
Two Epoch Algorithms for Disaster Recovery

Hector Garcia-Molina and Christos A. Polyzois
Department of Computer Science, Princeton University, Princeton, NJ 08544 USA

Robert Hagmann
Xerox PARC, Palo Alto, CA 94304 USA

ABSTRACT
Remote backup copies of databases are often maintained
to ensure availability of data even in the presence of exten-
sive failures, for which local replication mechanisms may
be inadequate. We present two versions of an epoch algo-
rithm for maintaining a consistent remote backup copy of a
database. The algorithms ensure scalability, which makes
them suitable for very large databases. The correctness
and the performance of the algorithms are discussed, and
an additional application for distributed group commit is
given.

1. Introduction

A remote backup (or hot standby or hot spare) is a
rcchnique used in critical applications for achieving truly
continuous operation of databases. A copy of the primary
database is kept up-to-date at a geographically remote site
and takes over transaction processing in case the primary
site fails. The geographic separation of the two copies
provides significantly more failure isolation than what is
available with local replication. The advantages of a
remote backup are discussed in detail in [5], [121.

We focus on a particular type of remote backup,
called l-safe [9], [121: transactions first commit at the pri-
mary site, release the resources they hold, and are then
propagated to the backup and installed in the backup copy.
This means that in case of disaster, some transactions that
were executing close to the occurrence of the disaster may
never reach the backup, although they may have

Permission IO copy without fee all or part of thih material is

granted provided that the copies arc not made or diatrihutctl lix

direct commercial advantage. the VLDH copyright notice and

the title of the publication and its date appear. ;~nd notice is given

that copying is hy permission of the Vcr) Lnrsc Data Raw

Endowment. To copy otheruisc. or to rcpuhM. rcquirc\ ;I fee

and/or special permission from the Endo~mcnt.

Proceedings of the 16th VLDB Conference
Brisbane. Australia 1990

Primary Backup

Figure 1. Architectural Framework

committed at the primary. The other option would be to
run 2-safe transactions: the primary and the backup run a
two-phase commit protocol [81, [131 to ensure that transac-
tions are either installed at both sites or are not executed at
all. The commit protocol increases the response time of
transactions by at least one round trip delay. For this and
for other reasons [121, [5] many systems prefer to use l-
safety and lose some transactions in case of disaster rather
than pay the overhead for 2-safety.

Existing l-safe remote backup systems (e.g., Tan-
dem RDF [151) usually address only the simple case, with
one primary and one backup computer. Data logs are pro-
pagated from the primary to the backup to enable the latter
to install the same changes that were installed at the
former. Even when multiple computers are allowed in
existing systems, the situation is similar, because the logs
are merged (implicitly or explicitly) into a single ,Jog
stream. A single log scheme is undesirable, because the

222

merging of the logs may eventually become a bottleneck in
the performance of the system.’ Instead, we would like to
have many computers at each site, with multiple indepen-
dent log streams from the primary to the backup (as shown
in Fig. l), so that the system can scale up to very large
databases. In this figure, the log at each primary computer
records the actions that take place there, just like in any
system. The writes in this log are then transmitted and
replayed at the corresponding backup computer.

When multiple logs are used, as in Figure 1, we
actually need a distributed commit process at the backup to
decide when the writes for a given transaction can be
safely installed. In other words, it is not possible to simply
install the writes at each backup computer as they arrive.

To illustrate this, consider three transactions, Ti Tz.
and T3, Assume transaction T1 wrote data at primary
computer Pi. Then Tz wrote at primary computers Pi and
Pj, while later T3 wrote at Pj and Pk. All three transac-
tions commit at the primary. As the logs are being pro-
pagated, a disaster hits, and only the log records shown in
Fig. 2 make it to the backup. (The tail of the logs is at the
bottom.) BPi is the hot standby for Pi, BPj for Pi, and SO

on. The prepare record for a transaction T, is represented
by P(T,) and the commit record by C(T,), while the nota-
tion write T, is used for a write action made by transaction
T,. Backup computer BP, receives the write records for
T1, but cannot install them because the commit record,
C(T t), was not received. (It does not know whether T1
committed or not at the primary.) Site BP, does see the
C(T2) record, but it is still unable to install the T2 writes
(i.e., unable to commit T2 at the backup). This is because
the actions of Tz did not arrive at BPi due to the crash.
(Recall that T2 wrote at Pi and Pje) For example, suppose

BPi
write T 1

BP,
write T2
P(T2)
W2)
write T3
W3)
W3)

Bh
write T3
PU3 1
W3)

Figure 2.

‘It is not necessarily the bandwidth of the single line to the backup
that is a problem: very high bandwidth lines are available. The bottleneck
could be the processing load at the multiplexing computer, which needs to
receive streams of messages from the local computers, merge them (in an
appropriate order) and repackage them for transmission to the backup. In
many cases, the telecommunication protocols, both local and wide-area to
the backup, are very high overhead.

T2 is a funds transfer transaction, with the write at Pi
being the withdrawal from Accountl and the write at Pi
being the deposit in Account2. Then we do not want to
execute only the deposit without the withdrawal.

Since T2 cannot be installed, it may also be impossi-
ble to install T3. It is possible that T3 read data produced
by T2, so installing T3 may compromise the consistency of
the database, even though all of the write and commit
records of T3 arrived at the backup site. Not installing T3
introduces a divergence from the real world, but seems the
lesser of two evils. Transactions that cannot commit at the
backup because they would violate consistency can be
saved and fixed “manually” (by a human operator or a
special program).

In summary, before a transaction can commit at the
backup, the backup computers must run a commit protocol
that detects the problems illustrated in our example. This
protocol is in essence a two-phase commit among the
backup computers. When a computer involved in a tram
saction T knows it is feasible to install T’s writes (because
T’s commit record has been received, and all transactions
that T could depend on have committed), then it sends a
message to a coordinator backup computer. Once the
coordinator gets acknowledgments from all participants in
T, it can send a commit message telling them to actually
install the writes.

The backup commit protocol can be run for each
transaction individually (as done in [4], [6]), or instead, it
can be run for a batch of transactions. This is the approach
we follow here. Our method makes a commit decision for
a group of transactions at a time, amortizing the cost over
them.

The rest if the paper is organized as follows: in sec-
tion 2 we give our framework and in sections 3-6 we
present two versions of our algorithm and prove their
correcmess. In section 7 we discuss the features of the
algorithms, and in section 8 we give a related application
to distributed group commit for large memory computers.

2. Our Framework

2.1. Architecture
In our model there are two sites (primary and

backup) with multiple computers each. (It is possible to
have multiple backups for a single primary, but for ease of
explanation we assume just one backup. The extension to
multiple backups is straightforward.) Each computer has
one or multiple processors, holds part of the (local) data-
base and runs a DBMS. All of the computers at each site
can communicate with each other through shared memory
or through a local network or bus. This makes our method
applicable to shared memory architectures as well as to
more loosely coupled systems. Running between the two
sites are several communication lines, which let computers
at the primary site send copies of operations being

223

performed to the backup computers. Control messages are
also exchanged over these lines. No particular assumption
is made about the delays in the network, but the bandwidth
is assumed sufficient for the propagation of the logs. We
assume an one-to-one correspondence between primary
and backup computers. (This is again for ease of explana-
tion. See section 9.) As in our example, we use the nota-
tion Pi for a processor at the primary and BPj for its peer
at the backup.

As failures occur at the primary, the system tries to
recover and reconfigure (possibly using some local
mechanisms). However, multiple and/or significant
failures may slow down the primary site or even stop it
entirely. At this point, a primary disaster is declared and
the backup attempts to take over transaction processing.
The declaration of the disaster will in all likelihood be
done by a human administrator. This is mainly because it
is very hard for the backup site to distinguish between a
catastrophic failure at the primary and a break in the com-
munication lines. In addition, the input transactions must
now be routed to the backup site. (In practice, user “ter-
minals” keep two open connections, one to the primary
and one to the backup. The backup connection is on
standby until a disaster occurs.)

Our failure model for this paper only considers
disasters of the primary. That is, the computers at the
backup never fail. During normal processing, they receive
and process logs from the primary. When a disaster is
declared, the backup computers finish installing the avail-
able logs, and then go into primary mode and process tran-
sactions. Our algorithms can be extended to cope with
other failure scenarios (e.g., a backup computer fails and
its duties are taken over by another one, or a single pri-
mary computer fails and its backup takes over its duties
only). Due to space limitations, we do not address such
failure scenarios here.

Regardless of the backup strategy used, a local two-
phase commit protocol must be used at the primary to
ensure atomicity. The coordinator for a transaction T
notifies the participants that the end of the transaction has
been reached. Those participants that have executed their
part of T successfully make a prepare entry in their logs
(we use the notation P(T) for prepare entries) and send a
positive acknowledgement (participant - ready message)
to the coordinator. We assume that the P(T) entry includes
the identity of the coordinator. Participants that were not
able to complete their part of T successfully write an abort
entry in their logs and send a negative acknowledgement
to the coordinator. If a positive acknowledgement is
received from all participants, the coordinator makes a
commit -coordinator entry in its log (we use the notation
CC(T) for this) and sends a commit message to all partici-
pants. The participants make a commit -participant entry
in their logs (symbolically CP(T)) and send an ack-
nowledgement to the coordinator. Sometimes we use the
notation C(T) for a commit entry written in a log when we

do not want to specify if it was written by the coordinatar
or a participant.

A concurrency control mechanism ensures that the
transaction execution schedule at the primary is serializ-
able. We say a dependency TX-T,, exists between two
transactions T, and T, if both transacctions access a corn-
mon data item and at least one of them writes it [11, [lo].

The logs, including the P(T), C(T) and the write
entries (giving the new values written by the transactions)
are propagated to the backup site, where the writes have to
be installed in the database. The backup will in general
execute a subset of the actions executed at the primary.
Read actions do not modify the database, so they need not
be propagated to the backup. We also assume that write
actions at the backup install the same value that was
installed by the corresponding write actions at the primary.
We use the notation W(T, d) to represent the write at the
backup of data item d by transaction T.

2.2. Correctness criteria
Before we proceed with our solution, let us define

more precisely what a “correct” backup is. Our first
requirement ,for the backup is transaction atomicky, the
second one is consistency.

Requirement 1: Atomicity. If W(T,, d) appears in the
backup schedule, then all of the TX’s write actions must
appear in the backup schedule.

Requirement 2: Consistency.2 Consider two transactions
Ti and Tj such that at the primary Ti + Tj. Transaction Tj
may be installed at the backup only if Tj is also installed
(local consistency: dependencies are preserved). Further-
more, if they both write data item d, W(Tj, d) must occur
before W(Tj, d) at the backup (mutual consistency: the
direction of dependencies is preserved).

Finally, we would like the backup to be as close to
the primary as possible. This is formally stated in the fol-
lowing requirement, which guards against a backup that
trivially satisfies all of the previous requirements by throw-
ing away all transactions:
Requirement 3: Minimum Divergence. If a transaction is
not missing at the backup and does not depend on a miss-
ing transaction, then its changes should be installed at the
backup.

3. Overview of the Epoch Algorithm
The general idea is as follows: periodically, special

markers are written in the logs by the primary computers.
These markers serve as delimiters of groups of transac-
tions (epochs) that can be committed safely by the backup.

*This consistency criterion is stronger than the one in [4], [6]. Only
the weaker criterion is actually necessary, but our algorithm guarantees
this stronger version.

224

The primary computers must write these markers in their
logs in some synchronized way. Each backup computer
waits until all backup computers have received the
corresponding portion of the transaction group, i.e., all
backup computers have seen the next delimiter. Then, each
computer starts installing from its log the changes for the
transaction group. This installation phase is performed
(almost) independently from other processors.

In the log, each delimiter includes an integer that
identifies the epoch that is ending. We represent the delim-
iter as a small circle with the epoch number as a subscript,
e.g., 0, is the delimiter at the end of epoch n. At the pri-
mary, each computer i keeps track of the current epoch
number in a local counter E(i). One computer is desig-
nated as the master and periodically makes a 0, entry in
its log (where n is the current epoch number), increments
its epoch counter from n to n + 1 and broadcasts an
end -epoch(n) message to all nodes at the primary. All
recipient nodes also make a 0, entry in their logs, incre-
ment their epoch counters and send an acknowledgement
to the master. The master receives acknowledgements
from all other nodes before it repeats the above process to
terminate another epoch.3

It is important to note that simply writing circles
does not solve the problem, i.e., there is more that has to
be done. As we have described it, transactions can strad-
dle the end-epoch markers, as shown in the sample logs of
Fig. 3 (again, the last record received at the backup is at
the bottom). If epoch n is committed at the backup, the
updates of Tt at BPj are installed. However, the updates
of Tt at BP i appear after the end-epoch marker and will
not be installed. This violates atomic@.

There are two ways to avoid the undesirable situa-
tion described above. The first way is to let transaction
processing proceed normally and place the delimiters more
carefully with respect to the log entries for actions of tran-
sactions. The second way is to write the delimiters asyn-
chronously but to delay some actions of some transactions,

BPi BPj
0, write T,
write T 1 WI)
W-1) WT,,
CPU-,, 0,

Figure 3

3This is not necessary in one algorithm, the single mark algorithm,
to be described. However, we make the assumption to simplify the discus-
sion.

so that the log entries for these actions will be placed more
carefully with respect to the delimiters. These two options
give rise to two versions of the epoch algorithm, which are
described in sections 4 and 6 respectively,

In what follows, when we want to specify the pro-
cessor where an event took place and a log entry was writ-
ten, we add an extra argument to the log entry. For exam-
ple, the notation O,(Pi) denotes the event when Pi writes
a 0, entry in its log. Similarly, C(T, Pi) denotes the event
when processor Pi writes a commit entry for transaction T
in its log.

We use the symbol “+j” to denote the “occurs
before” relation, i.e., A 3 B means that event A occurred
before event B [l 11. When using a relation A 3 B, we do
not distinguish whether A and B are the actual events or
the corresponding entries in the log; we assume the log
preserves the relative order of events (within the same
computer). Do not confuse the “a” symbol with the
symbol “+” used for transaction dependencies. Suppose
a dependency T, + T, exists at processor P, between two
transactions TX and T,. Transactions T, and T, were coor-
dinated by processors P, and P,. (Note that Pd, P, and P,
need not all be different processors.) We assume the fol-
lowing property relates the two symbols “d” and “+“:

If T, + T, at Pd, then CC(T,, P,) 3 CP(T,, Pd)
* P(T,, Pd) * CC&, py) (fiOP=-Q 1)
We prove the property in the case when strict two-

phase locking is used for concurrency control. Transaction
TX does not release its locks until it commits, and transac-
tion T, cannot commit before TX releases its locks,
because the two transactions access some common data in
conflicting modes and therefore ask for incompatible
locks. Thus, P, writes the commit message for T, in its
log, then Pd (if different from P,) writes the commit mes-
sage for T,, the locks are released, T, runs to completion,
Pd writes the prepare entry for T,, and finally P, writes
the commit message for T,. Thus, the property holds for
strict two-phase locking. Other concurrency control
mechanisms also satisfy this property, but we will not dis-
cuss them here.

4. The Single Mark Algorithm
In this section we describe the first version of the

epoch algorithm, where we place circles in the log more
carefully. Circles are still generated as described in the
previous section, but some additional processing rules are
followed. When a participant processor i writes a prepare
entry in its log and sends a participant -ready message to
the coordinator of a transaction, the local epoch number
E(i) is included in the message. Similarly, the epoch
number is included in the commit message sent by the
coordinator to the participants of ‘a transaction. When a
message containing an epoch number n arrives at its desti-
nation j, it is checked against the local epoch counter. If
E(j) c n, it is inferred that the master has broadcast an

225

end -epoch(n - 1) message which has not arrived yet.
Thus, the computer acts as if it had received the
end - epoch(n - 1) message directly: it makes a 0, _ t
entry in its log, sets E(j) to n, sends an acknowledgement
to the master and rhen processes the incoming message. If
the end - epoch(n - 1) message is received later directly
from the master (when E(j) > n - l), it is ignored. The
idea of bumping an epoch when a message with a larger
epoch number is received is similar in principle to bump-
ing logical clocks [111.

The logs (including the circle entries) are pro-
pagated to the backup site. As the logs arrive at a backup
processor, they are saved on .stable storage. The backup
processor does not process them immediately. Instead, it
waits until a 0, mark has been seen by all backup comput-
ers in their logs. This can be achieved in various ways. For
example, when a computer receives a 0, mark, it broad-
casts this fact to other computers and waits until it receives
similar messages from everybody else. Alternatively,
when a computer sees a 0, in its log, it notifies a master at
the backup site. The local master collects such
notifications from all computers and then lets everyone
know that they can proceed with installing the logs for
epoch n.

To install the transactions in epoch n, BPi examines
the newly arrived log entries from 0 n _ i to 0 n. However,
there can also be entries pending from previous epochs
(before 0, _ t) that need to be examined. These entries
correspond to transactions that did not commit in previous
epochs. Thus, at the end of epoch n, BPi examines all of
the log records appearing before 0 ,, corresponding to tran-
sactions that have not been installed at BPi. The following
rules are used to decide which new transactions will com-
mit as part of epoch n:

l For a transaction T, if C(T) 3 0, in the log, a decision
to commit T is made.

l If a transaction T does not fall in the above category but
P(T) 3 0, in BPi’S log (P(T) could possibiy be in
some previous epoch), the decision whether to commit
T depends on whether Pi was the coordinator for T at
the primary. (Recall from the model section that the
coordinator is included with every P(T) log entry.) If
Pi was the coordinator, T does not commit at the
backup during this epoch. If some other processor Pj
was the coordinator at the primary, a message is sent to
BP, requesting its decision regarding T. (BPj will reach
a decision using the rules we are describing, i.e., if BPj
finds CC(T) 3 0, it says T committed.) If BPj says T
committed, BPi also commits T, otherwise T is left
pending (updates not installed).
Transactions for which none of the above rules applies
do not commit during this epoch.

After having made the commit decisions, BP; reex-
amines its log. Again, it starts with the oldest pending
entry (which may occur before 0, _ i) and checks the

entries in the order in which they appear in the log. If an
entry belongs to a transaction for which a commit decision
has been reached, the corresponding change is installed in
the database and the log entry is discarded. If no commit
decision has been made for this transaction, the entry is
skipped and will be examined again during the next epoch.

Note that during the first scan of the log (to deter-
mine which transactions can commit) the only information
from previous epochs that is actually necessary is for
which transactions a P(T) entry without a matching C(T)
entry has been seen. If this information is maintained
across epochs and updated accordingly as commit and
prepare messages are encountered in the log, the first scan
can ignore pending entries from previous epochs and start
from 0 ,, _ i . It is still necessary for the second scan (instal-
ling the updates) to examine all pending entries.

5. Why the Epoch Algorithm Works
In this section we show the correctness of the epoch

algorithm. In particular, we prove that the first two correct-
ness criteria mentioned in section 3 are satisfied.

Atomicity. To prove atomicity, we use the following two
lemmas.

Lemma 1: If C(T) + 0 ,, in the log of a processor Pi, then
CC(T) q 0 ,, in the log of the coordinator P c of T.
Proof. If Pi = P,, the lemma is trivially satisfied. Now
suppose that Pi + P,, that CP(T) * 0, in the log of Pi
and that 0 n 3 CC(T) in the log of P c. The commit mes-
sage from P, to Pi includes the current coordinator epoch
n + 1. Upon receipt of this message, Pi will write 0, if it
has not already done so. Thus, 0, * CP(T), a contradic-
tion.

Lemma 2: If CC(T) * 0, in the log of the coordinator
for T, then P(T) 3 0, in the logs of the participants.
Proof. Suppose 0 n + P(T) at some participant. When the
coordinator received the acknowledgement (along with the
epoch) from that participant, it bumped its epoch (if neces-
sary) and then wrote the CC(T) entry. In either case, 0,
* CC(T), a contradiction.

Let us now see why atomicity holds. Suppose the
changes of a transaction are installed by a backup proces-
sor BP i after the logs for epoch n are received. If C(T) 3
0, in the log of BPi and the transaction was coordinated
by P, at the primary, by lemma 1 CC(T) + 0, in the log
of BP c. If BP i does not encounter a C(T) entry before 0 “,
it must have committed because the coordinator told it to
do so, which implies that in the log of the coordinator
CC(T) 3 0,. Thus, in any case, in the coordinator’s log
CC(T) =j 0,. According to lemma 2, in the logs of all
participants P(T) * 0,. The participants for which
CP(T) -0, will commit T anyway. The rest of the par-
ticipants will ask BP, and will be informed that T can

commit. Thus, if the changes of T are installed by one pro-
cessor, they are installed by all participating processors.

226

Consistency. We prove the first part of the consistency
requirement by showing that if T, + T, at the primary and
T, is installed at the backup during epoch n, T, is also
installed during the same epoch or an earlier one. Suppose
the dependency T, + T, is induced by conflicting
accesses to a data item d at a processor Pd. By property 1
we get C(T,, Pd) * P(T,, Pd). Since T, committed at
the backup during epoch n, P(T,, Pd) + O,(Pd), which
implies that C(T,, Pd) j O,(P,). Thus, TX must com-
mit during epoch n or earlier (see lemmas 1, 2). For the
second part of consistency: suppose Ti + Tj and they both
write data item d. As we have shown in the first part, if T,
+ T, at the primary, T, commits at the same epoch as Ty
or at an earlier one. If TX is installed in an earlier epoch, rt
writes d before TY does, i.e., W(T,, d) + W(T,,, d). If
they are both installed during the same epoch, the writes
are executed in the order in which they appear in the log,
which is the order in which they were executed at the pri-
mary. Since T, + T, at the primary, the order must be
W(T,, d) j W(T,, d), which is exactly what we want.

6. The Double Mark Epoch Algorithm
In the single mark algorithm, participant -ready

and commit messages must include the current epoch
number. The overhead, in terms of extra bits transmitted,
is probably minimal. However, the commit protocol does
have to be modified to incorporate the epoch numbers.
This may be a problem if one wishes to add the epoch
algorithm to an existing database management system.
The double mark algorithm that we now present does not
require any such modifications to the primary system. The
double mark version works by positioning transactions
more carefully in the log (with respect to delimiters).

At the primary there is again a master that periodi-
cally writes a 0, entry in its log (E(masfer) =n), sets
E(muster) to n + 1 and sends an end -epoch(n) message
to all nodes. Recipients make a 0, entry in their logs, stop
committing new transactions and send an acknowledge-
ment to the master. Note that commit processing does not
cease entirely. Transactions can still be processed; only
new commit decisions by coordinators cannot be made,
i.e., after writing the 0, entry in its log, a processor cannot
write a CC(T) entry for a transaction T for which it is the
coordinator (receiving and processing prepare and commit
messages for transactions for which it is not the coordina-
tor is still permissible). Note that except for the master,
nodes do not need to remember the current epoch in the
double mark version.

When the master collects UN acknowledgements, it
starts a similar second round: it writes a Cl,, entry in its log
(the counter is not incremented in this round) and sends a
close -epoch(n) message to all nodes. The recipients
make a Cl, entry in their logs, send another acknowledge-
ment to the master and resume normal processing (i.e.,
new commit decisions can now be made). The master can-
not initiate a new epoch termination phase (i.e., write a

new On+1 entry in its log) until all second round ack-
nowledgements have been received.

The logs (including circle and square entries) are
propagated to the backup site, where they are stored on
stable storage. A backup processor does not process the
log entries of epoch n until all backup processors have
seen Cl, in the logs they receive. Then each computer BPi
examines all of the log entries before 0, (including entries
pending from previous epochs4) to decide which transac-
tions can commit after this epoch, according to the follow-
ing rules:

l If C(T) 3 0, in the log, a decision to commit T is
made.

l If a transaction T does not fall in the above category but
P(T) * 0, in BPi’S log (P(T) could possibly be in
some previous epoch), the decision whether to commit
T depends on whether Pi was the coordinator for T at
the primary. (Recall from the model section that the
coordinator is included with every P(T) log entry.) If
Pi was the coordinator, T does not commit at the
backup during this epoch. If some other processor Pi
was the coordinator at the primary, a message is sent to
BPj requesting its decision regarding T. (BPj will reach
a decision using the rules we are describing, i.e., if BPj
finds CC(T) * 0, it says T committed.) If BP, says T
committed, BPi also commits T; otherwise T is left
pending (updates not installed).

l If none of the above rules applies to a transaction T, the
transaction does not commit during this epoch.

After the commit decisions have been made, the log
entries up to 0, are examined and the actions of the com-
mitted transactions are installed as in the single mark ver-
sion of the algorithm.

We now show the correctness of the double mark
version. In the correctness proofs we use the following
property, which stems directly from the fact that the mas-
ter receives all acknowledgements for end -epoch(n)
before sending close - epoch(n) messages:

O,(Pi) * q ,(Pj) V Li, n (property 2)
Lemma I : If C(T) * 0, in the log of a processor Pi, then
CC(T) + 0, in the log of the coordinator P c of T.
Proof. If Pi 4 P,, the lemma is trivially satisfied. Now
suppose that Pi # P c. Then,

CC(T, P,) 3 CP(T, Pi) (by two-phase commit)
CP(T, Pi) * O,(Pi) (by hypothesis)
On(Pi) q q n(Pc) (by property 2)

By transitivity, we get CC(T, P,) 3 q ,(P,), and since
no commit decisions are allowed for coordinators between
the circle and square enties, we conclude that CC(T, P,)
* O,(P,).

?he comment made in the single mark version about avoiding ex-
amination of entries from previous epochs when making commit deci-
sions applies to the double mark version as well.

227

Lemma 2: If CC(T) * 0, in the log of the coordinator
for T, then P(T) + 0, in the logs of the participants.
Proof. Consider a participant processor Pi. Then,

P(T, Pi) 3 CC(T, P,) (by two-phase commit)
CC(T, P,) * O,(P,) (by hypothesis)
O,(P,) 3 q n(Pi) (by propew 2)

By transitivity, we get P(T, Pi) 3 q l,(Pi).

Atomicity. Suppose the changes of a transaction are
installed by a backup processor BPi after the logs for
epoch n are received. If C(T) * 0, in the log of BP i and
the transaction was coordinated by P, at the primary, by
lemma 1 CC(T) 3 0, in the log of processor BP C. If BP,
does not encounter a C(T) entry before O,, it must have
committed because the coordinator told it to do so, which
implies that in the log of the coordinator CC(T) + 0,.
Thus, in any case, in the coordinator’s log CC(T) 3 0,.
According to lemma 2, in the logs of all participants P(T)
+ Cl,. The participants for which CP(T) j 0, will com-
mit T anyway. The rest of the participants will ask BP,
and will be informed that T can commit. Thus, if the
changes of T are installed by one processor, they are
installed by all participating processors.

Consistency. We prove the first part of the consistency
requirement by showing that if TX + T, at the primary and
T, is installed at the backup during epoch n, TX is also
installed during the same epoch or an earlier one. Suppose
that at the primary the coordinators for TX and TY were P,
and P, respectively. Since T, + T,, by property 1 we get:

CC(Tx,P,) * CW,J’,)
Since T, committed at the backup, we infer from our pro-
cessing rules that

CW,,P,)*O,tP,)
O,(P,) - &(p,) (by property 2)

From the above by transitivity we get CC(T,, P,) =j
Cl, (P,) and since no commit decisions are made by coor-
dinators between circle and square entries, we get

CUT,, P,> *Oo,V’,)
This implies that according to our processing rules transac-
tion T, must commit during epoch n or earlier. The proof
for the second part of consistency is identical to the proof
for the single mark version.

7. Evaluation of the Epoch Algorithms
In this section we examine the features of the epoch

algorithms and discuss their performance. The algorithms
are scalable: there is no processing component that must
see all transactions. Each computer only processes transac-
tions that access the data it holds. This makes the algo-
rithms appropriate for very large databases.

The protocols have a low overhead and their cost is
amortized over an entire epoch. There are three factors
that contribute to the overhead: the overhead for the termi-
nation of an epoch at the primary, the overhead for ensur-
ing reception of an epoch at all backup sites and the over-
head for resolving the fate of transactions for which a

P(T) entry without a matching C(T) has been seen. For
the first two factors, the number of messages required is
proportional to the number of computers at each site. For
the third type of overhead, the average number of transac-
tions for which a computer cannot make a decision by
itself can be estimated as follows (for the single mark ver-
sion): the transactions for which a P(T) was written before
0, and a CP(T) after 0, are those transactions whose
P(T) entry falls within a time window t, before the 0,
mark, where t, is the average delay necessary for a
participant-ready message to reach the coordinator and
the commit answer to come back. Thus, the expected
number of transactions for which information must be
obtained from another computer is wgxt,, where wg is the
rate at which a computer processes global transactions for
which it is not the coordinator. If the entire system
processes global transactions at a rate w,, there are n com-
puters at each site and a global transaction accesses data at
m computers on the average, then wg = w, x(m - 1)ln.
Note that the number of messages that must be sent could
be less than the number of transactions in doubt, since
questions to the same computer can be batched into a sin-
gle message. Finally, note that all these overheads are
paid once per epoch. If an epoch contains a large number
of transactions, then the overhead per transaction is
minimal.

Let us now compare the two .versions of the algo-
rithm. The single mark version requires one less round of
messages for writing delimiters at the end of each epoch at
the primary. Also, the single mark version does not
suspend commits at any point. However, the transaction
processing mechanism has to be modified to include the
local epoch number in certain messages and to update the
epoch accordingly when such a message is received. On
the other hand, the double mark algorithm may require
fewer modifications to an existing system: the double mark
epoch termination protocol can be viewed as the commit
phase of a special transaction with null body. The
end-epoch(n) message corresponds to the message tel-
ling participants to prepare and the close - epoch(n) mes-
sage corresponds to the message telling participants to
commit. The only system interaction in the double mark
protocol is the suspension of coordinator commits. On
some systems this may be easy to achieve by simply hold-
ing the semaphore for the commit code. (Typically, only a
single transaction can commit at a time, and there is a
semaphore to control this.) Depending on the system, by
holding a commit semaphore we may disable all commits,
not just coordinator commits. This may be acceptable if
the time between the 0, and the 0, is short. If this is not
acceptable, then a new semaphore can be added.

As we saw in our proofs, the algorithms satisfy
atomic@ and consistency, but they do not achieve
minimum divergence. If a disaster occurs, the last epoch
may not have been fully received by the backup comput-
ers. The epoch algorithms will not install any of the

228

transactions in the incomplete epochs, even though some
of them could be installed. This problem can be addressed
by running epochs more frequently (to limit the number of
transactions per epoch) or by having another mechanism
for dealing with incomplete epochs, e.g., individual tran-
saction commit or a mechanism like the one in [4], [6].

In [41, [63 we have proposed a dependency recon-
struction algorithm for maintaining a remote backup. It is
interesting to compare these two algorithms. The epoch
algorithm induces less overhead, but it does not achieve
minimum divergence. The dependency reconstruction
algorithm achieves minimum divergence, which implies
that the takeover time (i.e., the time between the point
when a disaster occurs at the primary and the point when
the backup starts processing new transactions) is shorter.
We have not presented the. dependency reconstruction
algorithm here, but we believe that in that algorithm it may
be easier to have both the primary and the backup run the
same software than it is with the epoch algorithm. Having
both sites run the same software is desirable, because it
may need less effort to maintain it and takeover time is
reduced further, since no software reloading is necessary.

Finally, we would like to note that algorithms simi-
lar to the epoch algorithm have appeared in the literature
for obtaining snapshots [2] and checkpointing databases
[14]. The main differences between those approaches and
the epoch algorithm are:

l Our algorithm is log based.
l Minimal modifications to an existing system are neces-

sary.
l Minimal overhead is imposed at the primary.
l Our snapshot is not consistent. Enough information is

included to allow a consistent snapshot to be extracted
from the propagated logs, but some work is still neces-
sary at the backup to clean up P(T) entries with no
matching C(r).

8. Another Application of the Epoch Algorithm: Distri-
buted Group Commit

Group commit (for a single node) [3], [7] is a tech-
nique that can be used to achieve efficient commit process-
ing of transactions in computer systems with a large main
memory, which can hold the entire database (or a
significant fraction of it). When the end of a transaction is
reached, its log entries are written into a log buffer that
holds the tail of the master log. The locks held by the tran-
saction are released, but the log buffer is not flushed
immediately onto non-volatile storage (to avoid synchro-
nous I/O). When the log buffer becomes full, it is flushed
and the transactions that are contained in this part of the
log commit as a group. The updates made by these transac-
tions are installed in the database after the group commit.
Care must be taken to ensure that actions of transactions
that are members of the same group and depend on each
other are installed in a way that preserves these

dependencies.

Under the above scheme transactions are permitted
to read uncommitted data. However, this presents no
problem, since a transaction T can only depend on transac-
tions in the same group or previous groups, which under
this processing scheme will be installed before or when T
does.

It would be desirable to apply the same technique to
distributed systems. However, in a multicomputer
environment it is not possible for each individual processor
to flush its own log independently of other processors,
since that could violate transaction atomic@ and therefore
compromise database consistency. A simple example illus-
trates why: suppose transaction T completes at processors
P t and Pz, processor P l flushes its log (and commits Tin
the database) while Pz does not. If a failure occurs and the
contents of P,‘s log buffer are lost (they are in volatile
memory), transaction atomic@ is violated and the data-
base enters an incorrect state.

To achieve distributed group commit without
endangering the consistency of the database we can use
the epoch algorithm. One can think of the main memory as
being the primary site and of the disks as playing the role
of the backup in the discussion of section 4. Transactions
run in a main memory database and their logs are written
into log buffers, but their changes are not .propagated to the
disk copy. Distributed transactions still use a two-phase
commit protocol to achieve atomicity. P(T) and C(T)
enties are made for all transactions that finish processing
successfully and their locks are released, but the logs are
not flushed.

Periodically, delimiters (e.g., circles) are written by
all processors in their logs (epoch termination). When the
delimiter is written, the log buffer is written on stable
storage, but the group commit does not take place until it is
confirmed that all processors have saved their log buffers .
on stable storage. Then, each processor starts to actually
install the changes of the transactions in the disk copy of
the database, in the same way way the backup processors
did in section 4.

The advantages of group commit are manifold.
Local transactions that execute only at one node avoid syn-
chronous I/O and release the resources they hold as soon
as they finish processing. This, in turn, causes transactions
to hold resources for a shorter time, thus decreasing con-
tention and increasing throughput. Furthermore, the cost of
log I/O is amortized among many transactions. Distri-
buted transactions still have to pay the cost of the agree-
ment protocol to ensure atomicity. This cost may actually
be a little smaller, since the individual prepare and commit
decisions need not be written on stable storage, and thus
responses to prepare and commit messages can be sent
immediately. Distributed transactions can also benefit from
the amortization of the log I/O cost among several transac-
tions.

229

9. Conclusions

We have presented an efficient, scalable algorithm
for maintaining a remote backup copy of a database. In
this section we briefly discuss some issues that we left
open in previous sections. First, the size of the epoch
counters could be a problem. As time progresses, the
epoch numbers become bigger and bigger. How big should
the epoch counters be? If only one epoch can be pending
at any time, a computer only needs to distinguish between
its epoch, the epoch of a computer that is possibly one
epoch ahead and the epoch of a computer that is possibly
one epoch behind. Thus, a counter with 3 states that cycles
through these states should be sufficient. In general, if the
epochs of two nodes can differ by at most k, the epoch
counter should be able to cycle through 2xk + 1 states.

In the previous sections we made the implicit
assumption that the primary and the backup database start
from the same initial state. When the system is initialized
or after a site has recovered from a disaster, one of the
sites will have a valid copy and the other will be null. It is
necessary to have an algorithm which will bring the null
copy up-to-date, without impairing the performance at the
other site. For this purpose, a method like that outlined in
[6] and detailed in [4] can be used.

Finally, let us return to the one-to-one correspon-
dence between primary and backup computers mentioned
in section 2.1. It is not necessary to have the same number
of computers at the two sites. If the primary and the
backup have a different number of computers, one can par-
tition the data into logical chunks. As long as the logical
partitions are identical at the two sites, the epoch algo-
rithms can be applied. One simply needs to keep a log for
each chunk and to use the notion of a chunk instead of a
computer in the discussion above.

REFERENCES

[l] P. A. Bernstein, V. Hadzilacos and N. Goodman,
Concurrency Control and Recovery in Database
Systems. Addison-Wesley, 1987.

[2] K. M. chandy and L. Lamport, “Distributed
Snapshots: Determining Global States of Distributed
Systems,” ACM Transactions on Computer Systems,
Vol. 3, No. 1 (February 1985), pp. 63-75.

[3] D. J. Dewitt, R. H . Katz, F. Olken, L. D. Shapiro,
M. R. Stonebraker and D. Wood, “Implementation
Techniques for Main Memory Database Systems,”
ACM SIGMOD, Boston, MA, June 1984.

[4] H. Garcia-Molina, N. Halim, R. P. King and C. A.
Polyzois, “Management of a Remote Backup Copy
for Disaster Recovery,” Princeton University
Technical Report CS-TR-198-88, Princeton, NJ,

161

[71

VI

PI

HOI

[Ill

WI

Cl31

t141

1151

June 1989.

H. Garcia-Molina and C. A. Polyzois, “Issues is
Disaster Recovery,” IEEE Compcon, San Francisco,
CA, February 1990.

H. Garcia-Molina, N. Halim, R. P. King and C. A.
Polyzois, “Disaster Recovery for Transaction Pro-
cessing Systems,” to appear in IEEE 10th ICDCS,
Paris, France, May 1990.

D. Gawlick and D. Kinkade, “Varieties of Con-
currency Control in IMS/VS Fast Path,” Data
Engineering Bulletin, Vol. 8, No. 2 (June 1985), pp.
3-10.

J. N. Gray, “Notes on Database Operating Sys-
tems,” Operating Systems: An Advanced Course, R.
Bayer et al., editors. Springer Verlag, 1979.

J. N. Gray and A. Reuter, “Transaction Process-
ing,” Course Notes from CS#445 Stanford Spring
Term, 1988.

H. F. Korth and A. Silberschatz, Database System
Concepts. New York: McGraw-Hill, 1986.

L. Lamport, “Time, Clocks, and the Ordering of
Events in a Distributed System,” Communications
of the ACM, Vol. 21, No. 7 (July 1978), pp. 558-565.

J. Lyon, “Design Considerations in Replicated
Database Systems for Disaster Protection,” IEEE
Compcon, 1988.

D. Skeen, “Nonblocking Commit Protocols,” Proc.
ACM SIGMOD Conf on Management of Data, pp.
133-147, Orlando, FL, June 1982.

S. H. Son and A. K. Agrawala, “Distributed Check-
pointing for Globally Consistent States of Data-
bases,” IEEE Transactions on Software Engineer-
ing, Vol. 15, No. 10 (October 1989), pp. 1157-l 167.

Tandem Computers, Remote Duplicate Database
Facility (RDF) System Management Manual, March
1987.

230

