A Methodology for the Design and
Transformation of Conceptual Schemas
Christoph F. Eick

Department of Computer Science
Houston, TX 77204-3475, e-mail: ceick@cs.uh.edu

Abstract

Conceptual schemas have been recognized as an im-
portant tool for the design and evaluation of integrated
databases and knowledge-based systems. The paper sur-
veys the back end of a conceptual design methodology
called ANNAPURNA. Its theoretical foundation that
relies on multi-typed functional and existence depen-
dencies is discussed. Quality measures for counceptual
schemas are introduced. A general framework for the
specification of conceptual schema transformatiouns is
proposed and algorithms for the evaluation and trans-
formation of conceptual schemas are provided. The pos-
sibilities and limitations of using computerized tools for
these tasks are discussed.

1. Introduction

In the last decade, conceptual schemas have been
recognized as an important tool for the design and
evolution of integrated databases and knowledge-based
systems. Conceptual schemas describe [1] which classes
of entities and propositions are of importance for a pat-
ticular universe of discourse (UoD) of an application
area. Furthermore, they specify which rule/constraints
hold in the particular UoD.

Unfortunately, for a given UoD an unlimited num-
ber of potential conceptual schema candidates exists,
which raises the questions ”which of these candidates
are good conceptual schemas”, and “how can they be
obtained in practice”. Surprisingly, the first question,
the evaluation of conceptual schemas - although ini-
portant — has not obtained much attention by past
research. In relational database theory (2, 3] quality
is defined by the presence or absence of certain nor-
mal forms, which are defined in the context of special
classes of rules, usually functional and multivalued de-
pendencies. However, its definition of quality is some-
what restrictive in the sense that it relies on a two-
valued definition of quality (a schema is either good or
bad), and excludes other important criteria such as the
complexity of a schema, or other classes of rules (e.g.
subclass relationships) from the schema evaluation pro-
cess. Even worse, quality measures have been largely
ignored by research that directly focuses on conceptual
schema design making conceptual schema design some-
what under-constrained in the sense that it has to come
up with conceptual schemas, whose desired properties
are only vaguely understood.

On the other hand, the second problem, the trans-
formation of conceptual schemas, has been explored
more systematically. Criteria have been introduced,

Proceedings of the 17th Intemational 25
Conference on Very Large Data Bases

to ensure that a schema transformation preserves the
validity of the original schema [4, 5]. A number of spe-
cial schema transformations have been explored in the
literature to make conceptual schemas more ”natural”
(6, 7, 8, 9). However, the lack of quality measures for
conceptual data models makes the use of these transfor-
mations somewhat haphazard, because no clear under-
standing exists, how a good conceptual schema looks
like.

We strongly believe that progress in conceptual
schema design can only be made by approaches that are
able to integrate quality measures and schema trans-
formations systems relying on conceptual data mod-
els that have a sound theoretical foundation, which in-
cludes a clearly defined semantics and (possibly heuris-
tic) inference rules to reason with conceptual schemas.
The objective of this paper is to survey the back end of
a conceptual schema design methodology, called AN-
NAPURNA (its front end has been described in [10]),
that aims to automate conceptual schema design along
the lines, outlined before, focussing on the transfor-
mation and evaluation of conceptual schemas. Before
these subjects can be discussed, some introductory dis-
cussions are needed, which is the subject of the next
section.

2. Valid and Good Conceptual Schemas

We mentioned in the introduction that many pos-
sible conceptual schemas exist for a given UoD. This
raises the question, if a design procedure should con-
sider any conceptual schema as a possible candidate.
In the proposed methodology, we restrict our atten-
tion to conceptual schemas that are valid. Validity is
defined with respect to the information requirements
the data- or knowledge base to be designed has to sat-
isfy. Two facets of validity are distinguished. The first
facet is called proposition completeness. We call a con-
ceptual schema proposition complete, if it allows the
specification of proposition types that are to satisfy
the information requirements. For example, if there
are information requirements that request information
about phone numbers and the conceptual schema does
not define proposition types (e.g. contains the defi-
nition of an attribute to describe phone numbers) to
make propositions concerning phone numbers, then the
corresponding conceptual schema violates proposition
completeness. The second facet of validity is called rule
correciness. A conceptual schema is called rule correct,

Barcelona, September, 1991

if all the rules described in the conceptual schema hold
in the universe of discourse (but our definition does
not assume the reverse). For example, if the conceptual
schema specifies that phone numbers are unique for em-
ployees, and it is possible that a current or future state
of the UoD two employees share the same phone num-
ber, rule correctness is violated by the schema. If a con-
ceptual schema is invalid, certain information require-
ments concerning the UoD cannot be satisfied by infor-
mation bases under the conceptual schema, because of
the impossibility to store the desired information. Ob-
viously, any enhancement of a conceptual schema has
to preserve validity; otherwise, it is useless. In the fol-
lowing, a transformation whose application preserves
validity will be called information preserving. In gen-
eral, we see one main objective of a conceptual schema
in giving a good classification of the objects that ap-
pear in the universe of discourse of the application area.
More specifically, in our approach, we consider a clas-
sification to be ”good”, if it

o facilitates the specification of rules that hold in
the UoD. Ideally, if a data model of high expressive
power is available, it should be possible to describe
all rules that hold in a universe of discourse. How-
ever, in reality due to the limited expressiveness of
most conceptual data models' this is not always
true and it is at least questionable if it is even de-
sirable. Assuming an approach that relies on data
models of restricted expressive power, the percent-
age of the rules that hold in the UoD and are not
expressed by the conceptual schema becomes an
important factor, which we call the ezxpressiveness
of a conceptual schema.

e has a low complezity in terms of the number of
classes and attributes needed for this particular
specification.

¢ is normalized in the sense that objects that are
structurally equivalent or similar are described in
the same way in the conceptual schema. We call
this virtue normalizedness.

Schema transformations are applied in the context
of these virtues trying to improve the schema in one
direction hopefully not losing too much with respect to
the other virtues.

In the remainder of this paper we will try, using a
non-trivial example, to make the characteristics of our
approach, which were briefly outlined in this section,
more transparent. First, the theoretical foundation of
the conceptual data model underlying our methodol-
ogy is introduced in section 3. Then, in section 4, the

1 This low expressiveness brings up other advantages such as
complete axiomatization, inference rules, and the availability of au-
tomatic or semi-automatic tools that cannot be provided for more
powerful data models due incomplete axiomatizations, decidability
and complexity problems originated from the more complex class of

propositions supported by these data models.

Proceedings of the 17th Intemational 26
Conference on Very Large Data Bases

general framework how our methodology treats concep-
tual schema transformations will be discussed in some
detail. Finally, section 5, focuses on the evaluation of
conceptual schemas.

3. S-diagrams, Existence and Functional De-
pendencies

The objective of this section is to introduce the
theoretical foundation that underlies our methodology.
Our data model, which was influenced by the work on
the binary relation model [11] and SDM [12], is called
called S-diagram {10,13]. We will illustrate the prob-
lems of the transformation and evaluation of concep-
tual schemas using the following example of a hospital
application.

schema HOSP1
class Patient
altributes:

p-name

type: TEXT
class Hospital
attributes:

h-name

properily: unique

type: TEXT
n-ciy

type: TEXT
class Treatment
attributes:
tr-patient

type: Palient
ir-name

type: TEXT
price

type: FIXPOINT(9,2)
tr-hosp

property:optional, onto

type: Hospital
ms-nr

property: optional

type: INTEGER
ms-name

property: optlional

type: TEXT

The above schema deals with treatment of patients

.in and outside hospitals, whose main characteristics can

be surmmarized as follows: Treatments have names (tr-
name). Hospitals are located in cities and patients are
usually insured. Hospital only treat insured patient,
while uninsured patients might only be treated outside
hospitals. A patient has at most one insurance. The
same treatment has the same price in different hospi-
tals.

Using S-diagrams it is possible to specify classes,
subclass connections and atiributes. An attribute has
a domain class and a range class (for example, the at-
tribute tr-patient has the domain class treatment and
the range class Patient).

An attribute assigns to a member of the domain
class zero, one or many members of the range class
and each member of the range class may be attribute
value zero, one or many times. The cardinality of an

Barcelona, September, 1991

attribute definition may be restricted using labels mul-
tivalued, unique, optional and onto:

o multivalued specifies that an attribute may have
more than one value; otherwise, it it assumed to
be single-valued.

e optional specifies that an attribute may have no
value; otherwise, it is assumed to have at least one
value.

e onto specifies that every member of the range class
has to be referred at least once by the attribute.

e unique specifies that two distinct members of the
domain class must have different values for the at-
tribute.

In the example schema the attribute tr-hosp is la-
beled {optional,onto} expressing the following seman-
tics: At most one hospital will perform a treatment
(because there is no label multivalued), however, treat-
ments may be performed outside of hospitals (because
there is a label optional}); every hospital has performed
at least one treatment (because there is a label onto)
and hospitals may perform several treatments (because
there is no label unique).

An S-diagram information base contains descrip-
tion of entities. It stores extensions of unary predi-
cates describing class memberships of entities, and bi-
nary predicates describing attributes of entities. For
example, if an S-diagram information base contains
ins-nr(e, 12) this specifies that the entity e has the in-
surance number 12, or Treatment(e) specifies that the
entity e belongs to the class treatment. More precisely,
we can define:

Definition: ib is an information base under an
S-diagram S, if and only if:
(a) if ib contains K (z), then K must be a class in S.
(b) if ib contains att(y,z), then att must be an at-
tribute in S.
(¢) the assertions stored in ib observe the rules speci-
fied in S.

For example,
by = {Patient(1),p-name(1, Miller)}
is an information base under HOSP1, whereas ib5 and
ibg
tby = {Hospital(3), Hospital(4),
tn-city(3, Houston), in-city(4, Udine),
h-name(3, Marcus), h-name(4, Marcus)}
tbs = {Person(b),name(5, Jones)}

are not information bases under HOSP1: iby violates
the rule that names of hospitals are unique, and ib3
contains predicates name and Person, which are not
defined in HOSP1.

As mentioned in the introduction, multiple pos-
sible conceptual schemas exist for the same UoD. An
alternate, valid S-diagram HOSP2 for our hospital ap-
plication is given below:

schema HOSP2

class Patient
atiributes:

Proceedings of the 17th Intemational 27
Conference on Very Large Data Bases

p-name

type: TEXT
class Ins-patient
subset of patient
altributes

ms-nr

property: unique

type: INTEGER

ins-name

type: integer
class Hospital
atlributes:

h-name

property: unique

type: TEXT
in-cily

type: TEXT
class Treatment
atiributes:
ir-measure

type: Measure
class Hosp-treatment
subclass of Treatment
altributes:
ir-patient

type: Ins-Patient
tr-hosp

property: onlo

type: Hospital
class Oulside-treatment
subclass of Treatment
aliributes:
ir-palient

type: Patient
class Measure
altributes:

lr-name

property: unique

type: TEXT
price

type: FIXPOINT(9,2)

The S-diagram, given above, uses a classification
of a much finer degree of granularity, distinguishing
between hospital treatments and outside treatments,
between insured and insured patients, and considers
measures to be objects (and no longer texts). Fig. 1
depicts the two S-diagrams HOSP1 and HOSP2 rep-
resented as a labeled directed graph, in which nodes
represent classes, edges represent attributes, and edges
labeled by ’S’ represent subclass connections.

In general, S-diagrams are capable of expressing
at-least-one constraints (in the following called general
erislence dependencies and represented by)
and at-most-one constraints (called general functional
dependencies and represented by ———>). The union
of the two dependency classes is called X-dependencies.
Existence dependencies express that the existence of
certain attributes implies the existence of some other
attributes. Functional dependencies express that if two
entities agree in certain attributes, then they should
also agree in certain other attributes. In this paper,
we will introduce X-dependencies intuitively relying on
examples (see [13], for a more formal treatment).

Barcelona, September, 1991

The following 2 dependencies are X-dependencies
in our hospital application:

(1) ins-nr b———=ins-name

(Vz,y)(ins-nr(z,y) => (Iz)ins-name(z, z))

meaning: If a patient has an insurance number,
there must also be an insurance from which he has re-
ceived his insurance number.

Remark: The above dependency is expressed in
HOSP2 (but not in HOSP1), because both attributes
ins-nr and ins-name are non-optional.

(2) ins-nr ——> ins-name

(Vz,2',y, z, 2'}(ins-nr(z,y) Ains-nr(z’,y) A ins-
name(z,z) A ins-name(z’,2') => z = 2’)

meaning: Insurance numbers are unique; different
insurance-companies cannot use the same insurance-
number.

Remark: The above dependency is expressed in
HOSP2 by the fact that ins-nr is labeled unique and
ins-name isn’t labeled multivalued.

S-diagram are not only capable of representing de-
pendencies between attributes belonging to the same
class but also involving attributes of multiple classes.
For formalizing relationships between multiple classes
we introduce the notation of a path. Paths enable to
describe relationships between entities belonging to dif-

C
ferent classes. The dependencies A p——= B and

A —C—> B express existence/functional dependen-
cies from the attributes/class-memberships contained
in the set A to those in B connected using attributes
contained in C.

T +
X rame AN
\
trpfiient triname rice
INTEG! | 28p
PTleM TEXT H'o pital FIXPOINT(9,2)
pname in-city

I h-nams

8-Djagram HOSP1

Trep:ment
u'nnwvo/ﬁ} \

Hos tventment h’eatmem

1r-hosp, \ Spatient tr- pamnl

Measure

price tr nnmc

FI{{OINT(Q.Z)

Hospital Ins: pat.em——s-—.P tient
in-city ins.name

l h-name : ins-nr
INTEGER

S-Dfagram HOSP2

p-name

Fig. 1: Two S-Diagrams for the same UoD

Proceedings of the 17th Intemational 28
Conference on Very Large Data Bases

Let us clarify our path-concept by using the fol-

lowing example:
tr—hospital

(3a) tr-name,in-city ——— price

Ve, 2"y, ¢, 2,2, u,v)

(tr-name(z,u) A tr-name(z’,u) A

in-city(y, v) A in-city(y’,v) A

tr-hospital(z,y) A tr-hospital(z’,y’) A

price(z,z) A price(z’,2') = z=12')

meaning: The same treatment has the same price
in the same city.
Remark: The path {tr-hopital} is used to specify a de-
pendency that must hold for the members of the classes
hospital and treatment, connecting treatment/hospital
pairs (x and y, x” and y’) that have to agree in their
price attribute.

Due to the different classification the representa-
tion of the above dependency with respect to HOSP2

looks as follows:

tr—measure, tr—hospital
> price

(3b) tr-name,in-city

The above dependency is expressed in S-diagram
HOSP2 because due to the fact that price isn’t labeled
multivalued and tr-name is labeled unique, a much
stronger dependency tr-name ———> price {each treat-
ment has a unique price) holds in the UoD, which im-
plies (3b). Interestingly, all three example dependen-
cies are expressed in HOSP2, whereas none of them
is expressed in HOSP1; that is, HOSP2 has a higher
expressiveness.

The example raises two questions. First, can it
be decided if (3b) is expressed in HOSP2? Second,
how can HOSP2 be obtained starting from HOSP17?
Section 4 will cope with the second problem, whereas
sub-section 5.2 will give algorithms to cope with the
first problem.

4. Conceptual Schema Enhancement

Qur methodology provides a set of schema trans-
formations that are analyzed in the context of the the-
oretical foundation, introduced in the last section. In
general, in our approach a schema transformation is
considered to be a 5-tupel (P,ST,¢,M,p), as depicted in
Fig. 2, consisting of:

o A precondition P, which is a predicate that speci-
fies under which circumstances the transformation
preserves validity.

o A structure transformation ST that defines how
the modified S-diagram can be received when the
transformation is applied.

o A information base transformation ¢ that specifies
how information bases defined under the original
schema have to be transformed into information
bases under the transformed schema.

o A dependency mapping M that maps dependencies
defined in the context of the original schema into
dependencies defined in the context of the trans-
formed schema.

Barcelona, September, 1991

o A reconstruction p that specifies how information
bases defined under the transformed schema can
be transformed into information bases defined un-
der the original schema.

4.1 Information Preserving Transformations

As mentioned before in our approach, validity is
defined with respect to the satisfaction of information
requirements, which can be considered as sets of queries
Q defined on information bases under an S-diagram S.
Intuitively, we call a transformation information pre-
serving, if it transforms a valid S-diagram into a valid
S-diagram. In the following, we use A — B to denote
a function from A to B, and {A — B} to denote the
set of functions from A to B. Furthermore, let:

SSS be the set of all possible S-diagrams

D DD be the set of all possible information bases

X X X be the set of all possible X-dependencies

5,8’ be S-diagrams

IBs be the set of all possible information bases
under S

ib, ib' be information bases

W be an alphabet that is used to represent answers
of queries

q,q' be queries. A query is considered to be a
function (€ {IBs — W*}) giving answers relative to
the contents of an information base under a particular
S-diagram.

Q is a set of queries

Qs contains all possible queries for an S-diagram
S

Relying on these notations, we can now define the
terms S-diagram transformation and information pre-
serving S-diagram transformation more precisely.

Definition: We call a 5-tuple T=(P,ST,¢,M,p) an

S-diagram lransformation, if and only if:

(1) P € {SSS — BOOLEAN}, ST € {SSS — SSS}, ¢
€ {DDD — DDD}, D € {2XXX — 2XXX} ‘and p
€ {DDD — DDD}.

(ii) ¢,p, ST and P are total functions.

(iil) VS € SS9 Vib € IBs (P(S) = ¢(ib) € IBST(S));
that is, it is guaranteed that ¢ constructs informa-
tion bases under the transformed S-diagram.

Definition: The application of a S-diagram trans-
formation T is information preserving with respect to a
set of queries @ for an S-diagram S, if and only if:

P(S) = (Vg € Q 3¢’ Vib € IBs q(ib) = ¢'(#(ib)))
that is, for every query q a corresponding query q’
can be found (constructively!), that produces the same
results for information bases under the transformed
schema. Fig. 3 depicts the conditions of the above
definition — both queries q and g’ have to produce the
same results, represented by w in the figure.

ST
c, PY
nder nder
it L D
q q
W

Fig. 3: Informatfon Preserving Transformations

applicable? yes/no

other dependencies

Dependency Mapping

other dependencies

- X-dependencies

Structure Transformation

X-dependencies

S-Diagram

information Base Transformation
.

S-Diagram

Information Base -

Reconstruction

Information Base

-

Original Classification

Schema Transformation

Transformed Classification

Fig. 2: S-Diagram Transformations.

Proceedings of the 17th Intemational 29
Conference on Very Large Data Bases

Barcelona, September, 1991

Proceedings of the 17th Intemational
Conference on Very Large Data Bases

In order to show that a transformation is informa-
tion preserving, two approaches to construct q' for a
given query ¢ € () seem to be attractive:

(1) A function QM € {Qs — Qsr(s)} could be used
to construct q’ as follows:

¢ =QM(q)

In other words, QM transforms a query defined in the
context S into an equivalent query in the context of
ST(S); we call this approach, proof by query modifica-
tion.

(2) A function p € {IBsy(s)y — IBs} could be used,
constructing q’ as follows (o denotes the composi-
tion of functions):

¢ =qop

that is, in this solution an information base under

the original schema is reconstructed and the origi-

nal query q is used; we call this approach proof by

reconstruction. Assuming the above framework, a

transformation is trivially information preserving

for an S-diagram S with respect to @Qg, if it is pos-
sible to reconstruct the original information base;
that is, if

P(S) = (Vib € 1Bs ib = p(¢(ib)))

holds.

If we compare our approach with other approaches,
we can observe the following significant differences con-
cerning which relationships between the transformed
T(CS) and the original schema CS must hold, in order
to apply a transformation T. In our framework, T(CS)
and CS are considered to be "equivalent” if they are
capable of satisfying a given set of information require-
ments. QOur definition of validity is independent of the
dependencies expressed by a conceptual schema. This
contrasts other approaches (4, 5] that assume that two
conceptual schemas are only equivalent, if they have the
same expressive power in their underlying information
bases and express the same dependencies. In our opin-
ion, this definition of equivalence is too restrictive for
conceptual schema design, because it excludes a num-
ber of useful transformations? and neglects the main
purpose of data- and knowledge bases: the satisfac-
tion of information requirements. Furthermore, defin-
ing schema equivalence with respect to the satisfaction
of queries and not with respect to the contents of infor-
mation bases (under a conceptual schema), allows us
to abstract from the exact internal representation in a
particular information base.

In the remainder of this section, the transforma-
tion system supported by our methodology is briefly
introduced, and a single transformation is discussed in
more detail.

2 For example, those whose application expresses certain depen-

dencies (not expressed 80 far) and loses others

30

4.2 The Supported Transformation System

In detail, our transformations system consist of the
following transformations, whose structure transforma-
tion is outlined below:

1) reverse(S,K att)

semantics: a new S-diagram is generated by re-
versing the attribute att of the S-diagram S.

2) shift-down(S,att att’)

semantics: A new S-diagram is obtained by shift-
ing the attribute att via the attribute att’ in downward
direction to the range class of att’.

example: this transformation was applied twice to
HOSP1 when the attributes ins-nr and ins-name were
moved along the path tr-patient to the class Patient.

3) decompose(S,K’,att’ K,A)

semantics: A new class K’ is generated and con-
nected by a new attribute att’ to the class K; all at-
tributes contained in the set A will be shifted to the
class K. For each value of the attribute A a new entity
belonging to the class K’ is generated.

example: this transformation has been applied to
the class Treatment in HOSP1 relative to the attribute
set A = {{r-name, price} yielding a new class named
Measure in HOSP2.

4) generalize(S,K,KSET,B)

semantics: A new class K is generated; all classes
in KSET will becoine subclass of K and all attributes
contained in the set B will be shifted to the new class
K.

5) specialize(S,K" {(A1, K1), ..., (4n, Kn)})

semantics: n new subclasses Ky,..., K, with at-
tributes A, ..., A, of K generated. All attributes that
belong to Jpw; Ak will be removed from the class K.

example: The classes Hosp-treatment, Qutside-
treatment and Ins-patient of HOSP2 have been gener-
ated by specializing the classes Treatment and Patient
of HOSP1.

6) chdom(S,att,K) and chrg(S,att K)

semantics: Change of range/domain classes of at-
tributes.

Additionally, inverse transformations of 2), 3), 4},
and 5) are available.

One important use of the above transformation
system is the formal specification of relationships be-
tween different conceptual schemas. For example, the
following transformations describe the relationship be-
tween HOSP1 and HOSP2. HOSP2 can be received
by applying the following sequence of transformations
-— in order to increase the readability, we introduced
intermediate S-diagrams S1,...,S5.

S1=specialize(HOSP1, Treatment,
{(Hosp-treatment,{tr-hosp, ins-nr, ins-name, tr-patient}),
(Qutside-treatment, {tr-patient})})

S2=shift-down(S1, ins-nr, tr-patient)

Barcelona, September, 1991

S8=shift-down(S2, ins-name, tr-patient)
S4=specialize(S3, Patient,

{(Ins-patient, {ins-nr, ins-name})})
S5=chdom(S4,Hosp-treatment.tr-patient, Ins-patient)

HOSP2=decompose(S5, Measure,
tr-measure, Treatment, {tr—name, pribe})

Here we will only discuss how the transformation
S2=shift-down(S1, ins-nr, tr-patient)
is handled in our approach, which is the subject of the
next subsection.

4.3 A Closer Look to the Shift-down Transformation

The shift-down transformation moves an attribute
(in the example ins-nr, al in theoretical discussions)
from one class to another class along the path of an
attribute (tr-patient in the example, att in theoretical
discussions) — the insurance number is moved from
the class Hosp-treatment to the class Patient. Fig. 4
depicts the structure transformation of shift-down.

It should be noted that the structure transforma-
tion alone is not sufficient to characterize a transfor-
mation completely, because it does not déscribe how
the extensions of the modified attributes and classes
have to be computed. In our approach, we specify
information base transformations by using first order
predicate calculus formulas that compute the exten-
sions of modified or newly introduced classes and at-
tributes. We use the suffix ”’” to refer to classes and
attributes of the transformed S-diagram, whereas class
and attribute names without the suffix ”’” refer to the
original schema.

In the case of shift-down, only the attribute ins-nr
is modified using the following information base trans-
formation (IBT):

(IBT) al'(z,y) := 3z (al(z,y) A att(z,z))

In the example, the modified attribute ins-nr is
computed as follows:

ins-nr'(2,y) := 3z (ins-nr(z,y) A tr-patient(z,z))

Hosp- tment
tt\ al -patient
K2 Patient
hift-Down
Hosp-Treatment
tt -patient

K2 Patient
al
-nr

Fig. 4: Structure Transformation Shift-down

Proceedings of the 17th Intemational 31
Conference on Very Large Data Bases

The shift-down transformation should only be ap-
plied, if the following two preconditions are satisfied;
otherwise, it is not information preserving. An invalid
S-diagram might be obtained, if one or both conditions
are violated.

{(pl) al P———=alt
(p2) att is unique V

(al is non-optional A att ——>al)

(pl) states, that if an entity has the attribute al
must have the attribute att, too. This requirement
is quite obvious, because if it is violated, no instance
of class K2 (patient in the concrete example) exists
that can take the attribute al; that is, the shift-down
transformation, would lose the attribute information in
the latter case. '

If (p2) is violated it would be no longer possible to
distinguish coverages by different insurances of different
treatment of the same patient; e.g. if there are two
treatments t1 and t2 of the same patient using different
insurance numbers (e.g. different insurances cover the
different treatments) it is no longer possible under the
transformed S-diagram to distinguish which insurance
covers which treatment.

In the example S-diagram St (p1) trivially holds,
because tr-patient is not optional. Furthermore, in our
special UoD, it holds that ”patients have at most one
insurance” (tr-patient ———3> ins-nr) and that the at-
tribute ins-nr is non-optional, because ” hospitals do not
treat uninsured patients”; therefore, the application of
the shift-down transformation is information preserv-
ing in this case.

In general, assuming that the transformation’s pre-
conditions are satisfied, it can be proven that the origi-
nal information base can be reconstructed from a trans-
formed information base without loss of information
using the following reconstruction (RECON) for com-
puting the values of the original ins-nr attribute:

(RECON) ins-nr(z,y) := 3z (tr-patient(z,z) A ins-
nr'(z,y))

That is, in the particular case of the shift-down trans-
formation

P(S) = (Vib € IBg ib = p(¢(ib)))
holds, in which p denotes the information base mapping
expressed by (RECON), and ¢ denotes the information
base mapping expressed by (IBT). That is, according
to the definitions given in 4.1, the shift-down transfor-
mation is information preserving with respect to Qg, if
its preconditions (pl) and (p2) are satisfied.

The structure transformation, introduced so far, is
still incomplete in the sense that it doesn’t compute the
labels of the transformed attribute al’. Fortunately,
the following simple rules can be used for the compu-
tation of the labels of al’:

(L1) al’ is non-optional <= att is labeled onto A
att e al]
(L2) al’ is labeled onto <=> al is labeled onto

Barcelona, September, 1991

(L3) al’ is multivalued <= al is labeled multival-
ued

(L4) al’ is unique <= al ——> att

In our example, ins-nr’ receives a label unique: all other
labels remain unchanged.

When applying the shift-down transformation it is
frequently possible to express certain dependencies be-
tween att and al that were not expressed in the original
S-diagram, namely in the following two cases:

(gl) The transformation improves the quality by ex-
pressing att =———> al in the transformed schiema,
if att is not labeled unique.

(g2) The transformation improves the quality by ex-
pressing att ———=al in the transformed schema,
if al is labeled optional and att is labeled onto.

In the particular case, the conditions of (gl) are
satisfied, tr-patient =——> ins-nr holds and tr-patient
is not unique. Therefore, the above dependency be-
comes expressed in the transformed schema. It should
also be noted that tr-patient ———> ins-nr was not
expressed in the original schema, due to the fact that
insurance numbers are unique for patients but not for
treatments. That is, the quality is improved by ex-
pressing the dependency in the transforined schema.

In general, for each transformation we give a set
of positive (and negative) cases, describing situations
in which a particular transformation expresses depen-
dencies that have not been expressed before (loses de-
pendencies that have been expressed before).

Finally, the dependencies defined in the context of
the original schema have to be redefined in the context
of the transformed schema. In the case of shift-down, a
relatively complex set of mapping rules has to be used
to determine the transformed dependencies.

5. Evaluation of Conceptual Schema

In this section, we will discuss an evaluation func-
tion for conceptual schemas that incorperates the three
virtues, outlined in section 2.

5.1 A Quality Measure for S-Diagrams

We assume that a UoD U and a set S-diagrams
CAND={S;,...,Sn} describing this UoD are given. Fur-
thermore, for every schema candidate S; (0 < i <
(n+ 1)) aset X; has been constructed which describes
the X-dependencies that hold in the UoD. Some of the
X-dependencies may be expressed in S;, others may
not.

The different schema candidates are evaluated us-
ing the following quality measure:

Let S; be the S-diagram to be evaluated
qu; the number of functional dependencies (e.X;) that

hold in U, but which are not expressed in S;
quz the number of existence dependencies(eX;) that

hold in U, but which are not expressed in S;

Proceedings of the 17th Intemational
32
Conference on Very Large Data Bases

qus the number of attributes and subtype-connections
in S;
quyq the number of classes in S
qus the number of labels of S;
[beafunction from N° to R* (N denotes the natu-
ral numbers and 1% denotes the positive real num-

bers)
We define the quality of S relative to U as:

J(qui, qua, qus, quq, qus)
We say S; is belter than S;, if f assigns a higher
score to S; than to S, and Sj is valid.

We assume that the following evaluation function
f is used:

1
3% quy + 3 * qua + qua + qug + qus

It is important to state that the values of f can
be computed automatically: qua, qus and qus can be
obtained easily, and an algorithm that decides if an X-
dependency is expressed by an S-diagram is given in
sub-section 5.2.

f incorporates three virtues. As we have seen sec-
tion 3, general functional and existence dependencies
are an upper bound for the expressive power of S-
diagrams. Thus, the expressiveness of an S-diagram
can be measured by the number of general functional
and existence dependencies, that hold in U but which
have not been expressed in S (qu; and guz in f). The
complexity of an S-diagram is measured by the num-
ber of classes, subtype-connections, and attributes of
an S-diagram, expressed by qus and quq.

Furthermore, our evaluation function incorporates
a third virtue called normalizedness, which needs to
be explained in more detail. Unfortunately, conceptual
schema languages allow to describe the same propo-
sition in different ways. It is desirable that proposi-
tions of structural similarity are described in the same
way in the conceptual schema. We call this virtue of a
conceptual schema normalizedness. In order to clarify
this quality factor, let’s consider the following exam-
ple that concerns the representation of the treatment-
patient relationship of the S-diagram HOSP1 ((1) in
the Figure 5). However, this relationship could also
be represented, by reversing the attribute direction, as
depicted in (2) of Figure 5.

Patient Treatment
tr-patient is-treated
Treatment Patient

(1))

Fig. 5: 2 Similar S-Diagrams.

Barcelona, September, 1991

This situation, in which more than one construct is
suitable to describe a part of a UoD adequately, occurs
quite frequently in conceptual schema design processes.
The quality factor of normalizedness should give a bet-
ter evaluation to S-diagrams that uniquely use the same
construct of the conceptual schema language, than to
S-diagrams which use both representations (for some
attributes the representation (1), for others (2)).

Violating the virtue of normalizedness has the fol-
lowing consequences:

o The conceptual schema is less understandable be-
cause similar objects are defined in a way which
hides their similarity.

e One difficult task, when designing or extending a
conceptual schema, is the detection of redundan-
cies between different user views. If the same or
similar objects are described in different ways, re-
dundancies are much harder to detect.
Normalizedness is measured in the evaluation func-

tion using qus: S-diagrams that carry few labels are
preferred. In S-diagrams having a low value for qus the
most general classes will be in or near the leaves of the
S-diagram (relative to the shape of the arrow describing
attribute and subtype relationships). The more specific
classes have been defined by assuming the existence of
lower level classes using aggregation or generalization
[14]. For example in S-diagram HOSP2, which is highly
normalized, the class Ins-patient has been defined by
specializing the class Patient, and Hospital-treatent
has been defined assuming the existence of the classes
Hospital, Ins-patient and Treatment.

5.2 Expressed Dependencies of an S-Diagram

In this sub-section we will briefly introduce algo-
rithms that decide if an X-dependency is expressed in
an S-diagram. Two different algorithms are used for ex-
istence dependencies and functional dependencies. In
order to discuss the two algorithms, we first have to
introduce some notations:

Let

Att be an attribute, and K and K’ be classes, then

dom(Att) denotes the domain class of Att

rg(Att) denotes the range class of Att

K [K’ expresses that K is a subclass of K’

A~! denotes the attribute received by reversing
the attribute A

Furthermore, the rules specified below assume that

X,Y are sets containing attribute and class names

Z is a set containing attribute names

A is an attribute with dom(A)=KI1 and rg(A)=K2

The algorithm that tests if a given existence de-
pendency x is expressed in an S-diagram S is based on
the following two rules.

(el) A is not labeled optional =—>
2z 2
(X ——=Y U{K1} <= X —=Y U{A4)})
A is labeled onto —

Proceedings of the 17th Intemational 33
Conference on Very Large Data Bases

(X ——e Y U{ K2} <= X ———= Y U{4"1})

(e2) (34 € X)dom(A)C K)Vv((AC € Z) dom(C) C
K v rg(C') CAY)) =

z v/
(A e Y U N &= X b Y)

Our algorithn consists of two steps. In a first step
we try to weaken x using the rule (el) by iteratively
substituting class symbols for attribute symbols in the
right hand side of x, as long as the rule (el) is applica-
ble. As a result of the first step, we receive a modified
existence dependency x’ which has been constructed so
that:

(I x =x’
(2) x> A "'The constraints expressed by 8”7 == x

If x’ is always true, then x can be inferred from the
constraints expressed by an S-diagram, which implies
that x is expressed in S. Therefore, we try to show in a
second step that x’ is a tautology by applying the rule
{e2). If it is possible to reduce the right side of x’ to
the empty set, then x is expressed in S, otherwise x is
not expressed in S.

For example, if the above algorithm is applied to
dependency (2)

ins-nr ——— ins-name :
with respect to HOSP2, we would apply (E1) with ¥ =
® yielding:

ins-1r pe———w [ns-patient
Note that Ins-patient is the domain class of the at-
tribute ins-nr. Taking into consideration that dom(ins-
nr) = Ins-patient C Ins-patient holds, we receive

ins-nr b——s- {)
using (e2), which represents a tautology. Therefore,
dependency (2) is expressed HOSP2.

The corresponding algorithm for functional depen-
dencies uses the following four rules. Let A, K1, K2,
X, Y, and Z be defined as before, and K be a class of
S.

(f1} A is labeled unique =
(XU {4, K1} > ¥ &= X U{A} ——>Y)
A isn’t labeled n'lultzivalued = .
(XU{A" K2} —>Y = XU{4" !} ——>
Y)

(f2) A is labeled unique =

Zu{A) 2u{A}
(XU{K],K2} —>Y <— X U{K2} —>

Y)
A isn’t labeled multivalued =
L Lu{A} ZU{A}
(XU{KL,K2} ——>Y <= XU{K1} ——>
Y)
(f3) A isn’t labeled multivalued =

Z
(X U{K1} —=>Y = X U{K1} —>YU

{A})

Barcelona, September, 1991

A is labeled unique =

(X U{K2} ——Y <= X U{K2} ——>V U
{A-'})

(f4) {KJUX — {K}UY = {K}UX ——>Y

In a first step, a functional dependency x’ is con-
structed by weakening x by iteratively applying the
rules (f1) and (f2), respectively. In this process, the left
side of x is augmented by further class names. Again,
x is expressed in S, if x’ is a tautology. Therefore, in
a second step, the algorithm tries to reduce the right
side of x’ to the empty set by applying the rules (3)
and (f4), respectively.

If the above algorithm is applied to the depen-
dency (3b), defined before in the context of HOSP2,

. . tr—measure,tr~hospital |
tr-name,m-city price

we can weaken the above dependency taking advantage
of the fact that tr-name is labeled unique yielding:

tr—measure,tr~hospital

tr-name,in-city,Measure price
Furthermore, taking advantage of the fact that price
doesn’t carry the label multivalued, we can apply (f3)
recieving

. . tr—measure,tr—hospital
tr-name,in-city, Measure ,

which implies that the dependency (3b) is expressed in
HOSP2.

6. Conclusion

This paper discussed the features of a methodol-
ogy for enhancing conceptual schemas called ANNA-
PURNA. Our methodology is unique in the sense that
we describe the semantics of schema transformations
using a multi-typed approach to express data semantics
relying on unary relations (classes), binary relations
(attributes), and paths, rather than on a single-typed
universal relation.

Quality measures for conceptual schemas were pro-
vided, and a general framework for studying schema
transformations was introduces, that considers schema
transformations to consist of a precondition, a struc-
ture transformation, an information base transforma-
tion, a reconstruction, and a dependency mapping. We
illustrated our approach by discussing a transforma-
tion called shift-down, which has not been discussed in
the literature before, in some detail. We claim, that
this general framework, depicted in Fig. 2, is useful
to study schema transformations systematically even in
the context of other methodologies and/or other depen-
dency classes. Furthermore, the validity of a conceptual
schema is defined in our approach with respect to the
satisfaction of information requirements. The notion
of an information preserving transformation was intro-
duced that that preserves the validity of the conceptual
schema to be transformed. We demonstrated that this
framework ~ compared with other approaches to define

Proceedings of the 17th Intemational 34
Conference on Very Large Data Bases

schema equivalence — is less restrictive and more flexi-
ble to cope with conceptual schema transformations.

In general, the computations needed for transform-
ing and evaluating S-diagrams can be automated us-
ing a computerized tool. Although this is the case,
we do not think that that it is desirable to use com-
pletely automatic design tools without human assis-
tance. There are several reasons, why the cooperation
of a human expert with a design tool is still neces-
sary. First, if applied in practice the enhancement of
conceptual schemas has to cope with problems such as
missing or erroneous dependencies. In general, it can-
not be inferred by a design tool which rules do or do
not hold in a UoD. Therefore, dependencies can only
be acquired by design tools by asking human experts,
which frequently leads to misunderstandings and errors
resulting in erroneous or incomplete specifications. The
second reason is that finding a "the best” or even only
a ”good” conceptual schema is a highly complex search
process, which requires a lot of heuristic knowledge to
be computationally feasible. Again, the cooperation
with a human expert seems to be necessary.

7. References

[1] 180/TC97/SC5/WG3. Concepts and Terminology
for the Conceptual Schema and the Information Base.
Publication number ISO/TC97/5C5/N695 (1982).

{2] D.Maier. The Theory of Relational Databases. Com-
puter Science Press, Rockville, 1983.

[3] 1. Ullman. Principles of Data Base Systems. Com-
puter Science Press, Maryland, 1980.

(4] S. Jajodia, P. Ng, and F. Springsteel. The Problem of
Equivalence for Entity-Relationship Diagrams. [EEE
Transactions on Software Engineering (Sept. 1983).

(5] J. Grant. Constraint preserving and lossless database
transformations. Information Systems 9 (2) 139-146
(1984).

[6] C. Batini, and G. Di Battista. A Methodology for
Conceptual Documentation and Maintenance. Infor-
mations Systems 13 (3), 297-320 (1988).

(7] 8. Ceri. Methodology and tools for data base design.
North Holland, Amsterdam, 1983.

[8] O.Oren. A Method for the Optimization of a Concep-
tual Model. Proc. First Int. Conf. on Data Engineer-
ing (1984).

[9] D. Vermeir, and G. Nijssen. A procedure to define the
object type structure of a conceptual schema. I[nfor-
mation Systems 7 (3) 329-336 (1982).

{10] C.F. Eick, and P.C. Lockemann. Acquisition of Ter-
minological Knowledge using Database Design Tech-
niques. Proc. ACM-SIGMOD Conference on Man-
agemnent of Dula 84-94 (1985).

[11) J.R. Abrial. Data Semantics. Proc. IFIP TC2 Con-
ference, North Holland, Amsterdam, 1974.

{12] M. Hammer, and D. McLeod. Database Description
with SDM: A Semantic Database Model. ACM TODS
6 (3) 351-386 (1981).

(13] C.F. Eick, and T. Raupp. Towards a Formal Semantics
and Inference Rules for Conceptual Data Models. to
appeat in Data & Knowledge Engineering in 1991,

(14] J. Smith, and D. Smith. Data Abstractions - Aggre-
gation and Generalization. ACM TODS 2 (1) 105-133
(1977).

Barcelona, September, 1991

