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Abstract: 
This paper describes a design methodology for 
an object oriented database, based on a semantic 
network. This approach is based on the 
assumption that Yemantic data models are more 
powerful and more easy to use than current 
proposed object oriented data models. They are 
especially more poweful in representing 
integrity constraints and various relationships, 
Object oriented data models are generally based 
only on class hierarchies and inheritance, plus 
their ability to represent the behavior of objects, 
But this latter capability is generally provided 
through an algorithmic language which cannot 
be considered as a conceptual language. This 
paper describes a design procedure which 
generates an object oriented database schema 
(both the structural aspect and the dynamic 
aspect) from an abstract specification giveri in a 
high level language. This specification language 
is built upon a semantic network and allows to 
define integrity constraints and behavior rules. 
This approach is presented through a CASE 
tool environment. 

1. Introduction 
Like relational databases, the design of an object oriented 
database is a complex art which needs many expertise in the 
domain. The simultaneous modeling of the structural aspect 
and the behavioural aspect of objects increases the complexity 
of the design. The current object oriented data models are 
mainly defmed by a few basic constructors (like the tuple 
constructor and the set constructor) and a taxonomy of objects 
(i.e. hierarchy of classes and inheritance). The power of object 
oriented data models is highlighted by their ability to describe 
the dynamic behavior of the objects (methods). However, as 
generally proposed in the object oriented database systems, 
this dynamic description is made in a procedural language; 
this fact makes the specification of the methods too difficult 
at the conceptual level. Another weakness of current object 
oriented data models is that, except through methods, they do 
not easily permit to specify integrity constraints on the 
objects. 

Except for the dynamic aspect, the expressive power of 
semantic data models is stronger than that of object-oriented 
data models. Various relationships and integrity constraints 

can easily be specified. Class hierarchies and inheritance are 
generally defined in the same way. The dynamic aspect can be 
fulfilled by introducing the concept of behavior in the 
semantic data models. In some sense, this was already done in 
the AI domain by the concept of script which has been 
developped ‘to enhance the expressive power of semantic 
networks and frames. We follow the same approach and 
describe the behavior of a semantic data model by means of 
production rules. This kind of a declarative language permits 
to avoid the complexily of procedural languages which arc 
gcncrally used in objccl oriented data models. The behavior of 
each object in the semantic data model will be described by 
one or several rules expressing either integrity constraints or 
any management rules concerning objects. 

This paper highlights on one hand the object-oriented 
database design methodology we have developped, and on the 
olher hand the design tool which supports this methodology. 
This methodology is baseci on two design levels: a Semantic 
qbicct oriented level and an eperatio&lect oriented 1e el 
(Figure 1). The process of interactive acquisiG& 
completeness and consistency checkings of the behavioural 
rules is particularly emphasized in the first level. At the 
second level, we use as an operational object oriented data 
model, called 02 model, which was developed by Alta’ir 
project [ Bancilhon 871. Then a mapping process between the 
two models is proposed. Besides the data structure mappings, 
the transformation of a semantic object oriented schema into 
an operational object oriented schema consists, among others, 
in the generation of procedural methods (C written) from a 
declarative language specification (production rules). 
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The second section of this paper will give an overview of 
the two data models used. Section 3 describes the general 
mapping process from the semantic network to the object 
oriented model 02. This mapping process is only concerned 
with the structural aspect and with some static integrity 
constraints. Section 4 describes the mapping of general 
integrity constraints (Fist order formulas) and behavioural 
rules (production rules) to the operational level expressed in C 
language. Roblems of method definition and attachment are 
also addressed in this section. Section 5 gives a general 
flavour of the modelling prototype which was designed. 
Section 6 concludes on the obtained results and the remaining 
problems to solve. 

2. The Hierarchy of Data Models Used 
This section gives a general overview of the two data models 
considered in the methodology. The first one is a generic 
semantic network called Morse. The second one is an object 
oriented data model called 02. 

2.1. The Semantic Network Model 

A semantic network is an oriented diagram where the nodes 
represent real world objects and the arcs represent semantic 
relationships between these objects. In addition, constraints 
can be defined over these nodes and arcs. In the following, 
such a semantic network data model is designated by the name 
Morse [Bouzeghoub 841. This model is formalized in such a 
way it can represent the most important concepts used in 
semantic data models. The objective of this formal definition 
is to provide a general framework whithin which a CASE tool 
could be specified and programmed. The external vision of the 
model could be any desired diagram (e.g. Entity-Relationship) 
or abstract syntaxe. 

An object is a generic term to designate the different real 
world individuals refered to in Morse schemas. We distinguish 
four categories of objects: in one hand instances of atomic 
objects (IA) and instances of molecular objects (IM), in the 
other hand classes of atomic objects (NA) and classes of 
molecular objects (NM). Then, in the following, we use the 
term object in a generic way, and whenever necessary, we use 
the more specific term. 

The distinction between atomic objects and molecular 
objects permits to highlight their structural links for a better 
specification of the corresponding constraints. Atomic objects 
have values taken from basic domain such as: integer, real, 
boolean and string. The set of all atomic values in all 
domains are refered to by the name VA. Molecular objects 
have molecular values which are composed from the 
corresponding atomic objects which constitute the molecular 
object. Both atomic objects and molecular objects have unique 
identifiers which are independant of their values. 

Semantic links are basic binary relationships between the 
different categories of objects mentioned above. These binary 
relationships formalize the well-known concepts of 
aggregation and generalization [Smith 771. Specific 
refinements of these concepts are introduced to take into 
account the distinction between atomic objects and molecular 
objects. The aggregation concept is refined as aromic 
aggregation (arc a(X,Y)) and molecular aggregation (arc 
r(X,Y)). Generalization is refiied as instance generalisation 
(arc c(X,Y)) and class generalizafion (arc g(X,l’)). Each 
binary relationship has its reverse link (respectively p(Y,X), 
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o(Y,X), i(Y,X), s(Y,X)). To simplify the graphical 
representation, we use only one specification which 
subsumes the other (for example p, o, c and g) except if 
constraint specification is needed for each specific arc. 

Whght 

The inheritance is one of the interesting properties of 
generalization hierarchies; each atomic or molecular 
component of an object X can be transfered by inheritance to 
objects X1 . ..Xn. if these latters are sub-classes of X. 
Inversely, each instance of a sub-class is an instance of its 
super-classes. We say that components of objects propagate 
toward the leaves of the hierarchy whereas the instances 
propagate toward the root(s) of the hierarchy. 

Different integrity constraints can be specified in a Morse 
semantic network to enhance its capability to capture more 
meaning from the real world. Among these constraints, we 
can mention domains, cardinalities, functional dependencies, 
keys, intersection and disjunction of classes, etc. In the 
semantic network, some of these constraints are defined over 
nodes, others are defined over arcs. The constraints are 
specified either as a complementary information of binary arcs 
or as new predicates. For example, cardinal@ constraints are 
expressed as complementary information over a/p arcs and r/o 
arcs, while other constraints like functional dependencies are 
represented by a new fd arc: 

a(Number,VEHICLE, [l,l] ), 
p(VEHICLE,Number, [l,ll), 

a(Type,VEHICLE, [l,N]), 
p(VEHICLE, Type, [I,11 ), 

a(Power,VEHICLE, [O,N]), 
p(VEHICLE,Power, [l,l]), 

r(VEHICLE,CONTRACT,[l,l)), 
o(CONTRACT,VEHICLE,[l,N]), 

r(PERSON,CONTRACT,[l,N]), 
o(CONTRACT,PERSON,[l,l]). 

fd(VEHICLE,lhs(Type),rhs(Power)) 
Graphically, a given semantic network can be represented as 
portrayed in figure 2. 
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2.2. The ObJect Orlented Data Model type tuple(name:string,age:integer, 

The 02 data model belongs to the category of the so-called 
object oriented data models [Lecluse 871. Then, its basic 
concepts are objects and types, type constructors and type 
hierarchies. The data manipulation language could be the C 
language with embedded 02 expressions (called C02) [Haux 
881 or an SQL like declarative query language (called LOOQ). 

address:string,children:set(Person)) 
add cla88 Agent inharite Person 
type tupl*(code:string,salary:integer) 

/* method declaration */ 
method category: 8tring i8 public 
body category:string in cla88 PgentC02 

In the 02 data model, an object is composed of an 
identifier (the name of the object) and a value. Values could 
be either: (i) atomic values (integers, reals, booleans, 
strings), for example: (iI,22), (i2,3.14); (ii) tuple values, for 
example (i3, [name:“John”,age:22]); and (iii) set values, for 
example (i4,(red, black, green)). Objects can be defined by 
construction using list, tuple and set constructors. Objects can 
mutually reference each other. For example: 

/* method procedure */ 
I if (self->salary > 50) 

return (“VIP”) ; 
1 

(i7, [name:“John”,wife:i8]), (i8, [name:“Mary”,husband:i7]). 

A class is an abstraction which represents a set of objects 
with their behavior. A class is composed of two parts: (i) a 
type which contains the structure that characterizes all the 
instances of the class, (ii) methods which contain operations 
which will be applied to these instances. A class may have a 
basic type (integer, real, boolean, string) representing atomic 
objects, a tuple type representing objects with tuple values or 
a set type representing objects having set values. The 
following expressions are examples of classes : 
Person=name:string,age:integer], Employees={ p:Person). The 
constructors could be composed to create more elaborated 
types (e.g. sets of tuples or tuples of sets). 

The keyword inherits defines a hierarchy of types. The 
keywords public makes the object-integrity method visible 
from anywhere. The keyword In class CO2 defines the 
class for which this body is defined; this is useful to solve 
ambiguities of names, as method bodies can be specified 
independently of the class description. The brackets {) 
delimite the C source statements of the procedure. 

The definition of a database schema in CO2 needs the 
knowledge of the objects structure, the status of objects, i.e. 
identified object or non identified object (value), and the 
sharing of the objects. 

3. Mapping from the Semantic Level to the 
Operational Level 

The 02 data model makes a clear distinction between 
identified objects and non identified objects. The formers can 
be stored and manipulated independently, while the lattcrs 
exist only as property values of other objects. For example, 
in the following specifications , persons and vehicles could be 
manipulated independently: Person= [name:sning, age:integer, 
vehicle:Vehicle], Vehicle= [number:integer, color:string] But 
in the following example, the object vehicle exists only as a 
composite attribute value of person: 

Person=[name:string,age:integer, 
vehicle:(number5nteger,color:string]] 

The CO2 model describes both the static aspect (data 
structures) and the dynamic aspect (methods). Relationships 
between objects or object classes are not represented by a 
specific concept; but they are represented by a uniform way 
based on objects composition and objects sharing. As in the 
relational model, references are the unique way to represent 
relationships between objects. Integrity constraints are not 
considered as specific concepts of the model; they are defined 
in a uniform way as any procedure describing the behavior of 
an object. The object identity allows to make a clear 
distinction between objects having their own existence, and 
values which are only relevant when characterizing other 
objects. The object identity is represented in CO2 by different 
syntactic forms. 

A partial order between types defines a hierarchy of types 
within which the inheritance concept permits to transfer 
components from one type toward its subtypes [Lecluse 881. 

A method is a procedure which is associated to a type in 
order to describe the behavior of the instances of this type. 
Methods introduce the notion of encapsulation which 
permits the manipulation of objects without any knowledge 
about their structure, nor about the internal code of the 
procedures corresponding to these methods. 

The CO2 language is an embedded database language (02) 
into a procedural host language (C) [Haux 881. Besides the 
usual programming of algorithms, it permits to specify and 
access database objects. Objects are manipulated through 
methods, A method is characterized by its signature (its 
name, its type and the type of its parameters) and its body 
(procedure). The following example shows the declaration of 
types and the programming of methods in CO2 (version 
1.0) : 

The semantic data model Morse is concerned only with the 
static aspect. The different categories of aggregation arcs 
allow to specify different types of relationships between 
objects. Integrity constraints are represented as declarative 
assertions on the data structure. 

In the following we are only interested in the mapping 
from Morse to CO2 and not in the reverse mapping. First we 
consider the structural mappings between the two models, 
then we study the representation of constraints by methods, 
and we finally describe the general mapping process. This 
plan is made only for the soundness of the paper; in fact 
structural mapping rules often depend on the integrity 
constraints [Bouzeghoub 901. . 

3.1. The mapping between objects 

/* type declaration */ 
add cla88 Person 

An atomic object defined in Morse is equivalent in 02 either 
to an identified atomic object or to an atomic value (non 
identified object) inside another object. A molecular object 
defined in Morse is equivalent to either an identified 
tuplestructured object or to a tuple value in 02. A class of 
objects defined in Morse is partly equivalent to a class of 
objects defined in 02. Indeed, and as stated before, Morse 
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classes describe only the static aspect of the objects, while 02 
classes describe their behavior too, thanks to methods, The 
fist part (a) of Figure 3 summerizes the correspondence 
between the Morse objects and the 02 objects. 

3.2. The mapping between constructors 

Both atomic and molecular aggregations defined in Morse are 
equivalent to the tuple constructor of the 02 model. More 
precisely, we have to include what is considered as domain 
constraints in Morse to obtain what is considered as attribute 
basic type in 02. For example, the following Morse 
specification: 

p(PERSON, Name) dom (Name, string) 
p (PERSON, Age) dom (Age, integer) 
o (PERSON, Address) 
p (Address, Number) dam (Number, integer) 
p (Address, Street) dom (Street, string) 
p (Address, Postcod) dom (Postcod, integer) 

will be mapped into 02 as for example: 

Person= [Name:string,Age:ii&eqer,Pbdr:Pbdress] 
Address=[Nunber:int,Street:string,Postccd:int] 

which can be described in CO2 by the following statements: 

add claam Person 
typr tuplr (Name:atring, Age: intager, 

Addr:Address) 
add cl888 Address 
type tupb (Number: int, Street : 8tring, 

Postcod:integer)) 

If we consider that all of Name and Age are values of the 
Person (thus they are not identified), but the Address is an 
object by itself (thus it is identified). Addr is called a 
reference; it is considered as an attribute of Person which 
references another object, i.e. Address. 

The classification/iitanciation defined in Morse is partly 
equivalent to an 02 class. In fact the Morse abstraction can 
define a class only by extension, without necessarily 
describing its structure. The generalization/specialization is 
equivalent to the inheritance hierarchy in 02. In Morse, a 
given class can be defined by generalization from other classes 
even the structures of these latters are unknown. Inversely, a 
Morse subclasse can be defined as a restriction of a superclass, 
but without any refinements on its structure. This makes the 
generalization/specialization more general than a partial order 
of types which is defined in 02. 

The inheritance is defined in Morse as a logical property 
which propagates components and constraints of generic 
classes to their subclasses. In the 02 model, there is a 
uniform formalization of hierarchies of types and inheritance 
(partial order of types). The part (b) of Figure 3 summerizes 
the different mappings between the Morse constructors and the 
02 constructors. 

3.3. The mapping of the constraints 

Semantic integrity constraints are useful for many reasons: 
(i) to check the consistency of the object structure and values, 
(ii) and possibly to assist in the decision process which 
determines whether a Morse object coincides or not with an 
02 object. Except for the usual domains which are represented 
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by basic types in 02 (integer, real, boolean, string), all the 
other Morse integrity constraints are represented by methods 
in the 02 model. In the following, we illustrate this latter 
case with cardinalities and functional dependencies. Methods 
which implement integrity constraints are particular in the 
sense they are not directly invoked by the users but by other 
methods which guarantee the encapsulation of the concerned 
object. The part (c) of Figure 3 summerizes the different 
mappings between the Morse constraints and the 02 concepts. 

MORSE CONCEPT 02 CONCEPT 1 

(a) 

(b) 

(cl 

atomic object atomic objectl atomic value 

molecular object atn~atmxl objecthuple value 

class dass 

subclass subclass 

instance 

obiea identifier 

object 

object identifier 

I atomic aggregation I ~~~ tuple constructor ~~ I 

molecular aggregation 

Class generalization 

tuple consuuctor 

Inheritancf! 

I General Inkgrity 
Constraint I m&cd 

a: 0 esnondence between Morse and 02 CQB.QQQ 

Among various constraint we can specify over the 
semantic network, we consider here the mapping of 
cardinalities. Formally, cardinalities characterize binary 
relationships (a/p and r/o arcs) by specifiing the frequence of 
object participation in a given binary relationship. More 
precisely, a cardinality is a couple of values [m,n] which 
respectively specify the minimum and the maximum number 
of a given relationship instances to which the same object 
could participate. Cardinalities where n=l are called 
monovalued cardinalities and those where n>l are called 
multivalued cardinalities. In the following, we study the 
methods which will implement these constraints. As we 
have several situations, we will only focus on two examples. 

Case 1: p(X,Y,[l,l]) : which specifies that for a given 
instance of X, there is only one instance of Y. For example: 
p(PERSON, Name, [l,l] 1 Dom (Name, string) 
p(PERSON, Age, [l, 11) Dom (Age, integer) 

will be implemented into 02 as: 
add cla88 PERSON 
type tuple (Name: string,Age: integer) 
method Nulle-value:boolean 
body Nulle-value:boolean 
in cla88 PERSON CO2 
(if ((! (self->Name==(o2 string) NULL) 1 

&h (! (self->Age==(o2 int) NULL) )) 
(return (true);) 
else return (false); 

1 
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Case 2: o(X,Y,[l,N]): which specifies that for a 
given instance of X, there is N instances of Y. For example: 

oP=, -ss, LNI 1 

P(ass, *, (Lll) Cm(Nwber, integer) 

pt-ss, street, [l, 11) Dan(Street, string) 

p (Address, Postccd, (1, 11) Dun (Postcod, string) 

P(-% Town, (Lll) Dan(Town, string) 

will be mapped into 02 as: 

8dd Cl888 PERSON 
type tupl~(Mdr:~dzof(Address)) 
umthod Pcmded..set(min:integer, 

max:integer) :boolmn 
8dd Cl8U Pss 
type tuple (Nu&er: integer, Street : string, 

Postcod: string, Town : string) ) 
body Bounded_set(min:integ,max:integ) :bool 
in ~1~88 PERSCN CO2 
l 02 set (Adress) x; 

x = (self->Addr); 
if ((min =c count (xl) && (count(x) ti max)) 

(return (true); } else return (false); 
1 

3.4. The obJect Identity and the object sharing 

In the Morse semantic data model, everything is considered as 
an object. Each object has a unique identification, then 
objects can be shared between different other related objects. 
In the 02 object oriented data model, there are objects and 
values; objects are sharable while values are not. So, when 
mapping a Morse schema into an 02 schema, we have to 
decide whether a Morse object can be considered as an 02 
object or as an 02 value. This decision mainly depends on 
the user’s desire in the way to manipulate his database. He 
could arbitrarily decide whether a given Morse object is an 02 
object or value. For example, for the mapping of the 
following Morse schema (figure 4), he can envision many 
solutions: 

(PERSON hut 

Number S&t P&cod Town 
. : OtJJ&$ 

Solution 1: One 02 object PERSON describing the whole 
Morse structure: 

Proceedings df the 17th International 
Conference on Very Large Data Bases 

PERSON=[Name:string, Age:integer, 
Address:([Number:integer, 
Street:string,Postcod:integer, 
Town:string])] 

All other components are considered as values characterizing a 
person. 

Solution 2: One 02 object ADDRESS corresponding to 
the whole Morse structure: 

ADDRESS:[Number:integer,Street:string, 
Postcod: integer, Town: string, 
Person : ( [Name : string, 

Age: integer] 1 I 

In this case, persons do not have any existence, they are just 
characterizing addresses. 

Solution 3: Two 02 objects corresponding to the two 
Morse molecular objects: 

PERSON- [Name: string, Age: integer, 
Addr : (ADDRESSE) 1 

ADDRESSE=[Name:integer, Street:string, 
Postcod: integer, Town:string, 
Pers : (PERSON} ] 

In this case there is a mutual reference between the two 
objects. A person references its set of addresses and an address 
references its set of persons. 

There are many other solutions where we can consider that 
towns or telephones are independant objects. To decide 
between all these solutions, a computer design tool can help 
in the decision process by taking into account several 
heuristics derived, for example, from the following 
parameters: 

- Users’operations and general constraints defined on the 
Morse objects: basic operations like insert, delete and 
update, can be considered as the main means to identify 
objects. We shall see in the next section how these 
operations are detined in the Morse semantic data model. 

- Cardinality constraints defined over arcs a/p and r/o of 
the semantic network: if the minimal cardinality of one of 
these arcs is equal 0, then the origine object of the arc can 
exist independently of the related one. 

4. Extending the Semantic Data Model to 
Represent General Constraints 
This section describes the generalized integrity constraints. 
Many previous works have been done to manage integrity 
constraints [Brodie 811 (Brodie 841 [Brodie 861 [ Bertino 841 
[Tsalgatidou 901 Different formalisms have already been 
proposed to specify integrity constraints in the conceptual 
schema, for example [Morgenstren 891 allows their 
specification through constraints equations and [Oliv6 891 
uses a Deductive conceptual model. In our approach, general 
integrity constraints are first order logic formula whose 
variables refer to the content of the semantic database. Before 
presenting these constraints, let us give a formal 
representation of a semantic database as well as for its 
conceptual schema and for its extension. This representation 
is not intended to implement real databases but just to give a 
formal abstract representation in order to correctly specify 
integrity constraints. 
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4.1. The representation of a semantic database 

A Morse database schema is composed of: 

- the list of names of all classes of atomic objects (i.e. 
instances of NA), 

representation for a formal reasoning. It can be considered as 
an abstract representation of the content of a given database. 
This representation permits a better understanding of the 
constraint specifications, and provides a convenient framework 
for a CASE tool. 

- the list of names of all classes of molecular objects (i.e. 
instances of NM), 4.2. The Internal representation of general 

lntegrlty constraints 
- for each atomic object, its domain values (basic type), 

- for each molecular object, its data structure (i.e. the set of 
all its p/a and oh arcs), 

- for each binary relationship (i.e. p/a and o/r arcs), its 
cardinalities, 

A general integrity constraint is a first order closed formula, 
restricted to conjunction connectors and at most only one 
implication symbdle. Variables can be quantified 
existentially or universally. The universe of discourse in 
which these formulas are interpreted is constituted as follows: 

- for each multiple reference to the same component, the 
different roles played by the component in the abstraction. 

For Example: 

- a set of constants: composed of (i) the union of atomic 
objects domains (VA), (ii) the union of atomic objects 
identifiers (IA) and molecular objects identifiers (IM) and 
of (iii) the union of class names of atomic objects (NA) 
and class names of molecular objects (NM), 

i (NA, Name, string) 
i (NA,Age, integer) 

- a set of variables taking their values in the previous 
defined universe of discourse, 

i (NA, number, integer) 

piPERSON,Name, [l,l] [l,Nl) 
p(PERSON,Age, [l, 11 [l,Nl) 
p(VEHICLE,Power, [l, 1) [O,N]) 
. . . 
i (NM, PERSON) 
i (NM, VEHICLE) 
i (NM, CONTRACT) 

~;CONTRACT,PERSON, [I,11 [I,N]) 
o(CONTRACT,VEHICLE, [l, 11 [l, I.]) 

- a set of predicates: composed of (i) all atomic and 
molecular aggregation relationships (i.e. p/a and o/r arcs), 
(ii) instance generalization and class generalization 
relationships (i.e. c/i et g/s arcs), (iii) usual mathematic 
ptiicates : c, >, <, 2, =, #, and the v (value) predicate. 

For example, over the previous database schema, we can 
define a general integrity constraint which states that if the 
vehicle power is greater than 10 and the person’s age is less 
than 20, then the contract premium is at least equal to 5000. 

. . . 
g (CAR, VEHICLE) 

As previously stated, everything in Morse is an objecl. 
Then each atomic or molecular object is formally identified. 
The relationship between an atomic object identifier and its 
corresponding value is represented by a specific predicate V. 

The relationship between a molecular object identifier and its 
corresponding structur& value is represented by a sequence of 
v predicates. This systematic identification of all objects 
implies a systematic sharing of objects. Then values of 
objects are represented only once. This identification permits 
also an independent manipulation of all object classes. The 
generalization arcs (i.e. g/s) are not directly represented in a 
database extension. They are captured by the inclusion of sets 
of identifiers with respect to the generalization hierarchy. The 
following example is an extension of the previous database 
schema: 

ICl: VP bfC VV tlG \JS VM QVG VVS VVM 
[i (PERSON,P) A i(VEHICLE,V) A 
i(CONTRACT,C) A i(Age,G) A 
i (Power, S) A i (Premium, M) 

A O(c,P) A O(c,v) 

A p(P,G) A v(G,VG) A VG<20 
A p(v,s) A V(s,vs) A vs>lo 

A p(C,M) A v(M,VM)I 

->[VMr5000] 

I (PERSON, Pl) it-,w, v(NL~PH 
i (Pge,A.U VW, 33) 

i (PERSON, P2) i(Name,N2), v(N2,duracd) 
i (pge,JQ) VW, 44) 

i(vEHIcIE,w i (Mrmber, 11) v(Il,l23) 
i (Power,WU VW, 5) 

I(vEHI(=IE,v2) i oaunber, 12) v(I2,345) 
i (Power,W2) VW, 7) 

i(vEHIcIE,v3) I (Nunber, 12) v(I2,345) 
i(m,Cl) I (Premiun, Ml ) v(Ml, 5500) 
it-,a I (Premiun, M2) VW, 6000) 

Obviously this representation is not defined for 
implementing real databases, but just as a formal 

As these constraints are specified using the same semantic 
arcs as for describing the static data structure, they can be 
represented by a semantic network in which each variable or 
constant is represented by a node. Variable nodes are 
considered as instances of object classes. The quantifier 
corresponding to each variable is represented as a 
complementary information of the arc I relating a variable to 
its class. For example, i(Person,x,t/) describes a variable x 
universally quantified over the class Person. As the order of 
the quantifiers is meaningful in a given formula, an indice is 
associated with the quantifier. For example, i(Person,x,V,l). 
Finally, new binary arcs (inf, sup, equ, einf, esup, diff) are 
added to the semantic network to represent the predicates: C, 
>, =, <, 2. To give more meaning to this representation, we 
must complete each predicate to specify whether it belongs to 
the left hand side or to the right hand side of the rule 
representing the integrity constraint. 

ICl: i (PERSON, P,v, 1, left, ICl) 
i (VEHICLE,V, V, 2, left, ICl) 
i (CONTRACT, C, V, 4, leftright, ICl) 

i(Age,G,V,S,left,ICl) 
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i(Power,S,V,6,left,ICl) 
i(Premium,M,V,7,right,ICl) 

o(C,P,left,ICl) 
o(C,V, left, ICl) 

p(P,G,left,ICl) v (G, VG, left, ICl) 
inf (VG.20, left, ICl) 

p(V,S,left,ICl) v(S,VS, left, ICl) 
sup(VS, 10, left, ICl) 

p(C,M,left,ICl) v(M,VM,left,ICl) 
sup(VM, 5000, right, ICl) 

The following schema illustrates the representation of the 
constraint ICl. The lower part represents the static data 
schema, the upper part represents the behavioral schema. In 
this latter one, we have separated the rule left hand side part 
and the right hand side part; although some nodes appear in 
the both parts. When. the constraint doesn’t have an 
implication symbol, the semantic network doesn’t have a left 
hand side. 

le of rule reoresentatb 

4.3. The semantic object oriented language 

The Morse language exposed in the previous section is a 
formal language to represent the detailed description of a . . 
conceptual schema. m IS not Wded to be used 
b end-w. Consequently, we need a friendly user interface 
to specify data structures and constraints. This subsection 
describes the declarative language offered lo specify an 
application and its integrity constraints. 

a) Specification of data structures 

(1) Each set of p or o predicates which defines the siructure of 
a molecular object class is replaced by the following 
statement, if the structure is composed of atomic objects: 
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X(Al:doml,...,A,:dom,) 
<=> i (NA, Al, doml) , . . . . i (NA, An, dam,) , 

i (NM, X) 
p(XtAl) t -I P(XtAn) 

or by the following if the structure is composed by molecular 
objects: 

X(Y1, . . ..Y.) 
<=> o(X,Yl),oaar O(XtYn)t i(NM,X) 

or by the following statement if the structure is either 
composed of atomic objects and molecular objects. 

X(Al:doml, . . ..A.:dom,,Yl, . . ..Y.) 
<=> i (NA,Al, doml) , . . . . i (NA,A,, dam,) , 

i (NM, X) 
p(X,Al), . . . . p(X,A,) 
O(X,Yl) ,*+., Cl (Xt Yn) 

Lf the cardinality constraints are specified, we shall have the 
following description: 

X( tAl:dom1) [amI, anI1 , 
*.. , 
A n:dOmn, tam,, l n,1 , 
(Yll, l-1, rnll , 

. . . , 
ym, [rmn, rn,l 1 

<=> i(NA,Al,doml), . . . . i(NA,A,,domn), 
i (NM, X) 
p(X,Al, tl,Nl [aml,anll), 

P(X,Ant [l,Nl [amn,annl 1, 
o(X,Yl, [1,11 [rq, rnll 1, 
..a, 
o(X,Y,, [1,11 [rm,,rn,l) 

(2) Each set of generalization arcs can be declared as follows: 

g(X,Y) <=> x: Y 
g(X, Yl) ,...,g(X,Yn) <=> X : Yl, . . . , Yn 
g(Xl,Y) , . . . . g (Xn, Y) <=> Xl,...,Xn:Y 

Example of an external speclflcatlon: 
PERSCN(ssn(l,l], name, (surname], age, ADDRESS). 
ADDRESS (no, street, code) 
VEHICLE (number, colour, type, power). 
CONTRACT ( PERSON, VEHICLE, premium) . 
CLIENT : PERSON. 

b) Specification of general constraints 

The external interface to specify general constraints must 
allow the user to specify easily his integrity constraints 
defined over the external description of the data structures (i.e. 
previous data language). Each integrity constraint is specified 
as a production rule. The external language must have the 
same expressive power as the Morse formal language, but 
must be more concise and more easy to learn and to use. The 
external constraint language is built from the Morse formal 
language as follows: 
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(1) The alphabet of the external language is roughly the same 
as that of the internal language; except that “A” and “->” 
symbols are respectively replaced by “and” and the two 
keywords “if” - “then” to distinguish between the left part 
and the right part of a given rule. The quantified variables 
Vx et 3x are respectively replaced by (x) and [x] to 
alleviate the absence of the mathematical symbols in 
common keyboards. 

(2) The domain of interpretation of the external language is 
the same of that of Morse language: we distinguish 
names of atomic object classes (NA) and molecular object 
classes (NM), atomic and molecular object identifiers 
(respectively IA and IM) and the values of atomic objects 
(VA). 

(3) The following restriction is made for variables: the scope 
of each defined variable is the set of instances of a specific 
class. We use the notation x/class-name to represent 
this declaration. 

(4) The only allowed predicates are: <, >, <, 2, =, f. These 
predicates apply only on atomic values. 

(5) To access object identifiers and objects values through 
another object, the following functions are defined: 

a) A value vy of an atomic object y through another 
object x is delivered by the function “.” defined as follows: 
Ix x Iy -> vy 

(XtY> -> X.Y=V~ / i(X,x)Ap(X,A)Ap(x,ai)r\v(ai,vai) 

where IX and VY are respectively the set of all identifiers 
of the class X and the class Y, and where VY is the set of 
all values of the class Y. 

b) The access to an object identifier through another object 
is done by the function “->‘I defmed as following: 

Ix x NC -> IO 
(x,Y> -> x->Y = iy/ i(Y, iy) A o(x,iy) 

were IX is the set of instances of X, NC the set of all 
class names (i.e. NM+NA) and IO the set of all object 
identifiers (i.e. IM+IA), and were x, Y, iy be respectively 
elements of these categories. 

To facilitate the rule expression, we introduce the 
following compositions of functions : 
i) “x->y->z.. .” which is equivalent to: 

“x->Y = y and y->Z = z and.. . “5 
ii) “x->y.z = v” which is equivalent to : 

“x->Y = y and y.z = v”. 

(6) The only allowed terms are constant terms, variable terms 
and functional terms obtained by “.” et “->” function 
symbols. 

(8) The well-formed formulas are those elaborated with 
conjunction (and) and one implication (lf...Then). 

Example 1 : If a student has at least one mark less than 
16, then his honors is not a first class. 

IC2 : {student/Student) [mark/Mark] (honors/Honors 1 
If student.mark<l6 
Then student .honors # “first class”. 
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Example 2 : For each contract relating a person and a 
vehicle, if the age of the person is less than 20 and the power 
of the vehicle greater than 10, then the premium of the 
contract is at least equal to 5000. 

IC3:{person/Person) {vehicle/Vehicle) 
{contract/Contract) {age/Age) 
{power/Power]{premium/Premium) 

.* If contract->person.age<20 
and contract->vehicle.power>lO 

Then contract.premium25000. 

4.4. Code generation from lntegrlty constraints 

This subsection deals with 02 code generation from 
logical formulas describing integrity constraints. Before this 
generation process, a semantic control of each formula is 
done. Then we discuss the method definition and attachment, 
at the operational level. 

a) Consistency checking of integrity constraints 

The consistency checking of the constraints aims to verify 
in one hand the semantics of the constraints and in other hand 
their compatibility with the static database schema. It is 
composed of the following steps: 

Bach constraint variable must be defined over an existing 
class of the static database schema, 
For each function symbol there must correspond an 
aggregation arc in the static semantic 
network, 
Arguments of the same predicates have compatible types, 
No predicate is subsumed by another predicate, 
Check wether different predicates of the same formula are 
contradictory or not, redondant or not, 

As we have not considered the exception handling, no 
constraint has to be contradictory with another one. We 
only check the consistency of the set of constraints, but 
some works could also be done on the problem of 
satisflability of this set of constraints [ Bry 861. 

b) Methods definition and attachment 

An integrity constraint is a fust order formula specified on 
a semantic network. To give an interpretation to this formula 
(by assigning one of the logical values: true or false) with 
respect to the application universe of discourse represented in 
the database, we must generate one or several enforcement 
procedures depending on different kinds of updates expected for 
the database (insert, delete, modify). For example, from the 
following constraint which asserts a classical referential 
constraint, 

RC: (person/PERSON) 
(agency-name/Agency-name) 
[agency/AGENCY] [name/Name] 
person.agency-name = agency.name. 

we may generate two enforcement procedures: 

- one procedure Ml triggered by the insertion of a person 
(or the modification of his agency-name), which checks 
whether the referenced agency exists in the agency class or 
not, 
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- one procedure M2 triggered by the deletion of an agency 
(or the modification of its name), which checks whether 

IC3-tmployee2 : for one given employee, each time his 
age is lower than an other employee’s age. his salary is lower 

referencing persons exist or not. too. 

Then, we notice that from one constraint specification, we 
may generate different controle procedures, attached to different 
objects. We call each of these procedures a constraint-method. 
As the example shows, each constraint-method is attached to a 
specific class. A given constraint-method attachment is 
characterized by the following tuple: (Const r Name, 
Class name, Set-of-updates) where set ol’updates 
can be-( insert, delete, modify,...). Then an integrity 
constraint specification may be characterized by a set of 
attachments of this form. For example, the set of 
attachments characterizing the previous constraint RC is the 
following: 

An optimization step will verify that the two generated 
methods on the same class are not similar. This happens 
when the constraint is perfectly symmetrical in relation to the 
two variables). 
In the process described in this section, we have not 
considered the case where several different logical formulas 
may generate a unique constraint-method. We just focused on 
the case where a formula may generate one or several 
methods. 

I . Jdentification of an Operation whcation 
af an htemin, ~onsrrpint 

RC-A : { (Ml,PERSON, (Insert,Modify)), 
(M2,AGENCY, (Delete, Modify)) } 

The code generation of constraint-methods from a logical 
constraint specification needs the knowledge of: 
1) Classes involved in the constraint specification (known 

through variable declaration), methods needed. 
2) For each involved class, update operations which trigger 

the methods implementing the constraint. 

Identifving involved classes 

We fist suppose that the distinction between identified 
objects and value-object (with respect to 02 concepts) is 
already done. Each class of identified objects involved in the 
constraint needa a method in order to check the constraint after 
an update done on an object of this class. We name the 
method by the concatenation of the name of the constraint and 
the name of the class. For example, from the constraint: 
IC2: {employee/Employee) 

For each couple (method, class) previously built, we have 
to determine if it is concerned by a constraint on insertion, 
modification, or deletion. Our approach consists in 
considering on one hand, the type of quantifier applied to the 
variables of the class and on the other hand, the position of 
the predicate defined on these variables (left hand side (LHS) 
or right hand side (RHS) of the rule). In each case, we will 
show which operations (insertion, modification, or deletion) 
could induce a violation of an integrity constraint, and thus, 
require the enforcement of the constraint. This method is very 
close to those used for constraints simplification in the 
relational model [Nicolas 82) [Bry 881 [Quian 881 [Borla 901. 
Because we operate at the design step and not during the step 
of integrity checking by the SGBD, we can’t take into account 
the instances of the base, nor the queries, but only the syntaxe 
of the constraint. 

(probationer/Probationer} 
(salary-l/Salary) (salary-2/Salary) 

employee.salary-1 > probationer.salary-2. 

will generate two methods, IC2-employee, attached to the 
Employee class, IC2grobationer. attached to the probationer 
class. Even if the two methods are generated from the same 
constraint, the corresponding bodies are not the same. The 
method generated for the class Employe will check that the 
salary of an employee is greater than the salary of each 
probationer (it will be triggered after an update over 
employeee). The method generated for the class Probationer 
will check whether or not his salary is less that the salary of 
every employee (it will be triggered after an update over 
Probationer). 

Let us for example consider the case of a rule where 
variables are ranging over the class X. The rule is of the form 
: “(3 x/X (P(x)) => Q”. At any moment in time, for 
example, before an operation which will update the database, 
the assertion “(3 xjX P(x)) => Q” is necessarily valid since it 
corresponds to an integrity constraint. The truth table 
presented in figure 6 shows that the formula “(3 x/X P(x)) => 
Q” can be valid in three different states; these correspond to 
lines 1,3 and 4 of the table. 

ITITIT I 

If several variables of a class appear in a constraint, one 
method is generated for each variable. For example, the 
constraint : 

Fie. 6: Truth table for (UP) = > Q 

IC3 : (enployeeJ/~loyee), (er@oyee2/~loyee) 
(agel/Age) {age2/Agel 
(salaryl/Salary} (salary2/Salary2) 

If employeel.agel > employee2.age2 
Then employeel.salaryl>employee2.salary2” 

will generate two methods for the employee class : 
iC3-employee1 : for one given employee if his age is 
greater than another employee’s age, his salary is greater too, 

Let us now consider the impact of an operation applied to 
an object of a class X over lines 1, 3 and 4 of the truth table. 
An operation on the object x of class X can change the truth 
value of the predicate (3x P(x) ) (see figure 7). If the truth 
value of 3x P(x) changes while it was in a state which 
corresponds to lines 1 or 3 of the table, the database remains 
in a coherent state (we only change from line 1 to line 3 or 
vice-versa). However, if the predicate was previously in a 
state which corresponds to line 4, and if the operation applied 
to an object x changes the truth value of the predicate 3x P(x) 
from false to true, then the integrity is violated because the 
predicate assumes the truth value of line 2. 
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3P(x) 0 

may change to F 

may change to T 

may change to T 

. : anaes which mav occur after an oneration over 
ansbl=t of class 

We will now try to identify the operations which can, 
when applied to objects of class X, change the value of the 
predicate 3x P(x) from false to true. This logical change 
may occur if before the operation, no instance of class X 
satisfied the predicate P, and after the operation, an object ol 
X satisfies the predicate P. This can only happen under the 
two following operations: 
- an object which satisfies the predicate P has been inserted 

into x, 
- an object of class X which didn’t satisfy P has been 

modified to a value which satisfies P. 

We conclude by stating that the integrity constraint must 
be applied to class X in the case of an insertion or a 
modification of an object of the class X. 

c) The generator of CO2 code 

The generator of CO2 code is composed of a set of 
mapping rules which transform objects, relationships and 
integrity constraints of Morse toward objects and methods of 
02. As each Morse object may satisfy one or several 
integrity constraints, each corresponding 02 object may 
satisfy one or several methods called “constraint-methods”. 
These latter methods are particular in the sense they are 
activated by other methods which realize the encapsulation of 
the object. Then each update operation on a given object 
should activate by message passing the set of constraint- 
methods associated to this object. This set of constraints is 
called the “object-integrity”. It can be itself considered as a 
general constraint-method associated to an object. Thus each 
update operation has to know only one general constraint- 
method instead of knowing the set of all specific constraint- 
methods. 

The CO2 code generator is composed of two parts: (i) one 
part generates the definition of the object data structure and the 
constraint-methods signatures, (ii) the other part generates the 
body of the object-integrity method and the bodies of the 
corresponding specific constraints-methods. An example of 
code generation could be the following: 

8dd Cl888 PENa- 
type tupla (Name:atring,Zqe:integer, 

kkir:aatof (ADDRESS) ) 
method ~jectIntegrity:mot (&ring) i8 public 

NulleValue:boolrm 
tJniqueVelue : boolrm 
Bounded&t (min:int,~~~:int) :boolean 
ICIPerscn :bool*a 
IC.2Person:boolaan 

body t%jectIntegrity:ret (string) 
in clm8 PERSON CO2 

{ 02 set (string) ENS; 
SetRes = set () ; 
if (! ([self NulleValue] 1) 

(SET t= set (“NulleValue”) ; 1; 
if (! ([self UniqueValue] )) 

(SET t= set( "UniqueValue");); 
if (! ( [self BoundedSet] )) 

(SET t= set (“PoundedSet”) ; ); 
if (! ( [self IClPerson] )) 

(SET += set (“IClPerson”) ; ) ; 
if ( ! ( [self IG!Person] )) 

(SET += set (“IC2Person”) ; ); 
return (SetPes) ; 

1 

In this example, “NulleValue”, “UniqueValue” and 
“BoundedSet” come from the mapping of the MORSE 
structures. IClPerson and IC2Person comes from the 
mapping of the integrity constraints ICI and IC2 explicitly 
given by the user as rules. 

Each object-integrity method (i.e. the method 
Objectlntegrity of the class Person in the previous example) 
returns a set type value. This set (e.g. SetRes in the previous 
cxamplc) contains the names of the constraint-methods which 
were not satisfied during the update operation, Depending on 
whether this set is empty or not, the programmer can commit 
or not the update operation. For example, the generator 
provides a new insertion method which inserts an object in 
the extension of its class. ln the definition of this method, the 
corresponding “ObjectJntegrity” method must be activated to 
be sure that the update is allowed with respect to the integrity 
constraints : 

add method insert:boolean 
in close CO2 PERSON 
body insert:boolean in claaa CO2 PERSON 
I 02 set (string) ENS 

SetRes = [self Integrity] ; 
if (SetRes==(o2 set (string) 1 set () 1 

(PERSONt=set(self)];return(true);] 
else (printf(“Integrity constraints 

not respected: ‘I); 
display (SetRes) ; 
return (false);) 

) 
ln the previous code generation, the cost of the integrity 

checking process is not considered. Constraint-methods are 
specified in such a way they semantically correspond to the 
declarative assertions of the semantic network. The experience 
in traditional databases has shown that integrity checking is a 
very expensive process [Simon 841. If we want to avoid the 
multiple scanning of the same class, we have to merge in the 
same procedure the different constraint-methods which have 
been defined for this class and don’t modify the objects. 

5. The Database Design Prototype 
A large number of database design tools are based on 

semantic data models. Secsi is one among others 
[Bouzeghoub 851. It was devoted to the design of relational 
databases. Starting from the Secsi Expert System 
environment, we have implemented a prototype for all the 
methodology previously developped. Much of the experience 
we got from this previous project (e.g. interactive acquisition 
of knowledge, completeness of specifications, consistency 
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checking) is reused in the new design tool prototype 
[ Bouzeghoub 901. 

During the analysis step, an aid is provided in order to 
refine incomplete specifications. To simplify the language, a 
few syntactic sugars can be introduced. The absence of a 
variable declaration, the usage of class names instead of class 
variables are examples. The control phase in the compilation 
process can be vued as a design specification phase where 
rules can be corrected by the system (with the help of the 
user) instead of brutally rejecting the rule. This phase occurs 
after the syntactic analysis of the constraint and before its 
semantic analysis. 

m vari&& : The user can omit variables. For 
example he can specify : 

IC7 : If Person.Age < 20 
Then Person.,salary c 1000. 

In this case, the system must introduce variables and their 
corresponding quantifien. By default, the quantifier is V and 
its scope is the whole formula. The preceding formula is then 
translated into the following one: 

IC7 ’ : {person/Person) (age&e) (salary/Salary) 
If person.age < 20 
Then person.salary < 1000. 

This transformation supposes that the integrity constraint is 
mono-object. However, this must be confirmed by the 
designer. 

. . 6 v : We can envisage that the user may 
introduce integrity contraints on multiple objects without 
specifying the predicates which will serve as links between 
these objects, for example : 

ICB : If Person.Age<le and Vehicle.Power>lO. 
Then Contract.Premium > 5000. 

In this case, the links between objects are found in the static 
graph, and the integrity constraint can be rewritten as : 

ICB ’ : If Contract->Vehicle.Power > 10 
and Contract->Person.Age < 18 

Then Contract.Premium > 5000. 

Many links may exist between two objects. For example, 
if a constraint holds on vehicles and persons, the link between 
them can either represent the fact that a person drives a car or 
the fact that a person owns a car. So the designer has to 
choose one of the reformulations proposed by the system. 

Similarly, each time there is a lack in the static schema, it 
may be completed to be consistent with the integrity 
constraints. For example, the constraint “Person. Age>O” 
may create in the static semantic network an object ‘person’ 
which is composed by an object ‘age’ whose type is ‘integer’. 

The aid provided by the design tool is glaring at sight of 
the final results. The previous constraint, IC8, can be 
expressed with two lines by the user (because of the 
refinement made by the tool and because of the conciseness 
of the rule langage). The generated code is about twenty lines 
(because of the procedural aspect of the langage used). One 
object type specified by one line including cardinality 
consuaints, may generate two pages in CO2 code because 
some cardiialities have to be expressed by methods, like any 

integrity constraint. In addition to the class declarations and 
the methods describing the integrity constraints, the tool 
generates other useful methods necessary for the manipulation 
of the objects. For example, we need a method called 
“ObjectIntegrity” which groups all the integrity constraints 
concerning a given object. This global method is called by 
any other operation defined on the object class concerned (e.g. 
an insertion operation creates an object instance, adds it into 
the extension of the corresponding class and then calls the 
“ObjectIntegrity” method which insure the integrity defuKd on 
the class. 

6. Conciuding Remada and Current Extensions 
In this paper, we have described a general framework for a 
CASE tool devoted to the design of object oriented databases. 
The design approach is based on two levels: the semantic 
object oriented level and the operational object oriented level. 
The first level is based on a semantic data model which was 
extended to represent more information about the behavior of 
objects (general integrity constraints and deductive rules). 
The second level is more operational, and is based on an 
existing object oriented DBMS. The design methodology 
described in this paper is implemented in the Secsi Expert 
system environment which already provides a design 
environment for relational databases. 

This design tool is interfaced with 02 object oriented 
database system. It automatically generates a CO2 database 
schema and gives a very convenient way to populate the 
database and to check its constistency with respect to the 
constraint-methods generated. A syntactic analysis of 
specifications, an interactive acquisition aid of constraints and 
rules and a set of consistency checking rules are provided too. 
This design environment can be considered as a powerful1 
mean for validating user requirements against an image of the 
projected database application. 

An extension concerning behavioral rules is in progress. 
We call “behavioral rule” an assertion which has in its right 
hand side some updates to be performed on the database; the 
left hand side has the same syntax and the same semantic than 
a constraint rule’s left hand side. Further developments should 
mainly concern the formalization of the external language. 
Besides this formalization aspect, many other problems 
remain, like the efficiency of the code generation procedure 
and the code optimization. 
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