
Semantic Modeling of Object Oriented Databases

Mokrane Bouzeghoub, Elisabeth Mttais

Laboratoire MAX, Universite P. et M. Curie - CNRS, Centre de Versailles
45, avenue des Etats-Unis 78000 Versailles, France

Email: mokran@Zeus.ibp.fr

Abstract:
This paper describes a design methodology for
an object oriented database, based on a semantic
network. This approach is based on the
assumption that Yemantic data models are more
powerful and more easy to use than current
proposed object oriented data models. They are
especially more poweful in representing
integrity constraints and various relationships,
Object oriented data models are generally based
only on class hierarchies and inheritance, plus
their ability to represent the behavior of objects,
But this latter capability is generally provided
through an algorithmic language which cannot
be considered as a conceptual language. This
paper describes a design procedure which
generates an object oriented database schema
(both the structural aspect and the dynamic
aspect) from an abstract specification giveri in a
high level language. This specification language
is built upon a semantic network and allows to
define integrity constraints and behavior rules.
This approach is presented through a CASE
tool environment.

1. Introduction
Like relational databases, the design of an object oriented
database is a complex art which needs many expertise in the
domain. The simultaneous modeling of the structural aspect
and the behavioural aspect of objects increases the complexity
of the design. The current object oriented data models are
mainly defmed by a few basic constructors (like the tuple
constructor and the set constructor) and a taxonomy of objects
(i.e. hierarchy of classes and inheritance). The power of object
oriented data models is highlighted by their ability to describe
the dynamic behavior of the objects (methods). However, as
generally proposed in the object oriented database systems,
this dynamic description is made in a procedural language;
this fact makes the specification of the methods too difficult
at the conceptual level. Another weakness of current object
oriented data models is that, except through methods, they do
not easily permit to specify integrity constraints on the
objects.

Except for the dynamic aspect, the expressive power of
semantic data models is stronger than that of object-oriented
data models. Various relationships and integrity constraints

can easily be specified. Class hierarchies and inheritance are
generally defined in the same way. The dynamic aspect can be
fulfilled by introducing the concept of behavior in the
semantic data models. In some sense, this was already done in
the AI domain by the concept of script which has been
developped ‘to enhance the expressive power of semantic
networks and frames. We follow the same approach and
describe the behavior of a semantic data model by means of
production rules. This kind of a declarative language permits
to avoid the complexily of procedural languages which arc
gcncrally used in objccl oriented data models. The behavior of
each object in the semantic data model will be described by
one or several rules expressing either integrity constraints or
any management rules concerning objects.

This paper highlights on one hand the object-oriented
database design methodology we have developped, and on the
olher hand the design tool which supports this methodology.
This methodology is baseci on two design levels: a Semantic
qbicct oriented level and an eperatio&lect oriented 1e el
(Figure 1). The process of interactive acquisiG&
completeness and consistency checkings of the behavioural
rules is particularly emphasized in the first level. At the
second level, we use as an operational object oriented data
model, called 02 model, which was developed by Alta’ir
project [Bancilhon 871. Then a mapping process between the
two models is proposed. Besides the data structure mappings,
the transformation of a semantic object oriented schema into
an operational object oriented schema consists, among others,
in the generation of procedural methods (C written) from a
declarative language specification (production rules).

1 CONCEPTUAL LEVEL!

+ productlon rules

0 level v

Proceedings df the 17th International
Conference on Very Large Data Bases

3
Barcelona, September, 1991

The second section of this paper will give an overview of
the two data models used. Section 3 describes the general
mapping process from the semantic network to the object
oriented model 02. This mapping process is only concerned
with the structural aspect and with some static integrity
constraints. Section 4 describes the mapping of general
integrity constraints (Fist order formulas) and behavioural
rules (production rules) to the operational level expressed in C
language. Roblems of method definition and attachment are
also addressed in this section. Section 5 gives a general
flavour of the modelling prototype which was designed.
Section 6 concludes on the obtained results and the remaining
problems to solve.

2. The Hierarchy of Data Models Used
This section gives a general overview of the two data models
considered in the methodology. The first one is a generic
semantic network called Morse. The second one is an object
oriented data model called 02.

2.1. The Semantic Network Model

A semantic network is an oriented diagram where the nodes
represent real world objects and the arcs represent semantic
relationships between these objects. In addition, constraints
can be defined over these nodes and arcs. In the following,
such a semantic network data model is designated by the name
Morse [Bouzeghoub 841. This model is formalized in such a
way it can represent the most important concepts used in
semantic data models. The objective of this formal definition
is to provide a general framework whithin which a CASE tool
could be specified and programmed. The external vision of the
model could be any desired diagram (e.g. Entity-Relationship)
or abstract syntaxe.

An object is a generic term to designate the different real
world individuals refered to in Morse schemas. We distinguish
four categories of objects: in one hand instances of atomic
objects (IA) and instances of molecular objects (IM), in the
other hand classes of atomic objects (NA) and classes of
molecular objects (NM). Then, in the following, we use the
term object in a generic way, and whenever necessary, we use
the more specific term.

The distinction between atomic objects and molecular
objects permits to highlight their structural links for a better
specification of the corresponding constraints. Atomic objects
have values taken from basic domain such as: integer, real,
boolean and string. The set of all atomic values in all
domains are refered to by the name VA. Molecular objects
have molecular values which are composed from the
corresponding atomic objects which constitute the molecular
object. Both atomic objects and molecular objects have unique
identifiers which are independant of their values.

Semantic links are basic binary relationships between the
different categories of objects mentioned above. These binary
relationships formalize the well-known concepts of
aggregation and generalization [Smith 771. Specific
refinements of these concepts are introduced to take into
account the distinction between atomic objects and molecular
objects. The aggregation concept is refined as aromic
aggregation (arc a(X,Y)) and molecular aggregation (arc
r(X,Y)). Generalization is refiied as instance generalisation
(arc c(X,Y)) and class generalizafion (arc g(X,l’)). Each
binary relationship has its reverse link (respectively p(Y,X),

Proceedings of the 17th International
Conference on Very Large Data Bases

o(Y,X), i(Y,X), s(Y,X)). To simplify the graphical
representation, we use only one specification which
subsumes the other (for example p, o, c and g) except if
constraint specification is needed for each specific arc.

Whght

The inheritance is one of the interesting properties of
generalization hierarchies; each atomic or molecular
component of an object X can be transfered by inheritance to
objects X1 . ..Xn. if these latters are sub-classes of X.
Inversely, each instance of a sub-class is an instance of its
super-classes. We say that components of objects propagate
toward the leaves of the hierarchy whereas the instances
propagate toward the root(s) of the hierarchy.

Different integrity constraints can be specified in a Morse
semantic network to enhance its capability to capture more
meaning from the real world. Among these constraints, we
can mention domains, cardinalities, functional dependencies,
keys, intersection and disjunction of classes, etc. In the
semantic network, some of these constraints are defined over
nodes, others are defined over arcs. The constraints are
specified either as a complementary information of binary arcs
or as new predicates. For example, cardinal@ constraints are
expressed as complementary information over a/p arcs and r/o
arcs, while other constraints like functional dependencies are
represented by a new fd arc:

a(Number,VEHICLE, [l,l]),
p(VEHICLE,Number, [l,ll),

a(Type,VEHICLE, [l,N]),
p(VEHICLE, Type, [I,11),

a(Power,VEHICLE, [O,N]),
p(VEHICLE,Power, [l,l]),

r(VEHICLE,CONTRACT,[l,l)),
o(CONTRACT,VEHICLE,[l,N]),

r(PERSON,CONTRACT,[l,N]),
o(CONTRACT,PERSON,[l,l]).

fd(VEHICLE,lhs(Type),rhs(Power))
Graphically, a given semantic network can be represented as
portrayed in figure 2.

4 Barcelona, September, 1991

2.2. The ObJect Orlented Data Model type tuple(name:string,age:integer,

The 02 data model belongs to the category of the so-called
object oriented data models [Lecluse 871. Then, its basic
concepts are objects and types, type constructors and type
hierarchies. The data manipulation language could be the C
language with embedded 02 expressions (called C02) [Haux
881 or an SQL like declarative query language (called LOOQ).

address:string,children:set(Person))
add cla88 Agent inharite Person
type tupl*(code:string,salary:integer)

/* method declaration */
method category: 8tring i8 public
body category:string in cla88 PgentC02

In the 02 data model, an object is composed of an
identifier (the name of the object) and a value. Values could
be either: (i) atomic values (integers, reals, booleans,
strings), for example: (iI,22), (i2,3.14); (ii) tuple values, for
example (i3, [name:“John”,age:22]); and (iii) set values, for
example (i4,(red, black, green)). Objects can be defined by
construction using list, tuple and set constructors. Objects can
mutually reference each other. For example:

/* method procedure */
I if (self->salary > 50)

return (“VIP”) ;
1

(i7, [name:“John”,wife:i8]), (i8, [name:“Mary”,husband:i7]).

A class is an abstraction which represents a set of objects
with their behavior. A class is composed of two parts: (i) a
type which contains the structure that characterizes all the
instances of the class, (ii) methods which contain operations
which will be applied to these instances. A class may have a
basic type (integer, real, boolean, string) representing atomic
objects, a tuple type representing objects with tuple values or
a set type representing objects having set values. The
following expressions are examples of classes :
Person=name:string,age:integer], Employees={ p:Person). The
constructors could be composed to create more elaborated
types (e.g. sets of tuples or tuples of sets).

The keyword inherits defines a hierarchy of types. The
keywords public makes the object-integrity method visible
from anywhere. The keyword In class CO2 defines the
class for which this body is defined; this is useful to solve
ambiguities of names, as method bodies can be specified
independently of the class description. The brackets {)
delimite the C source statements of the procedure.

The definition of a database schema in CO2 needs the
knowledge of the objects structure, the status of objects, i.e.
identified object or non identified object (value), and the
sharing of the objects.

3. Mapping from the Semantic Level to the
Operational Level

The 02 data model makes a clear distinction between
identified objects and non identified objects. The formers can
be stored and manipulated independently, while the lattcrs
exist only as property values of other objects. For example,
in the following specifications , persons and vehicles could be
manipulated independently: Person= [name:sning, age:integer,
vehicle:Vehicle], Vehicle= [number:integer, color:string] But
in the following example, the object vehicle exists only as a
composite attribute value of person:

Person=[name:string,age:integer,
vehicle:(number5nteger,color:string]]

The CO2 model describes both the static aspect (data
structures) and the dynamic aspect (methods). Relationships
between objects or object classes are not represented by a
specific concept; but they are represented by a uniform way
based on objects composition and objects sharing. As in the
relational model, references are the unique way to represent
relationships between objects. Integrity constraints are not
considered as specific concepts of the model; they are defined
in a uniform way as any procedure describing the behavior of
an object. The object identity allows to make a clear
distinction between objects having their own existence, and
values which are only relevant when characterizing other
objects. The object identity is represented in CO2 by different
syntactic forms.

A partial order between types defines a hierarchy of types
within which the inheritance concept permits to transfer
components from one type toward its subtypes [Lecluse 881.

A method is a procedure which is associated to a type in
order to describe the behavior of the instances of this type.
Methods introduce the notion of encapsulation which
permits the manipulation of objects without any knowledge
about their structure, nor about the internal code of the
procedures corresponding to these methods.

The CO2 language is an embedded database language (02)
into a procedural host language (C) [Haux 881. Besides the
usual programming of algorithms, it permits to specify and
access database objects. Objects are manipulated through
methods, A method is characterized by its signature (its
name, its type and the type of its parameters) and its body
(procedure). The following example shows the declaration of
types and the programming of methods in CO2 (version
1.0) :

The semantic data model Morse is concerned only with the
static aspect. The different categories of aggregation arcs
allow to specify different types of relationships between
objects. Integrity constraints are represented as declarative
assertions on the data structure.

In the following we are only interested in the mapping
from Morse to CO2 and not in the reverse mapping. First we
consider the structural mappings between the two models,
then we study the representation of constraints by methods,
and we finally describe the general mapping process. This
plan is made only for the soundness of the paper; in fact
structural mapping rules often depend on the integrity
constraints [Bouzeghoub 901. .

3.1. The mapping between objects

/* type declaration */
add cla88 Person

An atomic object defined in Morse is equivalent in 02 either
to an identified atomic object or to an atomic value (non
identified object) inside another object. A molecular object
defined in Morse is equivalent to either an identified
tuplestructured object or to a tuple value in 02. A class of
objects defined in Morse is partly equivalent to a class of
objects defined in 02. Indeed, and as stated before, Morse

Proceedings of the 17th International
Conference on Very Large Data Bases

5
Barcelona. September, 1991

classes describe only the static aspect of the objects, while 02
classes describe their behavior too, thanks to methods, The
fist part (a) of Figure 3 summerizes the correspondence
between the Morse objects and the 02 objects.

3.2. The mapping between constructors

Both atomic and molecular aggregations defined in Morse are
equivalent to the tuple constructor of the 02 model. More
precisely, we have to include what is considered as domain
constraints in Morse to obtain what is considered as attribute
basic type in 02. For example, the following Morse
specification:

p(PERSON, Name) dom (Name, string)
p (PERSON, Age) dom (Age, integer)
o (PERSON, Address)
p (Address, Number) dam (Number, integer)
p (Address, Street) dom (Street, string)
p (Address, Postcod) dom (Postcod, integer)

will be mapped into 02 as for example:

Person= [Name:string,Age:ii&eqer,Pbdr:Pbdress]
Address=[Nunber:int,Street:string,Postccd:int]

which can be described in CO2 by the following statements:

add claam Person
typr tuplr (Name:atring, Age: intager,

Addr:Address)
add cl888 Address
type tupb (Number: int, Street : 8tring,

Postcod:integer))

If we consider that all of Name and Age are values of the
Person (thus they are not identified), but the Address is an
object by itself (thus it is identified). Addr is called a
reference; it is considered as an attribute of Person which
references another object, i.e. Address.

The classification/iitanciation defined in Morse is partly
equivalent to an 02 class. In fact the Morse abstraction can
define a class only by extension, without necessarily
describing its structure. The generalization/specialization is
equivalent to the inheritance hierarchy in 02. In Morse, a
given class can be defined by generalization from other classes
even the structures of these latters are unknown. Inversely, a
Morse subclasse can be defined as a restriction of a superclass,
but without any refinements on its structure. This makes the
generalization/specialization more general than a partial order
of types which is defined in 02.

The inheritance is defined in Morse as a logical property
which propagates components and constraints of generic
classes to their subclasses. In the 02 model, there is a
uniform formalization of hierarchies of types and inheritance
(partial order of types). The part (b) of Figure 3 summerizes
the different mappings between the Morse constructors and the
02 constructors.

3.3. The mapping of the constraints

Semantic integrity constraints are useful for many reasons:
(i) to check the consistency of the object structure and values,
(ii) and possibly to assist in the decision process which
determines whether a Morse object coincides or not with an
02 object. Except for the usual domains which are represented

Proceedings 6f the 17th International
Conference on Very Large Data Bases

by basic types in 02 (integer, real, boolean, string), all the
other Morse integrity constraints are represented by methods
in the 02 model. In the following, we illustrate this latter
case with cardinalities and functional dependencies. Methods
which implement integrity constraints are particular in the
sense they are not directly invoked by the users but by other
methods which guarantee the encapsulation of the concerned
object. The part (c) of Figure 3 summerizes the different
mappings between the Morse constraints and the 02 concepts.

MORSE CONCEPT 02 CONCEPT 1

(a)

(b)

(cl

atomic object atomic objectl atomic value

molecular object atn~atmxl objecthuple value

class dass

subclass subclass

instance

obiea identifier

object

object identifier

I atomic aggregation I ~~~ tuple constructor ~~ I

molecular aggregation

Class generalization

tuple consuuctor

Inheritancf!

I General Inkgrity
Constraint I m&cd

a: 0 esnondence between Morse and 02 CQB.QQQ

Among various constraint we can specify over the
semantic network, we consider here the mapping of
cardinalities. Formally, cardinalities characterize binary
relationships (a/p and r/o arcs) by specifiing the frequence of
object participation in a given binary relationship. More
precisely, a cardinality is a couple of values [m,n] which
respectively specify the minimum and the maximum number
of a given relationship instances to which the same object
could participate. Cardinalities where n=l are called
monovalued cardinalities and those where n>l are called
multivalued cardinalities. In the following, we study the
methods which will implement these constraints. As we
have several situations, we will only focus on two examples.

Case 1: p(X,Y,[l,l]) : which specifies that for a given
instance of X, there is only one instance of Y. For example:
p(PERSON, Name, [l,l] 1 Dom (Name, string)
p(PERSON, Age, [l, 11) Dom (Age, integer)

will be implemented into 02 as:
add cla88 PERSON
type tuple (Name: string,Age: integer)
method Nulle-value:boolean
body Nulle-value:boolean
in cla88 PERSON CO2
(if ((! (self->Name==(o2 string) NULL) 1

&h (! (self->Age==(o2 int) NULL)))
(return (true);)
else return (false);

1

6
Barcelona. September. 1991

Case 2: o(X,Y,[l,N]): which specifies that for a
given instance of X, there is N instances of Y. For example:

oP=, -ss, LNI 1

P(ass, *, (Lll) Cm(Nwber, integer)

pt-ss, street, [l, 11) Dan(Street, string)

p (Address, Postccd, (1, 11) Dun (Postcod, string)

P(-% Town, (Lll) Dan(Town, string)

will be mapped into 02 as:

8dd Cl888 PERSON
type tupl~(Mdr:~dzof(Address))
umthod Pcmded..set(min:integer,

max:integer) :boolmn
8dd Cl8U Pss
type tuple (Nu&er: integer, Street : string,

Postcod: string, Town : string))
body Bounded_set(min:integ,max:integ) :bool
in ~1~88 PERSCN CO2
l 02 set (Adress) x;

x = (self->Addr);
if ((min =c count (xl) && (count(x) ti max))

(return (true); } else return (false);
1

3.4. The obJect Identity and the object sharing

In the Morse semantic data model, everything is considered as
an object. Each object has a unique identification, then
objects can be shared between different other related objects.
In the 02 object oriented data model, there are objects and
values; objects are sharable while values are not. So, when
mapping a Morse schema into an 02 schema, we have to
decide whether a Morse object can be considered as an 02
object or as an 02 value. This decision mainly depends on
the user’s desire in the way to manipulate his database. He
could arbitrarily decide whether a given Morse object is an 02
object or value. For example, for the mapping of the
following Morse schema (figure 4), he can envision many
solutions:

(PERSON hut

Number S&t P&cod Town
. : OtJJ&$

Solution 1: One 02 object PERSON describing the whole
Morse structure:

Proceedings df the 17th International
Conference on Very Large Data Bases

PERSON=[Name:string, Age:integer,
Address:([Number:integer,
Street:string,Postcod:integer,
Town:string])]

All other components are considered as values characterizing a
person.

Solution 2: One 02 object ADDRESS corresponding to
the whole Morse structure:

ADDRESS:[Number:integer,Street:string,
Postcod: integer, Town: string,
Person : ([Name : string,

Age: integer] 1 I

In this case, persons do not have any existence, they are just
characterizing addresses.

Solution 3: Two 02 objects corresponding to the two
Morse molecular objects:

PERSON- [Name: string, Age: integer,
Addr : (ADDRESSE) 1

ADDRESSE=[Name:integer, Street:string,
Postcod: integer, Town:string,
Pers : (PERSON}]

In this case there is a mutual reference between the two
objects. A person references its set of addresses and an address
references its set of persons.

There are many other solutions where we can consider that
towns or telephones are independant objects. To decide
between all these solutions, a computer design tool can help
in the decision process by taking into account several
heuristics derived, for example, from the following
parameters:

- Users’operations and general constraints defined on the
Morse objects: basic operations like insert, delete and
update, can be considered as the main means to identify
objects. We shall see in the next section how these
operations are detined in the Morse semantic data model.

- Cardinality constraints defined over arcs a/p and r/o of
the semantic network: if the minimal cardinality of one of
these arcs is equal 0, then the origine object of the arc can
exist independently of the related one.

4. Extending the Semantic Data Model to
Represent General Constraints
This section describes the generalized integrity constraints.
Many previous works have been done to manage integrity
constraints [Brodie 811 (Brodie 841 [Brodie 861 [Bertino 841
[Tsalgatidou 901 Different formalisms have already been
proposed to specify integrity constraints in the conceptual
schema, for example [Morgenstren 891 allows their
specification through constraints equations and [Oliv6 891
uses a Deductive conceptual model. In our approach, general
integrity constraints are first order logic formula whose
variables refer to the content of the semantic database. Before
presenting these constraints, let us give a formal
representation of a semantic database as well as for its
conceptual schema and for its extension. This representation
is not intended to implement real databases but just to give a
formal abstract representation in order to correctly specify
integrity constraints.

7
Barcelona, September, 1991

4.1. The representation of a semantic database

A Morse database schema is composed of:

- the list of names of all classes of atomic objects (i.e.
instances of NA),

representation for a formal reasoning. It can be considered as
an abstract representation of the content of a given database.
This representation permits a better understanding of the
constraint specifications, and provides a convenient framework
for a CASE tool.

- the list of names of all classes of molecular objects (i.e.
instances of NM), 4.2. The Internal representation of general

lntegrlty constraints
- for each atomic object, its domain values (basic type),

- for each molecular object, its data structure (i.e. the set of
all its p/a and oh arcs),

- for each binary relationship (i.e. p/a and o/r arcs), its
cardinalities,

A general integrity constraint is a first order closed formula,
restricted to conjunction connectors and at most only one
implication symbdle. Variables can be quantified
existentially or universally. The universe of discourse in
which these formulas are interpreted is constituted as follows:

- for each multiple reference to the same component, the
different roles played by the component in the abstraction.

For Example:

- a set of constants: composed of (i) the union of atomic
objects domains (VA), (ii) the union of atomic objects
identifiers (IA) and molecular objects identifiers (IM) and
of (iii) the union of class names of atomic objects (NA)
and class names of molecular objects (NM),

i (NA, Name, string)
i (NA,Age, integer)

- a set of variables taking their values in the previous
defined universe of discourse,

i (NA, number, integer)

piPERSON,Name, [l,l] [l,Nl)
p(PERSON,Age, [l, 11 [l,Nl)
p(VEHICLE,Power, [l, 1) [O,N])
. . .
i (NM, PERSON)
i (NM, VEHICLE)
i (NM, CONTRACT)

~;CONTRACT,PERSON, [I,11 [I,N])
o(CONTRACT,VEHICLE, [l, 11 [l, I.])

- a set of predicates: composed of (i) all atomic and
molecular aggregation relationships (i.e. p/a and o/r arcs),
(ii) instance generalization and class generalization
relationships (i.e. c/i et g/s arcs), (iii) usual mathematic
ptiicates : c, >, <, 2, =, #, and the v (value) predicate.

For example, over the previous database schema, we can
define a general integrity constraint which states that if the
vehicle power is greater than 10 and the person’s age is less
than 20, then the contract premium is at least equal to 5000.

. . .
g (CAR, VEHICLE)

As previously stated, everything in Morse is an objecl.
Then each atomic or molecular object is formally identified.
The relationship between an atomic object identifier and its
corresponding value is represented by a specific predicate V.

The relationship between a molecular object identifier and its
corresponding structur& value is represented by a sequence of
v predicates. This systematic identification of all objects
implies a systematic sharing of objects. Then values of
objects are represented only once. This identification permits
also an independent manipulation of all object classes. The
generalization arcs (i.e. g/s) are not directly represented in a
database extension. They are captured by the inclusion of sets
of identifiers with respect to the generalization hierarchy. The
following example is an extension of the previous database
schema:

ICl: VP bfC VV tlG \JS VM QVG VVS VVM
[i (PERSON,P) A i(VEHICLE,V) A
i(CONTRACT,C) A i(Age,G) A
i (Power, S) A i (Premium, M)

A O(c,P) A O(c,v)

A p(P,G) A v(G,VG) A VG<20
A p(v,s) A V(s,vs) A vs>lo

A p(C,M) A v(M,VM)I

->[VMr5000]

I (PERSON, Pl) it-,w, v(NL~PH
i (Pge,A.U VW, 33)

i (PERSON, P2) i(Name,N2), v(N2,duracd)
i (pge,JQ) VW, 44)

i(vEHIcIE,w i (Mrmber, 11) v(Il,l23)
i (Power,WU VW, 5)

I(vEHI(=IE,v2) i oaunber, 12) v(I2,345)
i (Power,W2) VW, 7)

i(vEHIcIE,v3) I (Nunber, 12) v(I2,345)
i(m,Cl) I (Premiun, Ml) v(Ml, 5500)
it-,a I (Premiun, M2) VW, 6000)

Obviously this representation is not defined for
implementing real databases, but just as a formal

As these constraints are specified using the same semantic
arcs as for describing the static data structure, they can be
represented by a semantic network in which each variable or
constant is represented by a node. Variable nodes are
considered as instances of object classes. The quantifier
corresponding to each variable is represented as a
complementary information of the arc I relating a variable to
its class. For example, i(Person,x,t/) describes a variable x
universally quantified over the class Person. As the order of
the quantifiers is meaningful in a given formula, an indice is
associated with the quantifier. For example, i(Person,x,V,l).
Finally, new binary arcs (inf, sup, equ, einf, esup, diff) are
added to the semantic network to represent the predicates: C,
>, =, <, 2. To give more meaning to this representation, we
must complete each predicate to specify whether it belongs to
the left hand side or to the right hand side of the rule
representing the integrity constraint.

ICl: i (PERSON, P,v, 1, left, ICl)
i (VEHICLE,V, V, 2, left, ICl)
i (CONTRACT, C, V, 4, leftright, ICl)

i(Age,G,V,S,left,ICl)

Proceedings df the 17th International
Conference on Very Large Data Bases

8
Barcelona, September, 1991

i(Power,S,V,6,left,ICl)
i(Premium,M,V,7,right,ICl)

o(C,P,left,ICl)
o(C,V, left, ICl)

p(P,G,left,ICl) v (G, VG, left, ICl)
inf (VG.20, left, ICl)

p(V,S,left,ICl) v(S,VS, left, ICl)
sup(VS, 10, left, ICl)

p(C,M,left,ICl) v(M,VM,left,ICl)
sup(VM, 5000, right, ICl)

The following schema illustrates the representation of the
constraint ICl. The lower part represents the static data
schema, the upper part represents the behavioral schema. In
this latter one, we have separated the rule left hand side part
and the right hand side part; although some nodes appear in
the both parts. When. the constraint doesn’t have an
implication symbol, the semantic network doesn’t have a left
hand side.

le of rule reoresentatb

4.3. The semantic object oriented language

The Morse language exposed in the previous section is a
formal language to represent the detailed description of a . .
conceptual schema. m IS not Wded to be used
b end-w. Consequently, we need a friendly user interface
to specify data structures and constraints. This subsection
describes the declarative language offered lo specify an
application and its integrity constraints.

a) Specification of data structures

(1) Each set of p or o predicates which defines the siructure of
a molecular object class is replaced by the following
statement, if the structure is composed of atomic objects:

Proceedings of the 17th International
Conference on Very Large Data Bases

9

X(Al:doml,...,A,:dom,)
<=> i (NA, Al, doml) , i (NA, An, dam,) ,

i (NM, X)
p(XtAl) t -I P(XtAn)

or by the following if the structure is composed by molecular
objects:

X(Y1,Y.)
<=> o(X,Yl),oaar O(XtYn)t i(NM,X)

or by the following statement if the structure is either
composed of atomic objects and molecular objects.

X(Al:doml,A.:dom,,Yl,Y.)
<=> i (NA,Al, doml) , i (NA,A,, dam,) ,

i (NM, X)
p(X,Al), p(X,A,)
O(X,Yl) ,*+., Cl (Xt Yn)

Lf the cardinality constraints are specified, we shall have the
following description:

X(tAl:dom1) [amI, anI1 ,
*.. ,
A n:dOmn, tam,, l n,1 ,
(Yll, l-1, rnll ,

. . . ,
ym, [rmn, rn,l 1

<=> i(NA,Al,doml), i(NA,A,,domn),
i (NM, X)
p(X,Al, tl,Nl [aml,anll),

P(X,Ant [l,Nl [amn,annl 1,
o(X,Yl, [1,11 [rq, rnll 1,
..a,
o(X,Y,, [1,11 [rm,,rn,l)

(2) Each set of generalization arcs can be declared as follows:

g(X,Y) <=> x: Y
g(X, Yl) ,...,g(X,Yn) <=> X : Yl, . . . , Yn
g(Xl,Y) , g (Xn, Y) <=> Xl,...,Xn:Y

Example of an external speclflcatlon:
PERSCN(ssn(l,l], name, (surname], age, ADDRESS).
ADDRESS (no, street, code)
VEHICLE (number, colour, type, power).
CONTRACT (PERSON, VEHICLE, premium) .
CLIENT : PERSON.

b) Specification of general constraints

The external interface to specify general constraints must
allow the user to specify easily his integrity constraints
defined over the external description of the data structures (i.e.
previous data language). Each integrity constraint is specified
as a production rule. The external language must have the
same expressive power as the Morse formal language, but
must be more concise and more easy to learn and to use. The
external constraint language is built from the Morse formal
language as follows:

Barcelona, September, 1991

(1) The alphabet of the external language is roughly the same
as that of the internal language; except that “A” and “->”
symbols are respectively replaced by “and” and the two
keywords “if” - “then” to distinguish between the left part
and the right part of a given rule. The quantified variables
Vx et 3x are respectively replaced by (x) and [x] to
alleviate the absence of the mathematical symbols in
common keyboards.

(2) The domain of interpretation of the external language is
the same of that of Morse language: we distinguish
names of atomic object classes (NA) and molecular object
classes (NM), atomic and molecular object identifiers
(respectively IA and IM) and the values of atomic objects
(VA).

(3) The following restriction is made for variables: the scope
of each defined variable is the set of instances of a specific
class. We use the notation x/class-name to represent
this declaration.

(4) The only allowed predicates are: <, >, <, 2, =, f. These
predicates apply only on atomic values.

(5) To access object identifiers and objects values through
another object, the following functions are defined:

a) A value vy of an atomic object y through another
object x is delivered by the function “.” defined as follows:
Ix x Iy -> vy

(XtY> -> X.Y=V~ / i(X,x)Ap(X,A)Ap(x,ai)r\v(ai,vai)

where IX and VY are respectively the set of all identifiers
of the class X and the class Y, and where VY is the set of
all values of the class Y.

b) The access to an object identifier through another object
is done by the function “->‘I defmed as following:

Ix x NC -> IO
(x,Y> -> x->Y = iy/ i(Y, iy) A o(x,iy)

were IX is the set of instances of X, NC the set of all
class names (i.e. NM+NA) and IO the set of all object
identifiers (i.e. IM+IA), and were x, Y, iy be respectively
elements of these categories.

To facilitate the rule expression, we introduce the
following compositions of functions :
i) “x->y->z.. .” which is equivalent to:

“x->Y = y and y->Z = z and.. . “5
ii) “x->y.z = v” which is equivalent to :

“x->Y = y and y.z = v”.

(6) The only allowed terms are constant terms, variable terms
and functional terms obtained by “.” et “->” function
symbols.

(8) The well-formed formulas are those elaborated with
conjunction (and) and one implication (lf...Then).

Example 1 : If a student has at least one mark less than
16, then his honors is not a first class.

IC2 : {student/Student) [mark/Mark] (honors/Honors 1
If student.mark<l6
Then student .honors # “first class”.

Proceedings tif the 17th International
Conference on Very Large Data Bases

10

Example 2 : For each contract relating a person and a
vehicle, if the age of the person is less than 20 and the power
of the vehicle greater than 10, then the premium of the
contract is at least equal to 5000.

IC3:{person/Person) {vehicle/Vehicle)
{contract/Contract) {age/Age)
{power/Power]{premium/Premium)

.* If contract->person.age<20
and contract->vehicle.power>lO

Then contract.premium25000.

4.4. Code generation from lntegrlty constraints

This subsection deals with 02 code generation from
logical formulas describing integrity constraints. Before this
generation process, a semantic control of each formula is
done. Then we discuss the method definition and attachment,
at the operational level.

a) Consistency checking of integrity constraints

The consistency checking of the constraints aims to verify
in one hand the semantics of the constraints and in other hand
their compatibility with the static database schema. It is
composed of the following steps:

Bach constraint variable must be defined over an existing
class of the static database schema,
For each function symbol there must correspond an
aggregation arc in the static semantic
network,
Arguments of the same predicates have compatible types,
No predicate is subsumed by another predicate,
Check wether different predicates of the same formula are
contradictory or not, redondant or not,

As we have not considered the exception handling, no
constraint has to be contradictory with another one. We
only check the consistency of the set of constraints, but
some works could also be done on the problem of
satisflability of this set of constraints [Bry 861.

b) Methods definition and attachment

An integrity constraint is a fust order formula specified on
a semantic network. To give an interpretation to this formula
(by assigning one of the logical values: true or false) with
respect to the application universe of discourse represented in
the database, we must generate one or several enforcement
procedures depending on different kinds of updates expected for
the database (insert, delete, modify). For example, from the
following constraint which asserts a classical referential
constraint,

RC: (person/PERSON)
(agency-name/Agency-name)
[agency/AGENCY] [name/Name]
person.agency-name = agency.name.

we may generate two enforcement procedures:

- one procedure Ml triggered by the insertion of a person
(or the modification of his agency-name), which checks
whether the referenced agency exists in the agency class or
not,

Barcelona, September, 1991

- one procedure M2 triggered by the deletion of an agency
(or the modification of its name), which checks whether

IC3-tmployee2 : for one given employee, each time his
age is lower than an other employee’s age. his salary is lower

referencing persons exist or not. too.

Then, we notice that from one constraint specification, we
may generate different controle procedures, attached to different
objects. We call each of these procedures a constraint-method.
As the example shows, each constraint-method is attached to a
specific class. A given constraint-method attachment is
characterized by the following tuple: (Const r Name,
Class name, Set-of-updates) where set ol’updates
can be-(insert, delete, modify,...). Then an integrity
constraint specification may be characterized by a set of
attachments of this form. For example, the set of
attachments characterizing the previous constraint RC is the
following:

An optimization step will verify that the two generated
methods on the same class are not similar. This happens
when the constraint is perfectly symmetrical in relation to the
two variables).
In the process described in this section, we have not
considered the case where several different logical formulas
may generate a unique constraint-method. We just focused on
the case where a formula may generate one or several
methods.

I . Jdentification of an Operation whcation
af an htemin, ~onsrrpint

RC-A : { (Ml,PERSON, (Insert,Modify)),
(M2,AGENCY, (Delete, Modify)) }

The code generation of constraint-methods from a logical
constraint specification needs the knowledge of:
1) Classes involved in the constraint specification (known

through variable declaration), methods needed.
2) For each involved class, update operations which trigger

the methods implementing the constraint.

Identifving involved classes

We fist suppose that the distinction between identified
objects and value-object (with respect to 02 concepts) is
already done. Each class of identified objects involved in the
constraint needa a method in order to check the constraint after
an update done on an object of this class. We name the
method by the concatenation of the name of the constraint and
the name of the class. For example, from the constraint:
IC2: {employee/Employee)

For each couple (method, class) previously built, we have
to determine if it is concerned by a constraint on insertion,
modification, or deletion. Our approach consists in
considering on one hand, the type of quantifier applied to the
variables of the class and on the other hand, the position of
the predicate defined on these variables (left hand side (LHS)
or right hand side (RHS) of the rule). In each case, we will
show which operations (insertion, modification, or deletion)
could induce a violation of an integrity constraint, and thus,
require the enforcement of the constraint. This method is very
close to those used for constraints simplification in the
relational model [Nicolas 82) [Bry 881 [Quian 881 [Borla 901.
Because we operate at the design step and not during the step
of integrity checking by the SGBD, we can’t take into account
the instances of the base, nor the queries, but only the syntaxe
of the constraint.

(probationer/Probationer}
(salary-l/Salary) (salary-2/Salary)

employee.salary-1 > probationer.salary-2.

will generate two methods, IC2-employee, attached to the
Employee class, IC2grobationer. attached to the probationer
class. Even if the two methods are generated from the same
constraint, the corresponding bodies are not the same. The
method generated for the class Employe will check that the
salary of an employee is greater than the salary of each
probationer (it will be triggered after an update over
employeee). The method generated for the class Probationer
will check whether or not his salary is less that the salary of
every employee (it will be triggered after an update over
Probationer).

Let us for example consider the case of a rule where
variables are ranging over the class X. The rule is of the form
: “(3 x/X (P(x)) => Q”. At any moment in time, for
example, before an operation which will update the database,
the assertion “(3 xjX P(x)) => Q” is necessarily valid since it
corresponds to an integrity constraint. The truth table
presented in figure 6 shows that the formula “(3 x/X P(x)) =>
Q” can be valid in three different states; these correspond to
lines 1,3 and 4 of the table.

ITITIT I

If several variables of a class appear in a constraint, one
method is generated for each variable. For example, the
constraint :

Fie. 6: Truth table for (UP) = > Q

IC3 : (enployeeJ/~loyee), (er@oyee2/~loyee)
(agel/Age) {age2/Agel
(salaryl/Salary} (salary2/Salary2)

If employeel.agel > employee2.age2
Then employeel.salaryl>employee2.salary2”

will generate two methods for the employee class :
iC3-employee1 : for one given employee if his age is
greater than another employee’s age, his salary is greater too,

Let us now consider the impact of an operation applied to
an object of a class X over lines 1, 3 and 4 of the truth table.
An operation on the object x of class X can change the truth
value of the predicate (3x P(x)) (see figure 7). If the truth
value of 3x P(x) changes while it was in a state which
corresponds to lines 1 or 3 of the table, the database remains
in a coherent state (we only change from line 1 to line 3 or
vice-versa). However, if the predicate was previously in a
state which corresponds to line 4, and if the operation applied
to an object x changes the truth value of the predicate 3x P(x)
from false to true, then the integrity is violated because the
predicate assumes the truth value of line 2.

Proceedings of the 17th International
Conference on Very Large Data Bases

11
Barcelona, September, 1991

3P(x) 0

may change to F

may change to T

may change to T

. : anaes which mav occur after an oneration over
ansbl=t of class

We will now try to identify the operations which can,
when applied to objects of class X, change the value of the
predicate 3x P(x) from false to true. This logical change
may occur if before the operation, no instance of class X
satisfied the predicate P, and after the operation, an object ol
X satisfies the predicate P. This can only happen under the
two following operations:
- an object which satisfies the predicate P has been inserted

into x,
- an object of class X which didn’t satisfy P has been

modified to a value which satisfies P.

We conclude by stating that the integrity constraint must
be applied to class X in the case of an insertion or a
modification of an object of the class X.

c) The generator of CO2 code

The generator of CO2 code is composed of a set of
mapping rules which transform objects, relationships and
integrity constraints of Morse toward objects and methods of
02. As each Morse object may satisfy one or several
integrity constraints, each corresponding 02 object may
satisfy one or several methods called “constraint-methods”.
These latter methods are particular in the sense they are
activated by other methods which realize the encapsulation of
the object. Then each update operation on a given object
should activate by message passing the set of constraint-
methods associated to this object. This set of constraints is
called the “object-integrity”. It can be itself considered as a
general constraint-method associated to an object. Thus each
update operation has to know only one general constraint-
method instead of knowing the set of all specific constraint-
methods.

The CO2 code generator is composed of two parts: (i) one
part generates the definition of the object data structure and the
constraint-methods signatures, (ii) the other part generates the
body of the object-integrity method and the bodies of the
corresponding specific constraints-methods. An example of
code generation could be the following:

8dd Cl888 PENa-
type tupla (Name:atring,Zqe:integer,

kkir:aatof (ADDRESS))
method ~jectIntegrity:mot (&ring) i8 public

NulleValue:boolrm
tJniqueVelue : boolrm
Bounded&t (min:int,~~~:int) :boolean
ICIPerscn :bool*a
IC.2Person:boolaan

body t%jectIntegrity:ret (string)
in clm8 PERSON CO2

{ 02 set (string) ENS;
SetRes = set () ;
if (! ([self NulleValue] 1)

(SET t= set (“NulleValue”) ; 1;
if (! ([self UniqueValue]))

(SET t= set("UniqueValue"););
if (! ([self BoundedSet]))

(SET t= set (“PoundedSet”) ;);
if (! ([self IClPerson]))

(SET += set (“IClPerson”) ;) ;
if (! ([self IG!Person]))

(SET += set (“IC2Person”) ;);
return (SetPes) ;

1

In this example, “NulleValue”, “UniqueValue” and
“BoundedSet” come from the mapping of the MORSE
structures. IClPerson and IC2Person comes from the
mapping of the integrity constraints ICI and IC2 explicitly
given by the user as rules.

Each object-integrity method (i.e. the method
Objectlntegrity of the class Person in the previous example)
returns a set type value. This set (e.g. SetRes in the previous
cxamplc) contains the names of the constraint-methods which
were not satisfied during the update operation, Depending on
whether this set is empty or not, the programmer can commit
or not the update operation. For example, the generator
provides a new insertion method which inserts an object in
the extension of its class. ln the definition of this method, the
corresponding “ObjectJntegrity” method must be activated to
be sure that the update is allowed with respect to the integrity
constraints :

add method insert:boolean
in close CO2 PERSON
body insert:boolean in claaa CO2 PERSON
I 02 set (string) ENS

SetRes = [self Integrity] ;
if (SetRes==(o2 set (string) 1 set () 1

(PERSONt=set(self)];return(true);]
else (printf(“Integrity constraints

not respected: ‘I);
display (SetRes) ;
return (false);)

)
ln the previous code generation, the cost of the integrity

checking process is not considered. Constraint-methods are
specified in such a way they semantically correspond to the
declarative assertions of the semantic network. The experience
in traditional databases has shown that integrity checking is a
very expensive process [Simon 841. If we want to avoid the
multiple scanning of the same class, we have to merge in the
same procedure the different constraint-methods which have
been defined for this class and don’t modify the objects.

5. The Database Design Prototype
A large number of database design tools are based on

semantic data models. Secsi is one among others
[Bouzeghoub 851. It was devoted to the design of relational
databases. Starting from the Secsi Expert System
environment, we have implemented a prototype for all the
methodology previously developped. Much of the experience
we got from this previous project (e.g. interactive acquisition
of knowledge, completeness of specifications, consistency

Proceedings 6f the 17th International
Conference on Very Large Data Bases

12
Barcelona, September, 1991

checking) is reused in the new design tool prototype
[Bouzeghoub 901.

During the analysis step, an aid is provided in order to
refine incomplete specifications. To simplify the language, a
few syntactic sugars can be introduced. The absence of a
variable declaration, the usage of class names instead of class
variables are examples. The control phase in the compilation
process can be vued as a design specification phase where
rules can be corrected by the system (with the help of the
user) instead of brutally rejecting the rule. This phase occurs
after the syntactic analysis of the constraint and before its
semantic analysis.

m vari&& : The user can omit variables. For
example he can specify :

IC7 : If Person.Age < 20
Then Person.,salary c 1000.

In this case, the system must introduce variables and their
corresponding quantifien. By default, the quantifier is V and
its scope is the whole formula. The preceding formula is then
translated into the following one:

IC7 ’ : {person/Person) (age&e) (salary/Salary)
If person.age < 20
Then person.salary < 1000.

This transformation supposes that the integrity constraint is
mono-object. However, this must be confirmed by the
designer.

. . 6 v : We can envisage that the user may
introduce integrity contraints on multiple objects without
specifying the predicates which will serve as links between
these objects, for example :

ICB : If Person.Age<le and Vehicle.Power>lO.
Then Contract.Premium > 5000.

In this case, the links between objects are found in the static
graph, and the integrity constraint can be rewritten as :

ICB ’ : If Contract->Vehicle.Power > 10
and Contract->Person.Age < 18

Then Contract.Premium > 5000.

Many links may exist between two objects. For example,
if a constraint holds on vehicles and persons, the link between
them can either represent the fact that a person drives a car or
the fact that a person owns a car. So the designer has to
choose one of the reformulations proposed by the system.

Similarly, each time there is a lack in the static schema, it
may be completed to be consistent with the integrity
constraints. For example, the constraint “Person. Age>O”
may create in the static semantic network an object ‘person’
which is composed by an object ‘age’ whose type is ‘integer’.

The aid provided by the design tool is glaring at sight of
the final results. The previous constraint, IC8, can be
expressed with two lines by the user (because of the
refinement made by the tool and because of the conciseness
of the rule langage). The generated code is about twenty lines
(because of the procedural aspect of the langage used). One
object type specified by one line including cardinality
consuaints, may generate two pages in CO2 code because
some cardiialities have to be expressed by methods, like any

integrity constraint. In addition to the class declarations and
the methods describing the integrity constraints, the tool
generates other useful methods necessary for the manipulation
of the objects. For example, we need a method called
“ObjectIntegrity” which groups all the integrity constraints
concerning a given object. This global method is called by
any other operation defined on the object class concerned (e.g.
an insertion operation creates an object instance, adds it into
the extension of the corresponding class and then calls the
“ObjectIntegrity” method which insure the integrity defuKd on
the class.

6. Conciuding Remada and Current Extensions
In this paper, we have described a general framework for a
CASE tool devoted to the design of object oriented databases.
The design approach is based on two levels: the semantic
object oriented level and the operational object oriented level.
The first level is based on a semantic data model which was
extended to represent more information about the behavior of
objects (general integrity constraints and deductive rules).
The second level is more operational, and is based on an
existing object oriented DBMS. The design methodology
described in this paper is implemented in the Secsi Expert
system environment which already provides a design
environment for relational databases.

This design tool is interfaced with 02 object oriented
database system. It automatically generates a CO2 database
schema and gives a very convenient way to populate the
database and to check its constistency with respect to the
constraint-methods generated. A syntactic analysis of
specifications, an interactive acquisition aid of constraints and
rules and a set of consistency checking rules are provided too.
This design environment can be considered as a powerful1
mean for validating user requirements against an image of the
projected database application.

An extension concerning behavioral rules is in progress.
We call “behavioral rule” an assertion which has in its right
hand side some updates to be performed on the database; the
left hand side has the same syntax and the same semantic than
a constraint rule’s left hand side. Further developments should
mainly concern the formalization of the external language.
Besides this formalization aspect, many other problems
remain, like the efficiency of the code generation procedure
and the code optimization.

References

[Bancilhon 871 BANCILHON F. “Les objectifs
scientiiques du GIP Alta’ir” , Rapport Altaii 8/1987.
[Bernstein 82) BERNSTEIN P. & BLAUSTEIN B. “Fast
Method for Testing Quantified Relational Calculus
Assertions” ACM-SIGMOD Conf., Colorado, June 1982.
[Bertlno 841 BERTINO E. & APUZZO D. “Integrity
aspects in Database Management Systems” Proceed. of
lntemat. Conf. on Trends and Applications of Databases”
IEEE-NBS, Gaithersburg, USA 1984.
[Borla 901 BORLA-SALAMET P. “Le contr8le de
l’integrit6 Semantique des bases de don&es Relationnelles et
d&ductives” Phd thesis Paris VI, 1990.
[Bouzeghoub 841 BOUZEGHOUB M. “MORSE: a
Functional Query Language and its Semantic Data Model”
Proceed. of Internat. Conf. on Trends and Applications of
Databases” IEEE-NBS, Gaithersburg, USA 1984.

Proceedings df the 17th International
Conference on Very Large Data Bases

13
Barcelona, September, 1991

[Bouzeghoub 851 BOUZEGHOUB M., GARDARIN Cl. &
METAIS E. “SECSI: An Expert System for Database
Design” 1 lth VLDB Conf., Stockholm Sweeden 1985.
[Brodie 811 BRODIE M. “On Modelling Behavioural
Semantics of Databases” 7th VLDB Conf., Cannes, France
1981.
[Brodie 841 BRODIE M., MYLOPOULOS J., SCHMIDT
Y. “On Conceptual Modelling: Perspectives from Artificial
Intelligence, Data Bases and Programming languages”
Springer-Verlag, NY 1984.
[Brodle 861 BRODIE M. & MYLOPOULOS J, “On
Knowledge Base Management Systems” (editors) Springer
Verlag, 1986.
[Bry 861 BRY F., MANTHEY R. “Checking
Consistency od Database Constraints : a Logical Basis”, 12th
VLDB Conf, Kyoto, Japan, 1986.
[Bry 881 BRY F., DECKER H. “Preserver l’integrite
d’une base de donntes deductive : unee methcde et son
implementation”, 45me joumBes BD3, B&&et, France, 1988.
[Buchmann 861 BUCHMANN A-P., CARRERA R.S. &
VASQUEZ-GALINDO M.A. “A Generalized Contraint and
Exception Handler for an Object Oriented CAD-DBMS”, in
[OODB 861.
[Gustat’sson 831 GUSTAFSSON M.R., BUBENKO J.A.
& KARLSSON T. “A declarative Approach to conceptual
information modelling” in OLLE,SOL,VERRIJN-STUART
(eds): Information System Methodology: a comparative
approach, North Holland Publ. Co 1983.
[Hagelstein 881 HAGELSTEIN T. “A declarative
Approach to information system requirements” J. Knowledge
Based Systems, l(4) 1988.
[Hammer 811 HAMMER M.M. & McLEOD D-J,,
“Database Description with SDM: A Semantic Data Model”
ACM TODS Vo16,N03, Sept 1981.
[Haux 881 HAUX L. , C. LECLUSE, RICHARD P.
“The CO2 V0.4 Language and Some Extensions, Release
3.1” Rapport inteme Altair 4-88, octobre 1988.
[Lecluse 87) LECLUSE C., RICHARD P. & VELEZ
F.“An Object Oriented Data Model” C. Rapport Altaii 101
1987.

[Lecluse 881 LECLUSE C,RICHARD P. & VELEZ F.,
“Modeling Inheritance and Genericity in Object Oriented
Databases, Version 1” Rapport Altai? 18/ 1988.
[Loucopoulos 891 LOUCOPOULOS 0. & KARAKOS-
TAS V. “Modelling and validating office information
systems: an object and logic oriented approach” Software
Engineering Journal, March 1989.
[Morgenstern 841 MORGENSTERN M. “Constraint
Equations : Declarative Expression of Constraints with
Automatic Enforcement”. 10th VLDB Conference,
Singapore, 1984.
[Nicolas 821 NICOLAS J.M. ” Logic for Improving
Integrity Checking in Relational Databases” Acta Informatica,
July 1982.
[Olive 891 OLIVE A. “On the design and implementation
of information systems from deductive conceptual models” 15
th VLDB Conference, Amsterdam, 1989.
[OODB 861 Object-Oriented Databases, Proceed. of the 1st
Intemat. Workshop, IEEE Computer Society Press 1986.
(Qulan 881 QUIAN X. “An effective Method for Integrity
Constraint Simplification” 4th Conf. on Data Engineering,
Los Angeles, California, 1988.
[Slmon &I] SIMON E., VALDURIEZ V. “Design and
Implementation of an Extendible Integrity Subsystem”
Proceed. of ACM SIGMOD Intemat Conf., Boston, USA,
1984.
[Smith 771 SMITH J.M. & SMITH D.C.P., “Database
Abstractions: Aggregation and Generalization” ACM TODS
June 1977.
[Tsalgatidou 901 TSALGATIDOU A., KARAKOSTAS
V. % LOUCOPOULOS P. “Rule-Based Requirements
Specification and Validation” Proceed. of the 2nd Nordic
Conf. on Advanced Information System Engineering, Kista
CAiSE90, in Lecture Notes in Computer Sciences (436),
Steinholtz-Solvberg-Bergman (Eds), Springer-Verlag May
1990.
[Tucherman 851 TUCHERMAN L., FURTADO A. &
Casanova M.A. “A Tool for Modular Database Design” 1 lth
VLDB Conf, Stockholm, Sweeden 1985.

Proceedings of the 17th International
Conference on Very Large Data Bases

14
Barcelona, September, 1991

