the tile’s 
index structure. This index structure is then mad to 
determine where the blocks of that file reside. Each time 
a file is written, both the newly written data and a new 
version of its index structure are written, and the super- 
block is updated to reflect the new location of the file’s 
index structi. 
Recovering a log-structured tile system is similar to 
standard database recovery @AER83]. The file system 

(b) 

w 7 w T-r/ 

Flpre 1: A Log Structured File System. In figunz (a), two files have 
been written, file1 and file2. Each has an index structure in the meta 
data block which is allocated after it on disk. These meta data blodcs 
are referenced via the supetbloclc which is also appended to the log. In 

figure (b), the middle block of file2 has been modiied. A new version 
of it is added to the log, as well as a new version of its meta data. Then 
file3 is created, causing its blocks and meta data to be appended to the 
log. Next, file1 has two more blocks appended to it. These two blocks 
and a new vetxion of filel’s meta data am appended to the log. Fiiy, 
another copy of the super block is apnded to the log. 
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is read backwards until the last copy of thz super block 
is found Then, the summary block for each segment is 
read, and the super block is updated to reflect the new 
blocks written since the last checkpoint. 
At some point, the disk system fills, requiring the log to 
wrap. At this time some blocks in the log will be 
“dead”, that is, they will have been superceded by new 
versions of the block or the file will have been deleted. 
A cleaning process reclaims regions of contiguous space 
from the log by reading the tail of the log, discarding 
“dead” blocks, appending “live” blocks back into the 
log, and updating the meta-data appropriately. Space is 
contirmally reclaimed from the tail of the log and allo- 
cated to the head of the, log POSE891. The cost of log 
wrapping has not been taken into account in our simula- 
tions. 
There are two characteristics of a log-structured file sys- 
tem that make it desirable for transaction processing. 
First, a large number of dirty pages are written to a sin- 
gle, large (several megabytes), contiguous,region of the 
disk Since only a single seek is performe~d to write out 
a large number of dirty blocks, the “per ! write” over- 
head is much closer to that of a sequential disk access 
rather than that of a random disk access. Secondly, 
since data is written using a “no overwrite” policy, 
before images of updated pages exist elsewhere in the 
file system. 
In the LOG model, we take advantage of the sequential 
nature of writes, but not the “no-overwrite” policy of 
the log-shuctured file system. The logging and locking 
information is identical to that for the operating system 
model. However, the Vo component of the transaction 
cost is proportional to the random disk access time for 
reading, and the sequential disk access time for writing. 
In LCXi2, we take advantage of both the sequential 
nature of writes and the “no-overwrite” policy of the 
log-structi iYe system. Instead of logging before 
and after images of the subpages being mod&d, all 
dirty pages are forced trr disk at commit time. However, 
since a singIe page may contain subpages modified by 
more than one transaction, subpages for: uncommitted 
transaction may get written to disk. In order to guaran- 
tee the abiIity to abort any uncommitted transactions, we 
require a log which records the location of the previous 
and cumznt versions of all dirty subpages. This logging 
information must be forced to disk before the dirty pages 
themselves. The difference between the LOG and 
LOG2 models is that in LOG2, log records are very 
small (16 bytes) and the total logging overhead is pro- 
portionaI only to the number of subpages modified 
rather than to the size of the subpages. 

3.4. Model Summary 
In the discussion that follows, DM refers to the data 
manager on a read optimized file system, DML refers to 
the data manager on a log-structured file system, OS 

L 

Table 3: A Comparison of Five Transaction 
Processing Models. 

refers to transaction support embedded in a read optim- 
ized file system, LOG refers to embedded support in a 
log-structured file system using a full, and LOG2 refers 
to embedded support in a log-structured file system, 
using the file system in place of a traditional log. For 
each component of transaction cost,, logging, I/O, and 
locking, table 3 indicates the parameters on which this 
component of the cost is dependent for each model. 

4. Simulation Results 
The three potential performance bottlenecks are the 
CPU, the disk system, and lock contention. By isolating 
each of these resources and we can stress all five sys- 
tems in each dimension, resulting in a characterization 
of the performance of each model across a wide range of 
configurations. The simulation configuration consisted 
of a 1G data file (implying a total database size, with 
indices, of 2.2G) and 10 disks. By varying the CPU 
speed and the locality of accesses, CPU bound, disk 
bound, and lock contention bound configurations were 
analyzed. Each of the data points represents 5 runs of 
10000 transactions each. The variance across the 5 runs 
was approximately 1% of the average and yielded 95% 
confidence intervals of approximately 2%. 

4.1. CPU and Disk Bouudeduess 
With a large data file (lG), 10 disks, and uniform distri- 
bution of accesses, a CPU bound environment was 
createdbysettingtheCPUspeedto1MIPS2. Sincethe 

J This pmcersor speed is excessively slow since we arc ignoring 
a great deal of software ovednd su& as quay pccssing. communi- 
cation, and operating syatcm overhead. The goal is to focus oa those 
wets which diier in the models rather than cm those which ate the 
same. 
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access pattern is uniform, there is little contention on 
either indices or the data file (the probability of conflict 
between any two transactions is approximately 5%). and 
there is no need to set the locking granularity (or sub- 
page size) any smaller than the page size for the embed- 
ded models. This differs from [KUMAR87] in that he 
always assumes that the embedded models must perform 
subpage locking, and subpages are 128 bytes. Figure 2 
shows the results of varying the degree of multiprogram- 
ming until the CPU becomes saturated. In this 
configuration the two data manager models provide 
better performance than any of the embedded systems. 
Whereas Kumar found this difference to be 30% or 
more in a CPU bound configuration, we see that at a 
degree of multiprogramming of 20, the difference in 
throughput between the DM and the OS results is 

approximately 17% ( 
TDM-Tos 

TDM 
), and the difference 

Fween DML and either LOG or LOG2 is 20% ( 
DML-TLOG 

TDML 
). This difference is explained by the fact 

that we require only 1 lock per level of the B-tree while 
Kumar required 4. Therefore, we find that the differ- 
ence in performance is due only to the system calls 
required by the file system based models. 
This difference in performance, in terms of throughput, 
may be expressed by the function: 

T non-lb = Th OR 

Tdm= [ 1 l+& Twnh 

where 
N is the number of locks required, 
L is the CPU overhead for acquiring a lock, 
C is the CPU overhead per transaction not 

associated with locking, and 
S is the cost of a system call (in ms). 

For the workload simulated, Th is 1.2T,,+,, or 
(1+.4S)T,,+. It is apparent that the cost of a system 
call will have a tremendous impact on the performance. 
Figure 3 graphically depicts this difference in perfor- 
mance as the cost of a system call is varied. In the 
preceding simulation a .5 ms overhead for system calls 
was used, yielding a 17-20% difference in performance 
between the data manager and embedded models. At 
.25 ms (250 instructions), the difference between the 
data manager and embedded models drops to 12%. 
Although this configuration is CPU bound, the write 
optimized lile system based models provide better per- 
formance than the read optimized file system based 
models. Comparing the DML performance with the DM 
performance, we see a gap of nearly 12% (4.1 tps vs. 3.6 

Throughput (in tx&second) vs 
Degree of Multiprogramming 5 __ -._--_---__; -_--__-__--._- i __--_--_ _ --_-? -_--__--. --._- i i ‘; 

4 
1 : : : b 
__-__--_--.__ I__-- -J..; 

Y. 

0 i io is io 
Degree Multiprogramming 

Figure 2: CPU Bounding under Low Contetttior~ The degree of 
multiprogramming is varied in a low contention ccnfiguratkm. Due to 
the system call required per lock in the OS, LOG, and LOG2 models, 
the data managers pmvide the best pfotmana. 

Throughput (in txnskecond) vs 
Cost of System Calls 

* -mm-m_s-_~~~~~-~--r __--__-_- i -----_ ~-- _-_---___ I ---‘-‘-‘-: 

1 i i : : I 

04 a 
0.00 0.25 0.50 0.75 1.00 1.25 1.50 

Cost of a System Call (in ms) 
Figure 3: Effect of the Cost of System Calls. As system calls be- 
cane man costly (in terms of CPU cycles), the difference in perfo- 
mance between. the data manager and the embedded models widens. 
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tps), and comparing LOG2 with OS, we see a gap of 
10% (3.3 tps vs. 3.0 tps). In each of these situations, the 
CPU cost for both configurations is the same. Since the 
configuration is not disk bound, the better performance 
of the log-structured file system is unexpected. Upon 
closer inspection, it becomes clear that although the 
disks are under utilized, the read optimized file systems 
are running at approximately 50% disk utilization while 
the write optimized models are running at approxi- 
mately 33% utilization. 
To understand how this effects throughput, we need to 
examine what happens as dirty blocks are flushed to 
disk In the read optimized models, flushing a dii 
block keeps the disk busy for the time of a random 
access (approximately 28.3 ms)3. When dirty data 
blocks are written, an incoming read request may be 
delayed for up to 28.3 ms. Even if these writes are 
attempted during idle disk cycles, subsequent read 
requests may still queue up behind the writes and be 
delayed. On the other hand, when the log based models 
flush their dirty blocks, they write a large number of 

-_blocks at sequential speed (1.99 ms). Therefore, the 
potential delay incurred per block flushed is much less. 
Even when the disks are not the bottleneck, the differ- 
ence in write performance of the disk systems does 

I 

Throughput (in txnskecond) vs 
Degree of Multiprogramming 

0 20 40 a so 100 

Degree Multiprogramming 
Flpre 4: Msk Bounding under Low Contention. Since. then is 
sufficient CPU power to support the more expensive embedded sys- 
tems, the file system is the determiner of petfotmance, and we see the 
write optimized file systems providing the best performance. 

3 All disk times are based on the perfotmance specification of 
the Fujitsu EagleM2361A ~UJI84]. 

impact the resulting throughput. 
By increasing the processor speed to 10 MIPS, the 
configuration becomes disk bound. Once again, the 
degree of multiprogramming was varied to determine a 
saturation point. These results are shown in figure 4, 
and as expected, the log-structured models provide the 
best performance, by approximately 23% (9.4 tps for 
DML and 7.2 tps for DM). Furthermore, although the 
configuration is disk bound, the size of the log does not 
have a significant impact on performance. Both the data 
manager and operating system models exhibit nearly 
identical performance, even though the operating system 
maintains a much larger log. As in the CPU bound case, 
these results differ dramatically from [KUMAR871. He 
found that in disk bound configurations the data manger 
out performed the operating system embedded model 
and attributed this difference to the size of the log. 
Although the OS keeps a much larger log than DM, their 
performance is nearly identical as shown by the overlap- 
ping lines in figure 4. Similarly, DML, LOG and LOG2 
exhibit nearly identical performance although these 
models have different sized logs as well. Since logging 
occurs at sequential speed in all the models, it is clear 
that performance is dominated by the random disk 
access times. 
Having analyzed the extremes of disk boundedness and 
CPU boundedness, we now analyze the region in 
between. By varying the processor speed, the results 
shown in figure 5 were obtained. Between any two 
models, there are two factors which contribute to the 
performance differential: the file system or size of the 
log and the location of transaction support (data 
manager or embedded). At 1 MIPS, the CPU bound 
configuration, the file system component accounts for 
lo-12% of the differential (the difference between DML 
and DM or OS and LOG) and the location component 
1920% (the difference between OS and DM or LOG 
and DML). By 2 MIPS, that emphasis has shifted so 
that the tie system component is 19-21% and the loca- 
tion component is 1517% Finally, by the disk bound 
point, 3 MIPS, the location component is 0 (the DM and 
OS lines overlap, as do the DML, LOG, and LOG2) and 
the file system accounts for a 22% difference in perfor- 
mance. However, at any point along the curves, the best 
performance is provided by supporting transactions 
within the data manager on top of a log-structured file 
system. 
As was observed in the disk bound configuration, the 
size of the log does not contribute significantly to the 
performance of the systems. Thedifference in I/O costs 
between DML and LOG is that DML is able to perform 
logical logging (proportional to She record size) while 
LOG performs physical logging ,@oportional to page 
size). The logging difference between LOG and LOG2 
is that the LOG2 model requires a log even smaller than 
DML (16 bytes per modification rather than 2 records). 
Since logging is always performed at sequential speeds, 
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Throughput (ii &m/second) vs CPU Speed 
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Figure 5: Effect of CPU Speed on Transaction Throughput. In- 

creasing CPU speed moves the ca@mWion from a state of CFW 
boundedness to disk boundedness. Even be&r. the systems become 
canpletely diik bound (at 3 MIPS). the major factor contributing to 
the performance diem&al is the file system and not the location of 
transaction support. 

the total time required to log a transaction is still a small 
part of the total I/O time (under l%), and the resulting 
performance is the same for all three systems. There- 
fore, the primary benefit of the log-structured file system 
implementation is its superior write performance, not its 
no overwrite policy. 

4.2. Lock Contention 
All the preceding tests were run with a uniform access 
pattern over a 1G data file. The next isske we investi- 
gated was the effect of lock contention on these results. 
To induce contention, the distribution of accesses to the 
database was skewed. The multiprogramming level was 
set to 100, the number of disks to 10, the CPU speed to 
10 MIPS, and the distribution was varied from uniform 
(50/50; 50% of the accesses to 50% of the database) to 
extremely contention bound (99/l; 99% of the accesses 
to 1% of the database). Figure 6 shows these results. 
There are two factors at work here. First, since the 
configuration is initially disk bound, the skewing of the 
access patterns results in a higher buffer cache hit ratio 
and therefore improved performance. Secondly, the 
skewing of the access patterns induces hotspots in the 
database, and the contention for locks degrades perfor- 
mance. At the 70/30 skew point, the DM and OS lines 
diverge as do the DML and LOG/LOG2 lines. The data 
manager based models continue to take advantage of the 

Throughput (in b&second) vs Access Skew 
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Access Skew 
Figure 6: Effect of Skewed Access Distribution on Throughput. 
Contention begins to impact performance when the skew teaches 
greater than 70130. The embedded models diverge fnnn their data 
manager counteqatts at thii point. 

improved buffer cache hit ratio and ‘their performance 
climbs steadily. The OS model also exhibits improved 
performance, but not as much as the data managers since 
it is starting to suffer from contention on the indices 
(since index locks are held until transaction commit time 
in the embedded models). The LOG and LOG2 models 
actually suffer performance degradation as a result of 
the increased skewing and resulting contention. 
Figure 7, which shows the number of aborts for each of 
the models as a function of this skewing, indicates that 
the embedded models exhibit higher abort rates than the 
data manager models from the 70/30 point until the 95/l 
point. Since many more transactions are aborting, the 
resulting throughput is lower, therefore, in a contention 
bound environment the coarse grain page locking 
employed by the embedded models is unsatisfactory. 
We investigated three techniques to reduce the effect of 
lock contention in the embedded models. First, subpage 
locking, as described in section 3.2, was used. Next, the 
page size was reduced and locking was performed on 
full pages. Finally, a modified subpage locking tech- 
nique similar to that described in [KUMAR89] was 
Used. 

Subpage locking reduces the locking granularity, and as 
a result, the degree of contention, but not as much as 
expected. Since updates to a B-tree page require 
shuffling around the entries on a page, multiple subpages 
get locked for each update. In addition, the pages 
locked always follow the subpage on which the insert is 
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Number of Aborts (log 10 / 10000 successful) vs 
Access Skew 
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Flpre 7: Flfect uf Access Skewing on the Number uf Aborted 
Transactions. The abort rate begins climbing at a 70/30 skew for the 
embedded systans, but at an 8Of.X skew for the data manager. 

Throughput (in txns/second) vs 
Access Skew (Subpage Locking) 
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Figure 8: Impact of Access Skewing with Subpage Loeking. By 
redUCi”g the locking granularity, the embedded models can regain 
some of the performance lost to contention. 

being made. As a result, the distribution of write locked 
subpages is skewed towards those at the end of the page. 
In addition, the CPU cost per level of the B-tree is 

higher since multiple subpage locks are required to find 
the correct subpage. Therefore, if a high contention 
environment is CPU bound, changing the locking granu- 
larity will not improve performance. If the CPU is not 
the bottleneck, some of the performance lost to conten- 
tion may be regained. 
Figure 8 shows the same contention bound environment 
as figure 6, but uses subpage locking for the embedded 
models. In the region between 70130 and 95/5 the 
embedded models come much closer to equaling their 
data manager counterparts. In the case of the read 
optimized file systems (DM and OS), the difference is at 
most 6% (at the 90/10 point). For the log-structured file 
system, the largest gap is under 12% (also at 90/10). At 
the most contention bound point, even the data manager 
models exhibit extreme contention due to locking 
conflicts on the data file. Since the embedded models 
are able to lock subpages of the data file, at the 99/l 
point, the embedded models exhibit better performance. 
‘Ihe next technique to reduce contention was to decrease 
the page size and lock on full pages. While decreasing 
the page size does reduce contention, it may also 
increase the depth of the B-tree. Increasing the depth of 
the B-tree adds extra I.0 to each operation as well as 
adding an additional lock request to each traversal. As a 
result, we find that reducing the page size is beneficial 
only if it does not increase the depth of the B-tree. In 
the case of the contention bound simulations, reducing 

Throughput (in txns/second) vs 
Access Skew (Optimal Page size) 
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Figure 9: Impact uf Access Skewing with Variable Page Size. 
Varying the page size compensates for some of the penalty from con- 
tention in the embedded systems. 
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the page size from 4K bytes to 2K bytes does not 
increase the depth of the B-tree. The results in figure 9 
show the same contention bound environment using 
page locking and selecting the optimal page size for 
each model (all the embedded models used 4096 byte 
pages for skews of 50, 60, 70; 128 byte pages for 80, 
and 512 byte pages for 90, 95, and 99). For the read 
optimized file system, using page size to reduce conten- 
tion is less effective than using subpages, since the larg- 
est OS/DM differential is 22% at the 90/10 point. On 
the other hand, the differential for the write optimized 
file system has gone from 12% at the 90/10 point in 
figure 8 to 4% at the 9O/lO point in figure 9. Further- 
more, the write optimized embedded models actually 
surpass the write optimized data manager at 95/S rather 
than 99/l as before. Depending on the file system, vary- 
ing either the subpage size or the page size is an effec- 
tive mechanism for handling lock contention. 
The last approach reverts to subpage locking, but avoids 
the overhead of multiple locks per level and the skewing 
of locked subpages. This is similar to the proposal in 
[KUM89], but has lower CPU costs. In both Kumar’s 
and our model, each subpage is treated as an indepen- 
dent bucket of entries. In the normal case an operation 
requires locating the correct subpage and modifying 
only that subpage. In Kumar’s method,, this requires 
keeping the smallest keys for each subpage on the tirst 

Throughput (ii txn&econd) vs 
Access Skew (Modified Subpage Locking) 
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Figure 10: Impact of Access Skewing with Modified Subpage 
Locking. By reducing the locking gnmulatity. the emWed systems 
arc able to surpass the data manager in an environment with extremely 
high contention. 

subpage of the page. To avoid bottlenecking on this first 
page, we perform a non locking binary search across 
subpages to select the correct page. 
Another difference in the two algorithms is that Kumar 
keeps entries in each bucket chained in a link list, 
requiring linear time to search each bucket, while we 
keep entries within a subpage sorted maintaining the 
O(log) search time. Therefore, normal operations 
require no more time using this structure than they do in 
the regular full page structure. 
In the case of an overflow of a subpage or a change to 
the smallest key on a subpage, we lock all the subpages 
within a page and reorganize. Since, on average, we 
expect to move half the entries on a page, this reorgani- 
zation costs the same as a normal page oriented key 
insert. Whereas Kumar assumes that reorganization is 
required every 600 updates, we assume reorganization is 
required once in every 10 updates since we require reor- 
ganization or full page locking both when buckets fill as 
well as when the first key on a page is mod&d. 
In the next set of simulations, we used this modified sub- 
page locking. The subpage size was set at 512 bytes (8 
subpages per page and approximately 22 keys per page). 
These results are shown in figure 10. Since this locking 
protocol offers the smaller locking granularity of sub- 
page locking without the extra CPU overhead of 

Number of Aborts (log 10 / 10000 successful) is 
Access Skew 

5.0 

GJ”” 

r 
,e3.0 

4 

tzo 

0 
r 1.0, 
t 
S 

0.0, 

_. 

. -_ 

. __ 

. -- 

Access Skew 
Flgure 11: Effect of Modified Subpage Locking on the Number of 
Aborted Transactions. The new l&g mechanism redocea the 
number of aborts by a factor of 10. thus allowing the high throughput 
rates observed in figure 10. 
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multiple locks per update, its performance is even better 
than the data manager’s, and we see the performance 
difference between the data manager and embedded 
models in excess of 45% at the 9515 point. Looking at 
the number of aborts for the embedded models shown in 
figure 11, we see that lock contention is virtually elim- 
inated until the 90/10 point, and beyond that point, the 
number of aborts in the embedded models is an order of 
magnitude smaller than for the data managers. 

5. conclusions 
Independent of whether transaction support is embedded 
in the tile system or implemented in the data manager, 
the log structured file system offers better performance 
than the traditional read optimized tile system. Its major 
benefit is its improved write performance, not its no 
overwrite policy. In fact, as we see from the results in 
disk bound configurations, the size of the log has very 
little impact on the resulting performance. This is 
explained by the fact that logging always occurs at 
sequential speeds and is a very small fraction of the total 
I/O time. 
S&e logging is not an important factor, we find that 
embedded transaction support performs as well as the 
data manager support in disk bound configurations. 
Whether we use a read optimized or write optimized file 
system, we find that the data manager and embedded 
models offer nearly identical performance. As a result, 
supporting transactions within the file system is a feasi- 
ble solution, when the system is I/O bound. 
As Kumar concluded, when the CPU is the bottleneck, 
there is a penalty in embedding transaction support in a 
file system. However, when lock contention is not a fac- 
tor, there is no need to perform subpage locking, and the 
difference in performance is directly proportional to the 
cost of a system call and is usually under 20%. There- 
fore, the feasibility of an embedded transaction manager 
is strictly dependent on the system call overhead. 
Finally, as lock contention becomes a factor in limiting 
performance, all models experience some degradation, 
but the data manager suffers the least due to its use of 
semantic information for B-tree locking. The embedded 
models may recoup most of this performance loss 
through variable subpage and page size. In some cases, 
where the CPU is not a critical resource, embedded sys- 
tems with modified subpage locking not only recoup this 
loss, but provide better throughput than the data 
manager. 
Except in the most CPU bound environments, there is 
virtually no penalty incurred in embedding transaction 
support in the operating system. It does, however, 
require careful and defensive design to avoid index con- 
tention as well as operating system flexibility to vary the 
page and subpage sizes as needed. 
There are several areas which warrant furtler investiga- 
tion. We have not accounted for the cost of log 
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wrapping in the log-structured file system. This will 
reduce the benefit of the log-structured lile system. but it 
is not clear how great this impact will be. In addition, 
the use of RAID devices lPA’lT88] will penalize the 
small writes that occur in a mad optimized file system. 
These issues will be examined in later research. 
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