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Abstract 

In this paper we examine the effect of skewed access 
on the buffer hit ratio in a multi-system data sharing 
environment, where each computing node has access 
to shared data on disks, and has a local buffer of re- 
cently accessed granules. In the literature, the effect of 
skewness in data access on increased data contention 
has been examined, since with skew most accesses go 
to few data items. For the same reason, skewness can 
also increase the buffer hit probability, alleviating the 
effect on data contention. We examine the resultant 
effect on the transaction response time, which depends 
not only on the various system parameters but also on 
the Concurrency Control (CC) protocol. Furthermore, 
the CC protocol can give rise to rerun transactions that 
have different buffer hit probabilities. In a multi-system 
environment, when a data block gets updated by a sys- 
tem, copies of that block in other system’s local buffers 
are invalidated. We develop a comprehensive analytical 
buffer model that captures all these effects and integrate 
it with a CC model to estimate the overall transaction 
response time. The model is validated through simu- 
lations. We find that higher skew does not necessarily 
lead to worse performance, and that with skewed access 
optimistic CC is more robust than pessimistic CC. Ex- 
amining the buffer hit probability as a function of the 
buffer size, we find that the effectiveness of additional 
buffer allocation can be broken down into multiple re- 
gions that depend on the degree of skewness. 
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1 Introduction 

In recent years there has been considerable interest in 
coupling multiple systems for database transaction pro- 
cessing, for reasons of capacity, availability and cost. 
One method of coupling multiple systems is the data 
sharing approach [YU87, STRI82), also referred to as 
closely coupled clustering(KRONBB], where all coupled 
computer systems have access to shared data stored on 
disk or on fle servers[CHERSS]. Each computing sys- 
tem, which we will refer to as a node, also has a lo- 
cal buffer for recently accessed data. In this paper, 
we focus on modeling the buffer hit ratio in these lo- 
cal buffers. More specifically, we examine the effect of 
skewed data access patterns on the buffer hit ratio, and 
its implications on overall system performance. In the 
literature, the effect of skewed access on the data con- 
tention level has been examined, implicitly assuming 
that the buffer hit ratio is unchanged (TAY85). There- 
fore, with a larger fraction of accesses going to a few 
data items, the data contention level and hence the 
response time increase. However, with skewed access 
the buffer hit probability also increases, thus mitigat- 
ing the effect on data contention. We study the ef- 
fect of skewed access on both the buffer hit probability 
and data contention, and project the resultant effect 
on transaction response time. This approach can also 
be used to model a distributed shared memory system 
where memory modules and disks are distributed across 
a local area network[BELLSO]. 

In the multi-system environment several inter-related 
factors complicate the analysis of system performance. 
Consider, for instance, a database consisting of a hot &et 
that is frequently referenced, and a cold set that con- 
tains the remainder. When a system updates a block, 
all copies of this block in the local buffers of other sys- 
tems become invalid. Note that hot set data in a bufl’er 
is more likely to get invalidated than cold set data. The 
Concurrency Control (CC) scheme used can also com- 
plicate the analysis. Under the Optimistic Concurrency 
Control (OCC) protocol, conflicting transactions can 
get aborted and rerun. With sufficient memory, rerun 
transactions exhibit a higher hit ratio than first run 
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transactions, since the referenced blocks except those 
that were invalidated are likely to continue to reside 
in the memory after access during the first run. Data 
brought in by rerun transactions also affect the buffer 
hit probability of first run transactions. The buffer hit 
ratio is thus affected by the abort probability. On the 
other hand, the buffer hit ratio not only determines the 
number of IO’s but also impacts the abort probability 
since a lower buffer hit ratio leads to a longer execu- 
tion time, and therefore to a higher probability of data 
contention. Skewed access also has other effects. Intu- 
itively, skewed accesses may be expected to increase the 
data contention because a disproportionate fraction of 
the accesses goes to the hot set. Further, since the hot 
set is more likely to be retained in the buffer, skewed 
access may be expected to increase the buffer hit prob- 
ability. However, a higher buffer hit probability can 
reduce the transaction response time and hence lower 
the data contention level. Furthermore, a higher data 
contention also implies a higher buffer invalidation rate, 
thus lowering the buffer hit ratio. The net effect of 
skewed accesses on the response time is thus hard to 
predict. We develop a comprehensive analytic model to 
capture these effects. 

We explicitly model an LRU buffer capturing skewed 
access, cross-invalidation and the effect of rerun trans- 
actions, to predict the buffer hit ratio of first run and of 
rerun transactions. We note that the LRU policy and 
variants thereof are used in commercial database sys- 
tems [TENG84]. The simple buffer model in [DANgOal 
does not easily generalize to skewed data access. We 
develop a new approach to capture the effect of skewed 
data access on the buffer hit probability. It is based on 
two observations: (1) conservation of flow, which can 
be used to determine the push down rate to each LRU 
stack location, and (2) the hit probability of each type 
of granule (e.g. cold or hot) at a given stack location is 
approximately equal to the relative push down rate at 
that stack location. We consider both the OCC scheme 
and the standard two-phase locking scheme (which we 
will refer to as 2PL) to illustrate the interaction between 
the database buffer model and CC model and how they 
can be integrated. The CC and system resource models 
used are extensions for skewed data access of the models 
in [YUSOa, YUSOb, YUSOc]. A hierarchical approach is 
taken to model the overall system performance, where 
the buffer submodel, the CC submodel and the hard- 
ware resource submodel are first developed separately 
and a higher level model integrates the three submodels 
to predict the overall transaction response time. The 
submodels interact with each other through some pa- 
rameters, and hence, they are solved simultaneously us- 
ing an iterative procedure. A detailed simulation model 

is also developed to validate the analysis. Because the 
analysis is simple, it is striking that it matches closely 
to results from simulation for such a complex environ- 
ment. This is not only true for the aggregate measures 
like the response time but also true for all of the fine 
measures such as the buffer hit ratio for the first run 
and higher runs, the abort probability, and the lock 
contention probability. 

There are few existing analytical modeLs for the 
database buffer particularly for a multi-system environ- 
ment. The importance of considering skewed data ac- 
cess for database applications is discussed in [CASA89], 
where a replacement strategy is modeled that fixes some 
buffers for the most frequently used blocks, and uses 
the remaining buffers to read in other blocks. As the 
authors point out, their model is optimistic for ac- 
tual replacement strategies like LRU buffer manage- 
ment. Previous models of the database buffer for multi- 
system data sharing [yU87, DIAS88] have been empir- 
ical, based on trace driven simulations. We mention in 
passing that there are a number of studies in the litera- 
ture on multiprocessor cache coherency. In general, the 
workloads are rather d.Xerent for the database buffer 
and multiprocessor cache environments. The cache re- 
placement policies considered in some of these works are 
also simple. In [YANG891 a random replacement pol- 
icy is considered and in [GREE87] cache organization 
is based on direct mapping. The most relevant work 
in this context is the multiprocessor cache coherency 
model in [DUB082), where the analysis is based on a 
priori knowledge of the curve of the hit ratio as a func- 
tion of cache size. 

In a data sharing environment, it is a hard problem 
to select the appropriate buffer size for each system to 
meet a given performance criterion. The composition 
of the buffer contents (hot versus cold granules) de- 
pends on not only the buffer size but also on the de- 
gree of skew, the number of nodes, the transaction rate 
and the concurrency control protocol. We find that al- 
though the buffer hit ratio of hot granules decreases 
with the number. of nodes, the buffer hit of cold gran- 
ules increases with the number of nodes. The buffer hit 
probability is also affected by the CC protocol in sub- 
tle ways. For instance, under OCC, rerun transactions 
have a higher cold granule hit probability than that 
for hot granules, while the reverse is true for first run 
transactions. We also find that the increase in buffer 
hit probability due to additional buffer allocation can 
be broken down into multiple regions that depend on 
the access skew, and that the OCC scheme is more re- 
silient to data skew. 

The paper is organized as follows. Section 2 out- 
lines the data sharing environment and the transaction 
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model. The buffer model, and its integration with the 
concurrency control and system resource models, is de- 
scribed in Section 3. Model validation, and projections 
from the model are described in Section 4. In section 
5, using the analytical model, we explore at length the 
effect of skewed access on the buffer hit probability and 
the transaction response time. A summary and con- 
cluding remarks appear in Section 6. 

2 The Data Sharing Environment 

The data sharing system considered consists of N 
loosely coupled nodes sharing a common database at 
the disk level (Figure 1). We assume that the database 
consists of D granules, where a granule is the unit of 
transfer between disk and buffer, i.e., a block. The 
execution of a transaction is modeled as consisting of 
three phases: initial set up, execution, and commit, as 
in [DANSOa, YUSOb, YU9Oc]. Transactions arrive at 
each node according to a Poisson process with rate X. 
Each granule access is assumed to be independent of all 
other granule accesses. We assume that each transac- 
tion accesses L granules from the shared database. The 
access pattern within the database may be skewed, i.e., 
some granules are accessed more frequently than others. 
Based on the frequency of data access, the data granules 
are grouped into M partitions, such that the probabil- 
ity of accessing any granule within a partition is uni- 
form. Let pi denote the fractional size of the database 
partition i, i.e., the size of partition i is @iDa Let oi 
denote the probability that any database access lies in 
partition i. 

To improve the transaction response time, each node 
has a local buffer of size B and caches a part of the 
database in this buffer to reduce the transaction re- 
sponse time. Hence, copies of the same granule may 
be present at more than one node. Each node uses an 
LRU (Least Recently Used) bu.fIer replacement scheme 
for its local buffer management. To access a data gran- 
ule, a transaction requests a copy of the item from the 
local buffer manager. The buffer manager returns a 
copy of the granule to the requesting transaction if the 
granule is present in the buffer. Otherwise, a copy of 
that granule is brought in from the shared disk to the 
local buffer. In either case, the newly accessed gran- 
ule is placed at the top of the LRU stack (Figure 2). 
In the case when a new granule is brought in from the 
disk, if there is no free buffer available, then the granule 
at the bottom of the LRU stack is pushed out of the 
stack. During the execution of a transaction, its up- 
dates are made on its local copies. At the commit time 
of the transaction, its updates are made permanent in 
the local buffer and in the shared disk, replacing the 
old copies. The identities of updated granules are also 

broadcast to all remote nodes so that each remote node 
can invalidate the old copies of the updated granules if 
present in their local buffers. At the remote nodes, the 
invalidated buffer locations are placed at the bottom of 
the LRU stack and are made available for bringing in 
new granules. The probability that a granule accessed 
from the irh partition is also updated is denoted as pr ;. 
Thus, the average rate at which granules of partition i 
are updated is given by NXLaipy;. 

Note that all transactions may not successfully com- 
mit in their first run. The number of rerun transactions 
are particularly sign&ant under OCC. (Under 2PL, 
transactions are only aborted during deadlock.) The 
rerun transactions need to bring back from the disk the 
granules that were invalidated by the remote nodes, if 
not brought in by other concurrently running transac- 
tions. 

3 Integrated Systems Model 

The execution time of a transaction depends on three 
main factors: 1) the buffer hit probability, which de- 
termines the number of I/OS to be performed by the 
transaction, 2) the concurrency control protocol used 
for resolving conflict in accessing data granules (wait- 
ing, abort etc.), and 3) the processing time and the 
queueing delay in accessing system resources such as 
CPU, etc.. We model buffer hit probability, system re- 
source access times and concurrency control separately, 
and capture their interactions through a higher level 
model. The granule hold time (which is the time dura- 
tion from the access of the granule by the transaction 
to either the completion of the transaction commit pro- 
cess or the abortion of the transaction) depends on the 
buffer hit probability estimated by the buffer model, 
and by the queueing and services times estimated by 
the resource model. The CC model estimates the tram- 
action abort probability or the lock wait times based on 
the granule hold times, and this in turn affects both the 
buffer and resource models. 

3.1 Buffer Model 

To simplify our presentation, we first develop a sim- 
ple buffer model ignoring the effect of database access 
by rerun transactions (aborted transactions). The sim- 
ple model is quite accurate for 2PL where the number 
of aborted transactions due to deadlock is negligible ex- 
cept for a very high conflict situation. We then refine 
our model to include the effect of rerun transactions. 

3.1.1 Buffer Model without Rerun Trans- 
actions 

Since the data sharing system is homogeneous, we 
focus our attention on a single buffer. We extend the 
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analysis for multi-partition access under the LRU re- 
placement scheme by Dan and Towsley [DANSOb] to 
capture inter-system buffer invalidation. To estimate 
the steady state probability of buffer hit, we first derive 
the average number of granules of each partition in the 
local buffer of any node. Let Y,(j) denote the average 
number of granules of partition i in the top j locations 
of the LRU stack. Therefore, the buffer hit probability 
of irh partition is x(B)/(fiiD), and the overall buffer 
hit probability for a granule requested by a transaction 
is estimated as 

hl = c M %X(B) 
i=l AD ’ (1) 

Let pi(j) be the probability that the jib buffer loca- 
tion from the top of the LRU stack contains a granule 
of partition i. Then, 

K(j) = &Pi(l). 

I=1 

We will set up a recursive formulation to determine 
pi(j + 1) for j 2 1 given pi(l) for I = 1, . . . . j. Consider 
a smaller buffer consisting of the top j locations only. 
The buffer location (j + 1) receives the granule that 
is pushed down from location j. Let r,(j) be the rate 
at which granules of partition i are pushed down from 
location j. Our estimation of pi( j) is based on following 
two observations. 

Conservation of flow: Under steady state condition, 
the long term rate at which granules of the irh 

partition get pushed down from the top j loca- 
tions of the buffer equals the difference of the miss 
rate and the invalidation rate of the ith partition 
from the top j buffer locations (Figure 2); Oth- 
erwise, the average number of granules of parti- 
tion i in the smaller buffer consisting of top j lo- 
cations would become unbounded. The rate at 
which granules of partition i are brought to the 
smaller buffer consisting of the top j locations is 
ALai(l - Y;:(j)/piD), i.e., the rate of buffer miss 

in the top buffer. Hence, the push down rate, r;(j) 
is given by 

ri(j) = XLai(l - $+) - (N - l)ALOip*,$$* 
i t 

(3) 

Relative push down rate: The expected value of 
the probability of finding a, granule of the ith par- 
tition in the (j + l)‘( buffer location over all time, 

pi(j + l), is approximately the same as the proba- 
bility of finding a granule of the ith partition in the 
(j + l)It buffer location in the event that a grennle 
is pushed down from location j to location (j + 1). 
Formally, Prob {location (j + 1) conlainr a granule 
of partition i 1 a granule is pushed from location j 
to location (j + 1)) cz Prob { locafion (j + 1) con- 
tains a granule ofpartihon i). Hence, 

ri(i> 
Pi(j -t 1) w c,“=, rrtj)9 i = l-I3 - 1. (4) 

Note that instantaneous value of ri(j) is depen- 
dent on the content of the top j buffer locations, 
and the more accurate estimation of pi( j) requires 
the precise distribution of the content of j buffer 
locations. 

Equations 2, 3 and 4 can be solved iteratively, with 
the base condition of pi(l) = ai. At the point, when 
x(j) is very close to its limit (@iD)q Y,(j) may exceed 
PiD because of the approximation in the above equa- 
tions. This is corrected by resetting Y;(j) to @iD when- 
ever Pi(j) exceeds pi D and r;(j) is taken to be zero 
for all subsequent steps for that partition. Note that, 
although r;(j) is a function of the transaction rate (X), 
p;(j) and th e e ore, r f hl are independent of A, because X 
cancels out in Equation 4. 

3.1.2 Buffer Model with Rerun Transac- 
tions 

The simple buffer model described in the previous 
subsection ignored rerun transactions. Here, we con- 
sider the impact of rerun transactions on the buffer hit 
probability of fist run transactions, as well as the buffer 
hit probability of rerun transactions. The buffer hit 
probability of rerun transactions is 1 if the delay be- 
tween two runs is not so large as to flush out any of 
the granules brought in during the previous run, and if 
none of the granules of the rerun transaction are lost 
due to invalidation. We assume that the buffer size is 
large enough to accommodate the working set of all ac- 
tive trans&tions and we ignore the effect of flushing in 
our subsequent analysis. In [DAN891 a condition is de- 
rived for flushing not to occur. With high invalidation 
rate the buffer hit probability of rerun transactions be- 
comes less than 1, since some of the granules brought 
in during the previous run are invalidated. The rerun 
transactions bring back those invaLidated granules lead- 
ing to better use of buffer locations that would oth- 
erwise contain invalid blocks, and therefore the buffer 
hit probability of the first run transactions is &o im- 
proved. The probability of abort and the number of 
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granules lost during a rerun will depend on the concur- 
rency control protocol. We postpone their derivation 
until we detail our concurrency control protocol in Sec- 
tion 3.2. Let L,,i denote the average number of granules 

of partition i brought in by a rth run transaction. Also, 
let P, denote the probability that a transaction is exe- 
cuted at least r times. The buffer hit ratio of a tth run 
transaction can be approximated as 

h , = 1 _ Ci”=l Lr,i, r , 1 
L 

. (5) 

To determine the buffer hit probability of the first run 
transaction we modify Equation 4 to reflect the addi- 
tional granules brought into the buffer by rerun trans- 
actions. Hence, 

r;(j) e ALai(l - F) + A x2"=, P,Lv,i 

-(N - l)XLtYip*i +p (6) 

where P, and L,,i are given in Equations 8 and 9 in 
Section 3.2. Note that, P, in Equation 6 is a function 
of X, and A does not cancel out in Equation 4. Hence, 
unlike the previous case, the buffer hit probability in 
the presence of rerun transactions is dependent on the 
transaction rate. Note that for the single node case, 
there is no buffer invalidation. Therefore, pi(j) and 
the buffer hit probability are independent of transaction 
rate. 

3.2 Concurrency Control Model 

Since the focus of this paper is the buffer model for 
data sharing in the presence of data skew, the Con- 
currency Control (CC) model is outlined here for com- 
pleteness only. Details of the CC models for 2PL and 
OCC can be found in [YU87, YU9Oa, YUSOb, YUSOc] 
where a mean value model is used as in other studies 
in the area such as those in (TAY85, DANM]. There 
are many variations of the OCC protocol. Here, we use 
the pure OCC protocol where transactions are aborted 
only at the end of the execution phase, if they conflict 
with committing transactions. We will briefly describe 
below the model for OCC to illustrate the approach and 
refer the reader to the citations for details of the 2PL 
model. 

The transaction model consists of L+ 2 states, where 
L is the fixed number of granules accessed, as described 
in Section 2. State 0 models the initial set up phase, and 
is modeled as contributing time RINPL to the average 
transaction response time, corresponding to an average 
of IlNpL instructions and O~NPL I/OS per transaction 
for setup. Following this, a transaction progresses to 
states 1, 2, . . . , L, in that order. At the start of each 

state i > 0 the transaction accesses a new granule, and 
moves to state i + 1 when the next granule is accessed. 
Iu state i, the transaction has informed the CC man- 
ager of access to i data granules. After state L, if the 
transaction is aborted, it returns to state 1, and pro- 
gresses as before. Otherwise, it enters commit process- 

ing in state .C + 1. In the r”’ run of a transaction, the 
average time in state i is modeled as RI, correspond- 
ing to execution of an average of Ii instructions, and 
an average of (1 - h,) I/OS. At commit time, after 
accessing L granules, the concurrency control manager 
is so informed. If the transaction entering commit was 
marked for abort, it is restarted after a (fixed) wait time 
of ‘I’~~~k,,f,. Otherwise, the transaction enters com- 
mit processing, broadcasts invalidations, and marks all 
comlicting transactions for abort. It then writes com- 
mit records to the log and propagates the updates to 
the shared disk. All of these take an average time of 
T Commit * During commit processing, exclusive access 
on the granules accessed is retained, and any ongoing 
transactions that access granules that conflict with the 
committing transaction are marked for abort. 

We extend the approximation in [YUSOb, YUSOc] for 

the probability of abort Pi in the first run of a trsns- 
action to capture skewed data access. This is approxi- 
mated as, 

Pi-l- 

(7) 
The rationale for the above approximation is as follows. 
By state I, a transaction has accessed on an average 

loi granules from the irh partition. Hence, the factor 
(1 - lai/Dfii) is the probability that a granule of par- 
tition i accessed by a transaction entering the commit 
phase does not conflict with a transaction that has ac- 
cessed la; granules from the same partition, assuming 
equiprobable access to each granule within a partition. 
LXaip,;R: is the average number of granules of the 

it" partition updated by transactions entering commit 
during the period of average duration Ri that the trans- 
action is in state 1. Hence, the first term in the outer 
product accounts for the probability that none of the 
transactions entering commit conflict with the transac- 
tion at state 1. The second term in the outer product 
accounts for the contention probability on accessing the 
new granule at the lth state, with transactions holding 
exclusive access on granules during commit processing. 
There are LXaip,,Tcommit granules of the ith partition 
held by transactions in commit processing. Since the 
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probability that the newly accessed granule lies in the 
ith partition is oi, the second product term is the prob- 
ability that accessing the new granule does not conflict 
with the committing transactions. This approximation 
in jYUSOb, YUSOc] for uniform access was found to 
compare very well with simulations, and simulation re- 
sults of section 4 provide evidence that the extension 
for skewed access is accurate. In a similar manner, the 

probability of abort Pi for the tth run transaction is 

approximated as in Equation 7 replacing R: by RF. 

Given Pi, the parameter P,, i.e., the probability that 

a transaction has an tih run, can be approximated as 

r-l 

P,a Pit>l. l-I (8) 
i=l 

The average number of granules of the ith partition lost 
by a 2nd run transaction due to buffer invalidation can 
be approximated as 

L2,i e 
LaiNALaip,; (N - 1) Tl,re.d/a 

DA N pi 
+ T~.cko~j 

(9) 
where Tl+d = LR:. NXLaipl; is the rate at which 
granules of partition i are updated and (N - 1)/N 
is the probability that the update is remote. Hence, 
(Lai X (N - l)XLaip,; X Tl,,,,d/2)/(Dpi)) is the av- 
erage number of granules of partition i lost by a trans- 
action during its execution. Given that a transaction 
is aborted, the conditional probability of a granule ac- 
cessed by the aborted transaction has a higher prob- 
ability of being invalidated, and hence, the term Pi 
appears in the denominator. The aborted transaction 
may lose additional granules during the backoff pe- 
riod and this is approximately given by the expression 

(Lai X XhPy; X TBockoff/(DPi)) X (N - 1)/N- The 
expression for L,,i for t > 2, can be obtained similarly 

by replacing Ti,rcod by TI-l+.d = LRI-’ and Pi by 

Pi-? 

For 2PL, we assume the number of rerun transactions 
to be negligible, and Equation 4 (instead of Equation 6) 
is used to determine the buffer hit ratio. The analysis 
for lock contention probability( Pcont ) and average wait 
time(w) are described in detail in (YU87, YUSOa]. 

3.3 System Resource Model 

We assume that each node consists of K tightly cou- 
pled processors and that the database is spread over 
multiple disks. The processors can be modelled as an 
M/M/K server with FCFS discipline where the disks 
are modelled as an infinite server. We first consider the 

OCC case. The processor utilization can be estimated 
as 

x 
‘= KxMIPS IINPL + k 1, + (1, + (N - I)&) 

I=1 

+gP&) (10) 
r=2 I=1 1 

where MIPS is the processor speed. In the above, the 
probabilities of abort are estimated in terms of the av- 
erage times in each state RI, and the utilization p is ex- 
pressed in terms of the abort probabilities. Now, RI can 
be estimated from p based on an M/M/K assumption as 
in PUSOb, YUSOc] and the overall average transaction 
response time is estimated as 

L L 

R = RINPL-F~ R:+Tcommit +j&hro,,+~ R;). 
,I=1 r=2 I=1 

(11) 
We note that Pi for I > 2 quickly approaches a con- 
stant value and the above equations can be closely ap- 
proximated by closed form expressions. 

Similarly, the overall average transaction response 
time for 2PL is estimated as [YU87, .YU9Oa] 

L 

R = RINPL + CR: + LP,mtW + Tcommit. (12) 
I=1 

4 Validation and Results 

To validate our model, we use a detailed discrete 
event simulation model, simulating all three compo- 
nents of the integrated system model: LRU buffer re- 
placement policy, concurrency control (2PL and OCC) 
and FIFO queueing model for CPU. The skewed access 
pattern is modeled as access to two kinds of data (hot 
and cold). The simulation explicitly keeps track of the 
buffer contents at each node according to the LRU pol- 
icy. For buffer misses, an I/O delay is modeled. The 
simulation also keeps track of the data accessed by each 
transaction and explicitly simulates buffer hits, data 
contention, transaction aborts, locking of data granules, 
waiting for locks to become available, queueing and pro- 
cessing at the CPU, I/O waits, and commit processing. 

For 2PL, in the case of lock requests leading to a data 
contention, the transaction is placed in a wait state until 
the lock is released by the transaction holding the lock 
(while the approximate analysis estimates the average 
lock wait time). For 2PL, if a lock request leads to a 
deadlock, the transaction making the request is aborted 
and restarted after a back-off delay. (The approximate 
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analysis assumes that the probability of deadlock is very 
small compared to the contention probability, which is 
also confirmed by the simulations.) For OCC, at com- 
mit time transactions are checked to see if they have 
been marked for abort; if not, any running transactions 
with conflicting access are marked for abort. (By com- 
parison, the analysis estimates the probability of trans- 
action abort.) At transaction commit time, for each 
update the buffer at each remote node is checked and 
copies of the updated block are invalidated. Overheads 
for the buffer invalidation are also explicitly simulated. 
Each rerun transaction makes the same references as its 
first run, and buffer hits result only if a copy is still in 
the buffer (while the analysis assumes that the buffer is 
large enough so that buffer flushing does not occur). 

Tightly coupled processors are modeled as having a 
common queue, while loosely coupled nodes have sep- 
arate queues. The CPU service ‘times are constants 
that correspond to the CPU MIPS rating and the spe- 
cific instruction pathlengths given below. (They are 
not exponentially distributed as in the M/M/K ana- 
lytical model of the CPU.) The CPU is released by a 
transaction when lock contention occurs, for each I/O, 
during broadcast invalidation, and during backoff after 
an abort. The simulation model measures the buffer 
hit probabilities of first run and rerun transactions for 
both hot and cold data accesses. It also measures the 
transaction response time and various effects of con- 
currency control on performance measures such as the 
probability of abort or conflict, waiting time, etc.. 

Since the various components of the integrated sys- 
tem model interact with each other, the model compo- 
nents cannot be validated in isolation and the validation 
of each component is sensitive to the correctness of the 
other components. We will hrst focus our attention on 
the validation of the buffer model and will also explore 
the effect of various parameters on the buffer hit prob- 
ability. We will then validate the integrated model and 
examine the effect of buffer hit probability on the trans- 
action response time, and the sensitivity of the buffer 
hit ratio and response time to skew. 

Figure 3 shows the various transaction and system 
parameters which are kept fixed for all simulations, un- 
less otherwise specified. The transaction parameters 
(number of accesses and instructions) are similar to 
those in [YU87], derived from customer traces. We have 
chosen the database size and access rule parameters to 
reflect two types of applications. In the fbst applica- 
tion, the database size is relatively small (1OK granules, 
or about 40 Mbytes) and most of the database accesses 
go to the hot-set (80-20 rule i.e., 80% of the accesses 
goes to 20% of the database or 2K granules.). Note 

that this is a stress case and the buffer hit probability 
and response time are very sensitive to various param- 
eters (number of nodes, transaction rate, etc.). In the 
second application, the database size is increased (50K 
granules or about 200 Mbytes). However, we keep the 
hot-set size comparable (5% of the database or 2.5K 
granules) in order to obtain reasonable buffer hits for 
the same buffer sizes. Furthermore, a large fraction of 
the accesses (50%) g oes to the large cold-set. For this 
case, the buffer hit probability is less sensitive to var- 
ious parameters than for the previous case, because of 
the larger fraction of cold accesses. As we will see, our 
model is robust, and it works equally well for both the 
applications modeled. Various buffer sizes axe consid- 
ered to study the sensitivity of buffer hit ratio to buffer 
size. All buffer sizes chosen satisfy the minimum re- 
quirement derived in [DAN891 to avoid buffer flushing. 
In the simulations, this indeed was found to be the case. 
We note that further study of larger database sizes in- 
dicates that as long as the hot-set size is comparable 
to the above cases, similar results to that for the sec- 
ond application described above are obtained with the 
cold-set hit ratio becoming negligibly small. 

In the following sections we find a remarkable match 
between the analysis and simulation results for both 
the buffer hit probability and overall measures of per- 
formance such as the response time. This is true even 
for extreme values in resource utilization and data con- 
tention. We emphasize that while the analysis decom- 
poses the model into separate components and makes 
approximations in analyzing the LRU buffers, CPU, 
and data contention, the simulation makes no such de- 
composition and accurately simulates each of these as- 
pects. 

4.1 Buffer Hit Ratio 

Since OCC is more complicated to analyze (because 
of the effect of rerun transactions), we have chosen OCC 
for these examples, unless otherwise specified. Also, to 
show the robustness of our model, we will validate the 
model under the.workload of application 1 (high skew). 
Figure 4 shows the effect of buffer size on the buffer hit 
probability of ilrst run transactions for different num- 
bers of nodes. The analytical estimate matches very 
well with the simulation results. For a small buffer size, 
most of the buffer space is occupied by hot granules. 
The buffer hit probability increases with the buffer size 
almost linearly up to the point where very little hot 
data gets replaced. Any further increase in the buffer 
space, makes the additional buffer .available for cold 
granules, and subsequent increase in buffer hit prob- 
ability is small. 

In a multi-system environment, the maximum buffer 
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size that can be effectively used by the hot-set is less 
than the hot-set size, and is determined by the point 
where buRer miss rate for the hot set is equal to its in- 
validation rete[DANSOe]; we will refer to this es the 
saturation point for the hot set, or the break-point. 
Since the invalidation rate increases with the number 
of nodes, the maximum buffer hit probability for the 
hot-set and the over all buffer hit probability decreases 
es the number of nodes increases. However, the cold- 
set is less affected by invalidation, and beyond the set- 
uretion point for the hot-set the buffer hit probability 
curves are parallel to each other. To better understand 
the effect of invalidation on the buffer hit probability of 
hot and cold granules, we plot the buffer hit probability 
for each type of date separately in Figure 5 for a buffer 
size of 3K granules (12 Mbytes). Note that the buffer 
size is larger than the hot set size (2K granules). The 
overall buffer hit probability of first run transections 
(indicated es “weighted,’ in the figure) closely follows 
the buffer hit probability of hot granules. The invalide- 
tion rate increases with the number of nodes, and hence, 
the buffer hit probability of the hot granules goes down 
(Equation 6). Since the size of the cold date set is large, 
very few cold granules are lost from the buffer due to 
invalidation. The buffer hit probability of the cold gran- 
ules actually increases with the number of nodes es the 
effective buffer size that can be exploited by the hot 
granules decreases. 

The buffer hit probability of e rerun transection de- 
pends only on the invalidation rate, and not on the 
buffer size, unless the buffer size is so small that e gran- 
ule accessed by e fist run transection is flushed out be- 
fore the reeccess on its rerun. Figure 6 shows the effect 
of invalidation on the bufI’er hit probability of e rerun 
transection. Since the size of the cold date set is large, 
very few cold granules are lost from the buffer due to in- 
validation. On the other hand, the buffer hit probability 
of the hot granules falls slowly with an increasing num- 
ber of nodes. The explanation is that aborted trans- 
ections have misses during their rerun corresponding 
to conflicts with transections running on other nodes; 
while the number of such conflicts increases, the prob- 
ability that more than one conflict occurs for e single 
transection is small. Again, most of the decrease in the 
buffer hit probability is due to the invalidation effect on 
the hot set. 

4.2 Transaction Response Time 

Figure 7 shows the effect of buffer size on the trans- 
ection response time for e highly skewed workload (ep- 
plicetion 1). The parameter in this chart is the number 
of nodes N. The match between the analytical predic- 
tion and simulation is excellent for all cases. The in- 

crease in buffer hit probability translates to a decrease 
in response time, and hence, these curves are inversely 
related to the buffer hit curves (Figure 4). For e single 
node, the response time decreases significantly until the 
saturation point for the hot-set. Once the hot-set satu- 
ration occurs, the response time drops et a nearly linear 
but slower rate. The response time for the multi-node 
case is higher due to several factors: the higher data 
contention (higher transection load), the lower buffer 
hit probability, and increased commit delay. The sat- 
uration point occurs for a smaller buffer size for the 
multi-node case than for the single node case due to the 
invalidation effect. Comparing Figures 4 and 7, notice 
that the saturation point occurs et the same buffer sizes 
for corresponding parameters. The invalidation rate 
also depends on the update probability. The deshed- 
curve for a 2 node case shows that the saturation point 
occurs et a larger buffer size for e lower probability 
of update (0;25) of the hot-set. The conclusion to be 
drawn from these observations is that, beyond e certain 
buffer size, the response time cannot be reduced simply 
by increasing the private buffer size. 

Our.next set of graphs are for the integrated model 
using the workload of application 2. Figure 6 shows 
the estimate of the probability of abort under OCC for 
buffer sizes of lK, 3K and SK granules (i.e., 4 Mbytes, 
12 Mbytes and 32 Mbytes) respectively. It shows the 
effect of scaling up the system by increasing the number 
of nodes but keeping the transection load per node es 
constant. The first run probability of abort decreases 
with an increase in the buffer size. However, the rerun 
probability of abort is almost the same for both buffer 
sizes since it is rare to have more than one granule inval- 
idated and thus the the rerun execution time is nearly 
the same. Figure 9 shows the response time correspond- 
ing to Figure 8. For a small buffer size, invalidation 
has e smaller impact on the buffer hit probability, and 
hence, the increase in response time is primarily due to 
increased date contention and commit delay (broadcast 
invalidation messages). Since the buffer hit probability 
is more sensitive to invalidation, the response time in- 
creases more sharply for a larger buffer size. 

5 Effect of Skewness 

Skewness in the access pattern can result in a dispro- 
portionate access rate to a fraction of the database, and 
therefore tends to increase the level of date contention. 
However, skewness also results in e higher buffer hit 
probability, since the frequently accessed granules tend 
to remain in the buffer. In turn, a larger buffer hit prob- 
ability decreases the average granule hold time, and this 
decreases the level of date contention. Further, an in- 
crease in data contention also leads to an increase in the 
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invalidation rate and consequently, to a reduced buffer 
hit probability. Hence, the resultant effect on the re- 
sponse time is hard to anticipate. In this section, we 
will use the analytical model to explore the effect of 
skewness. 

To vary the skewness, we vary the frequency of ac- 
cessing the hot-set (o), keeping the size of the hot-set 
(PO) as constant. The remaining parameters are the 
same as that of application 2. Figures 10 and 11 com- 
pare the effect of skewness on the buffer hit probability 
for a multi-system environment with N = 6 and X = 7 
and 25, respectively for OCC. Also shown is the case of 
2PL with X = 7. Increase in a not only increases the 
buffer hit probability of the hot-set, but also implies 
that a higher fraction of accesses goes to the hot-set. 
Hence, the overall buffer hit probability increases in a 
non-linear manner. For a small buffer size (0.5K), most 
of the granules present in the buffer are hot, and for 
a very large buffer (8K), the maximum fraction of the 
hot set that can be retained is in the buffer. Hence, for 
both these cases, increase in o! does not significantly 
change the composition of the buffer, and the increase 
in the overall buffer hit probability is close to linear due 
to the increase only in the access rate to the hot set. 
For intermediate buffer sizes, increase in skewness in- 
creases the proportion of the hot-set in the buffer until 
the maximum fraction of the hot-set that can be re- 
tained in the buffer is reached. Beyond this point, the 
buffer hit probability increases again linearly with a; 
further, the buffer hit probability increases very little 
with increasing buffer size (compare B = 2K, B = 4K, 
and B = 8K for OCC and 2PL in Figure 10) and the 
buffer composition does not change with skewness. 

As explained in Section 3, the buffer hit probabil- 
ity under 2PL (negligible rerun transactions) does not 
depend on the transaction rate, while this is not so 
for OCC (significant rerun transactions). The rerun 
transactions bring back some of the invalidated gran- 
ules, This has a compensating effect on the buffer hit 
probability of the fist run transactions. The number of 
granules brought back by a rerun transaction increases 
with the transaction rate. Thus, as the transaction 
rate increases, the buffer hit probability of the first run 
transaction under OCC becomes higher than that under 
2PL. For a low transaction rate (X = 7), the buffer hit 
probabilities under both protocols are very close. HOW- 
ever, for a higher transaction rate (X = 25), the buffer 
hit probability under OCC is significantly higher than 
that for a lower transaction rate, for a large buffer size 
(B > 500). Under 2PL, such a high transaction rate 
can not be supported due to high data contention. It is 
only included in Figure 11 for comparison purposes. Re- 
call from Figure 4 that the maximum buffer size needed 

to satisfy the hot-set depends on the invalidation rate. 
Nevertheless, Figure 11 shows that a larger fraction of 
the hot-set can be retained in the buffer under OCC 
than for 2PL. 

Figure 12 compares the transaction response time 
for a transaction load of A = 7.0 per node under 2PL 
and OCC. Under 2PL, for a small buffer size (B = 
O.SK, 1K) and for a large buffer size (B = 8K) the re- 
sponse time increases with skewness. With increasing 
skewness, the increase in data contention dominates the 
increase in buffer hit probability. For an intermediate 
buffer size (B = 2K,4K), the response time initially 
decreases a little due to increased buffer hit probability 
until the point where maximum hot-set that can be re- 
tained in the buffer is reached. This is smaller than the 
hot-set size and beyond this point the response time in- 
creases with skewness. Under OCC, the response time 
increases slightly with increase in skew for very small 
(B = O.5K) and large (B = 8K) buffer sizes. For inter- 
mediate cases, the response time either decreases with 
increase in skew (B = 1K) or fist decreases and then 
increases with increasing skew (B = 2K, 4K). 

6 Summary and Conclusions 

In this paper we studied the combined effect of 
skewed data access on both the buffer hit probabil- 
ity and the data contention probability, and the overall 
effect on transaction response time in a multi-system 
data sharing environment. We examined the effects 
of varying the number of nodes, buffer size, update 
probability, transaction rate, the degree of skewness, 
and the CC protocol on the buffer hit probability, the 
data contention probability (2PL) the transaction abort 
probability (OCC) and transaction response time. We 
developed a simple approximate analytical model for 
database buffers with skewed access in this environ- 
ment . We focused on the case where the database 
consists of a hot set of frequently referenced granules, 
and a remaining cold set of granules. We modeled the 
LRU buffer replacement policy at each node, and es- 
timated the probabilities of hot and cold granules at 
all levels of the LRU chains, taking into account the 
buffer invalidations received from other nodes. These 
LRU buffer occupancy probabilities are then used to 
estimate the overall buffer hit probabilities for hot and 
cold granule requests. The model is generalized to han- 
dle skewed access to an arbitrary number of partitions 
of the database. The buffer model was integrated with 
models for the CC protocol (both OCC and 2PL), and 
with queueing model for resources, in order to estimate 
overall transaction response time. A detailed simulation 
model was developed to validate the analytical model. 
The results from the simulation and analytical models 
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showed excellent agreement. 

Examining the buffer hit ratio with increasing num- 
ber of nodes, we found that while the hot set buffer hit 
ratio decreases significantly with the number of nodes, 
the cold set hit ratio can actually increase. This is be- 
cause the hot set is particularly susceptible to buffer 
invalidation since it is likely to reside in several buffers. 
Due to this hot set invalidation a larger part of the 
buffer becomes available for cold granules. The overall 
hit ratio closely follows the hot set hit ratio, and both 
are larger than the cold set hit ratio. For rerun trans- 
actions under OCC, the cold set hit ratio is close to 
unity while the hot set hit ratio decreases slowly with 
increase in the number of nodes. This is because most 
aborts are primarily due to contentions on hot set data, 
which are therefore invalidated if the contention is with 
a transaction running on another node, causing a buffer 
miss on rerun. Aborts are predominantly due to a single 
contention, usually causing a single buffer miss on re- 
run, provided that the data has not been flushed out of 
the buffer before the rerun occurs. Because of the high 
bufl’er hit ratio for rerun transactions under OCC, the 
abort probability of rerun transactions was very small. 
As a result, the OCC protocol was found to be more 
robust at high levels of data skew. 

Examining the transaction response time as a func- 
tion of buffer size shows several regions which exhibit 
different effectiveness for additional allocated buffer. In 
the first region, data referenced during the first run of 
transactions are flushed from the buffer before reference 
during the rerun of aborted transactions. The response 
time decreases sharply as the bufFer size exceeds this 
threshold [DAN89]. In the second region, the invalida- 
tion rate for hot set granules is less than the re-reference 
rate; when the buffer size becomes large enough so that 
this condition is no longer satisfied, additional buffer 
cannot be used effectively by the hot set, and is used 
instead by cold set granules. In the second region, the 
response time shows a close to linear decrease with in- 
creasing buffer size. Beyond this region, the decrease 
in response time falls off to a lower rate. (A data base 

,. with multiple partitions in terms of access frequency, 
will exhibit multiple such regions.) The size of the fist 
region is determined by the working set size. The sec- 
ond region is determined by the ‘effective’ hot set size 
that can be buffered, and is affected by the hot set size, 
the degree of skewness and the number of systems. Our 
buffer model can provide an accurate prediction of the 
buffering effect and insights into the factors affecting 
performance. 

Finally, we examined the effect of varying the degree 
of skew on the buffer hit probability and the response 
time. Assuming that the hot set size is constant, an 
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increase in the fraction of requests that go to the hot 
set gives rise to two competing effects. First, the level 
of data contention increases, since a larger fiaction of 
the requests are made to the same hot set. However, 
the overall buffer hit probability also increases because 
a larger fraction of the buffer is occupied by the hot 
set. For small buffer sizes that cannot accommodate a 
sign&ant fraction of the hot set, or very large buffers 
that can accommodate the maximum fraction of the 
hot set that can be retained in the buffer, the effect 
of increasing data contention predominates and the re- 
sponse time increases with increase in the skew. For 
intermediate buffer sizes, the effect of higher buffer hits 
can predominate over the contention effect and the av- 
erage response time can actually decrease with increase 
in the skew. 
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Figure 7: Effect of bu%?!!z~n the response time 
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