
Elimination of Views and Redundant Variables in an

SQL-like Database Language for Extended NF* Structures

Norbert Siidkarnp, Volker I,inncmann
IiIhf Scientific Cmter Ifeidelberg, Tiergartcnstr. I.5

0-6900 Ileidclberg, IVc/cst Germany
I’d: (f 49 6221) 4040

c-mail: SUEIIKAhdP at I~IIL>llIhll.I3l7’NE7‘. LINNEMAN at I~lfl~I~hil.~l7~NIl~

Abstract

The Advanced Information Management Prototype
(AIM) is an experimental database system, developed
and prototyped at the IBM Scientific Center in
Heidelberg, Germany. The underlying data model is
an extension of the NF’ data model. It is founded on
the notions of tuple, set and list. These three
constructors may be applied to any valid structure in
any order, starting with some atomic domain(s), to get
a valid AIM database structure. The corresponding
database language, called HDBL (IIeidelberg Data
Base Language) is an SQL-type language meeting the
requirements of the extended NF’ data model.

In this paper we investigate the problem of improving
the evaluation of HDBL queries by transformation of
the query. The first kind of transformation deals with
view processing. Given an HDBL query containing a
view it is often not necessary to materialize the view.
We will give some rules on how to eliminate the view
and evaluate the query against the base relations.
Another kind of transformation will be used to remove
variables from the query. Some of these transf-
ormations are equivalent to the removal of redundant
join operations in the relational algebra; a second way
to remove variables is the introduction of “complex
projections” which can directly be mapped to oper-
ations at the storage access interface of the DBMS.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distrihutcd for

direct commercial advantage. thr VLDB copyright notice and

the title of the publication and its date appear. and notice is $cn

that copying is hy permission of the Vq Large Data Base

Endowment. To copy otherwise. OI- to rcp’uhlihh. rcquircc ;I l'w

and/or special permission from the Endowmc’nt.

Proceedings of the 16th VLDB Conference
Brisbane, Australia 1990

1 Introduction

The Advanced Information Management Prototype
(AIM) is an experimental database system which has
been developed and prototyped by the IBM Scientific
Center in IIeidelberg. This system is based on an ex-
tended NF’ (Non First Normal I%rm) data model
IS]. The motivation to build such a system was the
need to store and manage huge amounts of data in
areas as office, science and engineering. The rcquire-
ments for such database management systems are
rather different from the requirements in business and
administrative applications. There the concept of a ta-
ble, i.e. a relation is a reasonable data structure to
model alI necessary data types. To model other struc-
tures, such as highly structured documents or geomet-
rical information coming from CAD workstations, the
relational model is rather cumbersome to use and bc-
comes inadequate and also inefficient.

The development of the NF2 data model 12; 23) was
an attempt to gain more flexibility in modelling ade-
quate data structures for complex problems while re-
taining the advantages of the relational model, such as
a sound mathematical foundation and a nonprocedural
query language.

DBMSs such as AIM, aiso called Non Standard
DBMSs, are intended to cover a wide range of appli-
cations. In one of our application projects AIM was
used as an integration vehicle for a set of stand alone
applications in the area of robot modelliig, program-
ming and simulation. Geometrical robot models had
to be managed, description of handling tasks, se-
quences of operations, or data to determine the tra-
jectories of a robot arm [6; 71 . To be an adequate tool
for integration, such a system not only has to provide
powerful modeling capabilities but it also has to sup-
port appropriate user interfaces. Different tasks need
dflerent data structures and different operators dedi-
cated to the specific problems to be handled. To meet
this requirement the AIM prototype provides user de-
fined data types and user defmed operators to be added
dynamically to the system (171 . Besides the AIM
project there are several other research projects which
approach these problems by other techniques, see for
example 13; 4; 10; 13; 221 .

302

Another feature which is helpful in supporting several
interfaces is the introduction of views. Views are al-
ready widely used in relational systems. They ahow to
present ah or part of the data in a structure adapted
to and better suited for a given application than the
original structure. In this paper we are interested in
the processing of queries in such an environment.
Users formulate queries and operations against views,
which in turn have to be evaluated against the stored
database. Often it is not a good solution to materialize
ah the views first and then use them as intermediate
results to produce the Iinal result. A straightforward
strategy would be to rewrite the query by inserting the
view deft&ions. Because there may be several
“layers” of views, i.e. a view may be defmed using an-
other view and so on, this process may be performed
several times. It is obvious that the processing of such
a modified query may become very inefficient if it is
evaluated directly against the stored database. It is the
task of the query optimizer to produce a reasonable
evaluation strategy [161. One important aspect of
query optimization is to detect and to remove redun-
dant operations, i.e. the query has to be rewritten again
before the optimizer selects suitable access paths and
so on.

There has been some work on detection and elimi-
nation of redundant operations, mostly done in the
context of the relational data model [19; 261 . Some
recent work on rewriting of SQL-queries has been
presented in [141 where the authors used a graphical
representation of the query as a basis for their trans-
formation rules. In 1241 an evaluation strategy is de-
veloped for queries against a relational interface,
implemented via an NF’ kernel. If certain restrictions
concerning the mapping are obeyed the elimination of
redundant joins can be performed by applying the or-
iginal relational methods.

Query transformations can also be defined for ex-
pressions of nested relation algebras. They are based
on the properties of the operators of an algebra as
given for example in 1231 or in 1211. These transf-
ormations are restricted if nesting and unnesting are
involved. A recent paper [151 investigates these re-
strictions in detail and the author suggests in his con-
clusion that one should also look at these optimization
problems from a calculus point of view.

Our approach is to take the calculus oriented query
language IIDBL (Heidelberg Data Base Language) of
our data model as a basis for query transformations.
In this paper we will present techniques to elimiiate
views and to detect and remove redundant operations
from a query in the context of our extended NF’ data
model. Applying the rules for view elimination allows,
for example, to avoid some unnecessary intermediate
results which are not needed for the production of the
final query result.

We will identify situations where variables can be re-
moved from a IIDBL query. Each eliminated variable
means to avoid the unnecessary access to the range of
this variable. So the number of variables appearing in
a query provides a criterion for a “better” query.

Another type of query rewriting is the introduction of
complex operators. To process a query the query
processor analyzes the query string and produces a
query evaluation plan which can be interpreted by the
evaluation program. The access to the database in such
an evaluation plan is specified by calls to the storage
access system. The AIM access system is structurally
object oriented which means that a complex object or
subobject may be transferred to the evaluation system
by one call to the access system. We will give some
transformation rules to introduce so called complex
projections, which will be mapped directly to calls of
the access system. Introducing such operators avoids
the transfer of atomic data from the database and the
reconstruction of the complex object needed for the
query evaluation.

The rest of this paper is organized as follows. We start
with an introduction to the data structures of AIM and
the query language IIDBL. Then we will present an
example showing the scope of our query rewriting and
transformation rules. These rules will be given in detail
in the following chapters. We will conclude by an
overview of open problems and some future directions.

2 The AIM data model

The data model of the AIM prototype (Advanced In-
formation Management System) is an extension of the
NF’ data model which itself is an extension of the re-
lational data model. We will give a brief introduction
to the data structures of the AIM data model and the
query language IIDBL being the basis for our investi-
gations on query transformations.

Data Structures

Starting with atomic types integer, real, string, char, . . .
any of the constructors tuple, set or list may be used
to generate new types.

Some examples of types are
INTEGER
SET(REAL)
LIST(TUPLE(a:REAL, b:STRING)) .

A database schema is a set of named types like
AUTH=SET(TUPLE(authors:LIST(TUPLE(nanie:STRING)),

rep-no :STRING,
title :TEXT,
descr :SET(TUPLE(keyword:STRING,

weight INTEGER)))).

303

This schema describes a structure for the information
about reports and their authors, including a set of
keywords and a number, indicating the iicight of carh
of the keywords.

As stated in the introductory remarks this data mock1
is an extension of the relational data model. IGgure 1
presents the different data structure capabilities of the
relational model, the NT;’ data model and of the AIM
data model. The relational model only allows sets of
tuples, whose attributes must have an atomic domain.
The types allowed in the NF2 model are sets of tuples
whose components may again be sets of tuplcs and so
on, whereas the AIM data model allows any sequence
of constructors.

Query Language

The AIM query language IIDBL, (IIeidelberg Data
Base Language) and is an extension of SQL, a query
language for the relational data model [9] .

We give examples of HDBI, queries. They refer to the
database schema containing the type AUTH, given in
a previous example.
(1) select tuple(r: x.rep-no,

p: (select(tuple(keyw: y.keyword,
wght: y.weight))

from y in x.descr)
1

from x in auth

(2) select x.authors
from x in auth

(3) select tuple(r: x.rep-no, n: y.name)
from y in x.authors, x in auth
where exists (v in x.descr):

(v.keyword contains ‘database’
and v.weight > 50)

In 1251 a fortnal definition of the syntax and also the
semantics of IIDBL, is given. For our purposes it is
sunicicnt to have in mind the following model for the
evaluation of a select-from-where expression:

Each variable in the from-list is bound to a do-
main, i.e. a variable may take all the values of its
dotnain

For each possible combination of values taken
from the respective dotnains evaluate the predi-
cate in the where-clause. The variables from the
from-list are the only free variables in the predi-
cate. Therefore, replacing the variables by their
respective values allows to evaluate the predicate.

If this evaluation of the predicate yields true then
apply the select-clause to the values of the vari-
ables, i.e. construct an element of the result col-
lection. This construction may again include the
evaluation of a (nested) select-from-where ex-
pression.

A view is a named IIDBI, query. All the queries given
as an example above may be regarded as views.

3 An Example

In this section we present a detailed exatnple to dem-
onstrate the scope and the benefits of query transf-
ormations. As a database schema we use the definition
of DEPARTMENTS, a database object containing
information about departments and their managers
together with a list of all employees working for a de-
partment. We define two views. Vl gives the number
of the department and the list of the employee num-
bers of alI employees of this department, view V2 gives
all the information about the employees of all depart-

set

11
tuple

0
atomic

set

0
tuple

II
atomic

atomic

Figure 1. Comparison of data structures: An arrow A * B indicates that values of type A may be aggregated to form
values of type B. The notion of collection subsumes the notions of set and list. -

304

ments. We assume that the employee number e-no
is unique within DEPARTMENTS.

The query ‘Find all employees of a department,
grouped by the department number’ can be formulated
as follows:
(al) select tuple(d: x.dep,

e:(select tuple(n0: y.eno,
nm: z.nme)

from 2 in V2, y in x.emp
where y.eno = z.eno))

from x in Vl

Another query which gives the same result in our ex-
ample is the following HDBL-expression.
(Q2) select tuple(d: x.dep,

e:(select tuple(n0: z.eno,
rim: z.nme)

from z in V2
where exists (y in x.emp):

y.eno = z.eno))
from x in Vl

If the two views Vl and V2 are materialized these for-
mulations could be a reasonable basis for the query
evaluation. If they are not materialized the terms Vl
and V2 have to be replaced by their corresponding
view defnitions. This replacement yields a valid
HDBL expression. A straightforward evaluation of
such a query would require the construction of two
intermediate results. It is possible to avoid these inter-

mediate results and build the result of the query di-
rectly out of the basic database objects as will be
shown below.

If we take a look at the database object called depart-
ments we could formulate the above query against this
object yielding the following query:’
(al’) select tuple(t: ;.;de~~;o,

: .
from x in departments

In the following we are interested in general rules
which can perform this kind of query rewriting. Given
a query like (Ql) or (Q2) we want to apply some re-
writing rules and come up with query (Ql’). The re-
sulting query does not need any construction of
intermediate results and uses the structural capabilities
of the data model and of the prototype implementa-
tion. In the following we will present several types of
transformation rules. They will be applied to our ex-
ample and we eventually wilI produce the desired form
of the query.

4 Query Modification to Eliminate Views

First we will give general rules to eliminate views from
a query. To be precise we will present transformation
rules which allow to replace select-from-where ex-

Schema:

DEPARTMENTS = SET(TUPLE(dep-no :integer, DEPARTMENTS
dep-mgr:string,
empl: LIST(TUPLE(e-no:integer,

name:string

1 1
1 1

)I

View definitions: View Vl

Vl = select tuple(dep: x.dep-no,
emp: (select tuple(en0: y.e-no) dep ew

from y in x.empl))
from x in departments

m

en0

V2 = select tuple(en0: y.e-no,
nme: y.name)

from x in departments, y in x.empl

View V2

Schema and View delinitions

1 In fact, there is a slight dilTerence between the result of query QI and Ql’: Query Ql spccilies two new attribute names
no and nm whereas Ql’ takes the attribute names e-no and name from the database nhjcct I~I~f’AR’l‘MENI‘S

pressions (sfw-expressions for short) appearing in a
from-list or in the range definition of a quantified var-
iable. Both cases are a notation for the explicit con-
struction of an intermediate result which, in many
cases, is not necessary to evaluate the query. On the
other hand we will discover that such a transformation
may provide a basis for further transformations to
speed up query processing.

Inserting the definition of view V 1 into query (Q I)and
renaming the variables to avoid duplicate variable
names, we get the following query:
(al) select tuple(d: x.dep,

e:(select tuple(n0: y.eno,
nm: z.nme)

from x in

from 2 in V2, y in x.emp
where y.eno = z.eno))

(select tuple(dep:x'.dep-no,
enp:(select tuple(eno:y'.e-no)

from y' in x'.empl))
frOlR x' in departments)

We highlighted all parts which are related to the view
Vl. The range of the variable x is the set of tuples,
specified by the highlighted view definition. The idea
to eliminate this view is to replace each occurrence of
x by an expression related to the objects from the
from-list of the view defmition. In our example we
will replace x.dep by the definition of the attribute dep
in view Vl which is x’.dep-no. The term x.emp in the
from-list is replaced by the sfw-expression

(select tuple(en0: y'.e-no)
from y' in x'.empl)

and the view definition is replaced by the from-list of
the view definition. The result of these transformations
is
(Ql.1)
select tuple(d:x'.dep-no,

e:(select tuple(n0: y.eno,
nm: z.nme)

from z in V2,
y in (select tuple(eno8 y'.e-no)

frm y' in x'.emp)
where y.eno = z.eno))

from x' in departments

Here we have introduced a sfw-expression as part of
the from-fist of a nested sfw-expression. This ex-
pression can be replaced by applying the same proce-
dure again yielding the expression
(91.2) select tuple(d:x'.dep-no,

e:(select tuple(n0: y'.e-no,
nm: z.nme)

from z in V2, y' in x'.emp
where y'.e-no = z.eno))

from x' in departments

Elimination of view V2 then yields:

(Ql.3) select tuple(d:x'.dep-no,
e:(select tuple(n0: y'.e-no,

nm: y".name)
from x" in departments,

y" in x".empl, y' in x'.emp
where y'.e-no = y".e-no))

from x' in departments

This query does not contain any views or any sfw-
expression in the from-list and may be evaluated
against the database object departments. This query
will be simplified by applying rules to be introduced
in chapter 5.

The general form of a sfw-query containing a second
sfw-query in the from-list is the following:
SFWl = select t-exprl

from f-listl, x in (select t-expr2
from f-list2
where pred2), f-listl'

where predl

We assume that there will be no declaration of two
variables with the same name in the query. Therefore
the variable x may appear in the terms t-expr 1, f-list 1,
f-list 1’ and predl but not in f-list2. We will replace
every occurrence of the variable x by a term derived
from t-expr2.

The sfw-expression SFWl is equivalent to the sfw-
expression SFW2:
SFW2 = select t-exprl[x/t_expr2]

from f-listl[x/t_expr2 1, f-list2,
f-listl'[x/t_expr2]

where predl[x/t-expr2] A pred2

Here t[x/t_expr2] denotes a substitution. All occur-
rences x.a are replaced by the term exp, where exp is
a definition of the attribute a within t-expr2, i.e.
t-expr2 contains a subterm of the form . ..a. exp ,... ,
and all other occurrences of the variable x in term t are
replaced by t-expr2.

This transformation can be applied repeatedly if nec-
essary. Applying our rule to query (Q2) as far as
possible will give us
(92.1)
select tuple

(d:x'.dep-no,
e:(select tuple(no:y".e-no,

nm:y".name)
from x" in departments, y" in x".empl
where exists (y' in

(select tuple(eno:y"'.e-no
from y"' in x'.empl))):

(y'.eno = y".e-no)))
from x' in departments

IIere we introduced a sfw-expression as the range de-
finition of the existentially quantified variable y‘.‘ This
can’t be removed by our rules so far. But again we are
able to transform the existence predicate, based on the
view definition into an existence predicate using only
variables defined in the from list of the view definition.

306

The general form of a quantified expression appearing
in a where-clause is as follows:
SFW3 = select t-exprl

from f-list1
where predl 0

exists (x in (select t-expr2
from x1 in rangel,

. . . . xn in range

0' pred3
where pred2)) : p"redx

where rangei is an expression of type collection, i.e. a
set or list, 0, 0’ E { A, v). Again we assume that there
are no duplicate variable names. Therefore x only
appears in the predicate predx.

SFW3 is equivalent to SFW4:
SFW4 = select t-exprl

from f-list1
where predl 0

exists (x1 in rangel)
. ..exists (xn in range"):
(predx[x/t_expr2] A pred2)
0' pred3

Using this rule to eliminate the sfw-expression from
the where-clause in our example (Q2.1) we end up
with the following:
(92.2)
select tuple(d:x'.dep-no,

e:(select tuple(no:y".e-no,
nm:y".name)

from x" in departments,y" in x".empl
where exists (y' in x'.empl):

(y'.eno q y".e-no)))
from x' in departments

There is an analogous rule for universally quantified
variables over sfw-expressions. These rules allow the
elimination of sfw-expressions from where-clauses and
from-lists. Based on a formal semantics of HDBL we
are able to prove that these rules are sound.2 This
proof can be found in [25] .

These transformations justify the notion of standard
sfw-expressions, being expressions without sfw-
expressions in the from-list or in the where-clause. In
the following we will always refer to sfw-expressions
in this standard form if we talk about sfw-expressions.

5 Redundant Variables

Our examples in the previous chapter show that rather
strange query formulations may occur if views are in-
volved or, even worse, if queries are generated auto-
matically. Let’s take again query (Q 1.3) as an
example:

select tuple(d:x'.dep-no,
e:(select tuple(n0: y'.e-no,

nm: y'.name)
from x" in departments,

y' in x'.emp, y" in x".empl
where y'.e-no = y".e-no)

from x' in departments

We have four variables, each variable requires the ac-
cess to the respective domain. There are hierarchical
relationships between these variables and x’ and x” as
well as y’ and y” refer to the same domain.

Though it is very unlikely for a user to produce this
query directly, the data base system has to deal with
it in a reasonable way because the query may have
been automatically generated as discussed in sections
3 and 4. Assuming that the attribute e no is an iden-
tifier for a whole department object, ce. an e no is
unique within all departments, we can deduci that
variables x” and y” are redundant and may be elimi-
nated, i.e. substituted by the variables x’ and y’.

A similar problem arises in the context of the rela-
tional data model. In [191 the authors give algorithms
to detect and to remove redundant joins. Their treat-
ment is formally based on the relational algebra and
the theory of functional dependencies. As our data
model is an extension of the relational model it seems
natural to extend the methods proposed in [191, using
an adequately extended algebra. Unfortunately, the al-
gebras developed for nested relations, e.g. [23J or
[2l]are not powerful enough to cover the complete
data model we use. In addition, recent investigations
on algebraic optimization of nested relations [1 S] reveal
difftcult problems if nesting and unnesting operations
are involved in the transformation of algebra ex-
pressions.

In this chapter we will give some rules to detect and
to eliminate redundant variables in the context of the
AIM data model. The basis of our investigation is the
calculus oriented language HDBL. Explicit variables
are declared which specify the access to a certain do-
main, i.e. a set or a list of database objects which may
be a sub-structure of a complex structure. A variable
is redundant if there is a second variable, bound to the
same domain, such that both variables always have the
same value if the filtering predicate becomes true. This
property depends on a given database state. Of course
we are interested in some state independent criteria for
redundancy of variables. Therefore we need some-
thing like key properties in the relational model. Such
key properties or derived functional dependencies are
used as a criterion in [191 .

First we introduce some more notations. Q and R will
denote sfw-expressions in standard form, R is nested

2 This proof only holds if we restrict ourselves to queries where there is no application of the built-in function ‘position’ to
non base objects, i.e. views.

307

in Q if R appears in the select-clause of Q. The vari-
able x is declared in a from-list if there is an expression
x in exp in the from-list and from-var(Q) denotes the
set of all variables dtklared in the from-list of Q. The
set of variables valid in Q is denoted by var(Q).
KU(Q) = from var(Q) if Q is not nested within an-
other sfw expression
var(Q) = from-var(Q) U var(R) if Q is nested within
R.

The declarations of all variables in var(Q) defme a set
of hierarchies of variables. If x in y.exp is the declara-
tion of x, x depends on y. The root of a hierarchy is a
variable bound to a database object, i.e. its declaration
is of the form x IN dbobject. In the following we as-
sume that there are no variables with the same name,
all hierarchies are rooted to database objects and all
variables are declared.

Given a variable x E var(Q) we associate a path to x
by the following definition:
path(x) = dbo if x in dbo is the declaration of x
path(x) = path(y)$ if x in y is the declaration of x
path(x) = path(y)$.att if x in y.att is the declaration
of x.

Two variables x and y are compatible if path(x) =
path(y).

Referring to the example query (Q1.3) the variables y’
and y” are compatible because path(y’) = path(y”) =
departments$.empl. In the relational context variables
may be redundant if they are bound to the same re-
lation. If we restrict our data mode1 to flat relations,
the path of any variable is the name of a relation.
Then two variables are compatible if they refer to the
same relation.

Besides compatibility we need something similar to the
key property in the relational data model. Intuitively,
if x and y are compatible variables with respect to a
sfw-expression Q, one of them is redundant if the
predicate of the sfw-expression evaluates to true only
if x and y are replaced by the same object. To formal-
ize this concept we introduce an identification function
which is a generaliiation of the key concept.

The type Tn is a subtype of T, if there is a sequence
T,,...,T,.,, such that Ti is the type of a component of
type Tim, (i.e. TimI is a tuple type) or Ti is the type of
the elements of instances of type Tie, (I.e. T,-, is a set-
or list type), i = 2 ,..., n.

If x is an instance of type T then there is exactly one
instnance xi of type Ti, i = r ,..., n-l, such that xi is a
component of xi-, (I.e. xi-, is a tuple) or xi is an ele-
ment of xi-, (i.e. xi., is a set or a list).

The function f is an identification function w.r.t. T if
for all instances x,,, y, of type ‘m the following holds:

f(X”) = f(y,) * xn = id y, A 1.. A x, =id y, .

The relation =id denotes the identity of objects. This
is different from objects having identical values, for
example if we deal with lists. The first and the third
element of the list < 1,2,1,3 > for example, both have
the same value but they are different objects.

If a $ are defined to be a key for a relation, this
codl%atlon of attributes may serve as an identifica-
tion function w.r.t. this relation. Of course, the system
has to know about identification functions. These
functions are listed in the database catalog or in a data
dictionary, as well as some rules to deduct that a given
part of a predicate is an identification function, like the
rules for the deduction of functional dependencies
from a given set of dependencies in the relational data
model.

Referring to our example query (Ql.3) the attribute
e-no serves as an identification function with respect
to departments if no e-no appears twice in a depart-
ments object.

Now we are ready to define some criteria to decide
whether a ‘variable is redundant. Let Q be an sfw-
expression which may be nested in an sfw-expression
R.
R= . . .

(select t expr
from f-list
where fTx) = f(y) A pred)

. . . .

. . . .

Let’s assume that the hierarchical relationships be-
tween the variables being valid in Q are as given in the
following diagram, where xj depends on \ if there is
an edge from xk to xj

xo I
x1

'i-1

I--
xi

I
'n

X

a yn

Y

Gfrom-var(Q)

308

xc represents the database object dbo to which x1 is
bound, i.e. xc is a dummy variable whose value is al-
ways the database object dbo.

If x and y are compatible and if f is an identification
function w.r.t. the range of variable xi-, , then yi ,..., y,,
y are redundant.

The relationship among the variables of (Ql.3) may
be depicted as follows (the box contains the variables
which are declared in the nested sfw-expression):

departments

+

&?I

X’ x "

I
Y' - e no = e-no y"

Assuming that the attribute e no serves as an identifi-
cation function, the variables 2 and y” are redundant.

If there are redundant variables there is an equivalent
HDBL expression without these variables. The trans-
formation rules to produce this equivalent query are
given in the following. In general these transf-
ormations are performed by substitution of redundant
variables by compatible ones. We use the same nota-
tion for the substitution as in chapter 4. If t denotes a
term then ?[y/x] denotes a term with each occurrence
of the symbol y replaced by the symbol x.

We have to distinguish between two different cases,
depending on the from-list f-list of Q.

1. f-list contains a non-redundant variable, i.e.

from_vdQ) \ {Yi,.*.vYntY > Z 4
The following HDBL-expression R’ is equivalent
to R:-
R'= r

dsel ect t-exprbi /xi,. . . ,Y,Ixn,YIxl
- from red_f_list[yilxi,...,y"/x,,Y/Xl

- where pred[Yf/xi 9 -. - ,Yn/x,,Y/XI)
. . . .
. . . .

red f list denotes a from-list where the declara-
tions-of alI redundant variables have been re-
moved from f-list.

2. f-list contains only declarations of redundant
variables, i.e.

from-v=(Q) \ (Yi,...,Y”,Y > = 4
Then the following expression R’ is equivalent
to R
R'= . . .

if predbi/xif.. . ,y,/x,9y/xl
then

set t_exPr[Yilxi,...,Ynlx~,Y/xl
else

empty
. . . .
. . . .

empty denotes the empty set and the expression
set t-expr[yi/xi,...,y,/x,,,y/x] denotes a constant set
with one element.3

Removing the redundant variables x” and y” from
(Ql.3) results in the following query:
(41.4) select tuple(d: x.dep-no,

e:(select tuple(n0: y.e-no,
nm: y.name)

from y in x.empl))
from x in departments

Substitution of redundant variables y’ by a compatible
variable x in the predicate pred may produce subterms
like x.att = x.att or x.att > x.att. These subterms are
replaced by true resp. false, i.e alI subterms x.att 8 x.att
are replaced by true if 8 E { =, <, 2 > and all subterms
x.att 0 x.att are replaced by false for 0 E {#, >, -z }.
The result of this replacement may be further reduced
by applying well known rules of predicate logic [161 .

If the predicate pred[yi/xi,...,y,/x,,y/x] can be reduced
to true the sfw-expression Q may be replaced by the
constant expression set t-expr[yi/xi,...,y,/x,,yIx]

If the predicate pred[y,/x,,...,y,,/x~,y/xJ can be reduced
to false the sfw-expression Q may be replaced by the
constant expression empty denoting the empty set.

The following definition gives a generalization of the
above definition of redundant variables. Up to now
we assumed that all variables yi,...,y,, are declared in
f-list, i.e. the local from-list of the sfw-expression Q.
Now we alIow yi,...,yj-, to be declared outside of f-list
and yj,...,y,, y are elements of from-var(Q). This sit-
uation is given in the following diagram:

3 Here we use an if then else construction which is not available in our present IlDBL. version. llere it is used to indicate
the strategy of the query evaluation program

309

xo I
x1

iii’
I---l
x- 1 Yi
.

‘j-1
I
x- J
.

Efrom-var(Q)

X y I

Besides an identification function we now need a con-
dition which ensures that the restrictions, implied by
the predicates over y,,..., y _ are not stronger than the j r
restrictions given by the predicates over xi,...,xj-,. As-
suming that all predicates are given in a conjunctive
normal form we collect all disjunctions containing an
occurrence of a variable w appearing in a from-list
outside of the sfw-expression Q and denote the con-
junction of these disjunctions by pro(w). Using this
notation we can express the above condition by

Pro(YJ A .m- A Pr($Yj.,) *

Prg(xi)Ixi/YiI A ** h Prq(xj.*)Ixj.llYj.ll

In general we cannot decide whether this condition
holds or not without evaluating the predicate against
the database state. But there are important cases where
this condition holds. e.g. if there are no predicates re-
ferring to variables yi at all outside the sfw-expression
Q-
If this condition holds and f is an identification func-
tion w.r.t. the range of variable xi-r, resp. dbo if i =
1, the variables y. ,..., y,, y are redundant variables and
may be substitutdd by their corresponding compatible
variables x., . . .
given abode.

,x,,,x using the same transformation rules

Another class of redundant variables not covered so far
may occur in connection with existentially quantified
variables. For an example see query (Q2.2) given in
chapter 4.

Let’s again look at our sfw-expression Q, possibly
nested in an HDBL-expression R.
R= . . .

(select t expr
from f-list
where pred)

. . . .

. . . .

We assume the following:

{y,,...,yJ c from-var(Q) such that yj+r depends
on y., J = l,..., n- 1. and y, is bound to a database
objeh dbo

pred contains existentially quantified variables

FAoks !ike
,..., z such that zj is compatible to yj, i.e. pred

exists (zr in dbo) . . . exists (zn in zn-, . ..). pred’

There are variables (x ,,..., xr} c var(Q), k 5 n,
such that xj is compattble to yj, j = l,..., k- 1.

This situation corresponds to the following picture:

+-variable
declared
locally

in Q

If pred’ looks like
fl(\) = fl(i$ A f2(z,) = f2(y,) A pred”
and pred” does not contain further restrictions over
variables zj, j = I,..., n, and if fl and f2 are both iden-
tification functions w.r.t. dbo, then the variables
Y,Y*IY, are redundant and may be substituted by
compatible variables x, ,..., \ .

A slightly different situation occurs if we change the
assumption no. 2 above to

prcd contains existentially quantified variables
zi+bt’e*Jn 9 such that zj is compatible to yj and xi + ,
IS eclared within xi, 1.e. pred looks like

exists (zi+, in xi...) . . . exists (zn in x*-t . ..). prcd’

which can be displayed by the following figure:

dbo

declared in Q

i
ex z, i

yn

If pred’ looks like

310

fl(z,,) = fl(y,) A pred”
and pred” does not contain further restrictions over
variables zj, j = k + I,..., n, and if f 1 is an identification
function w.r.t. dbo, then the variables y ,,..., y are re-
dundant and may be substituted by compatr lb le vari-
ables.

The following figure will present the situation in our
example query (Q2.2) where e no gives the identifrca-
tion function. The variable x”is redundant.

departments

The substitution of the redundant variables leads to
R'= . . .

(select t expr[y,/xl,. . . ,yk/xkl
from red f list[y,/xI,...,yk/xk]

where pred"Cy /x 1 l'...'Yk/x'(s
zl/xy..'z&(,

zJYk+l* - * * J”/Y”I 1
. . . .
. . . .

respectively to
R'= . . .

(select t exprCyl/xl,...,y~/xkl
from r~d~f~list[yl/xl....,y,Jx,J'

where pred"[yl/xl,...,yk/xk,

z&Yk+l’ ’ * * J,/Y,l)
. . . .
. . . .

Again red f list denotes a from-list where the decla-
rations of-aii redundant variables have been removed
from f-list.

Applying this transformation to our example query
(42.2) we get:
(42.3) select tuple(d: x.dep-no,

e:(select tuple(n0: y.e-no,
nm: y.name)

from y in x.empl)
from x in departments

which is exactly the same as (Q 1.4).

If we look into the database catalog we find that the
inner sfw-expression specifies the value of the whole
complex attribute empl. Therefore we may replace our
query (Q 1.4) by the query (Q l’), if the renaming of
attributes is neglected.
(01') select tuple(d: x.dep-no,

e: x.empl)
from x in departments

6 Further Query Transformations in
HDBL

The data model of HDBL is structurally object ori-
ented [1 I] which means that a whole complex structure
may be treated in the same way as an atomic structure
in the query language, i.e. the term x.attr may denote,
for example, an integer value or a set of tuples of lists
of integer. Selecting all the employees from the de-
partments database object we would state:
select y
from x in departments, y in x.empl

Here the term y denotes a tuple. An equivalent for-
mulation in HDBL is the following:
select tuple(e-no: y.e-no, name: y.name)
from x in departments, y in x.empl

This query breaks up the structure of a tuple into
atomic parts and these parts are put together to form
the specified result structure which in this case is the
original StNCtUR.

To speed up the internal processing, the implementa-
tion of our prototype system supports the object ori-
ented approach by offering a “complex object at a
time” interface at the access system. In addition to
fetch a complete complex object it is also able to per-
form some kind of projections.

Based on these features we extend our language to be
able to express such operations directly in the query
and offer some transformation rules to rewrite a query
using this projection operation which directly maps to
a call of the access system.

Let T denote a type with at least one subtype
TUPLE(...). The outermost tuple type is
TUPLE(a,: T ,,..., a”: TJ
where ai are the attribute names and Ti are types, i=
l,...,n.
A p-expression with respect to type T is then given by

In,: ai, Pl,easl nk: ai, Pk 1
where a.. E (a, ,..., a) and no attribute name appears
twice, p! is either tte empty string or a p-expression
with res’pect to type T.. and the n. are new names to
be used as attribute n&es in the r&ult structure.

If exp is an HDBL expression of type T and p is a
p-expression [n,: ai1 p ,..., nk: aik p] w.r.t. T then exp
p is a HDBL term. ‘fhe type of t%is term is derived
from type T, where according to the p-expression all
names a.. are renamed to nj and all remaining attri-
butes art! deleted.

We now present some transformation rules to intro-
duce this extended projection operator.

311

g = ;;l;t tuple(bI: y.exprl,...,bk: y.exprk)
y in Rangey

where predicate

If predicate is equivalent to true and expri is either an
attribute name, an attribute name followed by a p-
expression or a p-expression, and no attribute name
appears twice, then Q is equivalent to Q’:
9’ = Range& br: exprl,...,bk: exprJ

There are queries without an explicit tuple constructor
in the select-clause, like in
select y select y[...] select y.attr
from Y in Rg,, from Y in Rgy from Y in Rg,,

They are transformed into

RgY RgyL..l Rgy[attr: attr]

respectively.

Applied to our example (Ql.4) we will get the follow-
ing expression:
(91.5) select tuple(d: x.dep-no,

e: x.empl[no: e-no, nm: name])
from x in departments

We may apply the same rules one more time and we
will fmally produce query
(Ql.6)
departments[d: dep-no, e: empl[no: e-no, nm:name]]

If we don’t care about the renaming of the attributes
ego to no and name to run we may even write, using
information from the database catalog:
(41.7) departments[d: dep-no, e: empl]

The evaluation of this query requires only one call to
the storage system.

7 Conclusion and future directions

Based on an extended NF2 data model we introduced
methods and rules for the transformation of queries in
HDBL, the SQL-like query language of the AIM
prototype. Generated queries may be of arbitrary
complexity, for example if views are involved. Based
on this observation we presented transformation rules
for the elimination of views which means to avoid the
explicit construction of intermediate results.

Then we defined some criteria for the detection of re-
dundant variables. A variable is redundant if there is
an equivalent query without this variable. Based on a
generalized key property we were able to detect re-
dundant variables and we provided rules for the trans-
formation into a query with less variables. This results
in a faster query evaluation.

These transformations are based on the substitution
of variables by defining terms, which in turn may re-
veal possibilities for the static evaluation of predicates
and the reduction of the where-clauses of a query.

A last step was proposed by introducing some kind of
extended projection operator having a direct counter-
part at the access system interface, based on the struc-
turally object oriented implementation of the system.

Some of the ideas were taken over from previous work
in the relational context, such as I1 91, where redundant
join operations are handled. We adopted the methods
to our complex data structures and our data base lan-
guage. In the relational context this work has been
done in an algebraic setting. There are a lot of pro-
posals for an algebra for NF2-structures 123; 211, but
most of them are not powerful enough to cover our
intended data structuring capabilities. A recent pro-
posal [1] seems to provide an adequate expressive
power and may be a basis for an algebraic treatment
of query transformations as in classical relational the-
ory [18) . Another formalism used for query transfor-
mation are the so-called tableaux 126) . This formalism
does not easily carry over to our complex structures
and if it does, it doesn’t seem to be an adequate rep-
resentation of HDBL queries.

Our investigations on query transformations open a
scope for the selection of a “good” query. IIow to lind
this query and how to decide which is a “good” one
is an open.problem. In the case of redundant variables
there is a criterion for a “better” query. But there are
cases where it is advisable not to’ remove a sfw-
expression from a from-list. On the other hand this
elimination may reveal further redundancies as shown
by our examples.

We are planning to integrate such query transforma-
tion rules into our query evaluator of the AIM proto-
type using concepts and methods developed for rule
based systems. To use such methods for the opti-
mization of queries in database systems has been ad-
vocated recently in [12; 141 to become more flexible in
adding new rules or changing a set of optimization
rules.

Acknowledgements

We would like to thank our colleagues working in the
AIM project, especially I’. Pistor and K. K&pert for
carefully reading a prior version of this paper.

References

111 S. Abiteboul, C. Beeri: On the Power of Lan-
guages for the Manipulation of Complex Objects
INRIA Rapports de Recherche No. 846, 1988

121 S. Abiteboul, N. Ridoit: Non First Normal
Form Relations: An Algebra Allowing Restruc-
turing JCSS, 1986

312

I31

161

I71

1131

1141

D. Batory et al.: Genesis: An Extensible Data-
base Management System, IEEE Trans. on
Software Engineering, Vol. 14 No. 11, Nov. 1988
pp.1711-1730

M. Carey et al.: The Architecture of the EXO-
DUS Extensible Database System, Proc. 1986
IEEE Int. Workshop on Object Oriented Da-
tabase Systems, Pacific Grove, pp.52-65

P. Dadam , K. Ktispert et al.: A DBMS Pro-
totype to support extended NF’ Relations: An
Integrated View on Flat Tables and Hierarchies.
Proc. ACM SIGMOD Conference,
Washington D.C., 1986, pp. 356-367

P. Dadam , K. Kttspert et al.: Managing Com-
plex Objects in R2D2 in G.Kriiger, G.
Miiller(eds.) HECTOR VolumeII: Basic
Projects Springer Verlag 1988, pp. 304-331

P. Dadam , R. Dillmann et al.: Object-Oriented
Databases for Robot Programming, in
G.Krtiger, G. Miiller(eds.) HECTOR
VolumeII: Basic Projects Springer Verlag 1988,
pp. 289-303

C. Date: An Introduction to Database Systems,
Vol. I, Fourth Edition, Addison Wesley Publ.
Comp. 1986

C. Date: A Guide to the SQL Standard,
Addison Wesley Publ. Comp. 1987

U. Day al et al.: Simplifying Complex Objects:
The PROBE Approach, Proc. BTW 1987,
Informatik Fachberichte 136, Springer Verlag
1987, pp. 17-37

K. R. Dittrich: Object-Oriented Database Sys-
tems: The Notion and the Issues, Proc. Intl.
Workshop on Object Oriented Database Sys-
tems, Pacific Grove, Ca., USA, pp. 2-6, 1986

J. C. Freytag: A Rule Based View of Query
Optimization, Proc. ACM
SIGMOD-Conference, San Francisco, USA,
1987, pp. 173 - 180

T. Hfrder (cd.): The PRIMA Project - Design
and Implementation of a Non-Standard Data-
base System, SFB124 Research Report No
26/88, Univ. Kaiserslautem, 1988

W. Hasan, H. Pirahesh: Query Rewrite Opti-
mization in Starburst IBM Research Report
RJ6367, 1988

WI

1171

1211

1221

1231

1241

125)

WI

Y. Jan: Algebraic Optimization for Nested Re-
lations Proc. 23rd Hawaii Intern. Conf. on
System Sciences 1990, Vol. II: Software Track,
pp. 278 - 287

M. Jarke, J. Koch: Quey Optimization in Da-
tabase Systems Computing Surveys, Vol. 16,
No. 2, June 1984, pp. 111 - 152

V. Linnemann et al.: Design and Implementa-
tion of an Extensible Database Management
System Supporting User Defined Data Types
and Functions, Proc. 14th Intern. Conference
on Very Large Data Bases, Los Angeles, USA,
Sept. 1988, pp. 294-305

D. Maier: The Theory of Relational Databases
Pitman Publishing Company, 1983

N. Ott, K. HorEnder Removing Redundant Join
Operations in Queries Involving Views Informa-
tion Systems 10:3, 1985 pp.279-288

P. Pistor, F. Andersen: Designing a General-
ized NI” Data Model with an SQL- type Lan-
guage Interface, Proc. 12th Intern. Conference
on Very Large Data Bases, Kyoto, Japan 1986,
pp.278-285

M. Roth, H. Korth, A. Silber&hatz: Extended
Algebra and Calculus for Nested Relational
Databases ACM TODS 13:4, 1988, pp. 389
-417

M. Stonebraker, L. Rowe: The Design of
POSTGRES, Proc. ACM SIGMOD ‘86,
Washington, D.C., pp.340-355

H.-J. Schek, M. Scholl: An Algebra for the
Relational Model with Relation- Valued Attri-
butes Information Systems 11:2, 1986

M. Scholl: Theoretical Foundation of Algebraic
Optimization Utilizing Unnormalized Relations
Proceedings ICDT ‘86 pp. 380-396, Springer
Lecture Notes in Computer Science 243 , 1986

N. Stidkamp, V. Linnemann: Quey Rewriting
in an NI;1-like Database Language Technical
Report, IBM Scientific Center Ileidelberg, TR
89.10.017, 1989

.J. D. Ullman Principles of Database Systems
Pitman Publishing Comp. 2nd. Ed. 1982

313

