
Advanced Query Processing in Object Bases
Using

Access Support Relations

Alfons Kernper Guido Moerkotte

Universit Bt Karlsruhe
FakultSt fiir Informatik

D-7500 Karlsruhe, F. R. G.
Netmail: kemper,/moer@ira.uka.de

Abstract

Even though the large body of knowledge of relational
query optimization techniques can be utilized as a start-
ing point for object-oriented query optimization the full
exploitation of the object-oriented paradigm requires
new, customized optimization techniques-not merely the
assimilation of relational methods. This paper describes
such an optimization strategy used in the GOM (Generic
Object Model) project which combines established rela-
tional methods with new techniques designed for object
models. The optimization method unites two concepts:
(1) access support relations and (2) rule-bused query op-
timization. Access support relations constitute an in-
dex structure that is tailored for accessing objects along
reference chains leading from one object to another via
single-valued or set-valued attributes. The idea is to re-
dundantly maintain frequently traversed reference chains
separate from the object representation. The rule-based
query optimizer generates for a declaratively stated query
an evaluation plan that utilizes as much as possible the ex-
isting access support relations. Thii makes the exploita-
tion of access support relations entirely transparent to the
database user. The rule-based query optimizer is particu-
larly amenable to incorporating search heuristics in order
to prune the search space for an optimal (or near-optimal)
query evaluation plan.

Permission to copy without fee all or part of this material i\

granted provided that the topic\ arc not made or dktrihutcd lix

direct commercial ad\antagc. the VLDB copbright notice and

the title of the publication and its date appear. end notice is gi\cn

that copying is hy permission of the Vcr) Large Data Bn\c

Endowment. To copy othcrwisc. or to rcpuhli\h. require\ ;I kc

and/or special permission from the Endowment.

Proceedings of the 16th VLDB Conference
Brisbane. Australia 1990

1 Introduction

Object-oriented database systems are emerging as the
next generation DBMSs for the non-standard application
domains. However, these systems are still not adequately
optimized: for applications which involve a lot of asso-
ciative searching for objects on secondary memory they
still have problems even to keep up with the performance
achieved by, for example, relational DBMSs. Yet it is es-
sential that the object-oriented systems will yield at least
the same performance that relational systems achieve;
otherwise their acceptance in the engineering field is jeop-
ardized even though they provide higher functionality
by type extensibility and type-associated operations that
model the context-specific behavior. Engineers are gener-
ally not willing to trade performance for extra function-
ality and expressive power. Therefore, we conjecture that
the next few years will show an increased interest in opti-
mization issues in the cont,ext of object-oriented DBMSs.
The contribution of this paper can be seen as one im-
portant piece in the mosaic of performance enhancement
methods for object-oriented database applications.

Of course-as some aut,hors point out, e.g., [9]--there
are vast similarities between query processing in rela-
tional DBMSs and object bases. Therefore, the large
body of knowledge of relational optimization techniques
(e.g., [8, IS]) can serve as a basis. However, the full po-
tential of the object-oriented paradigm can only be ex-
ploited for optimization if new access support techniques
are tailored specifically for the object-oriented model(s)-
and not merely assimilated from the relational model.
The access support relations (ASRs)-first introduced in
[lo]---constitute one such approach. Access support re-
lations form the basis of the query optimization strategy
in the GOM (Generic Object Model) database system.
They are a generalization of an indexing technique for
path expressions first proposed for the Gemstone data

290

model [15] and, later, applied to ORION in [l]. Whereas
the Gemstone (and ORION) path expressions were lim-
ited to only single-valued attributes the access support
relations allow also set-valued attributes along the path.
Also, access support relations can be maintained in four
different extensions, determining the amount of reference
information that is kept in the index structure. Further-
more, an access support relation can be decomposed into
arbitrary large partitions, which allows to adjust the in-
dexing scheme to particular application profiles.

After briefly reviewing the access support relations the
second part of this paper describes the essential parts of a
rule-based query optimizer which-unlike the Gemstone
system-makes the exploitation of existing access sup-
port relations entirely transparent to the database user.
Rule-based query optimization is not an entirely new idea:
it is borrowed from relational query optimization, e.g.,
[5, 8, 13, 141. [6] reports on a rule-based query opti-
mizer generator, which was designed for their database
generator EXODUS [2]. In the present work the idea
of rule-based query optimization is utilized as a power-
ful tool to integrate the new index structure based on
access support relations in object-oriented query evalua-
tion. It is shown that the rule-based approach leads to
a very modular design of such a complex transformation
system. This enables the designer to experiment with dif-
ferent search heuristics to limit the number of transforma-
tions that have to be considered to derive a near-optimal
evaluation plan.

Related work on object-oriented query processing is re-
ported in [9, 121 h w ere a graph-based approach was cho-
sen for optimizing a limited class of queries, i.e., only
queries that correspond to an acyclic graph are consid-
ered. Also, the cited work does not take general access
support relations into account-it is based solely on (bi-
nary) indexes as known in relational DBMSs.

The remainder of this paper is organized as follows.
In Section 2 we review the access support relations as a
means for access support along reference chains. Then in
Section 3 we introduce a QUEL-like query language, for
which a term representation is developed. The transfor-
mation rules are discussed in Section 4. In order to reduce
the search costs we develop heuristics for the sequence of
applying the transformation rules in Section 5. Section 6
concludes the paper with a summary and a discussion of
future developments.

2 Access Support Relations

In an earlier paper [lo] we introduced access support re-

&ions as an index structure to support the evaluation of
path expressions. They are briefly reviewed here.

A path expression has the form

where o is a tuple structured object containing the at-
tribute Al and o.Al.Ai refers to an object or a set
of objects, all of which have an attribute Ai+l. Thus,
the result of the path expression is the set R,, which is
recursively defined as follows:

Ro := (0)

& := u v.A; for 1 5 i.5 n
UERi-1

Thus, R,, is a set of OIDs of objects of type t, or a set
of atomic values of type t, if t, is an atomic data type,
such as INT.

It is also possible that the path expression origi-
nates in a collection C of tuple-structured objects, i.e.,
C.Al:... A,. Then the definition of the set Ro has to be
revised to: Ro := C.

Formally, a path expression or attribute chain is defined
as follows:

Definition 2.1 (Path Expression) Let to,. . _, t, be
(not necessarily distinct) types. A path expression on to
is an expression to.Al.A, iff for each 1 5 i 5 n one
of the following conditions holds:

l Type ti-1 is defined US type ti-1 is [. . . , Ai : ti, . . .],
i.e., ti-1 is a tuple with an attribute Ai of type ti’.

l Type ti-1 is defined as type tie1 is [. . _, A; : t:, . . .]
and the type t: is defined as type t: is {t;}, i.e., t: is
a set type whose elements are instances of ti. In this
case we speak of a set occurrence at Ai in the path
to.A1.....A,.

The second part of the definition is useful to support
access paths through sets (note, however, that we do not
permit powersets). If it does not apply to a given path
the path is called linear. An access path that contains at
least one set-valued, attribute is called set-valued.

For simplicity we require each path expression to orig-
inate in some type to; alternatively we could have chosen
a particular collection C of elements of type to as the
anchor of a path.

Since an access path can be seen as a relation we will
use relation extensions to represent access paths. The
next definition maps a given path expression to the un-
derlying access support relation declaration.

Definition 2.2 (Access Support Relation)
Let to,. . . , t, be types, to.Al.. . . .A, be a path expression.

‘meaning t.hat the attribuk A, can be associated with objects
of type ti ~r any subtype t.hereof

291

Then the access support relation [to.Al.. . .Anl 2s of arity
n + 1 and has the following form:

[Ito.A1.A,,TJ : [So, , S,J

The domain of the attribute Si is the set of identifiers
(OIDs) of objects of type t; for (0 5 i 5 n). If t, 2s an
atomic type then the domain of S, is t,, i.e., values are
directly stored in the access support relation.

We distinguish several possibilities for the extension
of such relations. To define them for a path expression
to.Al.. . . .A,, we need n temporary relations El,. . . , En.

Definition 2.3 (Temporary Binary Relations)
For each Aj (1 5 j 5 n) we construct the tempo-
rary binary relation Ej. Relation Ej contains the tuples

(id(oj-i), id(oj)) f or every object oj-1 of type tj-1 and
oj of type tj such that

l oj-l.Aj = Oj f j i A is a single-valued attribute2.

l oj E oj-l.Aj if Aj is a set-valued attribute.

Example 2.1 Consider the following database schema:

type EMP is [Name: STRING, WorksIn: DEPT,
Cars: CARSET, Salary: INT]

type DEPT is [Name: STRING, Mgr: EMP,
Profit: INT]

type CARSET is { CAR}
type CAR is [License: STRING, Make: STRING,

Horsepower: INT]

Complex attributes in GOM are-like in almost all
other object models-maintained uni-directionally. For
example, in an extension of the above schema there exists
a reference in the form of a stored OID from an EMPloyee
to his DEPT, but not vice versa.

A path expression on this schema is:

EMP. WorksIn.Mgr.Cars.Make

The binary relations El, . . . , Ed may have the following
extensions:

El E2

‘If t,, is an atomic type then id(o”) corresponds to the value
on-1 .A,,.

The idj for j = { 1,2,3,. .} denote object identifiers
which are system-wide unique. 0

Let us now introduce different possible extensions of the
access support relation [to.Al.A”]. We distinguish
four extensions:

the canonical extension, denoted [to.Al. . . .A,],,,
contains only information about complete paths, i.e.,
paths originating in to and leading to t,. Therefore,
it can only be used to evaluate queries that originate
in an object of type to and “go all the way” to t,.

the left-complete extension [to.Al.A,&.ft con-
tains all paths originating in to but not necessarily
leading to t,, but possibly ending in a NULL.

the right-complete extension [to .Al. . .A&,sbt,
analogously, contains paths leading to t,, but pos-
sibly originating in some object oj of type tj which
is not referenced by any object of type tj-1 via the
Aj attribute.

finally, the full extension [to.Al.A,BIU,, contains
all partial paths, even if they do not originate in to
or do end in a NULL.

Definition 2.4 (Extensions) Let W ‘(3f, 31, WI) de-
note the natural (outer, left outer, right outer) join on
the last column of the first relation and the first column
of the second relation. Then the different extensions are
obtained as follows:

[to.A1. 1. . .A&,, := El W . . . W En

~to.Al.....A,nfu,, := E12K...wE,,

[to&.A&t := (...(E11WE2)31 . ..IwE.)

[to A.An]right := (Elm& wI(En-lKEn)...)

Example 2.2 For our example path of Example 2.1 the
canonical extension [[EMP. WorksIn.Mgr.Cars.Makej,.,
looks as follows:

[EMP.WorksIn.Mgr.Cars.Make]can
0IDc~p OZDmpT OIDEM~ OIDCAR STRING

id2 ids id7 *dll “Jaguar”
id2 id5 ad7 id12 “BMW”

. .

Definition 2.5 (Decomposition)
Let [to.Al.. . . .A& be an (n + 1)-ary access support re-
lation with attributes So,. . . , S,, under extension X, for
X E {can, full, left, right}. Then the relations

I[to.Al.Anny: : [So,. . . , Si,] for O < il i n

[[~o.A~:...A~IJ~“~ : [Si,,...,Si,] foril < i2 <n

[l;.Al.A,]t;tsn : [Si, y . . . , Sn] for ik < n

292

are called a decomposition ofI[ta.Al.. . . .A&. The rela-

tions [to.Al. 1. . .An];“j+l for (1 ,< j < k), called parti-
tions, are materialized by projecting the corresponding at-
tributes’ of [to.Al.An]x. If every partition is a binary
relation the decomposition is called binary. The above de-
composition is denoted by (0, il, il, . . . , ik, n).

The storage structure of access support relations is bor-
rowed from the binary join index proposal by Valduriez
[17]. Each partition is redundantly stored in two B+-
trees: the first being clustered (keyed) on the left-most
attribute and the second being clustered on the right-
most attribute. This storage scheme is well suited for
traversing paths from left-to-right (forward) as well as
from right-to-left (backward) within the access support
relations even if they span over several partitions.

The different decompositions and extensions provide
the database designer a large spectrum of design choices
to tune the access support relations for particular applica-
tion characteristics ([lo] and, in more detail, [ll] contain
cost models that can be used to determine the best con-
figuration for a given load profile).

The next definition states under what conditions an
existing access support relation can be utilized to evaluate
a path expression that originates in an object (or a set
of objects) of type s. The predicate is essentially the
formalization of the characteristics of the four extensions
described on the previous page.

Definition 2.6 (Applicability) An access support re-
lation [to.Al.A,]x under extension X is applicable
for a path s.Ai.Aj under the following condition-
depending on the extension X:

Applicable([to .Al.A,lx , s.Ai.Aj) =

i

x = full A Slti-1 A l<i<j<n
X = left A S<ti-l A l=i<j<n
X = right A s<ti-1 A 1 <i 5 j = n
X = can A S<ti-l A l=i<j=n

Here s 5 ti- 1 denotes that type s has to be identical to
type ti-1 or a subtype thereof.

3 The Query Language and bhe
Term Expressions

3.1 The Query Language

For our object model we developed a QUEL-like query
language along the lines of the EXCESS object query lan-
guage [31.

Let Xi be variables, Ti set typed expressions or type
names (which represent the types’ extension), and S a
selection predicate. Then, a query has the following form:

range X1 : Tl,. . . ,X, : T,
retrieve Xi
where S

Of course, the selection predicate S may itself contain a
retrieve statement.

Example 3.1 The following example query will be used
throughout the remainder of this paper to illustrate our
optimization techniques. The query is based on the type
definitions of Example 2.1 and has the following seman-
tics: aetrieve the managers of departments which gener-
ate losses and, at the same time, pay at least one of their
employees an exorbitant sala y exceeding 2OOK. V

range e: EMP,m: EMP
retrieve m
where m = e. WorksIn. Mgr and

e.Salary > 200000 and
e.WorksIn.Profit < 0

3.2 The Term Language

One of the main arguments for the term language used
here is that every term corresponds to a query evaluation
plan. The second argument is the simplicity of the first
translation step of translating the user’s query language
into the term representation. Of course’, this step may be
more complicated for other query languages than the one
used in GOM. But then at least the independence of the
term language from the query language guarantees that
only the preprocessing phase of the query optimizer has
to be redesigned.

The first “high level” operator of the term language is
the retrieve operator with the following parameters:

(retrieve :B BINDING :S SELPRED :P PROJ)

It represents a nested loop evaluation of the query spec-
ified by the parameters. The variables are bound from
left to right to every possible value of the correspond-
ing set in the :B clause which consists of pairs of range
variable and type names or set valued expressions. On
each binding the selection predicate following the label
:S is evaluated, and in the case of success the binding of
the variable corresponding to the one in the :P clause is
gathered. Of course, different permutations of the pairs in
the :B clause show different performance. But since this
problem has already been excessively treated elsewhere
we do not concern ourselves herewith.

The “low level” operators which are utilized in the op-
timization in order to increase performance by accessing
the a.ccess support relations are:

1. (getasr ASR :R RESTR :S SELPRED :P PROJ)
This operator retrieves tuples (projected onto the at-
tributes in the PROJ list) from an access support

293

relation ASR, for which RESTR A SELPRED is sat-
isfied. The :R clause is used t,o give explicit entries
into the B+ tree used t,o guarantee fast access to the
tuples in the access support relations. Thus, the RE-
STR predicate can only refer to attributes at the left
and/or right of an access support relation partition.

(mkasr TYPE PATH :S SELPRED :P PROJ)
This operator materializes a new temporary access
support relation

(appendasr ASR PATH :S SELPRED :P PROJ)
The appendasr operator is utilized to extend an
existing access support relation beyond the originally
defined attribute chain

Each of the three latter operators returns an internal
main memory representation of an access support rela-
tion, ASR. Besides those new operators dealing with ac-
cess support relations there exist some useful operators
from relational algebra, e.g., join, union, etc.

Terms as used for the selection predicate, SELPRED
and RESTR, are of the form (op tl t2) where tl and t2
are constants, variables, or path expressions of the form
(pathvAl...A,)f or a variable ZJ and attributes Ai, and
op is a comparator. A selection predicate can be built
from terms using the usual boolean connectors. In a pre-
processing step negations are eliminated in the usual way
using de Morgan’s law and reverting the comparators.

3.3 Translation of Queries into Term
Representation

The initial translation of a user query into a term is
straight forward. The range clause is translated into a
binding list, marked :B, the retrieve clause into a projec-
tion list :P, and the where clause into a selection predi-
cate prefixed with :S.

Example 3.2 To make things more concrete we give the
translation of the example query into terms:

(retrieve :B ((e EMP) (m EMP))
:S (and (= m (path e WorksIn Mgr))

(< (path e WorksIn Profit) 0)
(> (path e Salary) 200000))

:P m)

This not yet optimized term expression yields a very sim-
plistic evaluation: the nested loop evaluation. The strat-
egy is to convert the terms of the binding list into nested
loops and for each binding of the range variables sepa
rately evaluate the :S clause.

4 Transformation Rules to Opti-
mize Term Representation

The query optimization steps are described as transfor-
mation rules or rewriting rules [7]. A rule is given in the
form

1 47.

which specifies that expression 1 is replaced by expression
r. The expressions 1 and r themselves may contain meta
variables standing for a term or a list of terms which are
denoted by a prefix ‘I!” or “!!“, respectively.

Example 4.1 The next transformation rule demon-
strates the use of me&variables.

(and (!!lO true !!ll)) - (and (!!lO !!ll))

This transformation rule denotes that a constant irue can
be removed from a list of conjuncts. 0

Further meta variables are as follows:

l e, f, g, V, ee, ei, etc. denote range variables

l Al, AZ, . . . , Bi, Bz, . . , Di, . .denote attribute
names

l 0, \Ir denote comparison operators, e.g., =, in, <,
etc.

l c denotes a constant, i.e., an atomic value or an ob-
ject, and C denotes a constant set of objects or val-
ues.

In the remainder of this section we represent the main
rule groups used in our implementation of the query op-
timizer. For each group we choose one representative
member which, whenever possible, is illustrated by ap-
plication to our running example. The optimization is
separated into three main phases. The first is a prepro-
cessing phase introduced in the next subsection. In the
main optimization phase the different rules are applied
(subsequent subsections) which is followed by the pol-
ishing phase as described in the last subsection of this
section.

4.1 Preprocessing and Preliminaries

First the negations are eliminated. Further there exist
two sets of rules which serve to simplify expressions. One
is for the simplification of Boolean expressions, the other
serves to simplify set expressions. These rule groups.stand
somewhat outside the regular rule system and are applied
whenever necessary (cf. Section 5).

For commutative operators the possible transformation
rules for rearranging predicates are built-into the rules

294

whenever they are useful. This is needed to arrange terms
in the order that is required to match the left-hand side
of the transformation rules.

(retrieve :B ((e EMP))
:S (and (in ‘Jaguar’ (path e Cars Make))

(in 150 (path e Cars Horsepower)))
:P e)

4.2 Prolonging Path Expressions

In order to utilize an existing access support relation
[to.Al.. . . .A,& t o evaluate a query it may be necessary
to first prolong the path expressions contained in the :S
clause. This may be essential to make the access support
relation applicable (cf. Definition 2.6)-depending on the
extension X of the respective ASR.

4.2.1 Prolonging a Linear Path Expression

Let T be a retrieve term in which the :S clause contains
a linear path expression of the following form:

(retrieve :B ((e !b) !!bl) .

T_= :S (and (= e (path v Ai . . . A,))
!!sl)

:P !p)

Then the following transformation can be applied
throughout T, not affecting nested retrieves where e is
not free:

The left-hand retrieve term finds all EMPloyees who
own a ‘Jaguar’ with 150 Horsepower. The right-hand
term, however, retrieves the EMPloyees who own one
CAR made by ‘Jaguar’ and one CAR (the same one or
another one) that has 150 HorsePower.

Therefore, the rule Tl for prolonging has to be re-
stricted for set-valued path expressions because only spe-
cial cases guarantee semantic equivalence after prolonging
a path expression involving a set-valued attribute. For
example, a prolonging is-at least-possible if the inter-
mediate range variable is qualified only once in the :S
clause:

(retrieve :B ((e !b) !!bl)
:S (and (in e (path v Ai . . . A,))

(in !s (path e Aj+l . . . AI)) - [T3]
!!sl)

:P !p)

(retrieve :B (!!bl)
:S (and (in !s (path v Ai . . . Al))

!!sl)
:P !p)

(path e A,+.1 . . . Al) - (path v Ai.. . A, A,+1 . . . Al) [Tl] The rule may be applied if e does not occur free in !!sl,
!s, and !p.

A further simplification is possible if-after the There are other rules which allow prolonging under the
transformation-the range variable e is not further qual- following conditions:
ified in T. In this case (e !b) may be dropped from the
binding clause and the term “(= e (path 2, Ai . . . Aj))” l the intermediate (connecting) range variable e is fur-

can be dropped from the :S clause, which is formalized ther qualified only in a disjunction, i.e., in a term

in the following rule: of the form (or !oll !0/2 . . .). In this case e may be
eliminated even if it occurs in more than one disjunct
!Oli.

(retrieve :B ((e !b) !!bl) ,111 1,
:S (and (= e (path v Ai . . . AJ)) (retr’eve ‘B

!!sl’)
- :S (and !!r

:P !p)
:P !p)

(!! 01)

;I’) [TZ]
l the term that qualifies the range variable, i.e.,

“(path w Ai . . . Aj)” is linear. For this case an anal-
ogous rule to Tl can be formulated.

The rule may only be applied if e does not occur free in
!!sl’ and !p.

4.3 Splitting Path Expressions

Splitting of path expressions may be needed to utilize an

4.2.2 Prolonging a Set-Valued Path ExpresSion existing access support relation [to.Al.Anl. We will
provide the rule for linear paths only-an analogous rule

The formulation of the rules for prolonging a set-valued exists for set-valued path expressions.
require some care in order to guarantee that the trans- Let g be a new variable not occurring in the binding
formation yields a semantically equivalent term. Let us list of the enclosing retrieve expression.
illustrate the intrinsic problem on the following example:

(retrieve :B ((e EMP) (c CAR)) (= !s (path v A,. . .A, Bl. Bk)) - P41
:S (and (in c (path e Cars))

(= ‘Jaguar’ (path c Make)) $ (and (= g (path v A, . . . A,))
(= 150 (path c Horsepower))) (= !s (path g Bl . Bk)))

:P e)

295

We have to add (g tj) to the binding list of the directly
enclosing retrieve. Then g may be substituted for any
other path prefix “21 Ai Aj”, yielding to the following
transformation rule:

(and (= g (path v A, . . . A,))
(Q !s (path v A,. A, D, . . . D,))) _* WI

(and (= g (path v A,. . . AJ))
(a !s (path g D, . . . D,)))

The combination of T4 (splitting) and T5 (substitu-
tion of path prefix) can be used to factor out common
path prefixes in order to avoid multiple reference traver-
sal along the same reference chain. This is built-into the
search heuristics of the term rewriting system (cf. Sec-
tion 5).

Example 4.2 Consider again our running example. In
the remainder of this section we will transform this exam-
ple step by step under the assumption that the following
two access support relations exist: [EMPSalary],,, and
[EMP.WorksIn.Mgr],,,.

(retrieve :B ((e EMP) (m EMP))
:S (and (= m (path e WorksIn Mgr))

(< (path e WorksIn Profit) 0)
T4,T5
-

(> (path e Salary) 200000))
:P m)

(retrieve :B ((e EMP) (m EMP) (d DEPT))
:S (and (= d (path e WorksIn))

(= m (path d Mgr))
(< (path d Profit) 0)
(> (path e Salary) 200000))

:P m)

Note, that this transformation actually results in a less
efficient retrieve term. This “step backwards”, however,
is only performed by the optimizer if it leads to a subse-
quent transformation step that will utilize an access sup-
port relation which vastly optimizes the evaluation.

4.4 Utilization of ASRs for Single-Target
Path Expressions

A selection predicate based on a path expression for which
an applicable access support relation exists should be
transformed into an equivalent operation on the access
support relation.

Let c be a constant (object or value), then we can sub-
stitute

(in e (getasr [to.Al.. . . .A,]x

(= c (path e Ai.. . Aj))-
:R tT%e
:S (= c #j)
:P #(; - 1)))

[‘W

if Applicable([to.Al.. . . .A,]x, s.Ai.Aj) is satisfied
for s = type(e).

Attributes of the access support relations are referenced
by their position, e.g., #j references the j+ lnth attribute
(the first attribute is denoted #O).

There are similar rules for the in predicate, i.e., set-
valued path expressions. Note, that we then have to dis-
tinguish the two cases

(in c (path e Ai . . . Aj)) and (in(patheA;...Aj)c).

Example 4.3 Application of the above rule yields for
our running example:

(retrieve :B ((e EMP) (m EMP) (d DEPT))
:S (and (= d (path e WorksIn))

(= m (path d Mgr))
(< (path d Profit) 0) Z
(> (path e Salary) 200000))

:P m)

(retrieve :B ((e EMP) (m EMP) (d DEPT))
:S (and (= d (path e WorksIn))

(= m (path d Mgr))
(< (path d Profit) 0)
(in e (getasr [EMPSALARYD,,,

:R true :S (> #l 200000)
:p #O)))

:P m)

Note, that there is no ASR to evaluate the path expression
(path d Profit).

4.5 Multi-Target Expressions

So far, we have utilized access support relations only for
path expressions that are involved in a comparison pred-
icate with a constant (c). Let us now consider compar-
isons with range variables (or even with other path ex-
pressions).

4.5.1 Bi-Connected Expressions

A two-target expression based on a path expression has
the form (in e (path v Ai . . . Aj)), where e and v are both
range variables. The subsequent rule T7 should only be
applied if the path cannot be prolonged to a predicate
involving only one range variable and a constant (cf. Sec-
tion 4.2).

(in (v e) (getasr [to.A~.A,]x

(in e (path v A, . A,))-
:R true
:S true WI
:p (#(i - 1) #j)))

Again, the application of this rule requires that
Applicable([to.AlAnlx, s.Ai.Aj) is satisfied for
s = type(v). The “e” could be generalized to a path ex-
pression originating in a range variable.

296

4.52 Multipily-Connected Paths 4.6.2 Appending Access Support Relations

The rule T7 can be generalized to multipily-connected
path expressions. Using the simplification rules cited in
Section 4.1 the terms of the conjunction are first arranged
in the desired order. Note that further references to the
range variables ei for (1 5 i 5 k) may obstacle the pro-
longing of the interconnected paths on the left-hand side
of the rule T8.

If there exists a path for which at least some part-in
practice, the major or most selective part-is covered by
an access support relation we may temporarily extend this
access support relation using the appendasr operator.

(and (ip, er (path eo Ai,+ . . . Ail))
(@2 ez (path el Ail+1 . . . Ai,))

- . . . PI
(@k ek (path ek-1 Aik-,+l . . . Ai,))

!!sl)

(=c(patheA;...Aj Ol...Or)) _* P-91

(in e (appendasr (getasr[to.A*.A,]
:R true :S true

:P (#(i - 1). . . #j))
(path #j DI . . . D,)
:S (= c #(r +j -i))
:p #O))

(and (in (eo el . . . ek)

(getasr [to.A1.. . . .A&
:R true :S true

!!sl)
:p (#iO #;l . . . #ik))))

Again, the transformation is only valid if
Applicable([to.A1.. . . .A&, s.Ai.Ai) is satisfied for
s = type(e).

Application of T8 requires that the predicate
Applicable([t~.A~.A,,]*, s.A;,+l.. . . .Aik) is satisfied
for s = Qpe(ea). Here, the meta symbols ai,. . . , ipk
stand for = or in.

4.6.3 Joining Access Support Relations

Example 4.4 The rule T8 can be applied to our running
example:

A predicate based on the comparison of two path expres-
sions which both have an applicable access support rela-
tions may be transformed into the join of the two access
support relations:

(retrieve :B ((e EMP) (m EMP) (d DEPT))
:S (and (= d (path e WorksIn))

(= m (path d Mgr))
(< (path d Profit) 0) TB

(in e (getasr [EMP.SALARqc(ln -
:R true :S (> #l 200000)
:p #O)))

:P m)

(= (path e Ai.. . A,) (path f BI . . . Bk)) - P’lol

(retrieve :B ((e EMP) (m EMP) (d DEPT))
:S (and (in (e d m)

(in (e f) (join (getasr r[to.Al.. . . .A,,]
:R true :S true :P all)

(getasr [so.B~.B,]
:R true :S true :P all)

:J (= #j #k)
:S (true)
:p (#(i - 1) #(n + 1))))

(getasr [EMP.WorksIn.Mgr]ean
:R true :S true
:P (#O #1 #2)))

(< (path d Profit) 0)
(in e (getasr [EMP.SALARY]Jcan

:R true:S (> #l 200000)
:p #O)))

:P m)

4.6 Further Operators on Access Support
Relations

This transformation requires the satisfaction of
Applicable([to.Al.A,,lx, s.Ai.. . . .Aj) for s = type(e)
and Applz’cable([so.&.B.]jx.r.B~.....Bk) for r =
type(f). The :J denotes the join predicate.

Since the join may be a very costly operation one should
try every other possibility before committing this trans-
formation TlO. If the enclosing retrieve term contains a
selective binding for e and f, e.g.,

:B ((e Cl) (f Cx) !!bl)

4.6.1 Creating Temporary Access Support Rela-
tions

If there exists a path for which no access support relation
is given one may introduce a temporary access support
relation using the operator rnkasr. The rules of the pre-
vious sections find their analogous counterpart.

then these should be propagated into the :S clauses of the
respective getasr term in order to minimize the number
of joined tuples.

There is a similar rule for the comparison operator in,
i.e., the first path being linear and the second path set-
valued.

297

4.7 Introduction of Union

If nothing else works a disjunctive selection predicate may
be evaluated separately, with the possibility of first trans-
forming the predicate into disjunctive normal form.

(retrieve :B !!bl
:S (or !sl . . !sn) - D-1 11
:P !p)

(union (retrieve :B !!bl :S !sl :P!p)
. . .
(retrieve :B !!bl :S !sn :P !p))

Of course, there exist more rules for disjunctions at a
deeper level of nesting.

4.8 Moving Selection Predicates Inwards

For ‘C’ being any set valued term, e.g., a term with outer
operator getasr, the following rule can be applied to
move selection predicates inwards.

(and ((in (eo . ..e[...ek)
(getasr [to.Al.. . . .A,]x

:R !r
:s !s
:P (#io . . . #& . . . #ik))))-

(in el C)
!!sl)

PW

(and ((In (eo . . . el . . ek)
(getasr [to.A~.A,Jx

:R !r

!!sl)

:S (and !s (in #ii C))
:P (#it,. . . #;I.. . #ik))))

If the predicate propagated into the getasr term con-
stituted the last reference to el within the enclosing re-
trieve term we may also delete el from the in list and
concurrently, the projection on column #i, has to be re-
moved from the :P clause.

(and ((in (eo . . . el . . . ek)
(getasr [lo .AI.A,]x

:R !r
:s !s

- P’l31

!!sl)
:P (#iO . . . #iI . . . #ik))))

(and ((In (eo . . .erVl el+l . . . ek)
(getasr [to.A~.A,]x

:R !r
:s !s

!!sl)
:P (#io.. . #iI-1 #iI+1 . . .#ik))))

This transformation is valid if the enclosing retrieve
term (including the shown term list !!sl) does not con-
tain a free reference to er. Furthermore, the el should be

removed from the binding list of the enclosing retrieve
term.

Analogous rules exist for the other operations like
mkasr, appendasr, join, and for deeper levels of nest-
ing. Further, there exist rules to move selections into
such operator expressions which are already moved to the
binding list (cf. Section 4.9).

Example 4.5 Consider the following transformation
steps which illustrate the full use of T12 in combination
with T13.

(retrieve :B ((e EMP) (m EMP) (d DEPT))
:S (and (in (e d m) (getasr [EMP.WorksIn.Mgrncan

:R true :S trve

:p (#O #l #‘))I
(< (path d Profit) 0)
(in e (getasr [EMP.sALARY]~~~

:R true :S (> #l 200000)
:p #O)))

:P m)

T12,T13
-

(retrieve :B ((m EMP) (d DEPT))
:S (and (in (d m)

(getasr [EMP.WorksIn.Mgr]can
:R t&e
:S (in #0 (getasr

:p (#I #2))
(< (path d Profit) 0))

:P m)

[EMP.SALARY],,,
:R true
:s (> #l 200000)
:p #O)))

Note that the optimization includes the removal of the
range variable e (by application of T13 from the binding
and from the projection list of the getasr term because
e is no longer referenced.

4.9 Moving Predicates into the Binding
List

A predicate that evaluates to a constant, e.g., a predicate
that is based on the evaluation of a getasr expression
should be moved into the binding list of the enclosing
retrieve term. This avoids the nested loop evaluation
by iterating exhaustively over all elements of the speci-
fied types. The following general transformation can be
applied:

298

(retrieve :B ((eo So) .. . (ek Sk) !!bl)
$3 (and (in (el . . . ek)

(getasr [to.A~.A,]x
:R !r -
:s !s
:P (#iO . . . #ik)))

!sl)
:P !p)

(retrieve :B (((eo . . . ek)

(getasr [t~.Al.
:R !r

W41

.Anllx

:S (and (in #io SO)
. . .
(in #ik Sk)

!s)

:P (#iO . . . #ik)))

!!bl)
:S (and !sl)
:P !p

Example 4.6 The following transformation concludes
the optimization of our example query:

(retrieve :B ((m EMP) (d DEPT))
:S (and (in (d m)

(getasr [EMP.WorksIn.Mgrlcon
:R true
:S (in #0 (getasr [EMP.SALARY’Jcon

:R true
:s (> #l 200000)
:p #O)))

:p (#l #2))
(< (path d Profit) 0))

:P m) T14
-

(retrieve
:B (((d 4

(getasr [EMP.WorksIn.Mgrlcan
:R true
:S (and (in #0 (getasr [EMP.SALARYjcon

:R true
:s (> #l 200000)
:p #O))

(in #1 EMP)
(in #Z DEPT))

:p (#I #2))))
:S (and (< (path d Profit) 0))
:P m)

4.10 Introduction of Restriction Predi-
cates

The following rule introduces restriction predicates. It
can only be applied once since there is only one restric-
tion term allowed. Thus this operation is left to the end
of the term rewriting to choose the most selective term

for restriction. This rule can be applied if the term !sl
concerns only the entry attribute of the getasr operation
(cf. Section 3.2 for the semantics of the :R clause):

(getasr [&AI.. . . .A,] (getasr [to.A~.A,,]
:R true :R !sl
:S (and !sl !!sll) - :S (and !!sll) W51
:P !pl) :P !pl)

4.11 Deletion of the Retrieve Operator

If the selection predicate is empty and only one variable
is left in the binding list then we may remove the outer
retrieve. More formally the following rule is valid:

(retrieve :B (e !t) :S true :P e) - !t P’161

4.12 Polishing of Resulting Terms

4.12.1 Dealing with Access Support Relation
Partitions

So far we have only considered access support relations
under no decomposition, i.e., [to.Al.A,jx. Accord-
ing to our convention this should have been denoted more
precisely as I[to.Al.Anjy. Introduction of access sup-
port relation partitions is now straight. forward. This is
the first step of the polishing phase.

4.12.2 Isolating Common Subexpressions

The second step in the post-transformation phase con-
sists of finding common subterms-analogously to [4]--to
avoid evaluating them twice. This is especially important
if some access support relation partitions are shared by
several access support relations.

5 The Rule Interpreter

In this section we introduce the governing strategies and
mechanisms utilized in our query optimizer. This is a very
important issue since if the rules were applied in an un-
ordered and exhaustive manner there would be the prob-
lem of exponential explosion of the search space. Thus
guidance is needed to govern the deductive process of
term rewriting. We have developed a number of technics
to solve this problem.

The basis of optimizing the rewriting process consists
of organizing the rules into groups of rules with similar
intention.

For each group of rules a mode of application can be
given. This mode is either nil or single. If all is de-
fined, all rules of this mode are applied until no further
rule of this group is applicable. An example of a rule
group where all is specified as t,he application mode is

299

the moving selection predicates inwards group. If single
is specified there will be at most one successful rule ap-
plication of a member of the respective group every time
the rule group is visited by a term. Since there are rules
which may be better in some sense, the rules wit,hin a rule
group may be ordered.

The successor group from which the next rules are to be
applied are declared by defining the rule group net. This
net of rule groups is described by giving a successor group
for each rule group for the case that at least one rule ap-
plied successfully and-a different one-for the case that
all rules failed to match. To give an example, if there is
a successful application of a getasr introducing rule, the
successor is the rule group of moving selection predicates
inwards. If there is no further possibility to introduce a
getasr operation the successor group is the one trying
to move set valued terms into the binding list whenever
possible.

Further there are two special rule groups for simplify-
ing expressions one for simplifying Boolean expressions
and one for simplifying set expressions. Since applica-
tion of these rule groups may not interfere with the or-
der in which the other rule groups are applied, they are
invoked only if necessary and without change to the suc-
cessor rule group. This is described by specifying simbool
and/or simset in the rule group net for each rule group
where the corresponding set of simplifications might be
worthwhile to attempt.

Sometimes it does make sense not to obey the default
successor rule group given by the net. Instead one might
want to choose the application of a different rule group,
or even the application of a certain rule. As an example
consider the rule group prolonging. The standard succes-
sor group in the case of successful application of a rule
is the introduction of a getasr operator. But if the pro-
longing has been beyond what is covered by an access
support relation successive splitting is reasonable. Thus,
with every rule there may be a successor rule group asso-
ciated or a successor rule. This avoids many useless tests
for possible rule applications. The applied successor rule
may also depend on the history of the term considered.

The first choice for a strategy to process a query term is,
of course, to first prolong and then split the path expres-
sions in such a way that the existing access support re-
lations become applicable. Then to introduce the getasr
operations, move the selection predicates inwards, then
move the getasr operations to the binding list and re-
move the retrieve. If this fails a strategy where new
access support relations are temporarily created (mkasr)
or appended (appendasr) is followed. The application of
joins is delayed to a point where all other strategies failed.
Since every strategy demands a different rule group net,
there exists one corresponding net for each strategy. With
each term the current strategy is associated. The strat-

egy is changed if there is no more successful rule applica-
tion within the considered rewriting mode. The successor
strategy’may depend on the structure of the term and on
its history.

We now come to the management of terms which is
highly interconnected with rule processing. At the begin-
ning of the optimization process there is only one term.
This term is put into the list of active terms. After a suc-
cessful rule application the result replaces the only term
in the active terms list. This is the default for most of
the rules. If alternatives have to be considered-as in the
case of the application of appendasr or mkasr rules-
the result term of a rule application does not replace the
original term but is (by default) added to the beginning of
the list of active terms. This results in a depth first search.
Other search strategies can be specified as well. This is
necessary if the optimization is stopped by some criterion
before all terms are optimized to the normal form where
no further rule application is possible. If there is a change
in the rule application strategy, the term is saved in the
list of optimized terms before starting a new optimization
phase. The last step of processing is done by polishing the
resulting terms, e.g., taking care of access support relation
partitions, eliminating common subexpressions within a
query term, etc. If the resulting list of optimized terms
contains more than one term the cost model whose basis
was developed [ll]) will be applied (not yet integrated)
and the terms will be ordered accordingly. The cheapest
term is then chosen according to the recorded database
characteristics and translated into an executable query
evaluation plan.

6 Conclusion

In this paper we have shown how access support relations
can be utilized in query evaluation against object bases.
The access support manager which controls and main-
tains the access support relations has been implemented
in C and runs on a DEC station 3100 under Ultrix. We
described the essential parts-consisting of 16 rules, each
a representative of a larger rule group-of a rule-based
query optimizer. The complete query optimizer was real-
ized in Lisp and consists of a core of about 80 rules deal-
ing with access support relations-aside from the trivial
simplification rules.

Utilizing the rule-based approach we were able to re-
alize the prototype with relatively modest effort. The
rule-based design is particularly amenable to

l incorporating new rules due to revised evaluation
strategies or new indexing structures

l researching different search heuristics to find a near-
optimal evaluation plan without exhaustive search.

300

The performance of the query optimizer is-in the cur-
rent prototype version-not really sufficient for a produc-
tion quality system. It took, for example, about a second
to transform the (simple) example query. However, for ex-
perimentation and evaluation purposes the performance
is quite sufficient. In order to gain performance the term
rewriting rules may be converted to C transformation rou-
tines.

Currently we are incorporating the cost model that was
developed in [ll] for evaluating the usefulness of access
support relations into the query optimizer. This would
enable the quantitative comparison of alternative trans-
formations based on the current object base extension,
i.e., number of objects, size of access support relations,
selectivity of restriction predicates, etc.

In summary, we showed that access support relations as
an indexing scheme in conjunction with rule-based query
optimization provide a very promising road to perfor-
mance enhancement of query processing in object bases.

Acknowledgements

We thank P. C. Lockemann for his support and our stu-
dents U. Oetken, H. Ott, A. Papapostolou, K. Peithner,
H. Spiess, and R. Waurig for their implementation efforts
in realizing the access support relation manager and the
query processor of GOM.

References

PI

PI

PI

HI

kJ1

PI

E. Bertino and W. Kim. Indexing techniques for
queries on nested objects. IEEE Trans. h’nowledge
and Data Engineering, 1(2):196-214, Jun 1989.

M. Carey and D. J. Dewitt. An overview of the
EXODUS project. IEEE Database Engineering,
10(2):47-53, Jun 1987.

M. J. Carey, D. J. Dewitt, and S. L. Vandenberg.
A data model and query language for EXODUS. In
Proc. of the ACM SIGMOD Conj. on Management
of Data, pages 413-423, Chicago, Il., Jun 1988.

U. S. Chakravarthy and J. Minker. Multiple
query processing in deductive databases using query
graphs. In Proc. of The Conj. on Very Large Data
Bases (VLDB), pages 384-391, 1986.

J. C. Freytag. A rule-based view of query opti-
mization. In Proc. of the ACM SIGMOD Conj. on
Management of Data, pages 173-180, San Francisco,
1987.

G. Graefe and D. Dewitt. The EXODUS optimizer
generator. In Proc. of the ACM SIGMOD Conj. on

171

PI

PI

PO1

WI

P21

[131

[141

P51

WI

1171

Management of Data, pages 160-172, San Francisco,
1987.

G. Huet. Confluent reductions: Abstract properties
and applications of term rewriting systems. Journal
of the ACM, 27(4):797-821, 1980.

M. Jarke and J. Koch. Query optimization in
database systems. ACM Computing Surveys, pages
111-152, Jun 1984.

B. P. Jeng, D. Woelk, W. Kim, and W. L. Lee.
Query processing in distributed ORIQN. In Proc. of
the EDBT (Extending Data Base Technology) Conf,
Venice, Italy, Mar 1990.

A. Kemper and G. Moerkotte. Access support in ob-
ject bases. In Proc. of the ACM SIGMOD Conf. on
Management of Data, Atlantic City, NJ, May 1990.

Alfons Kemper and Guido Moerkotte. Access sup-
port in object bases-including an analytical cost
model. Interner Bericht 17/89, Fakultat fiir Infor-
matik, Universitgt Karlsruhe, D-7500 Karlsruhe, Ott
1989.

K. C. Kim, W. Kim, and D. Woelk. Acyclic query
processing in object-oriented databases. In Proc. of
the Entity Relationship Conj, Italy, Nov 1988.

K. Lehnert. Regelbasierte Beschreibung von Op-
timierungsverjahren fur relationale Datenbankan-
fragespmchen. PhD thesis, Technische Universitat
Miinchen, 8000 Miinchen, West Germany, Dee 1988.

G. M. Lohman. Grammar-like functional rules for
representing query optimization alternatives. In
Proc. of the ACM SIGMOD Conf on Management
of Data, pages 18-27, 1988.

D. Maier and J. Stein. Indexing in an object-oriented
DBMS. In K. R. Dittrich and U. Dayal, editors, Proc.
IEEE Intl. Workshop on Object-Oriented Database
Systems, Asilomar, Pacific Grove, CA, pages 171-
182. IEEE Computer Society Press, Sep 1986.

P. G. Selinger et al. Access path selection in a re-
lational database management system. In Proc. of
the ACM SIGMOD Conj. on Management of Data,
pages 23-34, Boston, Ma., Jun 1979.

P. Valduriez. Join indices. ACM Trans. Database
Syst., 12(2):218-246, Jun 1987.

301

