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ABSTRACT - In shared-nothing multiprocessor database 
machines, the relational operators that form a query are executed 
on the processors where the relations they reference are stored. In 
general, as the number of processors over which a relation is 
declustered is increased, the execution time for the query is 
decreased because more processors are used, each of which has to 
process fewer tuples. However, for some queries increasing the 
degree of declustering actually increases the query’s response 
time as the result of increased overhead for query startup, com- 
munication, and termination. In general, the declustering strategy 
selected for a relation can have a significant impact on the overall 
performance of the system. This paper presents the hybrid-range 
partitioning strategy, a new declustering strategy for multiproces- 
sor database machines. In addition to describing its characteris- 
tics and operation, its performance is compared to that of the 
current partitioning strategies provided by the Gamma database 
machine. 

1. Introduction 
In shared-nothing [STON86] multiprocessor database 

machines, the use of parallelism for all types of queries is not 
necessarily a good idea [COPE88]. In particular, when the over- 
head associated with using parallelism to execute a particular 
query begins to constitute a significant fraction of the execution 
time of the query, the overall throughput of the system will actu- 
ally be higher than if fewer processors are used. On the other 
hand for those queries that consume significant CPU and I/O 
resources, the overhead associated with using parallelism is no; 
significant. In this case, additional processors can be used to 
improve the response time without adversely affecting the 
throughput of the system. In addition, the sequential execution of 
such queries on a single processor may result in the formation of 
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hot spots in a multiuser environment. Clearly, the strategy used to 
decluster each relation in such an environment can have a 
significant impact on the overall performance of the system. 

Garmna [DEWI90] currently provides the database administra- 
tor with three alternative declustering strategies when creating a 
relation: round-robin hashed, and range partitioned. With the 
first strategy, tuples are distributed in a round-robin fashion 
among the disk drives. If the hashed partitioning strategy is 
selected, a randomizing function is applied to the key attribute of 
each tuple to select a storage unit. In the third strategy, the user 
specifies a range of key values for each processor. The partition- 
ing information for each relation is stored in the database catalog. 
For range and hash partitioned relations, the name of the partition- 
ing attribute is kept and, in the case of range partitioned relations, 
the range of values of the partitioning attribute for each processor 
(termed a range table) is also stored. . 

With the round-robin declustering strategy, the degree of 
&a-query parallelism is equivalent to the number of disks that 
the relation is &clustered across. The hash and range decluster- 
ing strategies both provide enough information so that the execu- 
tion of exact match queries on the partitioning attribute can be 
localized to a single node. However, in the case of a selection 
with a range predicate on the partitioning attribute (e.g., 10 < 
employee.age < 30), while the range declustering mechanism can 
localize the execution of the query to only those processors that 
contain relevant tuples, the hash declustering strategy must direct 
such queries to all the processors (like the round-robin decluster- 
ing strategy). If the execution time of such range queries is small, 
using only l-2 processors is optimal. However, if the query con- 
sumes significant CPU and I/O resources, its response time will 
be higher with the range declustering strategy than with the hash 
and round-robin strategies. 

In this paper we describe a new declustering strategy termed 
the hybrid-range partitioning strategy (HRPS). Unlike the 
other declustering strategies, the HRPS utilizes the characteristics 
of the queries that access a relation to obtain the appropriate 
degree of intra-query parallelism. ln particular, the HRPS strikes 
a compromise between the sequential execution paradigm of the 
range declustering strategy and the load balancing/intra-query 
parallelism characteristics of the hash and round-robin decluster- 
ing strategies. 

With the hybrid-range declustering strategy a relation is 
declustered into many small logical fragments such that each frag- 
ment contains a distinct range of the partitioning attribute value 
(the number of fragments is independent of the number of 
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processors in the configuration). As we will demonstrate below, 
this allows the optimizer to execute range queries with miniial 
resource requirements on a single processor while directing CPU 
and/or I/O intensive queries to a large number of processors. A 
central issue to the successful application of the HRPS, is deter- 
mining how many tuples each Fragment of a relation should con- 
tain. In Section 3, we develop a methodology to answer this ques- 
tion by taking into account the following four factors: 

(1) The resource requirements of the queries accessing the 
relation, 

(2) The processing capability of the system, 

(3) The overhead of using each additional processor to exe- 
cute a query 

(4) The cost of searching the range table constructed by the 
hybrid-range declustering strategy. 

The last factor is very important because it allows the hybrid- 
range declustering strategy to degenerate into the range decluster- 
ing strategy for those queries with such small execution times that 
the time to search the range table becomes significant (e.g., a 
Debit-Credit transaction). 

The remainder of this paper is organized as follows. In Sec- 
tion 2 we describe related previous work . Section 3 describes the 
hybrid-range partitioning strategy. The description of the work- 
load and the research vehicle used for evaluating the performance 
of this partitioning strategy are presented in Sections 4 and 5, 
respectively. The performance of the hybrid-range partitioning 
strategy is compared with the range and hash partitioning stra- 
tegies in Section 6. Section 7 enumerates the other advantages of 
the hybrid-range partitioning strategy. Our conclusions appear in 
Section 8. 

2. Related Work 
There have been a number of earlier studies of the problem of 

file distribution in multiprocessor database machines. Some have 
proposed new declustering strategies [DU82. KIM88, COPE88, 
PRAM89], while others have analyzed the impact of alternative 
declustering strategies [LIVN87, GHAN90]. Studies that are con- 
cerned with the multi-disk architecture [DU82, LIVNS’I] are dif- 
ferent and not directly relevant to this study. In order to make this 
distinction clear, we use the two dimensional file system of the 
XPRS shared-memory multiprocessor database management sys- 
tem [STON88] as an example. XPRS uses a disk array for mass 
storage (based on the RAID design [PATT88]). It supports intra- 
query parallelism by fragmenting a single relation into multiple 
files. Like range declustering in Gamma, each relation is Erag- 
mented using a distribution criteria [STON88], e.g.: 

EMP where age < 20 to file 1 
EMP where age >= 20 and age <= 40 to file 2 
EMP where age > 40 to file 3 

Furthermore, each file is organized as a number of extents. In 
traditional file systems, an extent corresponds to a sequential 
number of blocks on a disk drive. In XPRS, each extent is two 

dimensional: one dimension corresponds to the number of disks 
that contain an extent (Wi) while the second dimension 
corresponds to the number of tracks on each disk (Si). The choice 
of Wi and Si is suggested by the application software [STON88]. 

In an environment similar to that of XPRS, the hybrid-range 
declustering strategy would determine the appropriate number of 
files a relation must be fragmented into and not the values of Si or 
Wi since the hybrid-range declustering strategy attempts to deter- 
mine the appropriate degree of intra-query parallelism for the set 
of queries that access the relation. Determining the values of Wi 
and Si is a separate problem with a different set of constraints that 
is beyond the scope of this paper. 

[KIM88, PRAM891 presented an optimal file declustering stra- 
tegy for partial match retrieval queries. The major contribution of 
this study was the development of a new approach termed FX dis- 
tribution which maximizes data access concurrency in the pres- 
ence of partial match queries. A limitation of FX distribution is 
that it does not provide support for range queries. 

[COPE881 examined the problem of data placement in Bubba 
[ALEX88, BORA88]. This study introduced concepts such as 
Heat and Temperature which are crucial to understandmg the 
issues relevant to the problem of data placement. However, the 
major thrust of thii study was to maximize the throughput of the 
system. In order to achieve this objective, this study focused on 
two issues: 1) balancing the load across the nodes in the environ- 
ment, and 2) whether to place the data on disk or cache it per- 
manently in memory. Due to the complexity of the problem 
(NP-complete), a heuristic approach was used to solve the prob- 
lem. Thii study did not consider the impact of alternative declus- 
tering strategies on the throughput of the system. In addition, the 
algorithms presented in [COPE881 do not attempt to minimize the 
response time of a transaction. 

This paper differs from all of these earlier efforts in that it 
describes a new declustering strategy that utilizes the characteris- 
tics of the queries that access a relation to decluster it such that 
the appropriate degree of intra-query parallelism is obtained for 
the queries in the workload. 

3. The Hybrid-Range Partitioning Strategy (HRPS) 
The HRPS declusters a relation into fragments based on the 

following criteria: 1) each fragment contains approximately FC 
tuples and 2) each fragment contains a unique range of values of 
the partitioning attribute. The variable FC is determined based on 
the processing capability of the system and the resource require- 
ments of the queries that access the relation (rather than the 
number of processors in the configuration). This variable is 
described further in Section 3.1. 

By declustering a relation using the HRPS, the number of pro- 
cessors that participate in the execution of the queries in the work- 
load is optimized, resulting in a lower average response time and 
a higher average throughput when compared with the previous 
declustering strategies. The HRPS locaiizes the execution of 
those queries that have minimal resource requirements to a few 
processors while directing queries with high resource require- 
ments to a large number of processors. Furthermore, it provides 
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effective support for small relations and relations with a non- 
uniform distribution of the partitioning attribute values. A major 
underlying assumption of this partitioning strategy is that the 
selection operators which access the database retrieve and process 
the selected tuples using either a range predicate or an equality 
Predicate. 

Below, we will expand on this brief description and address 
the issues involved. We will describe the HRPS in the context of 

a mixed workload consisting of n selection queries’. For each 
query Qi, the workload defines the CPU processing time (CPU,), 
the Disk Processing Time (Diski), and the Network Processing 
time (Neti) of that query. Observe that these times are determined 
based on the resource requirements of each individual query and 
the processing capability of the system. Each query retrieves and 
processes (TuplesPerQi) tuples from the database. Furthermore, 
we assume that the workload defines the frequency of occurrence 
of each query (FreqQi). 

Rather than describing the HRPS with respect to each query in 
the workload, we deline an average query (Q,,) that is represen- 
tative of all the queries in the workload. The CPU, disk and net- 
work processing quanta for this query are: 

CPU,, = &CP(I, * FreqQi) 
i=O 

DiskA, = i(Diski * FreqQi) 
i=O 

Net,,, = fJNeti * FreqQ,) 
i=O 

TuplesPerQA, = k(TuplesPerjZi * FreqQi) 
i=il 

We will use this query throughout our discussion. In Section 3.3, 
we will expand the presentation of HRPS to include each indivi- 
dual query within the workload. 

3.1. Computing the Number of Processors to Decluster 
a Relation Across 

The three principal resources consumed during the execution 
of Q,,% are: 1) CPU, 2) disk l/O , and 3) communications. The 
amount of each is dependent on the processing capability of the 

t In this paper we concentrate on how to obtain the appropriate de- 
gree of intra-query parallelism for a selection operator using an index. We 
do not consider selection operators that sequentially acan a file because 
[GHAN901 demonstrates that the range dcclustering strategy is the best 
partitioning strategy for this query type. The major reason for considering 
only the selection operator is that it is found in almost all query plans. 
Furthemtore, it has a significant impact on the performance of a complex 
query as, if the declustering strategy cannot provide the appropriate degree 
of intra-query parallelism for a selection operator, the performance and de- 
gree of intra-query parallelism of the other operators may be severely lim- 
ited. This is especially true for database machines that data flow tech- 
niques to execute complex queries. There is nothing restricting the model 
from being extended to correspond to a mot-c ccmplex query plan. 

system and the resource requirements of the query. Assume that a 
single processor cannot overlap the use of two resources for an 

individual query’. Thus, the execution time of QA, on a single 
processor in a single user environment is: 

ExecutionTime = CPU,, + Disk,, + Net,, (1) 

As additional processors are used to execute the query, the 
response time of the query decreases. However, the overhead 
associated with using an additional processor must be incurred 
(we term this variable CP). This overhead is primarily in the 
form of additional messages to control the execution of the query 
on additional processors and is a function of the number of pro- 

cessors used.3 For the purposes of this paper we have assumed 
thii overhead to be a linear function of the number of processors 
since this is the case for Gamma. 

The response time (Rr) of a query in terms of the number of 
processors (termed M) used to execute it can be defined as fol- 

lows:4 

RT(M)= 
CP(/,, + Disk,, + Net,.,,, 

M 
+M*CP (2) 

The first goal in declustering a relation using the HRPS is to 
decluster a relation across M processors in order to minimize the 
response time for the query. Setting the lirst derivative of the 
function RT (M) to zero one can solve for desired value of M: 

(3) 

lf the relation is declustered across M processors (where M is 
rounded to the nearest integer), the response time for QA, will be 
minimized. 

While partitioning a relation across A4 processors minimizes 
the response time for QA, in a single user environment, it does 
not necessarily maximize the throughput of the system in a mul- 
tiuser environment. For example, assume that M = 1 (i.e., that the 
resource requirements of the queries in the workload are minimal) 
and that the selection predicate of each query is applied to the par- 
titioning attribute. Consider also the performance of the system 
when the relation is declustered across N processors (say N = 5) 
using the range partitioning strategy. The range partitioning stra- 
tegy, by its nature, will direct the queries in the workload to a sin- 
gle processor most of the time. Consequently, the average 
response time of query in a single user environment is almost the 
same for both partitioning strategies. However, in a multiuser 
environment, the range partitioning strategy will distribute the 
concurrently executing queries among all five processors, while 

a The justification for this assumption is provided in Section 3.3. 
a The algorithm used to schedule and commit a multi-processor 

query defines this function. For example, if a tree activation protocol is 
used, this function will be logarithmic in the number of processors pattici- 
pating in the execution of the query. (where the base of the log is the 
branching factor of the tree). 

4 The linear spccdup results presented in [DEW1901 justify this as- 
sumption. 
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the HRPS will always direct them to a single processor. Thus, the 
throughput of the system will almost certainly be higher with the 
range partitioning strategy. 

HOW can the throughput of the system be maximized? The 
solution is to change the interpretation of M. Instead of M 
representing the number of processors over which a relation 
should be declustered, M is used instead to represent the number 
of processors that should participate in the execution of QA,. 
Since Bw processes TuplesPerQA, tuples, each fragment of the 

relation should contain FC = 
TuplesPerQA, 

M 
tuples. Further- 

more, each fragment must contain a distinc& non-overlapping 
range of the partitioning attribute value. 

3.2. Creation of the Fragments and Assignment of the 
Fragments to Processors 

In order to guarantee that each fragment of a relation contains 
a distinct range of values of the partitioning attribute, the relation 
must first be sorted on the partitioning attribute. The relation can 
then be declustered such that each fragment contains approxi- 
mately FC tuples. Finally, the fragments are distributed among 
the processors in a round-robin fashion, insuring that M adjacent 
fragments will be assigned to different processors (unless N, the 
number of processors, is less than M). At each processor all the 
fragments of a particular relation are stored in the same physical 
file. The assignment of fragments to processors is maintained in a 
one dimensional directory termed a range table. This simple 
heuristic results in the participation of at least M processors and at 
most M + 1 processors in the execution of the query 

Since Cardinality (Rel) 
FC 

may be greater than N, each proces- 

sor may contain more than one fragment of the relation. While 
this may appear both wasteful and/or unnecessary, it is actually a 
desirable property since it insures the participation of an optimal 
number of processors in the execution of Q,,=. 

In order to contrast the HRPS with the other partitioning stra- 
tegies, consider the following example. Assume a 10,000 tuple 
relation with unique values for the partitioning attribute ranging 
from 0 to 9,999 and that the “average” query accessing this rela- 
tion uses a range predicate on the partitioning attribute to retrieve 
and process 500 tuples (TuplesPerQ = 500). Also, assume that 
the optimal performance is achieved when 5 processors are used 
(M = 5). Thus, the cardinality of each fragment is 100 tuples 
(Fc = TuplesPerQ 

M 
= 100) and the relation will be partitioned 

into 100 fragments. Finally, assume that the alternative partition- 
ing strategies decluster the relation across all the processors. 

First, consider the case where N, the number of processors is 
equal to 5 (Figure 1.a). Since the HRPS assigns the fragments of 
the relation in a round-robin fashion among the processors, the 
query will overlap either 5 or 6 fragments. In either case, all the 
processors will be used to execute the query. The hash partition- 
ing strategy will also use all N processors since it cannot localize 
the execution of a range query. The range partitioning strategy 
will also decluster the relation into 5 fragments. Since the range 
of a query falls within a range of a single fragment most of the 

time and overlaps the range of two fragments some of the time, 
the query will be. directed to either 1 or 2 processors. 

When N, the number of processors is less than M (see Figure 
l.b), the HRPS will still use all N processors in the execution of 
the query because it enforces the constraint that the M adjacent 
fragments be assigned to different processors whenever possible. 
Conversely, the range partitioning strategy in this case declusters 
the relation into 2 (i.e., N) fragments, significantly increasing the 
probability of a query being directed to only one processor. 

In the final case, N > M (Figure l.c), the HRPS will distribute 
the 100 fragments of the relation across all N processors in order 
to insure that all available resources are used in order to maximize 
the throughput of the system when executing multiple queries 
concurrently. However, since the range of a query will overlap 
only 5 or 6 fragments, each individual query is localized to almost 
the optimal number of processors. Conversely, the hash partition- 
ing strategy will send the query to all N processors, incurring the 
startup, communication, and termination overheads associated 
with executing the query on more processors than absolutely 
necessary. The range partitioning strategy will again execute the 
query on only 1 or 2 processors, again using less than the optimal 
number of processors. 

3.3. Discussion 
One simplifying assumption that we have made is that a query 

does not use multiple resources on a single node simultaneously. 
This is not a realistic assumption. For example, Gamma uses a 
read-ahead process to overlap disk and CPU operations. Our 
justification for this simplification is that in a multiuser environ- 
ment, the probability of overlap within a single query is fairly low 
since the total number of resources is relatively small compared to 
the multiprogramming level. Thus, while one query is consuming 
one of the resources (e.g. the CPU), it is highly likely that other 
queries will be consuming the other resources. 

For each relation, the HRPS creates a one dimensional direc- 
tory that specifies the range of each fragment and the mapping of 
fragments to processors. In the worst case, the FC of each frag- 
ment will equal one (i.e., the number of entries in the directory 
will equal the cardinality of the relation). This might be reason- 
able if the resource requirements of the query are extremely high 
(e.g., image processing). However, if they are very low, the over- 
head of searching the one dimensional directory might become a 
significant fraction of the query’s execution time. Thus, this over- 
head must be considered when determining the size of each frag- 
ment. The number of entries in the one dimensional HRPS direc- 

tory is 
M * Cardinality (Rel) 

TuDlesPerO ’ 
If a lookup in this directory is 

performed using’ a linearsearch, the response time of the query is 
defined by the following equation: 

RT(M)= 
CPU +Disk+Net + M * cp 

M 

+ M * Cardinality (Rel) * CS 
TuplesPerQ 
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where CS represents the overhead associated with searching a sin- 
gle entry in the directory. Hence, the number of processors used 
to execute the query is specified by the following formula: 

I 

M= CPU + Disk + Net 
Cp + Cardinality (Rel) * CS (4) 

TuplesPerQ 

If a binary search algorithm is used instead to process accesses to 
the HRPS directory, M becomes: 

E),+ (4 * CP * (CPV+Disk+Net)) 
2*cp 

Thus far, we have described how the HRPS declusters a rela- 
tion with respect to the resource requirements of a,. We now 
expand our discussion and consider the A individual queries that 
constitute the full workload for a relation. In this case, the 
response time RT (M) becomes: 

n CPV,+Disk,+Net, 
RT(W= CC M + M * CP) * FreqQi (5) 

i=O 

and the FC for each fragment is: 

900-999 
. 
. 

,9900:9999 
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In Section 6, we will compare the performance of the HRPS with 
that of the range and hash partitioning strategies. First, we will 
describe the workload and the research vehicle used for this per- 
formance analysis. 

4. Workload Definition 
We utilized a multiuser workload to evaluate the performance 

of the hybrid-range partitioning strategy since the response time 
of a query and the processing effort of the system required to exe- 
cute the query with each of the alternative partitioning strategies 
are not necessarily correlated. For example, consider the execu- 
tion of a 1% range selection query that is executed using a 
clustered index and whose predicate is applied to the partitioning 
attribute. While the hybrid-range partitioning strategy directs the 
query to a subset of the processors, the hash partitioning strategy 
directs the query to all the processors. Consequently, more 
resources will be consumed when the hash partitioning strategy is 
used than when the hybrid-range partitioning strategy is 
employed. However, the response time of the query will almost 
certainly be identical for both declustering strategies since the 
overhead of the extra control messages is small compared to the 
overall execution time of the query. In such a situation, the mul- 
tiuser throughput of the system will reveal the tradeoffs associated 
with the different execution paradigms. 

For our performance evaluation, we used a database consisting 
of 10 relations. Each relation was based on the Wisconsin Bench- 
mark relations [BI’IT83] but contained one million 208 byte 
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tuples. A uniform distribution of access to the different relations 
was used. 

We choose three query types for this performance evaluation. 
In order to justify their selection consider Figure 2. In this figure, 
space A represents the domain of alI possible queries. The region 
marked “Range” represents the region in space A for which the 
range partitioning strategy provides the best response time. These 
queries primarily consist of queries whose execution requires 
minimal CPU and I/O resources since the range partitioning stra- 
tegy localizes their execution to a single processor and avoids the 
overhead associated with a multi-processor query. 

Figure 2 

The area marked “Hash” represents the query types for which 
the hash partitioning strategy provides the best response time pos- 
sible. Ignoring the shaded area for now, this region consists of 
queries with high resource requirements since the hash partition- 
ing strategy directs such queries to all the processors, thus utiliz- 
ing intra-query parallelism effectively to obtain the best possible 
response time. 

These two regions (again ignoring the shaded area) are disjoint 
since the range partitioning strategy does not perform as well as 
the hash partitioning strategy for queries with high resource 
requirements and, similarly, the hash partitioning strategy does 
not perform as well as the range partitioning strategy for queries 
with minimal resource requirements. 

The shaded region represents those selection queries with an 
equality predicate on the partitioning attribute that have minimal 
resource requirements. Both the range and hash partitioning stra- 
tegies can localize the execution of such queries to a single pro- 
cessor. 

In order to demonstrate that the HRPS is generally a better 
declustering strategy, we must show that it covers a region in 
space A that largely subsumes both regions marked “Range” and 
“Hash”. Note that we do not have to consider all the different 
queries that might occur in either the “Range” or the “Hash’ 
region in order to achieve this objective. Rather, we must demon- 
strate that the HRPS provides approximately the same level of 
performance as: 

l the range declustering strategy for queries with low 
resource requirements 

l the hash partitioning strategy for queries with high 
resource requirements 

0 both partitioning strategies for queries with an equality 
predicate and minimal resource requirements. 

Finally, in those cases where the mix of queries have conflicting 
partitioning requirements, we must demonstrate that the HRPS 
provides better performance than both the hash and range parti- 
tioning strategies. 

For a query with minimal resource requirements, we chose a 
0.001% range selection on a 1 million tuple relation using a 
clustered in&x. This query retrieves and processes 10 tuples. Its 
single processor, single user execution time is 0.08 seconds on 
Gamma. For a query with high CPU and I/G requirements, we 
selected a 10% range selection on a 1 million tuple relation using 
a clustered index. This query retrieves and processes 100.000 
tuples and has an execution time of 54.33 seconds. The third 
query type is essentially redundant since it is a special case of the 
first class of queries (0.001% selection query). As long as the 
hybrid-range partitioning strategy performs as well or better than 
the range partitioning strategy for the 0.001% range selection 
query, it has automatically satisfied the execution requirements of 
queries with an equality predicate and minimal resource require- 
ments. 

In order to demonstrate the superiority of the HRPS in those 
cases where the mix of queries have conflicting partitioning 
requirements, we chose a workload consisting of a mix of the 
0.001% and 10% selection queries. Note that while the execution 
of the 0.001% selection must be localized to a single processor to 
minimize its execution time, the 10% selection should be exe- 
cuted by all the processors. Two cases were considered. In the 
lint, we used an equal mix of both query types and varied the 
multiprogr amming level. In the second, we fixed the multipro- 
gramming level at 50 and varied the mix of the two query types. 
As we will demonstrate in Section 6, the HRPS provides superior 
performance in such situations. 

5. Overview of the Gamma Database Machine 
In this section, we present a brief overview of the Gamma 

database machine.5 Gamma currently runs on a 32 processor 
iPSC/2 Intel hypercube [INTE88]. Each processor is configured 
with an Intel 80386 processor, 8 megabytes of memory, and a 330 
megabyte MAXTOR 4380 (5 l/4”) disk drive. Gamma is built 
upon a custom operating system that provides lightweight 
processes with shared memory. File services in Gamma are based 
on the Wisconsin Storage System (WiSS) [CHOUSS]. These ser- 

vices include structured sequential files, B’ tree indices, byte 
stream files as in UNIX, long data items, a sort utility, a scan 
mechanism, and concurrency control based on file and page lock- 
ing. 

Each disk drive has an embedded SCSI controller which pro- 
vides a 45K byte RAM buffer that acts as a disk cache on read 
operations. In a single user environment, the SCSI cache speeds 

’ For a complete description of the Gamma database machine see 
[DEWI90]. 
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up the execution of sequential scan queries by almost a factor of 
two. However, in a multiuser environment, its effect is minimal 
because the probability of two disk successive accesses being 
sequential is quite low. Furthermore, a disk request that results in 
a seek completely invalidates the contents of the cache. In the fol- 
lowing section, we will repeatedly see the impact of this cache on 
the performance of the different selection queries. 

For the performance evaluation presented in the following set- 
tion, a 24 processor instantiation of Gamma was used. The 
remaining 8 processors in the hypercube were used to simulate 
users submitting queries6 Each node in Gamma was configured to 
use 8K byte disk pages and a buffer pool of 2 megabytes. The 
disk scheduler uses an elevator algorithm [TEOR72]. The buffer 
pool replacement policy is LRU. 

6. Performance of Alternative Declustering Strategies 
In this section, we evaluate the performance of the alternative 

declustering strategies using the workload described in Section 4. 
The alternative partitioning strategies declustered the relations 
across all the processors. The range and hash partitioning stra- 
tegies distributed the tuples of each relation uniformly across the 
24 processors, while the HRPS resulted in an approximately uni- 
form distribution of the tuples across the processors. Before 
proceeding to the performance evaluation itself, we first must 
describe the execution paradigm for each of the alternative parti- 
tioning strategies. 

In Figure 3, the BM process acts as a terminal generating 
queries which it submits to Gamma for execution. For each new 
query, the BM process randomly selects one of the 10 relations in 
the database and randomly generates a predicate for the selection 
query (both using a uniform random number generator). As 
described in Section 1, the Gamma query optimizer utilizes the 
information provided by the range, hash, and hybrid-range parti- 
tioning strategies in order to limit the number of processors to 
which each query is sent whenever possible. 

As shown in Figure 3.b, when a query must be executed by 
multiple processors, it is first sent to a Query Manager (QM) pro- 
cess which assumes responsibility for its execution. The QM pro- 
cess sends the query to each processor that the query optimizer 
has indicated should participate in its execution. When each pro- 
cessor finishes executing the query, it sends a “query done” mes- 
sage back to the QM process. If the QM receives a “query done” 
message from each processor, it sends a “commit” message to 
each processor and closes all of the communication ports. 
Finally, it notifies the process that submitted the query of its suc- 
cessful execution. If, on the other hand, the query is aborted at a 
processor (generally because of a concurrency control deadlock) 
that processor sends an “abort” message to the QM. The QM, in 
turn, sends an “abort” message to each participating processor and 
then notifies the process that submitted the query. On the other 

6 Communications between the hypercube and the Unix machine to 
which it is attached is too slow to allow a significant workload to be 
placed from the outside. 

Start Query Query Done 

0 CPU 

a. Single Processor Query 

Private Port 

CPU 
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1 

. . . 

. l . 

b. Multi-Processor Query. 

Figure 3 

hand, queries that execute on only a single processor are sent 
directly to the proper processor for execution, bypassing the QM 
process (see Figure 3.a). As illustrated by Figure 3, significantly 
fewer messages are required to control the execution of a single 
processor query, and as we will see, this difference has a 
significant effect on the performance of the alternative partition- 
ing strategies. 

The benchmark process (BM) and the query manager process 
(QM) are two independent entities that are generally located on 
different processors, but they were placed on the same processor 
for these experiments. In order to simulate multiple concurrently 
executing users, one BM and one QM process was employed for 
each user. Eight processors were used for running the BM and 
QM processes in order to avoid a bottleneck from forming. For 
all the experiments presented below, we ensured that the CPU 
utilization of each of these 8 processors was less than 100%. 

We measured CostOfPart, the overhead of using each addi- 
tional processor to execute a query, to be 26 milliseconds in 
Gamma. Since operators are scheduled and terminated sequen- 
tially, the total overhead is a linear function of the number of par- 
ticipating processors. For the range and the hybrid-range parti- 
tioning strategies, the optimizer utilizes a binary search algorithm 
to search the range-table to determine which processors should 
participate in the execution of a query. We measured the over- 
head of searching the range table and initializing the query packet 
(i.e., CostGfSearch) to be 0.243 milliseconds per range table 
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entry. These parameters are used by the HRPS to determine the 
number of fragments for a given relation and the cardinality of 
each fragment. 

In the following sections, when we refer to the performance of 
a specific partitioning strategy for a particular type of query, we 
are implying that the selection predicate of the query is applied to 
the partitioning attribute. 

6.1. 0.001% Selection Using a Clustered Index 
With a clustered index, the order of the values in the B-tree 

corresponds to the order of the data records in the relation. Two 
types of disk requests are made by the range selection queries that 
use a clustered index structure: random and sequential. The 
traversal of the B-tree to locate the upper and lower limits of the 
query with respect to the actual data records is random, while the 
retrieval of data records between the lower and upper limit mark- 
ings is sequential. In Figure 4, the throughput as a function of the 
multiprogramming level of a 0.001% selection query using a 
clustered index is presented for each of the alternative decluster- 
ing strategies. 

The execution time of this query using a single processor is 
0.08 seconds. Using equation (4) (and the values of CostOf- 
Search and CostOfPart from the previous section), the value of M 
for this query was calculated to be 0.057 and hence only a single 
processor should be used. The HRPS will decluster each million 
tuple relation into 5,700 fragments with approximately 175 tuples 
per fragment. Since there are more fragments than processors, the 
fragments are distributed in a round-robin fashion among the pro- 
cessors. 
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Figure 4: 0.001% Selection 

While the optimizer has enough information for the hybrid- 
range and range declustering strategies to localize the execution 
of this query to 1 or 2 processors, since the query involves a range 
predicate, the hash partitioning strategy must direct this query to 
all the processors. Consequently, at a multiprogramming level of 
one, the throughput with the range and hybrid-range declustering 
strategies is almost eight times higher than that of the hash parti- 
tioning strategy since the hash partitioning strategy incurs the 
overhead associated with a multi-processor query. At a multipro- 
gramming level of 20, the CPU of each individual processor 
becomes 100% utilized causing the throughput of the system to 
level off. 

With the range and hybrid-range partitioning strategies, one 
might have expected the throughput to increase linearly from a 
multiprogramming level of one to twenty four. However, begin- 
ning around a multiprogramming level of 12, the increase in 
throughput is no longer a linear function of the multiprogramming 
level. This is primarily because the random nature of the work- 
load cannot guarantee a perfectly uniform distribution of the con- 
currently executing queries among the processors. For example, 
while 24 processors are being used, at a multiprogramming level 
of 12 two or more queries may be executing concurrently on a 
single processor because their randomly generated predicates may 
overlap [GHAN90]. 

The throughput with the range and hybrid-range partitioning 
strategies is almost identical at all multiprogramming levels (the 
maximum difference is less than 2.5%) because both partitioning 
strategies localize the execution of the query to a single processor 
most of the time. While the hybrid-range partitioning strategy 
must search a significantly larger directory (5700 instead of 24 
entries) the execution time of the query is high enough to render 
this overhead insignificant. 

It is essential to observe the impact of the overhead associated 
with a multi-processor query. At a multiprogramming level of 
160, the throughput for the range and hybrid-range partitioning 
strategies is thirty times higher than that of the hash partitioning 
strategy. Finally, as these results demonstrate the hybrid-range 
partitioning strategy performs as well as the range partitioning 
strategy for queries with minimal resource requirements. 

6.2. 10% Selection Using a Clustered Index 
The throughput for the alternative declustering strategies for a 

10% selection using a clustered index is presented in Figure 5. 
Using equation 4, the value of M is 90 for this query and the 
HRPS declusters each million tuple relation into 895 fragments. 
Ideally, 90 processors should be used to execute this query but 
since only 24 processors are available, each processor must per- 

form approximately 3.7 (i.e., -$$) times the optimal amount of 

work (see Section 3.2, Figure 1.b). The HRPS directs this query 
to all the processors. 

The range partitioning strategy declusters each relation into 24 
fragments, each containing a distinct range of partitioning attri- 
bute values. Since the range of a 10% selection query will overlap 
at most the range of 3 fragments, it will use at most 3 processors 
to execute this query. 
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Throughput (Queries/Second) 
page most of the time and two disk pages some of the time7. 
Thus, the impact of the SCSI cache is minimal for this query. 

The 10% range selection query represents the best case 
scenario for the hash partitioning strategy and the worst case 
scenario for the range partitioning strategy as the hash partitioning 
strategy utilizes intra-query parallelism effectively to produce the 
best response time and throughput. The hybrid-range declustering 
strategy performs as well as the hash partitioning strategy because 
it also utilizes parallelism to execute this query. 

______-------- 
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Figure 5: 10% Selection 

At a multiprogramming level of one, the throughput with the 
hash and hybrid-range declustering strategies is 16% higher than 
that of the range partitioning strategy because the hash and 
hybrid-range declustering strategies utilize intra-query parallelism 
effectively while the range partitioning strategy directs the query 
to the absolute minimum number of processors and performs the 
majority of the work in a sequential manner. 

With the range partitioning strategy, the throughput increases 
only slightly from a multiprogramming level of one to two 
because every time two queries are directed to the same processor 
the response time of each query increases significantly as the 
SCSI cache becomes ineffective. Since a large number of disk 
pages are processed by a query at a single processor, when the 
SCSI cache becomes ineffective, the performance of the system 
degrades significantly. The throughput of the system increases at 
higher multiprogr amming levels as previously idle resources 
become more fully utilized. 

For the hash and hybrid-range partitioning strategies, the 
throughput of the system increases significantly from a multipro- 
gramming level of one to two and then drops at a multiprogram- 
ming level of three. This affect is again due to the SCSI cache. 
At multiprogramming levels higher than three, the throughput of 
the system increases due to processor sharing and utilization of 
the elevator algorithm at the disk controller [GHAN90]. 

Why does not the SCSI cache have an impact on the perfor- 
mance of the 0.001% selection query (presented in Section 6.1)? 
The primary reason is that the 0.001% selection query retrieves 
and processes only 10 tuples (compared with 100,000 tuples for 
the 10% selection query). Each SK byte disk page contains 36 
tuples. Thus, the 0.001% selection query processes a single disk 

6.3. A Mixed Workload 
For our final experiment, we used a mix workload of queries 

consisting of one-half 0.001% selection queries and one-half 10% 
selection queries. It is important to note that the partitioning 
requirements of these two queries conflict with one another. 
While the 0.001% selection should be directed to a single proces- 
sor, the response time of the 10% selection will be minimized if 
all the processors are used. While neither the range nor hash par- 
titioning strategies can resolve the conflicting demands of these 
two queries, the HRPS can. The performance of the different 
declustering strategies for this mix of queries is presented in Fig- 
ure 6. 

The hybrid-range partitioning strategy declusters each relation 
into 1688 fragments (using equations 5 and 6) which were distri- 
buted among the processors in a round-robin fashion. Thus, the 
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Figure 6: Mixed Workload 

’ This count of disk pages ignores the random disk requests for the 
B-tree index pages since the SCSI cache is ineffective for random disk re- 
quests. 
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optimizer has enough information with this partitioning strategy 
to direct the 0.001% selection query to a single processor while 
using all the processors for the execution of the 10% selection 
query. On the other hand, the hash partitioning strategy uses all 
the processors for both queries. The range partitioning strategy 
directs the execution of the 0.001% selection query to a single 
processor and uses at most 3 processors for the execution of the 
10% selection query. 

At a multiprogramming level of one, the throughput of the 
HRPS partitioning strategy is 11% higher than the hash partition- 
ing strategy and 46% higher than the range partitioning strategy. 
The principal reason why the hash and hybrid-range partitioning 
strategies outperform the range partitioning strategy is that the 
execution of the 10% selection dominates the computation of the 
average throughput. Since both queries occur with equal fre- 
quency in this experiment and since the response time of the 10% 
query is significantly higher than that of the 0.001% selection 
query, those partitioning strategies that maximize the throughput 
for the 10% selection also maximize the throughput for the whole 
workload. This also explains why the throughput of the hash and 
hybrid-range declustering strategies converge at multiprogram- 
ming levels higher than four. The impact of the 10% selection 
query on the workload is so significant that the savings provided 
by the HRPS for the 0.001% selection query is not significant. 

We can generalize on the results obtained for this mix of 
queries and speculate on workloads consisting of different mixes 
of queries. As the frequency of occurrence of queries with 
minimal resource requirements (e.g., the 0.001% selection) is 
increased, the throughput of the range and hybrid-range partition- 
ing strategies converge and outperform the hash partitioning stra- 
tegy. Conversely, as the frequency of queries with high resource 
requirements (e.g., the 10% selection query) is increased the 
throughput of the hash and hybrid-range partitioning strategies 
converge and outperform the range partitioning strategy. 

To support this hypothesis, we fixed the multiprogramming 
level of the system at 50 and varied the mix of 10% and 0.001% 
selection queries in the workload. The results are presented in 
Figure 7. In this figure, the X axis represents the percentage of 
10% selection queries in the workload. For example, at point 80 
on the X axis, eighty percent of queries in the workload were 10% 
selection queries and the remaining twenty percent were 0.001% 
selection queries. The performance of the hash and hybrid-range 
partitioning strategies are almost identical when the 10% selection 
query constitutes more than ten percent of the workload. The 
HRPS outperforms the hash partitioning strategy by a slight mar- 
gin since it localizes the execution of the 0.001% selection queries 
to a single processor. 

At first glance, the hash and hybrid-range partitioning stra- 
tegies appear to outperform the range partitioning strategy by a 
wider margin when the 10% selection query constitutes ten per- 
cent of the workload than when it constitutes more than fifty per- 
cent of the workload. This misconception is due to the scale of 
the Y axis. In Figure 8, we present the percentage improvement 
in throughput provided by the hash and hybrid-range partitioning 
strategies relative to the range partitioning strategy. As the per- 
centage of the 10% selection queries is increased, the hash and 
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hybrid-range partitioning strategies outperform the range parti- 
tioning strategy by an increasingly widening margin. The percen- 
tage improvement levels off when the 10% selection query consti- 
tutes forty percent of the queries in workload because the disk has 
become 100% utilized at this point. 

In Figure 9, we present the throughput of the alternative parti- 
tioning strategies at a multiprogramming level of fifty for a 
variety of workloads consisting of a very low percentage of 10% 
selection queries. (This figure is just an enlargement of the lower 
limit of Figure 7.) In this figure, the range partitioning strategy 
begins to outperform the hash partitioning strategy when the 10% 
selection query constitutes less than five percent of the queries in 
the workload because the range partitioning strategy can localize 
the execution of the 0.001% selection queries to a single proces- 
sor (these queries now constitute more than 95% of the queries in 
the workload). 

The HRPS outperforms both the range and hash partitioning 
strategies by close to thiity percent when the 10% selection query 
constitutes five to seven percent of the queries in the workload. 
For this range of workloads, neither the range nor the hash parti- 
tioning strategy is appropriate. Since the HRPS provides the 
appropriate execution paradigm for both queries in the workload, 
it can outperform the other two partitioning strategies. 

7. Other Advantages of the HRPS 

7.1. Support for Small Relations 

In database machines with hundreds to thousands of proces- 
sors, relations with low cardinalities must be partially declustered 
across a subset of processors [COPE88]. The HRPS does a very 
good job at supporting small relations since the number of 
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fragments created by the HRPS is dependent on the processing 
capability of the system and the resource requirements of the 
workload and is independent of the number of processors in the 
multiprocessor. If the number of fragments of a relation is less 
than the number of processors, then the relation will automatically 
be partitioned across a subset of the processors. 

What about the case of a database that consists of many small 
relations? In tbis case, the relations must be declustered such that 
there are approximately the same number of fragments at each 
processor with the restriction that each fragment of a relation be 
assigned to a different processor. Furthermore, the issue of disk 
space utilization also arises as we would like the database uni- 
formly distributed among all the processors. Since this is clearly 
a bin packing problem (which is NP complete [GARE79]), one 
can decluster a relation using a number of alternative heuristics 
that approximate the optimal solution. One simple heuristic might 
be to assign the next fragment of a relation to that processor that 
has the most free disk space available and which does not yet con- 
tain any fragments of the relation. 

The temperature of an individual fragment of the relation must 
also be taken into consideration when assigning the fragments of a 
relation to the processors. The heuristic solutions proposed by 
[COPE881 appear most promising at this point in time and we 
refer the interested reader to that study. 

7.2. Support for Relations with Non-Uniform Distribu- 
tions of the Partitioning Attribute Values 

The HRPS is also capable of declustering relations with non- 
uniformly distributed partitioning attribute values since the cardi- 
nality of each fragment is not based on the value of the partition- 
ing attribute value. Once the HRPS determines the cardinality of 
each fragment, it will decluster a relation based on that value. For 
example, assume relation R has a cardinality of 100,000 tuples 
and assume that 4.000 of these tuples have 2 as their partitioning 
attribute value. In addition, assume that the HRPS determines the 
cardinality of each fragment should be 1000 tuples. After sorting 
the relation on the partitioning attribute, the tuples with a parti- 
tioning attribute value of 2 will be distributed among 4-5 frag- 
ments which will each be assigned to a different processor. Thus, 
if a query with an exact match predicate for value 2 is submitted 
to the system, the query will be directed to 4 processors (rather 
than one processor, had the relation been declustered using either 
the hash or the range partitioning strategy). 

8. Conclusions and Future Research Directions 
In this paper we have described the design of the hybrid-range 

partitioning strategy. This new partitioning strategy declusters a 
relation by analyzing the resource requirements of the queries 
accessing the relation, the processing capability of the processors 
in the multiprocessor configuration, and the overhead of using 
additional processors to execute a query. The goal of this parti- 
tioning strategy is to decluster a relation such that the appropriate 
degree of intra-query parallelism for the queries accessing the 
relation is obtained. The design provides effective support for 
small relations and relations with skewed distributions of the par- 
titioning attribute value. 

We implemented the hybrid-range partitioning strategy on the 
Gamma database machine and compared its performance to that 
of the range and hash partitioning strategies. For query types 
where either the range or hash partitioning strategies result in the 
best response time and throughput, we demonstrated that the 
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hybrid-range partitioning strategy has equivalent perfomusnce. 
For a mixed workload of queries with conflicting partitioning 
requirements, we demonstrated that the hybrid-range partitioning 
strategy is a better alternative. 

It is important to distinguish this study from [COPE88]. The 
hybrid-range partitioning strategy and the heuristic solutions 
presented in [COPE881 are orthogonal to each other. In this study 
we proposed a new partitioning strategy which declusters a rela- 
tion into an optimal number of fragments while [COPE881 
attempted to strike a compromise between load balancing and the 
overall load reduction in the presence of data locality. Once a 
relation is declustered into fragments using the hybrid-range parti- 
tioning strategy, the fragments can be assigned to the processors 
using the heuristic solutions proposed by [COPE88]. In the pres- 
ence of update queries and changing workloads, the heuristic used 
for file reorganization proposed in [COPE881 can also be used. 

A number of open issues remain. First, a major assumption of 
the hybrid-range partitioning strategy is that the work performed 
by a query can always be parallel&d. This assumption might not 
be true for all queries. Second, a major limitation of the hybrid- 
range and the existing partitioning strategies is that they are one 
dimensional. If the selection predicate of a query is on an attri- 
bute other than the partitioning attribute, it must be sent to all the 
processors containing the fragments of the relation. This is clearly 
a major limitation that requires additional study. 
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