
On Restructuring Nested Relations in Partitioned Normal Form

Guy Hulin

Philips Research Laboratory
Avenue Albert Einstein, 4

B-1348 Louvain-la-Neuve, Belgium
ghulinQprlb.philips.be

Abstract

Relations in partitioned normal form are an important
subclass of nested relations. This paper is concerned
with the problem of restructuring relations in parti-
tioned normal form to new and potentially very dif-
ferent schemes. The main problem with restructuring
is to minimize the amount of information lost during
the transformation. A new restructuring operator is
defined which minimizes that loss of information. Its
definition is refined step by step into more and more
computationally efficient versions.

1 Introduction

In 1977, Makinouchi [lo] stressed that the first nor-
mal form condition imposed on relational databases
was not convenient for handling a variety of
database applications such as information retrieval
systems or computer-aided design and manufacturing
(CAD/CAM). Th ese applications require the manip-
ulation of structured entities while the 1NF condition
only allows atomic values for attributes.

Nested relational databases are one attempt to meet
these new requirements. They were first introduced
in [8], where the 1NF condition is dropped and values
of attributes are allowed to be sets. Two new op-
erators, nest and unnest were defined for structuring
and de-structuring nested relations. Those operators
were then generalized so that values of attributes could
themselves be nested relations [16], [2], [17], [15]. A
nested relation is thus a set of tuples having them-
selves nested relations as values for some attributes.

permission to copy without fee all or part of this material is

granted provided that the copies arc not made or distrihutcd for

direct commercial advantage. the VLDB copyright notice and

the title of the publication and its date appear. and notice is fiLei

that copying is hy permission of the Very Large Data B:IW

Endowment. To copy otherwise. or to republish. requires :I ftx

and/or special permission from the Endowment.

Proceedings of the 16th VLDB Conference
Brisbane, Australia 1990

Various SQL-like languages were proposed for query-
ing those databases [16], [4], [12], [13], [14].

A subclass of nested relations is particularly im-
portant for database applications. Those relations
are sometimes said to be in partitioned normal form
(PNF). A relation in PNF is such that its atomic at-
tributes are a superkey of the relation and that any
non-atomic component of a tuple of the relation is also
in PNF. Relations in partitioned normal form have
been studied in [3], [l], [15], and [6].

The present paper is concerned with the problem
of restructuring PNF relations to new and potentially
very different schemes. Section 2 first recalls some
results from [2]: there is a one-to-one mapping from
the class of PNF relations onto a well-defined subclass
of the flat relational databases obeying the Universal
Relation Schema Assumption. That mapping gives a
precise semantics to PNF relations by associating each
of them with a flat relational database. Next, an algo-
rithmic description of that mapping and of its inverse
is given. The problem of restructuring PNF relations
then reduces to a simpler problem of restructuring flat
relational databases. That approach eventually leads
to the definition of a new restructuring operator which
minimizes the amount of information lost during the
transformation.

The operator defined in Section 2 is often inefficient
from a computational point of view. Its definition is
thus refined step by step in Section 3 into more and
more computationally efficient versions.

Section 4 gives some conclusions. The related work
of Abiteboul and Bidoit ([2], [l]) is discussed and some
words are said on future works.

Basic concepts about nested relations and nested
relational algebras are recalled in the rest of this sec-
tion.

Basic concepts

Let U denote the universe of atomic attributes.
Each atomic attribute A in U has a set of values as-
sociated with it, called the domain of A and denoted
dam(A).

Besides atomic attributes, there are structured at-
tributes. A structured attribute X (X # U) is defined

626

by an attribute definition of the form

x E (PI,. . . , Pn}

where Pi (1 5 i 5 n) are atomic or structured at-
tributes.

The following notational conventions for attributes
are adopted:
- upper-case letters A, B, C, D.. . denote atomic at-

tributes,
- upper-case letters X, Y, 2.. . denote structured at-

tributes,
- overlined upper-case letters denote sets of at-

tributes. The conventions above apply for differen-
tiating sets of atomic and structured attributes. A
set of attributes that may contain both atomic and
structured attributes is represented by the over-
lined upper-case letters P, a, or fi.

We also adopt the classical convention that unions
of sets of attributes are denoted by concatenation.
Then, an attribute definition defining a structured at-
tribute Y is often written Y c Ax where A and J?
are respectively its sets of atomic and structured at-
tributes.

A scheme A is a union BUD of a non-empty set B
of atomic and structured attributes, called the root of
the scheme, and of a set 2, of attribute definitions. A
structured attribute X is defined in a relation scheme
A if A contains a definition of the form X E P. A
scheme A with root R is a relation scheme if the fol-
lowing conditions hold:
- any structured attribute that appears in the root

of A or in the right-hand side of a definition of A
is defined in A;

- no structured attribute is defined twice in A;

- no attribute appears in the right-hand side of sev-
eral definitions or in the right-hand side of a defi-
nition and in the root of A.

A relation scheme is thus a hierarchical structure.
A useful notation is rules(P, A) that denotes the

set of rules recursively defining P in A. If P =
AU{Xl...,X,}, and if Xi E Qi are the definitions
of Xi in A,

ruZes(P, A)
= {Xl E &I,. . . (X,, E On) u rzlles(al . . .@,,, A).

If X is defined in A by X G p, the sub-scheme of
A at X, denoted sub(X, A), is P U des(P, A).

Let A be a relation scheme with root Ax. A nested
relation 72, or briefly a relation, with scheme A is a
finite set of tuples over A, where a tuple t over A is a
mapping of domain AX such that t[A] E dam(A) for
every A E A and t[X] is a relation (possibly empty)
with scheme sub(X, A) for every X E a.

With the allowance of empty values for structured
attributes, the modeling of ‘null values of type “does
not exist” is possible in nested relational databases.

The scheme of 72 is denoted scheme(R) and, by
extension, the mot of 7Z is the root of scheme(R).

A (nested) relational database D is a set of (nested)
relations. The scheme of D, denoted Scheme(D), is
the set of schemes of relations of D.

Observe that, if the set of attribute definitions of a
relation scheme A is empty, then its root is a set A
of atomic attributes. A relation with such a scheme is
called flat or INF. A flat relational database is a set
of flat relations.

Example 1. To illustrate the concept of nested
relation, consider a relation Students which repre-
sents the set of students in school X. Each student
is modeled with two attributes: a student’s name,
s-name (atomic) and informations about the courses
the student attends, courses (structured). The root
of Students is thus {s-name, courses}. The attribute
definitions for the structured attributes are:

courses E {couwe, history},
history E {year, unit, teacher},

where course, year, unit, leacher are atomic.
The structured attribute history .recalls the set of

units of a course that were already taken by a stu-
dent in previous years and the teachers who taught
the units.

A value for Students could be represented with the
following nested table:

Students
a-name coufaes

coufde history
year 1 unit 1 teacher

I II
Jones

science 71

physica

Smith physics 71 .

Definitions. Let R be a relation with root R and
let p c fi and 0 C fi. The set of attributes 0 func-
tionally depends on the set of attributes P (P + 0)
if, for every tuples tl and t2 in RR, if tl[P] = tz[P.],
then tl[e] = t2[0].
The relation 72 with scheme A and root 6x is in
partitioned norma form (PNF) if

627

- A # 0,
-A--+X,

- for every t E ‘K and every X E x, the sub-relation
t[X] is in PNF.

0

Notice, in particular, that a flat relation is always
in PNF. Students in Example 1 is in PNF.

The condition A # {} above is not mandatory but
slightly simplifies our presentation.

A PNF relational algebra Z = {U, 17, -, x , S, p, m,
D4 , Y, p} was defined in [6] for the class of PNF rela-
tions without empty attribute values. That algebra is
the first one, using nesting and unnesting operators,
under which the class of PNF relations is closed. The
operators ll, -, X, p, u, and W of JZ are natural
extensions of the operators I?, -, X, p, 0, and W of
the usual flat relational algebra. Their definitions are
not recalled here. The definitions of U, ?r, Y, and p
are recalled hereafter.

Definitions.
Union operator u . Let ‘R and S be PNF relations
with scheme A and root Ax. Then, 72 U S is the set
of tuples over A satisfying one of the following three
conditions:
- t E 72 and t[li] # t’[A] for every t’ E S;
- t E S and t[A] # t’[ii] for every t’ E 72;
- t[A] = t&a] = tz[A] for some tl E ‘R and t2 E S

and t[X] = t,[X] U ta[X] for every X E x.

Projection operator 7r. Let ‘R be a PNF relation with
scheme A and root bfP. Then, flux is the set
of tuples t over A’ = Ax U mZes(a, A) such that, for
some u E R and for every X in a,

w = u[A],

t[X] = u{v[X] 1 v E 7E and v[A] = I@]}.

Nesting operator Y. Let 72 be a PNF relation with
scheme A and root 220. The PNF nesting of ‘R
along Y E 0 selects the sets of tuples of 72 equal
on 2 and compacts them into tuples where the set
of their different values on 0 becomes values of the
structured attribute Y and where the values on ff
are merged using union U. More precisely, if A’ =
&?Y u ,Zes(a,A) u (Y I 0) is a relation scheme,
then, I+~Q(~Z) is the set of tuples t over A’ such that,
for some z1 in 72 and for every X in a,

t[A] = u[A],

t[X] = u{v[X] 1 v E 72 and v[A] = I@]},

t[Y] = {v[Q] 1 v E 7Z and v[AJ = u[A]}.

Unncsting opcmtor ~1. Let A be a relation scheme
with root PY, Y c 0 be the definition of Y in A and

72 be a PNF relation with scheme A. The unneding
of ‘R along Y E Q, denoted py (‘R), disaggregates the
structured attribute Y. More precisely, py(9Z) is the
set of tuples t over A’ = ~~U~z~2es(~~,A) such that
for some tuple 21 in 72,

t[p] = I@] and

Ml E 4Yl. 0

The unnesting operator is the usual one. The union
and projection operators U and rare identical to the
extended union and projection operators of [15]. The
nesting operator Y has been introduced in [6] and dif-
fers from the usual nesting operator Y which is, with
the above notations, the set of tuples t over A’ such
that, for some u in ‘R,

@a] = u[AX],
t[Y] = {v[Q] 1 v E ‘R and v[A] = I@]}.

We proved several important properties of Y in [6].

If 72 is a PNF relation with root axq, then,
~~~~(72) is a PNF relation. That property ‘is 
not true for v in general. 

Let 72 be a PNF relation. If ~~~~(72) is in 
PNF, then ~~~~(72) = v~=Q(~Z). That prop 
erty proves that Y is quite close to V. They only 
differ when v maps PNF relations to non-PNF 
relations. 

Let ‘R be a PNF relation with root FaR. Then, 
~w~=Q+&~) = ~w~=R~w~=Q@)- That 
property of commutativity is very important for 
optimization of relational expressions and is not 
true for v in general. 

The computation of ~~~~(72) often needs com- 
parisons of sets for equality while ~~~~(72) only 
needs to form their union. Thus, VY~Q(R) is 
more quickly computed than ~~~~(72). 

We also argued in [6] that a non-PNF relation 72’ 
obtained from a PNF rtlation 7C by nestings with v 
often has no simple semantic interpretation contrary 
to the PNF relation 72” obtained by similar nestings 
with u. 

2 Restructuring of PNF rela- 
t ions 

2.1 General considerations 

The aim of this paper is to study restructuring in the 
class of PNF relations. Let PA denote the set of PNF 
relations with scheme A. A nstmcturing qpemtor RA 

628 



is an operator that maps the set of PNF relations to 

PA* 

Example 2. Consider Relation Siudenis of Exam- 
ple 1 and the new relation scheme A’, 

{s-name, cumiculum, 
curriculum E {year, courses}, 
coumes q {cow-se, units, teachers}, 
units G {unit}, 
teachers E (teacher} I- 

The restructured relation RAI (Students) must then 
be interpreted as the set of students in school X to- 
gether with their curriculum. The curriculum asso- 
ciates with each year that a student spent in X, the 
set of courses he attended. Each course is character- 
ized by its name, by the list of units attended that 
year by the student, and by the set of teachers for 
those units. 

With that interpretation, the restructured relation 
RAt(StudentS) should be 

Jones 

Smith 71 l 

Before giving a precise definition to RA, we want 
to stress that restructuring often entails some loss of 
information. The loss of information can have two 
origins as the following examples show. 

Example 3. Consider the following relation 721. 

7L 
sub-vu&s 

Dl pl 

D2 ~2 1 1 

Relation 721 means that department Dl uses sub- 

parts spl, sp2, sp3 from suppliers sl, 82, and rl re- 
spectively in the manufacturing of part pl. Depart- 
ment 02 manufactures part p2 without using sub- 
parts from outside. 

Relation 7Er can be restructured to the flat scheme 
with root {dpt, part, sub-part, supplier}. The resulting 
relation is 722 = j4Lsra-poti(7Zr). 

[ dpt 1 part 1 rub-part 1 supplier ] 

After the flattening of Zr, the information concern- 
ing department 02 is lost. . 

That example shows that the presence of empty val- 
ues for structured attributes is a cause for information 
loss in restructuring. That is not the only one as the 
following example shows. 

Example 4. The restructuring of Relation 7Ez of 
Example 3 to the scheme A’ 

{ dpt, part, sub-parts, suppliers, 
sub-parts E sub-part, 
suppliers E supplier i 

associates, with each department and each part manu- 
factured in that department, the set of sub-parts used 
during the manufacturing process and the set of sup- 
pliers for these parts. 

& part sub-parts 1 suppliers 
sub-part supplier 

The restructured relation 72s is defined in terms of 
7E2 by the relational expression 
~sub-pcrrts~sub-pcrrt”strppliersLsupplier (Q). Information 
is lost again during restructuring: it is not known any 
more which supplier supplies which part. . 

The above example shows that, when a relation with 
root P@r@z is successively nested along 91 and 92, 
the associations between values of @r and f& that 
existed for every value of P are lost. 

These losses of information are normal. The seman- 
tics of a restructured relation is different from that of 
the original relation and the new semantics cannot al- 
ways capture the whole information conveyed by the 
old semantics. 

629 



Examples 3 and 4 constitute also a good basis for 
a very important remark. The nesting Y and unnest- 
ing p operators perform simple restructurings and, if 
A and A’ are built upon the same set of atomic at- 
tributes, there are clearly an infinite number of com- 
positions of these two operators that restructure a re- 
lation 72 with scheme A to scheme A’. It could be 
believed that one among them would minimize the 
loss of information. This is unfortunately not true as 
the following example shows. 

Example 5. Consider the restructuring of Relation 
72, of Example 3 directly to Scheme A’ of Example 4. 
The loss of the information between suppliers and the 
parts they supply is inherent to the restructuring. The 
loss of the information about Ds is not. The resulting 
relation 77.4 should be 

a4 

dpt part sub-parts 1 suppliers 
sub-part supplier 

Relation 724 is different from the composi- 

tlon ~~mb-~+tdErrb-part~~applieralb~pplie+~~~b-port~ (%) 
of restructurings of Examples 3 and 4. More gener- 
ally, every composition of Y and p that restructures 
‘Rr to scheme A’ must perform an unnesting along 
sub-parts and causes the loss of the information on 
department 02. 0 

That example shows that nesting and unnesting are 
not an adequate basis for performing restructurings 
when structured attributes admit empty values. It 
demonstrates the need for more general restructuring 
operators that guarantee the minimization of the loss 
of information. 

2.2 Flat interpretation of PNF rela- 
tions 

bet ‘R’ in P&l be the restructuring of z in PA. The 
structure of A’ can be radically different from that 
of A and this makes a direct definition of R&I diffi- 
cult. Therefore, flat equivalent representations are as- 
sociated with PNF relations. Restructurings are then 
more easily defined via those equivalent representa- 
tions. 

It appears from Example 3 that a flat equivalent 
representation cannot simply be obtained by complete 

unnesting since information is lost during this process. 
Two operatars $A and CA are defined in the following 
such that 
- for every R in PA, *A(z) is a set Of flat relations, 
- for every R in PA, CA(@a (a)) = ??. 

Since !@A is invertible, @A(z) is a set of flat rela- 
tions “equivalent” to 72. 

Example 6. Consider again Relation Students of 
Example 1. Similarly to Example 3, the presence of 
empty values in Students leads to information loss af- 
ter flattening through unnesting. That loss can be 
suppressed if three relations instead of one result from 
the flattening process: 
- the first relation Sr has one attribute s-name and 

remembers the set of students, 

- the second relation Ss has two attributes s-name 
and course and remembers the students who attend 
courses and these courses, 

- the third relation has five attributes s-name, 
cow-se, yeaT, unit, and grade and remembers the 
students who have results in some units of courses, 
these courses, the units, and the teachers who 
taught them. 

The three relations are given hereafter. They con- 
stitute the flat equivalent of relation’ Students in the 
sense that they can be built from Students and that, 
conversely, Students can be re-built from them. 

& 
s-name course 

Jones math 
Jones science 
Jones physics 
Smith physics 

cout8e 1 year 1 unit ( teacher 

Jones math 1977 A Russel 
1978 B Russel 
1978 C Doolittle 

Jones physics 1977 A Martin 
Jones physics 1978 i Anderson l 

The following definitions formalize this new flat- 
tening process. The flattening of relations of Pa 
always results in flat relational databases with the 
same scheme. The mapping cp induced by the flatten- 
ing between PNF relations schemes and flat database 
schemes can be defined as follows. 

Definitions. If 72 is a relation in PA with root 
22, then, for every X in x, Ax is the scheme‘-of 

PxTTx(~)* 

630 



Ax = /i u sub(X, A). 

If A is a relation scheme with root AX, then, 

v(A) = {A) u u d&r). 0 
x&f 

If A’ is the scheme of Relation 724 in Example 5, 
p(A’) = {(dpt, part}, { dpt, part, sub-part}, { dpt, part, 
supplier)). 

Definition. The flattening operator @A maps PNF 
relations with scheme A to flat relational databases 
with scheme p(A). Let 7?be a PNF relation with 
root AX. Then, 

@Ata) = h(72)) u u @Ax (k‘xxLr (% 0 
Xd 

It can be easily verified that, in Example 6, 
+A((Students) = {&, &?, &}. 

From now on, the flattening of a relation 7Z will 
be the flat relational database @A(z). In order to 
characterize the class of flat relational databases which 
are flattenings of PNF relations, some new definitions 
are introduced. 

Definitions. An URSA database D is a flat re- 
lational database that satisfies the Universal Rela- 
tion Schema Assumption (URSA), i.e., such that 
x8cheme(n1)(zs) C 7Er for every relation 7Er and Rz 
of D with scheme(Q) c scheme(‘R2) [9]. 

A database scheme S is closed GOT intersection if, 
for all schemes Sr and Ss in S, there exists a scheme 
Ss in S such that Ss = Sr n Ss. 

A database scheme S is hieTarchica1 if 
- S is closed for intersection, 
- for each S in S, {S n T ] T E S} is totally ordered 

by inclusion. 
0 

Let Ds denote the set of URSA databases with hi- 
erarchical scheme S. 

The following theorem, adapted from [l], exactly 
characterizes the class of flat relational databases that 
are flattenings of PNF relations. 

Theorem 1. If A is a relation scheme and if 
S = p(A), then, 3 A is a one&-one mapping from 
PA Onto Ds. 

That theorem shows that flattenings losslessly rep- 
resent PNF relations. 

An algebraic definition of the inverse CA of @A is 

needed in the following. That definition uses an oper- 
ator VA. 

Definition. Let A be a relation scheme with root 
AX 1.. .X,, and let Xi E Qi be the attribute defini- 
tions of Xi in A (1 5 i 2 n). Then, VA takes two 
arguments: 
- a flat relation 72 with scheme A, 
- a set of nested relations 721,. . . ,‘R, with schemes 

Ax ~, . . . , Axn respectively. 
Then, 

"A(%(%,.--,%)) 
=(t ]forsomeuE7Z, foreveryiE{l,...,n}, 

t[A] = u, 
t[Xi] = (u[Qi] ] v E Zi and v[A] = u}}. o 

For every tuple u in RR, VA@, {‘&, . . . ,%!,I) gen- 
erates exactly one tuple t such that t[A] = u. In par- 
ticular, if u fZ x2(‘&) for some i in (1,. . . ,n}, then 
t[Xi] = {}. The definition of CA can now be given. 

Definition. If A is a relation scheme with root 
8X, and if D is a database in Db such that S contains 

cp@h 

where 4(x, D) is the relation of D with scheme A. 
0 

It is very easy to verify that the definition is well 
formed since D indeed contains a relation with scheme 
2 and since I is contained in S for every X E X. 
The following theorem shows that CA is the inverse of 
@.a’. 

Theorem 2. CA is the inverse of @A, that is, for 
every relation ‘R with scheme A, 

2.3 Restructuring operators 

The problem of defining restructuring operators RA 
can now be reduced to a problem of restructuring flat 
URSA databases with hierarchical schemes as the pic- 
ture hereafter shows. 

1 Proofs of theorems cited in this paper CM be found in [S]. 

631 



PA - 
RA, 

If p(A) = S and if cp(A’) = S’, the problem reduces 
to defining a restructuring operator RSI from DS to 
Ds,. 

An URSA database never contains two relations 
over the same scheme, for both would contain the 
same set of tuples. In an URSA database, the scheme 
is sufficient to identify a relation, More generally, if 

=heme(%) c scheme(%), then, ?T~~I,~~~~z~$%) c 
721. The URSA on a database scheme can thus be in- 
terpreted as requiring that an attribute mean the same 
everywhere it appears. A consequence of the URSA is 
that tuples over a given set of attributes have a single 
meaning. A function [A, D] that associates with each 
URSA database D and set of attributes A a relation 
with scheme A is called a window ftinction [S]. 

Let D be an URSA database with hierarchical 
scheme S. A relation of D, denoted [A, 011, that col- 
lects the largest amount of information contained in 
D on A, is associated with each attribute A. 

If A is attribute of no relation of D, then there is 
no information available on A in D and [A, D]l = 
{}. Otherwise, let ‘RI,. . . ,72, be the relations of C 
such that A E scheme(‘Ri) (1 <_ i 5 n), As S is 
closed for intersection, there exists some j (1 5 j < n) 
such that scheme(?+) C scheme(ai) for every? = 
1 ,...,n. It then follows, by the URSA on D, that 
72j > R;~~~~~(~~)(?Z;) for every i = 1,. . . ,n. The 
relation ‘Rj is thus the most informative relation in D 
on attribute A and [A, D]l = Zj. 

The information contained in D on a set of at- 
tributes A is then obtained by joining the relations 
associated with each attribute of A and projecting on 
A: 

[A, Dl = Mb,,- P, 41). 
The restructuring operator Rs, has now a very nat- 

ural definition: 

Rs(D) = {[A, D] 1 ii E S). 

We can now give the definition of the restructuring 
operator RA. 

Definition. If A’ is a relation scheme and if 
(p(A’) = S’, then, 

RA(~) = ~A~(&(@A(~))). 0 

Example 7. Consider the relation Students of 

Example 1 and its flattening in Example 6. If A’ 
is the relation scheme of Example 2 and if S’ = 
‘p( A’), R;S, (3~ (S’t~dents)) contains five relations Si, 
Si, Si, SL, am+ S$, with schemes{s-natiep, {s-name, 
year}, {s-name; yeat, course}, (53mme, year, course, 
unit}, and {s-name, year, COUTR, teacher} respec- 
tively. These relations are 

s-name ( year 1 couvde 

s: 
d-name 1 year 1 course unit 

Joner 1977 physics A 
Jones 1978 math B 
Jones 1978 math C 

s-name 1 year 1 coufge 1 teacher 

Jones 1977 math Russel 
Jones 1977 physics Martin 
Jones 1978 math Russel 
Jones 1978 math Doolittle 
Jones 1978 physics Anderson 

It iS easily verified that cAj(RsI(@A(Student.q))) is 
the nested relation of Example 2. . 

The definition of RAN can be transformed. Let 72 
be a relation with scheme A, and let A’ be a relation 
scheme with root A’x’. If Rh, = CA*.Rsl, then, 

Rat(z)= &(@A@)) 

and, by induction on A’, 

= YA'(Tel(A',R,(a,)(~a(72))), 

WA;, (%(A~)(+~L(~))) I X’ E RI) 

= v&A’, *A(a)], (R6;,(@@)) 1 x’ E a’}). 

Indeed, QA;,)(@A(~)) C R,(A~)(@A('R)) 6~ 
definition and cA&,(D) only uses relations of 

D with schemes in ~(a&,). It follows that 

632 



~A;,(~~(A~)(~AP))) = L;,(%(A;,)(@A(~))) = 

RA;,@)= Ri;,(+A('R)). 

In summary, the restructuring operator R is defined 
as shown in Figure 1. 

If 7E is a PNF relation with scheme A and root dx 
and if A’ is a relation scheme with root A’x’, 

where, for every set of atomic attributes B and ev- 
ery URSA database D with hierarchical scheme, 

and where, for every relation scheme A with root 
AX,.. .X, and for every relations 7Z,7El,. . . ,72, 
with schemes {A}, Ax,, . . . , AX, respectively, if Xi 
are defined in A by Xi 3 8; (1 5 i 5 n), 

~A(%{%,---,%)) 
= {t 1 for some ‘1~ E 7E and for every i E (1,. . . , n}, 

t[ii] = u, 
t[Xi] = {~[a;] 1 ZI E 12i and v[A] = a} }. 

Figure 1: Restructuring operator - Version I 

3 Opt imizat ions 

The above definition of RAI can be optimized. Indeed, 
consider two relation schemes A and A’ and the re- 
structuring R&1(7?.) of a relation 7Z of PA. It often 
happens that A and A’ share isomorphic sub-schemes. 

Example 8. Consider again Relation Students of 
Example 1 and the scheme A’ 
{course, students, 

students E (student, curriculum}, 
curriculum - (year, unit, teacher}}. 

The attributes history in A and cuwiculum in A’ 
clearly have isomorphic structures. 0 

The problem is then to optimize the definition of 
Rat so that sub-schemes of A which are isomorphic 
to sub-schemes of A’ are not flattened. That opti- 
mization is presented in Section 3.1. 

Now consider two relations ‘R and ‘R’ with schemes 
A and A’ depicted as follows. 

name year sports 
sport trainer competitions 

date 1 place [ comment 

A' 

Attributes competitions in A and A’ are not isomor- 
phic but, as 
- no atomic attributes in sub(competitions, A’) is an 

atomic attribute in A \ sub( competitions, A), 
- no atomic attribute in A \ sub(competitions, A) is 

an atomic attribute in sub(competitions, A’), 
all sub-relations of 72 with scheme 
sub(competitions, A) could be restructured to scheme 
sub(competitions, A’) independently of the values that 
the tuples of 7Z where the sub-relations are nested take 
on A \ sub(competitions, A). 

This leads to an optimization where restructurings 
are performed locally on sub-relations whenever pos- 
sible rather then on the whole relation. Efficiency 
is thus increased as window functions for local re- 
structurings on sub-relations are performed by joining 
fewer relations with fewer attributes. That optimiza- 
tion is presented in Section 3.2. 

3.1 Isomorphic attributes 

This section presents an optimized version R$‘(‘R) of 
R~l(73) such that sub-relations of 72 with schemes iso- 
morphic to sub-schemes of A’ are not flattened. First, 
some definitions and notations about isomorphism be- 
tween attributes are introduced. 

Definitions. Two relation schemes A1 and A2 are 
isomorphic if they are equal up to a renaming of their 
structured attributes. 

Let X1 and X2 be two structured attributes defined 
in relation schemes A1 and Az respectively. Then, X1 
in A1 and X2 in A2 are isomorphic if sub(X1, A,) is 
isomorphic to sub(Xz, AZ). They are mazimally iso- 
morphic if there are no isomorphic attributes Y1 in 
Al and Y2 in A2 such that X1 and X2 are defined in 
sub(YI, A,) and sub(Y2, A,) respectively. 

The expression iso(Al, As) denotes the set of struc- 
tured attributes defined in Al which are maximally 
isomorphic to attributes in AZ. 0 

Consider now a relation 72 with scheme A to be 
restructured to, scheme A’. The definition of the flat- 

633 



tening operator @A is modified in order not to flatten 
attributes in A that are maximally isomorphic to at- 
tributes in A’. 

Definition. Let ‘R be a PNF relation with scheme 
A and root AX. Let Xr = X n i~o(A, A’) and 
Xr = X \ iso(A, A’). Then, if pA+Al denotes an 
operator that renames X to X’ for every pair of iso- 
morphic attributes X in A and X’ in A’, 

The window functions must also be generalized. 
The definitions of [-,-I r and [-,-I naturally extend to 
allow structured attributes and nested databases in 
their arguments but this is not enough as the follow- 
ing example shows. 

Example 9. Consider the following very simple 
relation 72 

72 
A X 

B Z 
C 

a 

and let A’ = (A, 2, 2 E C}. 
Then, #p(72, A’) contains relations ‘RI with 

scheme {A} and ‘Rr with scheme {A, B, 2, Z z C). 
Relation 7Zr contains a and relation 122 is empty. It 
follows that 
[AZ, ipg”(7Z, A’)] 

= xAZ([A, +p(72, A’)]r W [Z, @2”(72, A’)]r) 

- rAZ(%wa2) 

=o 
This is clearly unsatisfactory as the expected answer 
is of course (<a, (} >}. 0 

A slightly generalized window function [-, -lid0 is 
thus defined. A tuple r~ is built in [AX, DliSO for every 
tuple TV in [A, D]. Its value u[A] on 2 is V. For every X 
in X, [AX, D] is in PNF and therefore contains zero 
or one tuple UJ such that w[A] = v. Then, u[X] = {} 
01 u[X] = w[X] respectively. 

A formal definition of [-,-lib0 that uses VA is now 
given. 

Definition. Let 7Z be a PNF relation with scheme 
A and let D = +g”(‘R, A’) for some scheme A’. Then, 
if A is a set of atomic attributes and if X is a subset 
of iso(A’, A), 

[Aif, Dlido 
= fauna&% Dl, -b‘x (6% Dl) 1 x E 13))~ 

where A’(AX) = (AX} U rzlles(Jf, A’). 0 

With that new definition, [AZ, @?“(a, A’)jiro = {< 
a, {} >} in Example 9. 

The optimized restructuring operator Rise is then 
defined as follows. 

Definition. Let A and A’ be relation schemes. If 
AX is the root of A’ and if Xr = X n iso(A’, A) and 
if2 = if \ iso(A’, A), 

where, for every relation scheme A with root 
2?YX r . . . X,, and for every relations 7Z, ai,. . . ,12, 
with schemes A(AP), AxI,. . . , AX, respectively, if 
Xi are defined in A by Xi 3 0; (1 5 i 5 n), 

vA(%{'Rl,. ..,%}) 
={t]forsomeuEZ, foreveryiE{l,...,n}, 

t[lw] = 21, 
t[&] = (v[Qi] 1 v E R-i and’v[ii] = u[A])}~ 

The following theorem shows that the restructuring 
operators R and Rid0 are equivalent. 

Theorem 3. For every relation scheme A’ and ev- 
ery PNF relation 72, 

RAI (‘IL) = R$‘(‘R). 

The new version of the restructuring operator after 
optimization is summarized in Figure 2. 

3.2 Restructurable attributes 

The second optimization aims to perform restructur- 
ing locally on sub-relations rather than globally on the 
whole relation. If 72 with scheme A is restructured to 
A’, pairs of structured attributes (X,X’) are found, 
such that sub-relations of 72 with scheme sub(X, A) 
can be safely restructured to scheme sub(X’, A’). At- 
tribute X is then said to be restructumble to attribute 
X’. 

Pairs (X,X’) must. .satisfy the following condi- 
tion: every atomic attribute of sub(X, A) (resp. 
sub(X’, A’)) h h w ic is attribute of A’ (resp. A) is at- 

634 



s Let ‘R be in Pb with root bx 
A’ be a relation scheme with root b’x’, 
a, = an iso(A, A’) and 2, = 13 \ iso(A, A’), 
xi = a’ n iso(A’, A) and ai = 3’ \ iso(A’, A) 

R$(R) = R;,,,(@~(‘R, A’)), 

where, for every set of atomic and structured at- 
tributes B and F, and for every nested database D 
containing no two relations with identical scheme, 

and where, for every scheme A with root 
APX 1. . . X, and for every relations ‘E, 7E1,. . . ,R, 
with schemes A(A?), Ax,, . . . , Ax,, respectively, if 
Xi are defined in A by Xi E a; (1 5 i 5 n), 

VA (R, (al, * * * , %a}) 

= {t ) for some 74 E 7Z, for every i E (1,. . . , n} 
t[AF] = 21, 
t[Xi] = {v[@i] ) 21 E 7Q and v[A] = u[A]}}. 

Figure 2: Restructuring operator - Version II 

tribute of s&(X’, A’) (resp. s&(X, A)). That condi- 
tion is formalized in the following definitions. 

Definitions. Let X1 and X2 be two structured 
attributes defined in relation schemes A1 and AZ re- 
spectively. Let Al, &, B1, and & be the sets of 
atomic attributes appearing in Al, AZ, s&(X1, A,), 
and sub(X~, AZ) respectively. Then, Xl in Al is W- 
shchrable to X2 in AZ if X1 is not isomorphic to X2 
and if B1 n 2.~ = & I-J Al. X1 in A, is mazimally re- 
struclurable to X2 in AZ if there are no attribute Yl in 
A, restructurable to Yz in AZ such that X1 and X2 are 
defined in sub(Y1, A,) and su b( Yz, A?) respectively. 

The set of structured attributes in A, that are max- 
imally restructurable to attributes in A2 is denoted 
struct(A1, A,). 0 

schemes sub(X, A) such that X in A is maximally 
ie;Jtr.tiit-tiia’“;c: tu an aitribute X’ in A’ are restruc- 
tured to sub(X’, A’) as soon as they appear during 
the flattening process. Combined with the absence 
of flattening for isomorphic attributes, the flattening 
process then results in a nested relational database 
@~NCt (72, A’) w h ere sub-relations of R with schemes 
isomorphic to sub-schemes of A’ have been renamed 
and where sub-relations of R with schemes restruc- 
turable to sub-schemes of A’ have been restructured 
to these sub-schemes. 

The new restructuring operator is given in Figure 3 
(definitions of [-, -lib0 and VA are those of Version II 
in Figure 2). 

r 
Let 7Z be a PNF relation in PA with root Ax, 

A’ be a relation scheme with root A’x’, 
a, = iso(A, A’) and 9; = dso(A’, A), 
x2 = struci(A, A’) and ifi = sh.&(A’, A), 
a,=ff\(~,~~2)andX~=a’\(X:u~1), 

R$-“Ct(R) = R~+A,(+~“ct(‘R, A’)), 

‘h-.AdD) 
= z+y([A’X$;, DliSO, {Rh+A’x, (D) ( X; E if;}), 

s 

B~nrct(R, A’) 

where, if, for every X1 and X2 belonging to xl and 
a2 respectively, Xi denotes the attribute in A’ that 
s maximally isomorphic to X1 in A, Xi denotes the 
ittribute in A’ that is maximally restructurable tc 
K2 in A, 

R2 (72) 
= (t 1 for some u E 72, for every X1 E X1, X2 E X2 

t[A] = up], 

t[x:l = P,,b(X,,A) -rsub(X;,A’)(“l[Xlh 

t[-%l = R::~;,q(U[Xd > 

Figure 3: Restructuring operator - Version III 

The following theorem proves the equivalence be- 
tween Version III and Version I of the restructuring 
operator. 

Theorem 4. For every relation scheme A’ and ev- 
ery PNF relation R, 

Version III of the restructuring operator is simi- 
lar to Version II except that sub-relations of 12 with 

635 



4 Comparisons and conclusions 

The problem of data restructuring was studied by Hull 
and Yaw U71) f or a very large class of hierarchical 
data structures. It was also considered by Abiteboul 
and Bidoit in a more restricted data model, the Verso 
model (M, [l]) f or which an algebra incorporating re- 
structuring was described. 

The data structures of the Verso model (called 
Versa instances) are PNF relations. Contrary to the 
common practice in nested models, restructuring in 
the Verso model is not performed by nestings and 
unnestings but by a general restructuring operator. 

Let R be a Verso instance with scheme A. The set 
offacts associated with 72 is fuct(72) = II(*(@&(R))) 
where, if D is a flat relational database, 
- II(D) is the closure of D under projection, i.e., 

II(D) = {7r~(S) 1 S E D and d C scheme(5)). 

- *(D) is the closure of D under join, i.e., 

*(D) = fi Di, 
i=O 

where Do = D and D;+l = {S W S; ( S E 
D and Si E Di}. 

The restructuring of 72 to scheme A’ is then defined, 
in the Verso model, as the greatest instance 72’ (if it 
exists) with scheme A’ such that fuct(‘R’) C fact(Z). 

Restructuring is thus not always defined. For ex- 
ample, it is easy to verify that the Verso instance 
R = {<a, b,c >, < a, b’, c’ >} with scheme {A, B, C} 
cannot be restructured to scheme {(A,X, Y}, X s 
B, Y z C}. Indeed, 721 = (<a, {b}, {c}>} and 722 = 
{< a, W, {c’) >I are such that fuct(7Zl) C fact(Z) 
and fuct(7Zz) C fact(R) but 723 = Xl LI Rz = {< 
=, {b, b’), {c, 4 >I is such that fact(&) 1 fact(R). 

We think that there are no reasons for banning 
such restructurings. With our algorithm, the result- 
ing relation would be {< a, {b, b’}, {c, c’) >}. If tu- 
ple < a, b, c > represents the information “depart- 
ment a receives part b from supplier c”, the tuple 
{<a, (4 b’l, {c, 4 >l is meaningful and can be trans- 
lated to: “a is a department, the set of parts it receives 
is (b, b’} and the set of its suppliers for those parts is 
(c, cl)“. 

We believe (but we have not looked for a formal 
proof) that, when it is defined, restructuring in the 
Verso model is equivalent to restructuring with our 
algorithm. In conclusion, our approach to restructur- 
ing is more general than the approach followed in the 
Verso model. 

Up to our knowledge, Abiteboul and Bidoit have 
never described any algorithm for computing restruc- 
turings. They have only given the definition recalled 

above and have been mainly interested in finding 
which restructurings were lossless operations. The 
conditions they have found for restructurings to be 
without loss of information are not either operational. 

Our main contributions have thus been to give a 
natural and broader definition to the concept of data 
restructuring for PNF relations, valid for any pair of 
relation schemes, and to present an operational de- 
scription of how data restructuring can be effectively 
(and efficiently) performed. 

Restructurings without loss of information is worth 
a closer look. First of all, a clear definition of the con- 
cept of lossless restructuring is needed. That concept 
is clear when the origin and the target schemes share 
the same set of atomic attributes. The situation is 
more complicated when atomic attributes appear or 
disappear during restructuring. Then, the main issue 
can be tackled: under which conditions is restructur- 
ing performed without loss of information? It clearly 
appeared in previous examples that the absence of 
empty values for structured attributes decreased the 
information loss during restructuring. The presence 
of functional and join dependencies can also have the 
same ‘effect. It would be interesting to study the im- 
pact of such constraints on restructurings. 

We are currently investigating a theoretical justifi- 
cation for our definition of Rat. Let 72 be a relation in 
PA to be restructured to A’. First, an order relation 
4~ must be defined in PAI such that, for every 721 
and ’72s in PA!, 721 4 7& formalizes the idea that az 
is a better restructuring of 72 than 721. Next, RAN 
must be proved to be maximal in PA, for 4~. 

ACKNOWLEDGEMENTS 
This work was partly supported by the Commission of the 
European Communities, under Project ESTEAM-316 of 
the ESPRIT Program. We are grateful to P. Gribomont, 
A. Pirotte and D. Roelants, our colleagues of PRLB, for 
their careful readings of early drafts of this paper and use- 
ful comments. 

References 
[l] S. Abiteboul and N. Bidoit. Non first normal form rela- 

tions: An algebra allowing data restructuring. Journal of 
Compute+ and System Sciences, 33:361-393, 1986. 

[Z] S. Abiteboul and N. Bidoit. Non first normal form rela- 
tions to represent hierchically organ&d data. In Proc. 
3rd ACM SIGACT-SIGMOD Symposium on Principles 
of Database Systems, pages 191-200, Waterloo, Ontario, 
Canada, April 1984. 

[3] F. Bancilhon, P. Richard, and M. Scholl. On line pro- 
cessing of compacted relations. In Proc. 8th International 
Conference on Very Large Databases, pages 263-269, Mex- 
ico City, Sep. 1982. 

[4] P. Dadam, K. Kuespert, F. Anderson, H. Blanken, R. Erbe, 
J. Guenauer, V. Lum, P. Pi&or, and G. Walsh. A DBMS 

636 



prototype to support extended NF’ relations: An inte- 
grated view on flat tables and hierarchies. In Proc. ACX- 
SIGMOD International Conference on Management of 
Data, pages 356-367, Washington D.C., May 1986. 

[5] G. H&n. On Restructuring Nested Relations in Park 
tioned No+maZ Form. Technical Report, Philips Research 
Laboratory Brussels, 1990. 

[a] G. Hulin. A Relational Algebra for Nested Relations in 
Partitioned Normal Form. Manuscript M318, Philips Re- 
search Laboratory Brussels, Oct. 1989. 

[7] FL Hull and C. Yap. The format model: A theory of 
database organization. Journal of the ACM, 31(3):518- 
537, July 1984. 

[8] G. Jaeschke and H. Schek. Remarks on the algebra of 
non fust normal form relations. In Proceedings of ACM 
Symposium on Principles of Database Systems, pages 124- 
137, Los Angeles, March 1982. 

[9] D. Maier. The Theory of Relational Databases. Pitman 
Publ., London, 1983. 

[lo] A. Malcmouchi. A consideration on normal form of 
not-necessarily-normalialieed relation in the relational data 
model. In Proc. 3rd International Conference on Very 
Large Databares, pages 447-453, Tokyo, Oct. 1977. 

[ll] J. Paredaens, P. De Bra, M. Gyssens, and D. Van Gucht. 
The Structure of the Relational Database Model, chapter 7. 
Volume 17 of EATC Monographs on Theoretical Computer 
Science, Springer-Verlag, 1989. 

[12] P. Pistor and F. Andersen. Designing a generalized NFZ 
modal with an SQL-type language intuface. In Proc. 
12th International Conference on Very Large Databases, 
pages 278-285, Kyoto, Aug. 1986. 

[13] P. Pistor and R. Traunmueller. A database language for 
sets, lists and tables. Informalion Systems, 11(4):323-336, 
1986. 

[14] M. A. Roth, H. F. Korth, and D. S. Batory. SQi/NF: A 
query language for +NF relational databases. Informa- 
tion Systems, 12(1):99-114, 1987. 

[15] M. A. Roth, H. F. Korth, and A. Silberschate. Extendtd 
algebra and calculus for nested relational databases. A CM 
‘Ifansactionr on Database Systems, 13(4$389-417, Dec. 
1988. 

[16] H. Schek and P. Pistor. Data structures for an inte- 
grated data base management and information retrieval 
system. In Proc. 8th International Conference on Veq 
Large Databaser, pages 197-207, Mexico City, Sep. 1982. 

[17] H. Schek and M. Scholl. The relational model 
with relation-valued attributes. Information Systems, 
11(2):137-147, 1986. 

637 


