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Abstract This paper presents a method, called ARIES/
KVL (Algorithm for Recovery and Isolation Exploiting Se-

mantine neinn Kauv-\/aliin | arnkina) fnr
mantics using Key-Value Locking), for concurrency con-

trol in B-tree indexes. A transaction may perform any
number of nonindex and index operations, including
range scans. ARIES/KVL guarantees serializability and
it supports very high concurrency during tree traversals,
structure modifications, and other operations. Unlike in
System R, when one transaction is waiting for a lock on
a key value in a page, reads and modifications of that
page by other transactions are allowed. Further, trans-
actions that are rolling back will never get into deadlocks.
ARIES/KVL, by also using for key value locking the iX
and SIX lock modes that were intended originally for
table level locking, is able to better exploit the semantics
of the operations to improve concurrency, compared to
the System R index protocols. These techniques are also
applicable to the concurrency control of the classical
links-based storage and access structures which are be-
ginning to appear in modern systems also.

1. Introduction

Methods for controlling concurrent access to B-trees
have been studied for a long time (see [BaSc77, Mino84,
Sagi86, Shas85, ShGo88] and references in them). None
of those papers considered thoroughly the problem of
efficiently guaranteeing serializability [EGLT76] of trans-
actions containing multiple operations on B-trees, in the
face of transaction and system failures, and concurrent
accesses by different transactions with fine-granularity
locking. [FuKa89] presents an incomplete (in the not
found case and locking for range scans) and expensive
(using nested transactions) solution to the problem. Un-
fortunately, the details of the algorithms used in existing
systems like System R [GMBLL81], SQL/DS [ChGY81],
NonStop SQL' [Tand87], and DB2' [HaJa84] have not
been published. In spite of the fine-granularity locking
provided via record locking for data and key value lock-
ing for the index information, the level of concurrency
supported by the System R protocols, which are used in
the |BM product SQL/DS, has been found to be inadequate
by some customers [IBM85].
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The primary goal of our work was to modify the System
R index concurrency control method to drastically im-
prove its concurrency, performance, and functionality
characteristics. Serializable executions had to be sup-
ported with efficient storage management and high con-
currency. We present a method, calied ARIES/KVL. (A/-
gorithm for Recovery and Isolation Exploiting Semantics
using Key-Value Locking), which supports very high con-
currency during tree traversals, structure modifications
(i.e., page splits and page deletes), and other operations
(i.,e., key inserts, deletes, fetches and range scans).
When one transaction is waiting for a tock on a key value
in a page, reads and modifications of that page by other
transactions are allowed. Transactions that are rolling
back will never get into deadlocks, unlike in System R
[GMBLL81] and R* [MoLO86]. Although the logging and
recovery aspects of ARIES/KVL are not covered in this
paper, the concurrent executions permitted by the locking
protocols are such that correct logging and recovery are
made possible. ARIES/KVL may be used with write-ahead
logging (WAL) [MHLPS89, MoLe89, MoPi90, RoMo89] or
the shadow-page recovery method [GMBLLS1,
MHLPS89]. We explain the subtleties involved in index
concurrency control, especially with a richer set of index
primitives like range scans and with conditions like " <’,
‘<=’ ">’ and > =’ being associated with the input
key value and the key value to be fetched. Most papers
on index concurrency control ignore these very important
operations.

1.1. Overview

For the benefit of the reader who may at first like to
have an overview of ARIES/KVL’s locking, the table in
Figure 1, summarizes the locks acquired during different
operations. In the section "“5.5. Discussion”, we try to
provide an intuitive explanation of ARIES/KVL's locking
behavior. Example locking scenarios are sprinkled
throughout the paper. This paper is part of the ARIES
series of papers that we have authored. These papers
describe an integrated set of concurrency control and
recovery protocols which provide high concurrency and
efficient recovery by exploiting the semantics of the user
operations.

The rest of the paper is organized as follows. In section
2, we introduce some of the basics relating to locking
and latching, and the tree architecture. in order to grad-
vally introduce the reader to the complexities and sub-
tleties involved in index concurrency control, initially, a
very simplified view of the index concurrency control
problem is presented in section 3 and then a simple
algorithm is described. In the rest of the paper, this
simple algorithm is enhanced to provide more function
and higher levels of concurrency. Section 4 introduces
the algorithm for tree traversal, while section 5 presents



NEXT KEY VALUE CURRENT KEY VALUE
FETCH & S for Commit Duration
FETCH NEXT
INSERT Unique Index IX for Instant Duration IX for Commit Duration if Next Key Value Not
Previously Locked in S, X, or SiX Mode
X for Commit Duration, if Next Key Valye
Previously Locked in S, X, or SIX Mode
Nonunique Index IX for Instant Duration, if Apparently insert 1X for Commit Duration, if (1) Next Key Not
Key Value Doesn’t Already Exist Locked During This Call, OR (2) Next Key
. : Locked Now But Next Key Not Previously
No Lock, if insert Key Vaiue Already Exists Locked in S, X. or SIX Mode
X for Commit Duration, if Next Key Locked
Now and It had Already Been Locked in S, X,
or SIX Mode
DELETE Unique Index X for Commit Duration X for Instant Duration
Nonunique Index X for Commit Duration, if Apparently Delet2 X for instant Duration, if Delete Key Value
Key Value Will No Longer Exist Will Not Definitely Exist After the Delete
No Lock, if Value Will Definitely Continue to X for Commit Duration, if Delete Key Value
Exist May or Will Still Exist After the Delete

Figure 1: Summary of Locking in ARIES/KVL

all the locking algorithms for leaf-level operations like
key fetch, range scan, key insert and key delete, and for
structure modification operations. The locking algorithms
used in System R and the experiences with those algo-
rithms in IBM products are described for comparison
purposes in section 6. Section 7 concludes the paper by
discussing the application of our ideas to other access
structures (e.g., links) and other index concurrency con-
trol protocols.

2. The Basics

In this section, we introduce some of the basic concepts
of locking and latching that are of interest here. We al<o
introduce the index tree architecture that we are assum-
ing in our discussions.

2.1. Locks and Latches

We use locks and latches for synchronizing concurrent
activities. Latches are like semaphores. Usually, latches
are used to guarantee physical consistency of data, while
locks are used to assure logical consistency of data.
Typically, latches are owned by processes whereas locks
are owned by transactions. The distinction between pro-
cesses and transactions makes a difference in a system
like R* [LHMWY84] in which, even without nested trans-
actions being supported, multiple processes may be
working on behalf of a single transaction. We do not
exclude the possibility of support for nested transactions
in a system which implements ARIES/KVL. In fact, in
[RoMo89], ARIES has been extended to support a very
general model of nested transactions.

Latches are usually held for a much shorter period of
time than are locks. Also, the deadlock detector is not

informed about latch waits. Latches are requested in
such a inanner so as to avoid deadlocks involving fatches
alone, or involving latches and locks. Acquiring a latch
is much cheaper than acquiring a lock (in the no-conflict
case, 10s of instructions versus 100s of instructions),
because the latch control information is always in virtual
menory in a fixed place, and direct addressability to the
latch information is possible given the latch name. On
the other hand, storage for locks is dynamically managed
and hence more instructions need to be executed to
acquire and release locks.

The compatibility relationships amongst the different
modes (S, X, 1S, IX, SiX) of locking that were invented
in the context of System R [Gray78] are shown in Figure
2. A check mark (’/’) indicates that the corresponding
modes are compatible which means that two different
transactions may hold a lock simultaneously in those
modes. ARIES/KVL, by using for key value locking also
the 1X and SiX lock modes, which were intended originally
for table level locking, is able to better exploit the se-
mantics of the index operations to improve concurrency,
compared to the System R index protocols. These modes
are used in addition to the S and X modes which were
the only ones that were originally used in System R for
key vaiue locking.

Lock requests may be made with the conditional or the
unconditional option. A conditional request means that
the requestor is not willing to wait if the lock is not
grantatle immediately at the time the request is pro-
cessed. An uncenditional request means that the reques-
tor is willing to wait until the lock becomes grantable.
Locks may be held for different durations. An uncondi-
tional request for an instant duration lock means that
the fock is not to be actually granted, but the lock man-

1 DB2, IBM and 0S/2 are trademarks of the Internatinnal Business Machines Corp. NorStop SOI, and Tandem are trademarks of Tandem Computers, Inc.
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Figure 2: Lock Mode Compatibility Matrix

ager has to delay returning the lock call with the success
status until the lock becomes grantable. Manual duration
locks are released some time after they are acquired
and, typically, long before transaction termination. Com-
mit duration locks are released only at the time of ter-
mination of the transaction, i.e., after commit or abort is
completed. The above discussions concerning conditional
calls, S and X modes, and durations, except for commit
duration, apply to latches also. When a lock request for
a resource returns successfully, the lock manager will
indicate whether the current transaction was already
holding {and not yet released) a lock on that resource
before the current request was issued. In this case, the
mode of the previously acquired lock will be returned.

Transactions may request different levels of isolation (or
consistency) with respect to each other. In the context
of System R, levels 0, 1, 2, and 3 were discussed
[Gray78]. The IBM products SQL/DS, the 0S/2 Extended
Edition Database Manager' and DB2, and Tandem’s
NonStop SQL support the isolation levels cursor stability
(consistency level 2 of System R) and repeatable read
(consistency level 3 of System R). These consistency
levels are referred to as CS and RR, respectively. Both
return only committed data to the transactions, unless
the accessed data is uncommitted data belonging to the
accessing transaction. Due to fack of space, CS trans-
actions are not treated in this paper (see [Moha89]).

With RR, locks are held on all the  accessed data until
the end of the transaction. Actually, locks are somehow
held even on nonexistent data which could have satisfied
the query. Later in this paper, we discuss how this is
done when the accesses are made via indexes. With
RR, if a certain query were to be posed at a certain
point in a transaction, and a little later the same query
were to be posed within the same transaction, then the
response to the query would be the same, even if it
were a negative response like not found, unless the
same transaction had changed the data base to cause
a difference to be introduced in the responses. If all the
transactions are run with RR, then their concurrent ex-
ecutions would be serializable in the sense of [EGLT76].
That is, the concurrent execution would be equivalent to
some serial execution of those transactions.

2.2. Conventions and Storage Structures

The data storage model that we assume is that of System
R, in which the data (i.e., the records of the table) are
stored in a set of data pages, which are separate from
the indexes. All the indexes on the table contain only
the key values and record identifiers (RIDs) of records
containing those key values. The RID of a record iden-
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tifies the record’s location in the set of data pages. All
the leaf pages of an index contain key-value,RID pairs,
where the RID is treated as if it were an extra key field.
Without loss of generality, we assume that the keys are
maintained in ascending collating order on all the key
fields, including the RID. The leaf pages alone are for-
ward and backward chained using the PrevPage and
NextPage fields so that ascending and descending range
scans could be supported (see Figure 3).

Every nonleaf page contains a certain number of child
page pointers (page numbers) and one less number of
high keys - each high key is associated with one child
page pointer and there is no high key associated with
the rightmost (last) child’s page pointer. The high key
stored in the nonleaf page for a given child page is
always greater than the highest key actually stored in
the corresponding child page (hote that RID is included
in the high key).

In most systems, when a nonunique index contains du-
plicate instances of a key value, the key value is stored
only once in each leaf page where it appears. The single
value is followed by as many RIDs as would fit on that
page (see Figure 3, which shows a leaf page - the key
value H has duplicates (RIDs 4 and 8)). We call this a
cluster of duplicates.

The use of the key map, which points to the keys in
ascending key sequence, allows one to do binary search
even when dealing with varying length keys or nonunique
indexes (see Figure 3). In the nonleaf pages also, the
key map is used and the map points to high key page
pointer pairs in high key sequence. The pointer to the
last child alone is stored separately in the page header.
The nonleaves which are the parents of leaves have a
flag so that, when a leaf is about to be accessed, the
latch on the leaf can be obtained in the appropriate
mode, depending on the operation to be performed on
the leaf.

We refer to the page split and page deletion operations
as structure modification operations (SMOs). A page is
removed from the tree at the time the only key in the
page is deleted. Page splits and deletions are propagated
up the tree from the leaves toward the root (i.e., bottom-
up). To prevent deadlocks involving latches, the page
latches acquired at a lower level of the tree (e.g, leaf)
will be released before requesting latch(es) at the higher
level (e.g., nonleaf). SMOs are serialized by acquiring a
tree latch in the X mode. Typically, no }/Os will be done
while the tree latch is held and hence this serialization
should not cause any significant reduction in concurrency
(see [MolLe89] for more discussions and ways to relax
this restriction). During the actual page split or deletion
process, the tree structure may be inconsistent. That is,
a child may be split (deleted, respectively) but the parent
does not yet reflect the effect of that split (deletion).
This localized path inconsistency is detected by noticing
that a bit called the SM_Bit (Structure Modification Bit)
has a value of ‘1. The latter is set by the structure
modifying transaction in the affected leaf and nonieaf
pages. In order to recover from a problem caused by
such ar inconsistency and to ensure that incorrect data
base recovery does not occur as a result of attempting
to perform a key insert or delete on a leaf which is a
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Figure 3: Tree Architecture

participant in an incomplete SMO (see [MoLe89] for
details), the transaction merely requests the tree latch
in the S mode, thereby being forced to wait for any
incomplete SMO to complete and for a point of structural
consistency (POSC) to be established. Thus, our design
principles of indication of incomplete SMO via SM_Bit
and SMO serialization via tree latch allow us to perform
operations only in a valid state of the tree.

We assume that once an index is created its root page
does not change. That is, when a root split is needed,
the root page’s contents are copied to a new page, which
becomes the root’s chiid and which is then split. During
a split of a leaf, we split to the “right”. The new high
key for the split page will be the smallest key that is
moved to the new leaf page. We assume that every
index page has a version number (VN) in its header and
that every time the page is latched and modified, the
VN is updated so that it is a monotonically increasing
value. In systems which log index changes (e.g., DB2),
VN could be the log sequence number (LSN) of the log
record describing the most recent change to the page.
In systems which do not log those changes {e.g., System
R), it could be a counter which is incremented by one
for every change.

3. A Simple Locking Algorithm

In this section, we start with a simple set of index oper-
ations and discuss the simple locking algorithm needed
to support them. Then, we show why the simple locking
algorithm needs to be changed when additional opera-
tions and concurrency requirements are to be supported.
We delay discussing the algorithm followed during the
traversal of the tree until the section “4. Tree Traversal
in ARIES/KVL".

3.1. Simple Operations

Let us first consider only the three index operations:

1. Fetch: Given akey value, fetch the RID(s) associated
with it, if the key value is present.

2. Insert. Insert the given key (key-value,RID).

3. Delete: Delete the given key (key-value RID).
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We assume that before the insert and delete calls are
made to the index manager, an X lock would have been
obtained on the underlying data (either a record lock on
the record with the input RID or a data page lock on the
data page containing the record, depending on the gran-
ularity of data locking). In the algorithm that supports
only these operations, the obvious choice for the fock
name would be to derive it using the key value. Since
key values can vary in size and since lock managers
typically deal with only fixed length lack names, the key
value would have to be hashed to construct a fixed
length lock name. The index ID will also be concatenated
with the hash value to make the lock name unique across
all the indexes in the data base.

The locking algorithm to be followed is very simple.
Once the index manager is invoked with one of the above
operations, before the index manager starts traversing
the tree, it would first acquire the appropriate mode lock
(S for Fetch, and X for Insert and Delete) on the key
value. The S fock continues to be held even if the looked-
up key is not found. This is the way to ensure that no
other transaction is able to insert the same key value
before the transaction that did the look-up terminates.
Hence, the latter will be guaranteed the RR property.

Note that the modes of the locks acquired by readers
and modifiers must be incompatible in order to ensure
that (1) an uncommitted inserted key of one transaction
is not fetched by another transaction and (2) a fetching
transaction is blocked when there is an uncommitted
delete of the requested key by another transaction. The
choice of the S and X modes to ensure this serializability
property has the following bad consequence. Even
though 2 different transactions are deleting (or inserting)
2 different records belonging to a particular table, if both
the records have the same key value for a particular
(nonunique) index, then one of them will be forced to
wait fot the other to terminate. There is no reason to
prevent these two operations from happening concur-
rently. One way to permit this level of concurrency is
to let the key delete {or insert) operation acquire the X
lock instead of the X lock. Since 1X is incompatible with
S, we still guarantee RR for readers. With these changes,
inserts and deletes of the same key value can go on



concurrently by different transactions. These changes
are correct, as long as we consider only nonunique in-
dexes.

If we now consider unique indexes, we could have a
problem with a scenario like the following: (1) T1 deletes
the key value ‘A’ (with RID 20} after acquiring the /X
lock on ‘A’; (2) T2 inserts the key value A’ (with RID 10)
after acquiring the /X lock on ‘A’ (this is possible since
IX and IX are compatible and T2 does not find the value
‘A’ already in the index - T2 does not realize that there
is an uncommitted delete of 'A’); (3) T2 commits; (4) T1
aborts; (5) T1 puts back the value A’ (with RID 20).
Clearly, there is a problem now since the uniqueness
constraint of the index is being violated. Not letting T1
put back the value would violate the transaction atomicity
property. The way out of this problem is to change the
locking algorithm for unique indexes alone so that the
insert and delete operations get the X lock, instead of
the /X lock.

3.2. More Powerful Fetch Operation

Now let us consider enhancing the functionality of the
index manager so that in the Fetch call, in addition to
asking for the RID(s) associated with the given key value,
one could also ask for the retrieval of that key value
that is present in the index and that is higher than the
given key value (e.g., for the leaf page of Figure 3, the
Fetch call ’> F’ should return G,5). The problem here
is that before the index manager starts traversing the
tree it does not know what lock to obtain. This means
that the locking for the Fetch call must be postponed
until a key value matching the search criterion is found
or it is determined that no such key exists. The same
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Time Tran Action
10 T1 X lock C and insert C on P2
20 T2 Looks up key > A; accesses P1 first
and then P2; requests S lock on C and
waits
30 T2 Gets lock, notices P2 hasn't changed

since going into wait - reads C

Serializability Problem if at Time 25 T1 Inserts B and then
Commits, but T2 Does Not Read B

Solution: 1t Waited on Lock for First Key on Page, Even

it Page Has Not Changed, Restart Search From Previous
Page if Search Originally Began on Previous Page. Rede-
termine Key Satisfying Search Condition

Figure 4: Repositioning After Lock Wait
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problem will arise, if we enhanced the Fetch call to let
the caller specify only a prefix of a key value and ask
for the retrieval of the first key value that matches the
given prefix. Once the key value is determined and a
lock is requested, the lock may not be granted right
away since the key value could be in the uncommitted
state. This condition must be handled carefully. Other-
wise, holding the latch on the leaf page and waiting for
a lock could lead to a reduction in concurrency and,
more importantly, to a deadlock that goes undetected.
This requires that the lock be first requested conditionally
(i.e., while holding the latch on the leaf page). If the lock
is not granted, then the latch must be released and the
lock must be requested unconditionally. Once the lock
is finally granted, it may not be correct to return the
locked key value as the result, due to situations like the
one illustrated in Figure 4. We need to verify that the
previously determined information is still valid. We call
this design principle revalidation after unconditional lock-
ing.

Even after we ensure that what is locked is the right
value to be returning to the caller (possibly after being
forced to lock a different value from the one that was
originally locked due to the changes that occurred while
waiting for the first lock to be granted), there may still
be problems. This comes from the fact that what the
Fetch call locked will not prevent another transaction
from later inserting a key value that (better) satisfies
the Fetch calt of the first transaction. If such an insert
were to be permitted and the inserting transaction were
to commit later, and then the Fetching transaction were
to reissue its call, a different result would be returned,
thereby violating the RR guarantee. For example, if the
call were to fetch a key value '> F’, then 'G" would be
locked and returned. But this lock will not prevent an-
other transaction from inserting the value 'FF’, which
would be returned, instead of 'G’, if the Fetch call were
to be repeated by the first transaction.

Somehow, the fetching transaction needs to communi-
cate, to inserting transactions, the fact that no new key
should be inserted in the gap (i.e., between 'F’ and 'G’).
It would be extremely inefficient to make Fetch acquire
an S lock on all possible key values in the gap (i.e., the
nonexistent keys). The simplest way this is accomplished
is for the Fetch operation to leave behind an S lock on
the key value that satisfied the search condition or the
next higher value that is present, if no existing key sat-
isfied the search condition. Thus, a lock on a key value
is really a range lock on the range of keys spanning the
values from the preceding key value that is currently
present in the index to the locked key value. For this
range-locking protocol to work, the inserting transaction
must check the lock on the next key value, before it does
the insert of a given key value. The mode of Insert’s
lock request must be such that it is incompatible with
the S lock acquired by Fetch.

For the time being, let us assume that the mode of
Insert’s next key lock request is X, as is the case in
System R. If the lock on the next key is not grantable
righ* away, then the insert must be delayed until that
lock becomes grantable. Instead of using predicate lock-
ing, we are using next key locking to get a similar effect.



We call this design principle range locking via next key
locking. This is a conservative approach since the
nongrantability of the X lock on the next key is interpreted
to imply that the holder of that lock does not want the
insert to happen until the holder terminates, when in fact
the holder might have the lock on the next key for a
totally different reason (e.g., it is an uncommitted insert,
or a Fetch was done specifically for that next key and
that Fetch request would not be satisfied by the value
about to be inserted). The lock on the next key need not
be held after the insert operation has been performed.
Only as of the time of an insert, it must be ensured that
the lock on the next key is not held by another transaction.
Hence, the next key lock is requested for instant duration
during an insert operation.

Just as Insert needs to do next key locking, Delete also
needs to do such locking. Otherwise, when a key is in
the uncommitted deleted state, Fetch will not be aware
of such a key since Fetch locks only those keys that are
actually present in the index. As a result, Fetch would
wind up retrieving the next key erroneously, when in fact
the deleted key would have been the right one to retrieve
had it been present. This would cause an RR violation,
if the delete were to be rolied back and the Fetch were
to be repeated. To handle this correctly, Delete needs
to leave behind a lock on the next key which would cause
Fetch to wait until the deleting transaction terminates.
For this to happen, the mode of the next key lock must
be incompatible with the S lock that would be acquired
by Fetch. The next key lock must be held until commit
by the deleting transaction. For the time being, let us
assume that the mode of this request is X, as is the case
in System R. Contrast the commit duration next key lock
required in this case with the instant duration next key
lock that is sufficient for the insert case - the difference
comes from the fact that an uncommitted inserted key
is visible to transactions that visit the page later, whereas
an uncommitted deleted key is not visible, since the key
is physically removed from the page.

It should be obvious that the next key locking cannot be
done before the tree is accessed since it is not known
as to what currently exists in the index as the next key,
until the leaf page is accessed.

in the rest of this paper, we enhance this simple algorithm
in order to improve its concurrency and performance
characteristics. But before presenting the details of the
improved algorithm, called ARIES/KVL, we discuss next
the problems that we were interested in solving.

3.3. Problems

~We would like to use key values as the objects of locking.
This is to be contrasted with the data-only locking ap-
proach taken in ARIES/IM [MolLe89], where the locking
is always done on the underlying data record, which is
stored elsewhere and whose key is the one in the index
entry to be locked. ARIES/KVL’s index-specific key value
locking would be necessary where the records are stored
in the index itself and an index entry contains the cor-
responding record, instead of a record identifier, as in
Tandem’s NonStop SQL. it could also potentially lead to
higher concurrency compared to the data-only locking
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feature of ARIES/IM, but with an increase in the locking
overhead. Given that, the following problems arise:

1. How to support serializability and locking during
range scans, without requiring support for predicate
locking?

We would like to avoid having to support predicate
locking, even with only simple predicates, since
checking for compatibility among predicates is much
more expensive than checking for compatibility
among locks. With the latter, the data structure is
usually a hash table that can be looked up very
efficiently. No such simple data structure exists for
organizing a collection of predicates and comparing
them.

2. If locking a range of keys is going to be supported
as in System R (i.e., lock the smallest key that exists
in the index that is higher than the end point of the
range - see the section “6. System R"), how to allow
one transaction to insert a key value that is just
smaller than an already existing uncommitted key
inserted by another transaction?

3. In a nonunique index, how to let more than one
transaction perform concurrently inserts of different
index entries with the same key value?

4. In anonunique index, how to let different transactions
concurrently perform deletes of some duplicate in-
stances of keys in two neighboring clusters of dupili-
cates with different key values?

4. Tree Traversal in ARIES/KVL

The basic search routine, Search, takes as input the key
(or prefix of key) value, the target level (at which to
stop), the action routine (Fetch, Insert, or Delete) to con-
tinue processing after Search has reached its target
page, and other parameters. Search traverses the index
tree from one page to that page’s child by holding an S
latch on the parent while requesting a latch {(in S mode,
if nontarget child, else in S or X mode, depending on the
action to be performed) on the child. This protocol is
called lock-coupling in [BaSc77]. Our design principle
of latch-coupling allows us to validate the path from the
parent to the child.

The pseudo-code for this procedure is given in Figure 5.
To simplify the presentation, we have shown only the
case where the target level is a teaf. We have not
specified the case where the root is a leaf.

If the child is participating in a structure modification,
which is done bottom-up, by another transaction, then
the traverser waits for the propagation of the SM to be
completed.? This is done by requesting the tree latch in
the S mode, after releasing the page latches. Once the
tree latch is granted, Search restarts its tree traversal.
We may optimize the retraversal by restarting at the
parent, if the parent had not been modified since it was
seen last - a modification of an ancestor can be detected
by remembering, as Search traversed down the tree, the
VNs of all the accessed pages from the root; even if the



/* for simplicity, root = leaf case not specified here */
S Latch Root and Note Root's VN

Child := Root
Parent := NIL
Descend:

ELSE S tatch Child
Note Child's VN
IF Child is a Nonleaf Page OR (Child.SM_Bit = '1') THEN
IF Child.SM Bit = '0' THEN
IF Parent <> NIL THEN Uniatch Parent
Parent := Child
Child := Page_Search(Child)
Go to Descend
ELSE
Unlatch Parent & Child
S Latch Tree for Instant Duration

ELSE

Unlatch Parent

Ist_Leaf := Child

CASE Operation OF
Fetch:
Insert: ...
Delete: ...

END

IF Child is a Leaf Page AND Operation is (Insert OR Delete) THEN X Latch Child

/* Not part of an ongoing SH */

/* Search Child to Decide Which Page to Access Next */
/* Unfinished Structure Hodification */
/* Wait for Unfinished SH to Finish */

Unwind Recursion as far as Necessary Based on Noted Page VNs and Go Down Again
/* Child is Leaf; Appropriate Latch (S or X) Held on Child */

/* Invoke Fetch Action Routine
/* Invoke Insert Action Routine */
/* Invoke Delete Action Routine */

Figure 5: Search Procedure for Tree Traversal

*/

parent has changed, we will still be able to restart from
that page, as long as the key of interest is still covered
by that parent. Otherwise, we can restart from the grand-
parent and so on recursively, if necessary. Once Search
reaches the leaf level, it leaves a latch on the leaf (call
it the 1st Jeaf) and passes control to the appropriate
action routine (Fetch, Insert, or Delete).

5. Basic Operations in ARIES/KVL

There are four basic index operations that ARIES/KVL
supports:

1. Fetch: Given a key value or a partial key value (its
prefix), check if it is in the index and fetch the full
key. A starting condition (=, >, or > =} will also
be given.

2. Fetch Next. Having opened a range scan with a
Fetch call, fetch the next key satisfying the key range
specification (e.g., a stopping key and a comparison
operator (<, =, or <=)). .

3. Insert. Insert the given key (key-value RID). For a
unique index, Search is called to look for only the
key value. For a nonunique index, the whole new
key is provided as the Search key.

4. Delete: Delete the given key (key-value RiD).

5.1. Fetch

The pseudo-code for the Fetch action routine is given in
Figure 6. When Fetch is called with an S latch held on
the 1st leaf, it searches the leaf to find a satisfying key

(i.e., the smallest key value that matches the starting
condition, or, if there is no such key value, then the next
higher key value). The 1st leaf could be in one of two
states. In the following, we discuss the two cases and
explain how Fetch deals with each one of them.

1. A satisfying key is found in the 1st leaf.
This will be the most common case.
2. 1st leaf does not have a satisfying key.

Fetch S latches the successor page (call it the 2nd
leaf). if the 2nd leaf is empty (SM_Bit must be equal
to '1’), then Fetch unlatches both pages and requests
the tree latch in the S mode. Once the tree latch is
granted, it restarts the search. If a satisfying key is
found in the 2nd leaf (SM_Bit may be equal to "1’),
then Fetch continues to hold the latch on the
1st_Leaf. This is done to make sure that a key
satisfying the request does not suddenly appear "be-
hind the back of the searcher” in the 1st leaf, without
the knowledge of the searcher, due to the abort of
a key delete operation by another transaction or due
to an insert by a transaction in forward processing.
This much care is required to guarantee RR.

if Fetch reaches the /ast (i.e., the rightmost) leaf page
and no matching or higher key value is found, then it is
treated as the EOF (End Of File) situation and a special
lock name unique to this index is used as the found key
value’s lock name. If the requested key value was not
found but a higher valued key was found or it is the EOF
case, then the not found status will be returned to the

2 We can do much better than this. For simplicity of presentation here, we are not showing how Search can traverse down the tree even when the child is
involved in a page split, thereby improving concurrency. Fetch can also deal with a leaf which is a participant in an on-going split. The interested reader
is referred to [Moha89, MoLe89] for the details of how these are accomplished.
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IF Satisfying Key Value Not Found in Ist_{eaf THEN
2nd_Leaf := Ist_Leaf.NextPage
IF 2nd_Leaf <> NIL THEM
S Latch 2nd_Leaf
IF 2nd _Leaf has a Satisfying Key THEN
Child := 2nd_Leaf
Found Key := Satisfying Key in 2nd_Leaf

Unlatch 1st_Leaf and 2nd_Leaf

Found Key := Satisfying Key in lst_Leaf

Unlatch 1st_Leaf and 2nd_Leaf, if Accessed
IV Locked Key Satisfied Search Condition THEN Return Key
ELSE Return Not Found

/* Satisfying Key Value - Requested Key, if it Exists; Otherwise, MNext Higher Key Value */

/* 2nd_Leaf exists */

/* 2nd_Leaf is Definitely Hot Empty */

ELSE  /* 2nd_Leaf Must be Empty - wait for tree latch */

S Latch Tree for Instant Duration /* Wait for Unfinished SH to Finish */
Unwind Recursion as far as MNecessary Based on Noted Page VHs and Go Down Again
ELSE Found Key := End_Of File /* 2nd_teaf Doesn't Exist */
ELSE /* 1st_Leaf has a Satisfving Key */

/* 1st_Leaf & 2nd_Leaf, if Accessed, Will he Held Latched in S Hode */

S Lock Found Key Value for Commit Duration (Maybe End _Of File)

Figure 6: Pseudo-Code for Fetch Action Routine

caller. In any case, while holding the page latch(es), a
conditional S lock is requested on the found key value?
if the conditional request is not granted, then, in order
to avoid a deadlock involving latches, the page latches
must be released and then the lock must be requested
unconditionally. Once the unconditional request is
granted, then the page must be reexamined to make
sure that the previously retrieved information is still the
correct one. If the state is not the same, then the new
satisfying key must be determined and locked.

With the leaf page as depicted in Figure 3, if the call
were to locate the key GG, then the lock would be ac-
quired on the key value H of H 4, which is in the next
cluster of duplicates; on the other hand, if the requested
key had been G, then the lock would be acquired on the
key value G of G,5. Even if the requested key value is
not found, the next key value is locked to make sure
that the requested key does not suddenly appear (due
to an insert by another transaction) before the current
transaction terminates and prevent RR from being pos-
sible. As we will see later, the next key value locking
done during inserts makes it possible to guarantee RR.
This locking in Fetch also makes sure that the requested
key has not heen deleted by another transaction which
has not yet committed. As we will see later, the deleter
of the last instance of a key value leaves a trace of ils
action by X locking the next key value for commit duration,

If the conditional lock request is not granted, then the
found key and the current page’s VN are remembered.
Then, the current page and any other page that is still
held latched are unlatched and an unconditional. manual

duration, S lock is requested on the found key value.
After the lock is granted, the leaf page which contained
the key is relatched. This is done to enforce our earlier
described design principle of revalidation after uncondi-
tional Iccking. The VN was remembered before unlatching
to make the cost of revalidation cheap. If the page was
the 1st leaf page (this check is to handie the problem
illustrated in Figure 4) and the page’s VN is still the
same, no further work is required. This means that the
page had not changed since it was seen last. The page
is unlatched and control is returned to the caller with
the appropriate status, and, possibly, the key.

If the page’s VN is different and the page is (1) empty,
{2) i5 no longer part of that index, (3} is no longer a leaf
page, or (4) is nonempty but it was the 2nd leaf and the
first key in the page is greater than or equal to the
searched-for key (may not necessarily be the /ocked
key). then Fetch restarts Search. If the first key in the
page is /ess than the searched-for key, but the page’s
VN has changed and the highest key in the page is equa/
to cr greater than the searched-for key, then Fetch
searches that page again; otherwise, it restarts Search.
If the key value found now matches the previously locked
key value, then the page is unlatched and the appropriate
status, and, possibly, the key are returned to the caller.
If a different key value is found, then the old key value
is unlocked and the new key value is locked using the
above algorithm in a recursive manner as necessary.

For a Fetch call that is being issued at the start of a
range scan {i.e, the subsequent calls will be Fetch Next
calls), it a key is heing returned to the caller, then Fetch

3 From now on, 1o shorten the paper, all the Tock calls are shown or described as if they would be granted yight away (i.c., when requested initially with

the page latches held). To avoid deadlocks and to increase concurrency, as discnssed heforeovf the fock 1o not granted when requested conditionally, then
the following steps must be taken: (1) all the latches must be released, (2) the Tock must be vequested unconditionally, and (3} once the lock is granted, a
verification must be performed o cnsure that corrective action is taken, if a change of aterest had oecnred when the latches were not held, Before

unlatching the pages, the VNs would be noted to make the detection of no changes a cheap operabion



[F Ist_Leaf Needs to be Split THEN
Invoke the Page_Split Procedure and Return

IF Insert Key Value Already in Ist leaf THEM
IF Unique Index THEN
S Lock Insert Key Value for Commit Duration
Return Unique Key Violation Status
ELSE
IX Lock Insert Key Value for Commit Duration
Insert Key, Log, Unlatch 1st_Leaf and Return

/* Insert Key Value NOT Already in Ist_Leaf */

S Latch 2nd Leaf
IF 2nd_Leaf is Empty THEN
Unlatch 1st_Leaf and 2nd_Leaf
S Latch Tree for Instant Duration

ELSE
IF Insert Key Value Found in 2nd_Leaf THEM
IX Lock Insert Key Value for Commit Duration

ELSE Next Key Value
ELSE
IF No Higher Key Value in 1st_Leaf THEN Next Key Value
ELSE Next Key Value := Higher Key Value in 1lst_leaf

:= First Key Value in 2nd_Leaf

IX Lock Next Key Value for Instant Duration
Unlatch 2nd_Leaf, if Accessed
ELSE Lmode:= 'IX'

Lock in Lmode Insert Key Value for Commit Duration
Insert Key in 1st_leaf, Log, Unlatch Ist _Leaf and Return

/* Nn Space for Insert of Key */

/% Ho leed to Lock Mext Key */

/* Nonunique Index and Insert Key Value Already on Ist Leaf */

IF No Higher Key Value in 1st_Leaf AND 2nd_lLeaf Exists THEN
/* While Holding X Latch on Ist_Leaf */
/* Page Delete in Progress - Wait for it to he Over */

Unwind Recursion as far as Necessary Based on Moted Page VHs and Go Down Again
/* 2nd_teaf is NOT Empty */

/* This Can't be a Unique Index */
Unlatch 2nd_Leaf, Insert Key in lst_Leaf, Log, Unlatch 1st_Leaf and Return

:= End Of File

IF Next Key Already Locked in X, S or SIX Mode by Current Transaction THEN Lmode :=

Figure 7: Pseudo-Code for Insert Action Routine

e

remembers the returned key’s key map slot number,
and, for a nonunique index, the ordinal position of the
returned RID in the RID list of the duplicate cluster. This
position information will be used during a subsequent
Fetch Next call to avoid a binary search to locate the
current key, if the page’s VN had not changed in between.
To detect a change to the page in between, the page’s
VN is remembered in the cursor’s control block.

5.2. Fetch Next

If the current cursor position already satisfies the stop-
ping key specification {(unique index and a stopping con-
dition of "="), then Fetch Next returns right away to the
caller with a not found status. Otherwise, the leaf page
which is expected to contain the key on which the cursor
is currently positioned is latched and a check is made
to see if the page’s current VN is different from the VN
remembered at the time of the last positioning. The
current key {(current cursor position) may not be in the
index anymore due to a key deletion earlier by the same
transaction. If a change is noticed, then repositioning to
the next key-value ,RID pair is done as before in a Fetch
call.

The difference from a Fetch call is that, if the next pair’s
key value is the same as the current position’s key
value, then there is no need to lock that value again. If
the key value is different and the stopping condition is
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violated (and hence a no!l found condition needs to be
returned to the caller), then that higher key value has
to be locked, unless the stopping condition was “=" and
the stopping key was the most recently returned key
value. In the latter case, the lock already held on the
stopping key value will be sufficient to prevent future
insertions, by other transactions, of other key-value RID
pairs with the stopping key value.

With the leaf page of our example of Figure 3, if the
stopping condition is = F, then, after F,7 is returned, if
there is a Fetch Next call, then there would be no need
to lock G before a not found is returned. On the other
hand, if the stopping condition is <~ G or = FF then G
would be locked:

5.3. Insert

The pseudo-code for the Insert action routine is given in
Figure 7. If there isn’t enough space to insert the key,
then the: page splitting algorithm is executed. The pseudo-
code for the page split procedure is presented in Figure
8. Note that the tree latch is acquired only after all the
affected pages have been brought into the buffer pool.
This is done to minimize the serialization delays.due to
the X tree latch. Note also that the effects of the split
are completely propagated up the tree before the insert
which caused the split is performed. Points like this are
further discussed and rationalized in [Moha89, Mol e89].



2nd_Leaf := 1st_Leaf.NextPage
IF 2nd_Leaf <> NIL THEN
Fix 2nd_Leaf in Buffer Pool

X Latch Tree for Manual Duration

Allocate
New_Page.SM_Bit :=
New_Page.PrevPage := 1st_Leaf
New_Page.NextPage := 2nd_Leaf
1st_Leaf.SM Bit := '1'
Ist_Leaf.MextPage := New Page
Move Some Keys from 1st_Leaf to New Page
and Log Changes
Unlatch New Page
IF 2nd_Leaf <> NIL THEN
X Latch 2nd_Leaf
2nd_Leaf.PrevPage
Unlatch 2nd_Leaf
Unlatch 1st_Leaf
Propagate Split Up the Tree, Reset SM_Bits to 'G'
Unlatch Tree and Then Restart Insert

New_Page and X Latch it
I1l

:= New Page

Figure 8: Pseudo-Code for Page_Split Procedure

-

if there is enough space, then, after the page is searched,
Insert is positioned at a key with the same key value,
positioned at a key with a higher value, or positioned
past the last key in the page. If the key value to be
inserted is already in the leaf and this is a nonunique
index, then a commit duration IX lock needs to be ac-
quired on that key value and there is no need to lock
the next key value. For the example of Figure 3, an
insert of H,6 would require locking in IX mode the key
value H. Getting only an IX lock, as opposed to an X
lock, allows the insertion of the same key value or a
smaller key value by multiple transactions concurrently
since IX is compatible with IX. Such concurrent activities
are not possible in System R since the inserted key
values are always locked in the X mode in that system.
Note that since IX is incompatible with S, readers will
still not be able to read uncommitted data, unless the
reader is the only inserter of that uncommitted value.
In the latter case, the held lock mode will become SIX.
Since SIX is incompatible with 1X, inserts by other trans-
actions will be delayed, as is required,

If the key value to be inserted does not already exist in
the 1st leaf and Insert is positioned past the last key in
the 1st leaf, then Insert S latches the 2nd leaf and po-
sitions on the next key-value RID pair, if there is one, in
a manner similar to what happens in Fetch. Note that
only the 1st leaf needs to be latched in the X mode. The
2nd leaf needs to be latched only in the S mode since
Insert is only trying to prevent a reader from scanning
from the highest key in the 1st ieaf to the next key in
the 2nd leaf.

If Insert were positioned at an equal key value in a
unique index, then it requests an S lock on the found
key value to make sure that the key value is in the

401

committed state, unless of course it is an uncommitted
insert of the same transaction. After this lock is granted,
if Insert discovers that the previously found key value
is still in the index, then it returns the unique key viola-
tion status to the caller. The lock is a commit duration
one to make sure that the error condition is repeatable.

If the to-be-inserted key value is not already present,
then Insert requests an instant duration IX lock on the
next key value. In System R, the next key lock is always
obtained. Furthermore, it is always requested in the X
mode. ARIES/KVL's IX locking permits the insert to occur
when the next key value is an uncommitted insert of
another transaction, whereas System R causes a wait
under those conditions. In ARIES/KVL, with the example
of Figure 3, an insert of HH,9 would require acquiring an
instant duration IX lock on | and later a commit duration
X lock on HH.

One of the purposes of the instant duration lock that is
requested on the next key value is to determine if, as
of the time the X latch was acquired on the leaf (hence
the instant duration rather than commit duration fock),
there was any other concurrently running transaction
which had looked for and not found the key value being
inserted. This is to handle the phantom problem
[EGLT76] and to guarantee RR. Note that in a nonunique
index, when we are adding one more instance to an
already existing key value, the 1X lock obtained on the
key value being added is itself sufficient to make sure
that no other concurrent reader’s previously read state
is being disturbed. Not having to lock the next key value
should lead to higher concurrency in this case compared
to the other cases. The System R method does not have
this optimization. The advantage of not locking the next
key value, if we can avoid it, is that the inserter does
not have to wait even if the next key value is currently
locked by another transaction in an incompatible mode
(an S lock due to a read, or an X or SIX lock due to an
uncommitted insert or delete - see below). It will possibly
save even an 1/O if the next key value is not in the same

page.

In the case of a unique index, with the next key value
locking, Insert is also trying to determine if there exists
an uncommitted delete by another transaction of the
same key value as the one to be inserted.

When the instant duration lock on the next key value is
granted, using the return code from the lock manager,
Insert checks whether the current transaction already
held that lock in the X, SIX, or S mode. If the lock was
held in one of those modes, then the key value being
inserted must be locked in the X mode for commit du-
raticn. This we call lock state replication via next key
locking. We are essentially transferring a range lock
from th2 next key to the current key. Otherwise, a com-
mit duration IX lock must be obtained on the key value
being inserted. Note that nothing special needs to be
done if the next key value is already held in the /X mode
by the current transaction (i.e., the next key value is an
uncomnitted insert of the same transaction).

The reasons for this difference in the mode of locking (X
versus 1X) of the key value being inserted are subtie*
Let 1s consider an index with the key values A, B, E, K,



IF >1 Instance of Delete Key Value in Ist_Leaf THEN
X Lock Delete Key Value for Commit Duration
Delete Key, Log, Unlatch Ist_Leaf and Return

/* Only 1 Instance of Delete Key Value in 1st_Leaf */

S Latch 2nd_Leaf
IF 2nd_Leaf is Empty THEN
Unlatch 1st_Leaf and 2nd_Leaf
S Latch Tree for Instant Duration

ELSE
If Delete Key Value found in 2nd_Leaf THEN
X Lock Delete Key Value for Commit Duration

Invoke the Page Delete Procedure and Return

ELSE Next Key Value
ELSE
IF No Higher Key Value in 1st_Leaf THEM Next Key Value
ELSE Next Key Value := Higher Key Value in 1st_Leaf

1= First Key Value in 2nd_Leaf

X Lock Mext Key Value for Commit Duration

Unlatch 2nd_Leaf, if Accessed

X Lock Delete Key Value for Commit Duration
IF 1st_Leaf will Become Empty After Key Delete THEM
Invoke the Page_Delete Procedure and Return

ELSE
X Lock Delete Key Value for Instant Duration

IF Ist_Leaf Will Become Empty After Key Delete THEN

/* Ho leed tn lack Hext Key Value */

If No Higher Key Value in 1st_Leaf AND Znd Leaf Exists THEN
/* While Holding X Latch on lst_Leaf */
/* Page Delete in Progress - Wait for it to be Over */

Unwind Recursion as far as Mecessary Based on MNoted Page VNs and Go Onwn Again
/* 2nd_teaf is not Empty */
ELSE Unlatch 2nd_Leaf, Delete Key from 1st_Leaf, Log, Unlatch ist_Leaf and Return

1= End Of File

IF Delete Key Value is Smallest Key Value in 1Ist_Leaf AND Nonunique Index THEN
/* Other Instances of Delete Key Hay Exist in the Predecessor of 1st_Leaf */

Delete Key from lst_Leaf, Log, Unlatch 1st_Leaf and Return
/* Delete Key Value Not Sma’lest in Ist Leaf */

Delete Key from lst_Leaf, Log, Unlatch 1st_Leaf and Return

Figure 9: Pseudo-Code for Delete Action Routine

and M. In the first scenario, let us assume that T1 had
done a range scan from B through K. If now T1 were to
insert G and it were to lock G only in the IX mode, then
that would permit T2 to insert F (T2’s request of the IX
lock on G would be compatible with the IX lock held by
T1) and commit. If now T1 were to repeat its scan, then
it would retrieve F, which would be a violation of the RR
guarantee. When T1 requested IX on K, during the insert
of G, and found that it already had an S lock on K, then
it should have obtained an X lock on G. The latter would
have prevented T2 from inserting F until T1 committed.

In the second scenario, T1 might have an SIX lock on K
because it had first inserted K {getting a commit duration
IX on it) and later did a scan of B through K (getting a
commit duration S lock on K, which causes the resuitant
hold mode to be changed from IX to SIX). In the third
scenario, T1 might have an X lock on K because it had
deleted F (deletion causes instant duration X lock to be
acquired on the deleted key and a commit duration X
lock on the next key value, assuming a unique index -
see the section “5.4. Delete”). Now, if G were to be
inserted by T1 and locked only in the IX mode, then that
would permit T2 to insert F and commit. If later T1 were
to rollback then it would put back its F and introduce
duplicate keys in a unique index! This is the reason T1

should have noticed that it already held K in the X mode
and hence should have locked G in the X mode also,
thereby preventing the insertion of any key immediately
behind G by any other transaction.

After obtaining the X or IX lock request on the key value
being inserted, Insert inserts the key in the 1st leaf,
unlatches the page(s), and returns to the user with the
success status. The latching protocol is used to guarantee
that the instant lock was requested on the correct next
key value.

5.4. Delete

The pseudo-code for the Delete action routine is given
in Figure 9. After searching the leaf page, Delete should
be positioned at the key to be deleted. Only if (1) this
is a unique index or (2) this is a nonunique index and
this key deletion is definitely or, possibly, causing the
only instance of the key value to be deleted, then the
next key value is determined. A commit duration X lock
is then requested on the next key value. This lock is
necessary to warn other transactions, which may be
looking to insert or retrieve the key value being deleted,
about the uncommitted delete. Note that if this weren't
the only instance of the to-be-deleted key value currently

4 At this point, the reader may wish to refer to the section “5.5. Discussion™ for an intuitive explanation »f /\RH-‘,S,’KVIV,‘S' locking behavior.
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in the index, then the commit duration X lock that will
be obtained on the to-be-deleted key value itself would
be sufficient to let other transactions know about the
uncommitted delete and there is no need to lock the
next key value.

In System R, the next key value is always locked in the
X mode. The advantage of not locking the next key
value, if we can safely avoid it, is that it allows new keys
to be added after the deleted key value (i.e., key values
larger than the deleted key value) and the next key value
to be deleted by other transactions, even before the
current transaction commits its delete. Also, the deleter
does not have to wait, even if the next key value is
currently locked by another transaction. Additionally, it
allows other transactions to start scanning from the next
key value. Furthermore, if the next key value is in a
different page, then not having to lock that value will
potentially save an /0.

Next, if this is a unique index or this is a nonunique
index and definitely the only instance of the key value
in the index is being deleted, then Delete has to X lock
for instant duration the to-be-deleted key value - this is
to make sure that the key value is not currently locked
by an active transaction which has performed an index-
only scan; if (1) the next key value did not have to be
locked or (2) the next key value was locked and it is not
definite that the only instance of the key value is being
deleted, then the to-be-deleted key value has to be X
locked for commit duration. The advantage of an instant
duration lock, compared to a commit duration one, is
that the former does not consume any storage and it
does not cause a hash synonym chain in the lock table
to become longer. After this locking is done successfully,
usually Delete deletes the specified key, unlatches the
page(s) and returns to the caller. But, if the key to be
deleted is the only key in the page, which would make
the page become empty after the key delete is completed,
Delete invokes the page deletion procedure. The pseudo-
code for the latter is given in Figure 10. This procedure,
like the page split procedure, requests the X latch on
the tree after ensuring that all the affected pages are
already in the buffer pool to minimize the time during
which the X latch is held. On obtaining the latch, it
deletes the key and then performs the page delete re-
lated processing (modifying the neighboring pages” point-
ers, propagating the page deletion, etc.).

5.5. Discussion

In this section, we try to explain why there are some
significant differences in the locking protocols that are
followed during the different leaf-level operations.

In the case of Delete, unlike in the case of Insert, the
lock mode for the deleted key value and the next key
value has to be X instead of IX. The reason is a subtle
one. If the next key value lock mode had been IX during
a delete, then that would permit another transaction to
do an insert of a key value less than the next key value,
before the commit of the deletion by the first transacfion.
The newly inserted value may be less than, equal to, or
greater than the deleted key value. If the newly inserted
value happened to be greater than the deleted key value,
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Oth_Leaf := 1st_leaf.PrevPage

IF Bth_Leaf <> NIL THEN Fix Oth_Leaf in Buffer Pool

X Latch Tree for Manual Duration

If 2nd_Leaf <> NIL THEN Unlatch 2nd_Leaf

Delete Key from 1lst_Leaf and Log

Ist_Leaf.SM_Bit := "1’

Deallocate 1lst lLeaf

IF 2nd_Leaf <> NIL THEN
X Latch 2nd_Leaf
2nd_Leaf.PrevPage :=
Unlatch 2nd_Leaf

Unlatch 1st_Leaf

IF Oth_Leaf <> NIL THEM
X Latch Oth_Leaf
Oth_teaf.NextPage
Unlatch Oth_Leaf

Propagate the Delete Up the Tree, Reset SH Bits to

Unlatch Tree

1st_Leaf.PrevPage

t= 2nd_Leaf
9

Figure 10: Pseudo-Code for Page_Delete Procedure

then RR cannot be guaranteed. For example, let T1
delete G,5 and lock H only in the IX mode for commit
duration. This would permit T2 to insert the value GG,
which it would lock in the IX mode for commit duration.
Before actually inserting that key value, T2 would also
request an I1X lock on H which would be granted since it
is compatible with the IX lock held by Tt1. Now, if T2,
were to look for G it would not find it. and it would then
request an S lock on GG which would be granted. Then,
T1 might rollback and put back G,5. Now, if T2 were to
repeat its search, then it will find G, thereby viotating RR!

To see why the mode of the lock on the deleted key has
to be X instead of IX, in our example, assume that H,4
is an uncommitted insert of T1. This means that T1
would be holding an IX lock on H for commit duration.
Now, let T2 try to delete H,8. Since T2 is not deleting
the only instance of H, it would request a commit duration
lock on H. Let it be in the IX mode, instead of X. T2's
IX mode lock request would be granted since it is com-
patible with T1’s IX mode lock and T2 would delete H,8
successfully. Then, T1 could rollback removing its H,4,
now the only instance of H. T3 might then try to fetch
H and not finding it, T3 will lock / in the S mode. Then,
T2 could rollback and put back H.8. Then, if T3 were to
repeat its search it would find H, thereby violating RR!

The asymmelry between insert and delete partly comes
from the fact that an uncommitted insert is "visible”
sinca the inserted key exists in the index, whereas an
uncomniitted delete is not visible since the deleted key
disappears from the index. So, in the latter case, we
need to leave behind a “strong” lock on a still-existing
key for athers to “trip on” (i.e., conflict on a lock request).
The lock has to be strong enough to prevent others from
building a "wall” behind the “tripping point” such that the
wall hices the tripping point from the point of deletion.
In the case of an insert, the inserted key itself serves
as the tripping point, whereas for delete the tripping
point may have to be another key value or if it is the
same key value, then it must be guaranteed to be a
“stable’ one. The reader should now be able to map the



above examples to these analogies to visualize what is
going on.

Note that, if we are not careful, a transaction which has
deleted a key might itself create a wall behind its tripping
point, thereby allowing another transaction to create a
wall behind the first one’s wall, which then enables a
violation of RR. To take an example, let T1 try to fetch
the range of key values from F to those less than G. T1
will fetch F and acquire S locks on F and G. Then, T1
inserts FK, acquiring an instant duration IX lock on G
(the next key value) and a commit duration /X lock on
FK. Now, T2 can insert FC, acquiring an instant IX lock
on FK (the next key value) and a commit duration IX
lock on FC. Then, T2 commits. Now, if T1 were to repeat
its range scan, it will retrieve FC, thereby violating RR.
It is to prevent situations like this that in ARIES/KVL,
during an insert, we get an X lock on the inserted key
value, if the next key value needs to be locked and that
next key value was already locked by the inserting trans-
action in the S, X, or SIX mode. Thus, the inserter, while
“erecting” a wall right behind its own tripping point "rep-
licates” its tripping point on the newly inserted value.
This is what we earlier called lock state replication via
next key locking.

6. System R

As far as we know, System R was the first system to do
key-value locking and support RR. Unfortunately, the
System R concurrency control method for index locking
was never documented in the literature. ARIES/KVL has
some similarities to the System R method, but we have
also adapted many of the ideas reported in [MHLPS89,
MoLe89] along with other innovations to improve per-
formance and concurrency.

A feature of the System R locking method is that many
times (especially during inserts, deletes, and at the end
of range scans, and sometimes during fetches) the key
value (termed the next key value) following the one(s)
of interest is locked in S mode during read operations
and in X mode, otherwise. A bigger range of key values
(from the one preceding the one(s) of interest to the
next key value) gets locked due to this feature. This has
been termed the adjacent key conflict problem and cus-
tomers have suffered reduced concurrency due to this
also [IBM85]. One way of reducing the occurrence of
this problem is to avoid acquiring such locks whenever
it is safe to avoid them. Some of the differences between
the System R method and ARIES/KVL accomplish this
reduction in lock conflicts and the ranges of key values
locked.

System R uses page locks for physical consistency, while
doing key value locking for logical consistency. Unfortu-
nately, all these page locks are not released until the
end of the RSS (the data manager) call. This means that
these index and data pages’ locks are held even during
1/0s and lock waits. Depending on the operation to be
performed, read or write, the page lock will be acquired
in the § or the X mode. Typically there will be many
I/0s during a single RSS call. The waits for physical
locks caused by prolonged holding of the page locks
causes deadlocks and unnecessary delays to other trans-
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actions. Unfortunately, this approach of holding all the
page locks until the end of the RSS call, which amounts
to treating each RSS call as a mini-transaction, is also
suggesied by others that discuss multilevel transaction
management (see, e.g., [Weik87]). From practical expe-
rience with the SQL/DS product, it has been found that
a significant percentage of deadlocks are caused by the
page locks when record/key locking is being done. The
reduction in concurrency due to the next key locking has
also been a cause for concern, especially because the
VM/SP Shared File System uses the SQL/DS index man-
ager to store meta-information about ordinary user files,
etc.

Since pages are locked even during rollbacks, a trans-
action that is rolling back may get into a deadlock. Sys-
temn R and R* serialize the execution within RSS by the
rolling back transactions to avoid a deadlock involving
only such transactions [MoLO86]. Since ARIES/KVL ac-
quiras only latches during rollbacks and latches never
get involved in deadlocks, transactions that are rolling
back will never get into deadlocks.

7. Conclusions

We presented a method called ARIES/KVL for concur-
rency control in B-tree indexes. Some of the design
principles that we adopted in the design of ARIES/KVL
to improve concurrency and performance are: (1) use of
latches instead of locks for physical consistency, (2) re-
leasing latches during lock waits, (3) revalidation after
unconditional locking, (4) use of VN to detect page state
changes, (5) range locking via next key locking, (6) lock
state replication via next key locking, (7) SMO serializa-
tion via tree latch, (8) indication of incomplete SMO via
SM_Bit and (9) latch-coupling. The table in Figure 1
summarizes the locking performed by the different leaf-
level operations. At most 2 page latches are held simul-
taneously. ARIES/KVL can used in conjunction with two-
phase locking for the table data. As far as we know,
compared to the published papers, this is the only paper
which presents a comprehensive, and a high concurrency,
efficient solution to the problem of providing concurrency
control of multiaction transactions operating on B-tree
indexes. Due to lack of space, we have not discussed
backward scans, protocols for cursor stability and recov-
ery in this paper. The latter and ways to improve con-
currency during structure modifications are presented in
depth ir: [MolLe89]. Variations of the presented protocols
for cursor stabilitly are discussed in [Moha89]. ARIES/
KVL brings us closer to the power of predicate locking
using only traditional locking and without using any ad-
diticnal lock modes other than the ones introduced in
System R. We have studied alternatives to key-value
locking to improve concurrency in indexes in {MHWC90,
Moha90, MolLe89].

Many of the design principles of ARIES/KVL are also
applicable to the concurrency control of the classical
links-based storage and access structures which are be-
ginning to appear in more modern systems also
[ShCa89]. If the children records of a parent record are
linked together and scans along such links are permitted,
then, in order to guarantee RR scans, inserters and



deleters of children records would have to do next key
locking. Then, our ideas would apply. Our techniques
may also be combined with the data-only locking ap-
proach of ARIES/IM [MoLe89] to improve concurrency
further in ARIES/IM. The basic idea is t0 make record
inserters obtain IX locks rather than X locks on the
records or data pages, depending on the locking granu-
larity in use. In the case of page locking, this permits
multiple transactions to insert on the same page. For
inserts alone, for the price of page iocking, we can get
the concurrency of record locking! With this change to
ARIES/IM, in the index, during a key insert, the lock on
the data of the next index entry will be requested in the
IX mode rather than in the X mode. If the current trans-
action is found to have a-reauy a lock on the next index
entry’s data in any mode other than IX, then the lock on
the inserted index entry’s data is converted to the X
mode, if it is not already held in that mode. Thus, some
of the features of ARIES/KVL are being implemented in
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