
A Formalism for Extended Transaction Models

Panos K. Chrysant his Krithi Ramamritham
Dept. of Computer and Information Science

University of Massachusetts
Amherst, MA 01003

Abstract

Several extensions to the transaction model
adopted in traditional database systems have
been proposed in order to support the
functional and performance requirements of
emerging advanced applications such as de-
sign environments. In [6], we introduced a
comprehensive transaction framework, called
ACTA to specify the effects of extended
transactions on each other and on objects
in the database, and to reason about the
properties of extended transactions. This
paper presents the formalism, underlying
ACTA, necessary to prove the visibility, con-
sistency, recovery, and permanence proper-
ties of transactions in the extended models.
In this paper we show how the formalism,can
be used to specify and reason about the prop-
erties of traditional, nested, and split trans-
action models.

1 Introduction

Transactions in database systems combine several itn-
portant notions such as: uisrbilz@, referring to the
ability of one transaction to see the results of another
transaction whi6e it is executing; consislency, referring
to the correctness of the state of the database that a
committed transaction produces; recovery, referring to
the ability, in the event of failure, to take the database
to some state that is considered correct; and permo-
nence, referring to the ability of a transacfion to record
its results in the database. The flexibility of a given
transaction model depends on the way these four no-
tions are combined.

Although powerful, the transaction model [IZ, 161
found in traditional database systems is found lacking
in functionality and performance when used for ap-
plications t,hat involve reactive (endless), open-ended
(long-lived) and 11 b co a orative (int,eractive) activities.
Hence, various extensions to the traditional model
have been proposed, referred to herein as ettended
transactions [23, 28, 2, 25, 19, 15, 27, 18, 10, 4, 111.
Compared to the traditional transaction model, these
models associate “broader” interpretations with the
four transaction notions mentioned above to provide

This material is based upon work slIpported by the N.S.F
under grant CDA 8922572.

First author’s present address: Dt-partmcnt of (:omputer
Science, 325 Alumni Hall, University of Pittsburgh, PA
15260.

Proceedings of the 17th International
Conference on Very Large Data Bases

enhanced functionality while increasing the potential
for improved performance. Upon examining these ad
hoc extensions to the traditional transaction model,
one is prompted to seek answers to the following ques-
tions:

e What properties does a model possess vis. a uis.
visibility, consistency, recovery, and permanence?
(For e.g., traditional transactions guarantee fail-
ure atomicity, serializability, and durability.

1 What added functionality does a model provide.
l In what respects is a model similar to traditional

transactions? In what respects is it dissimilar?
More

f
enerally, how does one transaction model

differ rom another? Can two models be used in
conjunction?

In attempting to answer these questions, we found a
need for a common framework within which one can
specify and reason about the nature of interactions be-
tween transactions in a particular model. This moti-
vated the development of a comprehensive transaction
framework, called ACTA’, which characterizes the ef-
fects of transactions as per the taxonomy of Figure 1.

In this paper, we provide the formal underpinnings
of ACTA the use of which one can answer the ques-
tions posed above. S

P
ecifically, the formalism allows

the specification of (1 the interactions between trans-
actions in terms of relationships between significant
(transaction management) events, such as begin, com-
mit, abort, delegate, split, and join, pertaining to dif-
ferent transactions and (2) transactions’ effects on ob-
jects’ state and concurrency status (i.e., synchroniza-
lion state).

Section 2 presents some of the preliminary formalism
needed to describe the various facets of ACTA. ACTA
itself forms the focus of Section 3. Examples of the
application of ACTA to (extended) transact,ion models
are provided in Section 4.

2 Preliminaries

2.1 Objects, their state, and status
A database, denoted by DB, is the entity that main-
tains all the shared objects in a system. A transaction
accesses and manipulates the objects in the database
by invoking operations specific to individual objects.
Each object is characterized by its state and status.
The hte of an object is represented by its contents.
Each object has a type, which defines a set of oper-
ations that provide the only means to create, change

‘ACTA means actions in Latin.

103
Barcelona, September, 1991

Inter-TransactIon View Se1 8 Accass Set
Dependency SpeClllCatiOtl

01 State 01 Status

Figure 1: Dimensions of the ACTA framework

and examine the state of an object of that typr. It
is assumed that an operation always produces an out.-
put (return value), that is, it has an outcome (condi-
tion code) or a result. The result of an operation on
an object depends on the current state of the object.
For a given state s of an object, we use return(s,p)
to denote the output produced by operation p, and
state(s,p) to denote the state produced after the exe-
cution of p. The synchronization status of the object
determines the operations that can be invoked in its
current state.

Definition 1: Invocation of an operation on an
object is termed an object event. The type of an
object defines the object events that pertain to
it. We use pt[ob] to denote the object event cor-
responding to the invocation of the operation p
on object ob by transaction 1, and OEt to denote
the set of object events that can be invoked by
transaction 1 (i.e., pl[ob] E OEl).

The effects of an operation p invoked by a trans-
action t on an object ob are made permanent in the
database when the event Cornmill [ob.p] occurs. Simi-
larly, the effects of an operation p invoked by a trans-
action t on an object ob are obliterated when the event
Abortl [ob.p] occurs. These operations are defined nn
every object. Invoked operations that have neither
committed nor aborted are termed ongoing operations.
Typically, an operation is committed only if the invok-
ing transaction commits and it is aborted only if the
invoking transaction aborts. In general, it is conceiv-
able that an extended transaction may commit only
a subset of its operations on an object while ahorting
the rest.

2.2 Significant Events and Object Events

In addition to the invocation of operations on objects,
transactions invoke transaction management primi-
tives. For example, atomic transactions are associated
with three transaction management primitives: Be-
gin, Commil and Abort. The specific primitives and
their semantics depend on the specifics of a transac-
tion model. For instance, whereas the Commit by an
atomic transaction implies that it is terminating suc-
cessfully and that all of its effects on the objects should
be made permanent in the database, the Commit of
a subtransaction of a nested transaction implies that

Proceedings of the 17th International
Conference on Very Large Data Bases

all of its effects on the objects should be made per-
sistent and visible with respect to its parent and sib-
ling subtransactions’. Other transaction management
primitives include Spawn, found in the nested transac-
tion model, Split, found in the split transaction model
[25], and Join, a transaction termination event found
in the split transaction model.

Definition 2: Invocation of a transaction man-
agement primitive is termed a signtficant event.
A transaction model defines the significant events
that transactions adhering to that model can in-
voke. SEt denotes the set of significant events that
can be invoked by transaction t.

The set of events Et invoked by a transaction t is a
partial order with ordering relation <t where El E
(OEtu S&); i.e., events associated with a transaction
are either object events or significant events allowed to
be invoked by t, where <t denotes the temporal order
in which the related events are invoked.

2.2.1 Histories and Conditions on Event
Occurrences

The concurrent execution of a set of transactions T
is represented by the history (31 containing the object
events and significant events invoked by the transac-
tions in the set T and indicates the (partial order in

cl which these events occur. The partial or er of the
operations in a history is consistent with the partial
order Et of the events of each individual transaction t
in T. We will find it useful to define the projection of
a history H according to a given criterion p, denoted
P(H, p). For instance, P(H, t), the projection of a
history H on a specific transaction t yields the events
associated by t, i.e., P(H, t) = Et; whereas P(H, ob),
the projection of the history H on a specific object ob
yields the history of operation invocations on the ob-
ject, i.e., P(H,ob) = H,b. A history Hob of an object
04 Hoa = fl 0 fz 0 . . . 0 fn, indicates both the order of
execution of the operations, (fi precedes fi+l), as well
as the functional composition of operations. Thus, a
state s of an object produced by a sequence of oper-
ations equals the state produced by applying the his-
tory H,,h corresponding to the sequence of operations
on the object’s initial state 8~ (s = state(s0, H,b)). For
brevity, we will use H,b to denote the state of an object
produced by H,b, implicitly assuming initial state sn.

The correctness properties of different transaction
models can be expressed in terms of the properties of
the histories produced by these models. The occur-
rence of an event in a history can be constrained in
one of three ways: (1) An event E can be constrained
to occur only after another event c’; (2) An event t can
occur only zfa condition c is true; and (3) a condition
c can require the occurrence of an event c.

Definition 3: The predicate c -+ 6’ is true if
event 6 precedes event 6’ in history H. It is false,
otherwise. (Thus, 6 --+ 6 ’ implies that c E H and
E’ E H.)

Definition 4, t,,lt the eve.t !‘c’;,HL- COnditipnH specifies
< < elong to history H only

‘As shown in Section 3.2, in ACTA, the implications,
for objects, of the transaction management operations, are
specified via Access and View acts of transactions.

104
Barcelona, September, 1991

if ConditionH is satisfied. In other words,
ConditionH is necessary for c to be in H.
ConditionH is a predicate involving the events in
H.

Consider (c’ E H) =F- (c ---t 8). This states that the
event e’ can belong to the history H only if event t
occurs before E’.

Definition 6: ConditionH * F E H) specifies
that if Condition,, holds, 6 \ shou d be in the his-
tory H. In other words, Condition,, is suficient
for e to be in H.

3 The formal ACTA Framework
As was mentioned earlier, ACTA allows the sprcifica-
tion of the effects of transactions on other transactions
and also their effect on objects. Inter-transaction de-
pendencies, discussed in the next subsection, form the
basis for the former while visibility of operations on
objects, discussed in Subsection 3.2, form the basis for
the latter.

3.1 Effects of Transactions on other
Transactions

Dependencies provide a convenient way for specifying
and reasoning about the behavior of concurrent trans-
actions and can be precisely expressed in terms of the
significant events associated with the transactions. Af-
ter formally specifying different types of dependencies,
we identify the source of these dependencies.

3.1.1 Types of dependencies
Let ti and t, be two extended transactions:
Commit-Dependency (t3 C’D tl): if both transact,ions
ti and t,7 commit then the commitment oft, must pre-
cede the commitment of tj; i.e., (~omrnit~~ E H) +
((Cornmitt; E H) =+ (Cornmitt, -+ Commitli)).

Abort-Dependency (tj AZ, ti): if ti aborts, then t,
must abort; i.e., (Abort*, E H) 3 (.4hortlj E H).

Weak-Abort-Dependency (1,7 W’P ti): if t, aborts and
t, has not yet committed, then t,, should also abort. In
other words, if t,; commits and 1, aborts then the com-
mitment of 1,, should precede the abortion of ti in a his-
tory; i.e., ((Aborh, E H)A -(Commitcj -+ Abortt,)) *
(Aborttj E H).

Termination-Dependency (t,, 7P ti): t,, cannot com-
mit or abort until t, either commits or aborts; i.e..
(d E H) =+ (c -+ E’) where
F E {Cornmitt,, Abortc,}, and c’ E {C~m.m.it,~, Abortfi}.

Exclusion-Dependency (t,r &V ti): if ti commits, then
tj must abort (both t; and tj cannot commit); i.e.,
(Conmitt; E H) =F (Aborttj E H)).

Compensation-Dependency (tj CM’D t,): if t, aborts,
t,, must commit; i.e., (Abortt, E H) 3 (Commute, E H).

Begin-Dependency
I begin executing unti
t, U’D ii): transaction 2, cannot

transaction ti has begun; i.e.,
(BegintJ E H) * (Begin*, -4 Regint,).
Serial-Dependency (tj S’D ti): transaction t, cannot
begin execution until ti either commits or aborts; i.e.,
(Begintj E If) * (c -+ Begint;) where
c E {Commit,,, Abortt,).

Proceedings of the 17th International
Conference on Very Large Data Bases

The formal definitions of weak-abort-dependency
and abort-dependency clearly reflect that weak-abort-
dependency is weaker than abort-dependency. Weak-
abort-dependency is useful, for e.g., in specify-
ing and reasoning about the properties of nested
transactions [23]. Serial-dependency and exclusion-
dependency are useful for compensating transac-
tions [19] and contingency transactions [4]. The
important difference between exclusion-dependency
an d compensation-dependency is that exciusion-
dependency allows both transactions to abort whereas
compensation-dependency does not.

We would like to note that this list of dependencies
is nof, exhaustive. Other dependencies that involve sig-
nificant events besides the Begin, Commit and Abort
events, can be defined. As new significant events are
associated with extended transactions, new dependen-
cies may be specified in a similar manner. In this sense,
ACTA is an open-ended framework.

3.1.2 Source of dependencies
Dependencies between transactions may be a direct
result of the structural properties of transactions, or
may indirectly develop as a result of interactions of
transactions over shared objects. These are elaborated
below.

Dependencies due to Structure: The structure of
an extended transaction defines its component trans-
actions and the relationships between them. Depen-
dencies can express these relationships and thus, can
specify the links in the structure. For example, in
hierarchically-structured nested transactions, the par-
ent/child relationship is expressed by a child transac-
tion t, having a weak-abort-dependency on its par-
ent t, (tc WI) tP) and a parent having a commit-
dependency on its child (tP CD tc). The weak-abort-
dependency guarantees the abortion of an uncommit-
ted child if its parent aborts. Note that this does not
prevent the child from committing and making its ef-
fects on’objects visible to its parent and siblings. (In
nested transactions, when a child transaction commits,
its effects are not made permanent in the database,
they are just made visible to its parent. See Sec-
tion 4 for a precise formal definition of nested trans-
actions.

2
The commit-de endency of the parent on

its chil is preserved if (1 the parent does not com- P
mit before its child terminates, or (2) the child aborts
in case its parent commits first, i.e., the child becomes
an orphan. The weak-abort-dependency together with
the commit-dependency ensures that an orphan, i.e.,
a child transaction whose parent has terminated, will
not commit.

Other hierarchically-structured transactions may
define different relationships between a parent and dif-
ferent child transactions. For example, in the transac-
t,ion model proposed in [4, 141 a parent can commit
onlv if its vital children commit, i.e., a parent trans-
action has an abort-dependency on its vital children
t,, (tp A’D t,,). Child transactions may also have dif-
ferent dependencies with their parents if the trans-
action model supports various spawning or coupling
modes [9]. Sibling transactions may also be interre-
lated in different ways. For example, components of a

105
Barcelona. September. 1991

Saga [15] can be paired accordin
1

to a compensated-
for/compensating relationship j19 Relations between
a compensated-for and compensating transactions as
well as those between them and the saga can be spec-
ified via exclusion-dependency, serial-dependency and
compensation-dependency. In a similar fashion depen-
dencies that occur in the presence of alternative trans-
actions and contingency transactions !4] can also be
specified.

Dependencies due to Behavior: Dependencies
formed by the interactions of transactions over a
shared object are determined by the object’s synchro-
nization properties. Broadly speaking, two operations
conflict if the order of their execution matters. For
example, in the traditional framework, a compatibil-
ity table [3] of an object ob expresses simple relations
between conflicting operations. A conflict relation has
the form (pt;[ob] --+ qti(ob]) 3 (t, 1) ri)l indicating
that if transaction tj invokes an operations p and later
a transaction tj invokes an operation q on the same ob-
ject ob, then 1, should develop a dependency of type 2)
on t!i. As we will see in the next section, ACTA allows
conflict relations to be complex expressions involving
different types of dependencies, operation arguments,
and results, as well as operations on the same or dif-
ferent objects.

3.2 Objects and the Effects of Transactions
on Objects

In order to better understand the effects of transac-
tions on objects, we need to first understand the effects
of the operations invoked by the transactions.

3.2.1 Conflicts between operetions and the
dependencies induced by them

Definition 8: Two operations p and q cottptci
in a state produced by Hobr denoted by
confEict(Huh, P, q), iff

(state(Hoh ‘-‘PI 9) # state(Hob 0 9, P)) v
(return(HcJt,, q) # (return(H,h 0 P, q)) V
(Teturn(Hd,, P) # (retuTn(Hd 0 9, P))

Two operations that do not conflict are compa.tible.

(Recall that o denotes functional composition; H 0 p
appends p to history H.) Thus, two operations conflict
if their effects on the state of an object or their return
values are not independent of their execution order.
Since state changes are observed only via return values,
only the return values need to be considered in dealing
with conflicting operations.

Definition 7: Given confEict(H,h, p, q),
return-value-independent(H,>h, p, q) is true if the
return value of q is independent of whether p pre-
cedes q, i.e., return(Hi,h o p, 9) = return(H,,b, 9);
otherwise q is return-value-dependent on p (return-
value-dependent(H,,b, p, q)).

Given a history H in which p,,[ob] and 9t, [ob] oc-
cur, the state of ob when pti is executed is known from
where pl, occurs in the history. Hence, from now on,
we drop the first argument in conflict, return-value-
independent, and return-value-dependent when it is im-
plicit from the context.

Proceedings of the 17th International
Conference on Very Large Data Bases

Serializability requirements induce the following de-
pendencies between transactions invoking conflicting
operations.

(1)

(2)

When an operation q follows operation p and
return-value-dependent(p, q), the transaction t,i
invoking the operation q must abort q if for some
reason the transaction ti aborts p; i.e., (return-
value-dependent(p, 9) A (pt,[ob] -+ qtj[ob])) *
((Abortt,[ob.p] E H) + (Aborttj[ob.q] E H)).

When an operation p precedes q and return-value-
independent(p, q), the transaction tj that invoked
9 cannot commit q until the transaction ti that
invoked p commits or aborts p; i.e., (conflict(p,q)~
return-value-independent(p,q)A(pt;[ob] + qtj[ob])) =k
((Cornmitt [ob.p] E H) ti ((Conm&; [ob.q] E H) 3
(Committ,~ob.p] -+ Commiltj [ob.q]))).

Motivated by this, in ACTA, the concurrency prop-
erties of an object are formally expressed in terms of
conflict relations of the form: (pt,[ob] + ql,[ob]) *
ConditionH, where ConditionH is typically a depen-
dency relationship involving the transactions ti and t,,
invoking conflicting operations p and 9 on an object
ob. Obviously, the absence of a conflict relation be-
tween two operations defined on an object indicates
that the operations are compatible and do not induce
any dependency3.

This generality allows ACTA to encompriss both
object-specific and transaction-specific semantic infor-
mation. First consider some object-specific semantics.
Commutativity does not distinguish between return-
value dependent and independent conflicts. It treats
both the same and uses abort-dependency for both:
(pt, [ob] ---t 9,; (ob]) =+ (tj A’D 1;). Recoverability [I] avoids
the unnecessary development of an abort-dependency
for ret,urn-value independent conflicts. Thus, an oper-
ation q which is return-value independent of p where p
and q conflict, induces the conflict relation: (p*,[ob] ---)
qtj[ob]) 3 (tj CV li); whereas an operation q being
return-value dependent on p induces the conflict re-
lation: (pt,[ob] -+ qr,[ob]) * (tj A’D ti).

We introduce transaction-specific semantics through
an example. Consider a Page object with the standard
read and write operations, where read and write op-
erations conflict. A read is return-value dependent on
write, whereas a write is return-value independent of
a read or another write. In addition, consider trans-
actions which have ability to reconcile potential read-
write conflicts: When a transaction t; reads a page
c and another transaction tj subsequently writes x,

3Clearly, when an invoked operation conflicts with an
operation in progress, a dependency, e.g., an abort or corn-
mit dependency, will be formed if the invoked operation is
allowed to execute. That is, this may induce an abortion or
induce a specific commit ordering. One way to avoid this
is to force the invoking transaction to (a) wait till the con-
flicting operation terminates (this is $hat the traditional
“no” entry in a compatibility table means) or (b) abort. In
either case, conflict relationships between operations imply
that the transaction management system must keep track
of ongoing operations and of dependencies that have been
induced by the conflict. A commonly used synchronization
mechanism for keeping track of ongoing operations and de-
pendencies is based on (logical) locks.

106
Barcelona, September, 1991

ti and tj can commit in any order. However, if t,
commits before ti commits, t, must reread a in order
to commit. This is captured by the following con-
flict relation: (rea&,[z] -+ wtiletj[2]) * ((Conmiltj -4
Cornmitt,) * (Co7nmiltj(z] -+ rea&,[r]))).
This conflict relation cannot be derived solely from the
object-specific semantics of the page. Clearly, trans-
action specific concurrency control might not achieve
serializability but still preserves consistency.

In the example, ti has to reread the page z when it
is subsequently written and committed by t,,. In gen-
eral, t; may need to invoke an operation on the same
or different object. For instance, instead of z:, ti may
have to read a 3cratch-pad object which t, and t use
to determine and reconcile potential conflicts. + hns,
ACTA allows the specification of operations that need
to be controlled in correct histories as well as oper-
ations that have to occur in correct histories. These
correspond to conflicts and patkrns in [27].

The ConditionH in a conflict relation may include
other significant events defined by the various trans-
action models. As an example, consider the signif-
icant event Notify, related to the notion of notificn-
lion useful in a cooperative environment 1131. For in-
stance, the condition Noti.fytfyt,[(t,, cv t,,)] will cause a
commit-dependency to be established from transaction
ti to tj as well as notify t,i about the development of
the commit-dependency. Such a pair of conditions can
be used to define a recoverability-based table in a coop-
erative environment. Transaction tj can use the infor-
mation about the existence of the commit-dependency
to postpone the invocation of another operation that
causes a commit-dependency of 1, on t,, and thus post-
pone the formation of a circular commit dependency.

The generality of the conflict relations allows ACTA
to capture different types of type-specific concurrency
control discussed in the literature [26, 17, l], and even
to tailor them for cooperative environments.

3.2.2 Controlling object visibility
As defined earlier, Visibility refers to the ability of one
transaction to see the results of another transaction
while it is executing. In ACTA, visibility of the trans-
actions is captured by associating with every trans-
action two sets of objects: View Set which contains
all the objects potentially visible to the transaction,
and Access Set which contains all the objects already
accessed by the transaction. When an .object in the
View Set of a transaction is accessed by the transac-
tion or a new object is created by the transaction, the
object becomes a member of the transaction’s Access
Set. Acce88Sett refers to the Access Set of a transac-
tion t, and ViewSell refers to the View Set of i.

Definition 8: AccessSet, = {obl3p(pt[ob] E H)};
i.e AccessS& contains all the objects upon
which t has invoked an operation.
Definition 9: ViewSelt = Acces3Sett LJ
{UAccessSet~i!2i E Taelt} !J ZIB where the const.it.u-
tion of Taett 1s determined by a given transaction
model.

The View Set, of a transaction is expressed in terms
of its AccessSet, other transactions’ Access Sets and
the database. T3ett contains the transactions whose
Access Sets constitute the View Set of transaction t.

Proceedings of the 17th International
Conference on Very Large Data Bases-

That is, Tsett specifies the composition of the View Set
oft. Rules for composing the View Set of a transaction
are determined by the specific transaction model.

A transaction t can invoke an operation on an ob-
ject in VievrSett without conflicting with any trans-
actions ti in Tsett. That is, no dependencies are in-
duced between t and ti when t invokes an operation
q that conflicts with an operation p invoked by ti
where p precedes q. Therefore, with the introduc-
tion of the View Set of a transaction, the conflict
relations associated with an object need to be rede-
fined. Specifically, when (pt; -+ qtj), the dependency
relations between transactions ti and tj specified by
ConditionH will be induced only if ti is not in Taeh,,
i.e., ((pti ---t qrj) A -(t, E Taetlj)) 3 ConditionH.

Note that an object in ViewSett may occur in more
than one of ViewSet’s components. For instance,
suppose ob E AcceaaSett, A ob E AccesaSett, and
ViewSett = AcceasSett, UAccessSett, UDB. This im-
plies that both 11 and tz have performed an operation
on ob. In order to determine whether t can perform
an operation on ob, it will be necessary to determine
the status of ob in both AcceaaSett and AccesaSett,.
In general, the constituents of a tiewSet may have
to be visited in a certain order to determine conflicts.
The order in which these are considered is specified by
a relation, called order of conflict checks (denoted by
AccessOrder).

We illustrate the notion,of Access Set and View Set
by considering nested transactions. In nested transac-
tions, Tact, = {tn-lr t,-2 .,., to}, where t, = t, ti WD
t,- 1, 0 < i < n, and t, is the root of a nested transac-
tion. The weak-abort-dependency W’D uniquely spec-
ifies that tie1 is the parent of t;. A transaction t can
invoke an operation (on an object in its View Set) that
conflicts with operations invoked by its ancestors t,
without forming any dependency since t, is in Taett.
Conflicts are determined with respect to uncommit-
ted operations on an object. In nested transactions,
because of serializability, the AccessSets constituting
the ViewSet of t do not have to be visited in a cer-
tain order to determine conflicts4. In general, it may
be neces.sary to visit an object oh which is in different
AccessSets,‘in a particular order in order to determine
conflicts since different conflict relations may be asso-
ciated with ob at different levels in the hierarchy, e.g,
as in multilevel-correctness [21]. Hence, the need for
AccessOrder specification.

In nested transactions, when the root commits, its
effects are made permanent in the database, whereas
when a subtransaction commits, via delegation, its ef-
fects are made visible to its parent transaction.

In general, a transaction may delegate the responsi-
bility for finalizing its effects on some of the objects in
its Access Set to another transaction. This is achieved
by modifying the historv of the delegated objects to
reflect that operations cnvoked on them by the first
t,ransaction ti (i.e., the delegator) were invoked by the

‘Certain implementations of nested transactions, for
e.g.7 the lock-based in [23], require to consider conflicts in
a particular order. Specifically, in [23], the order of conflict
checks for a subtransaction 1, is defined as: Acce3sOTdeT1,
= (AccesaSelt,, AccesaSett,-, , . ..AccessSetr.,, DB).

107 Barcelona, September, 1991

second transaction tj (i.e., the delegatee). In particu-
lar, (Delegalet;[Ij] E H) =+ (Vob E Delr?gQtt?set(t;, tj)l

VP (pt; [ob] -+ Delegatet,[tj]), replace(pti[ob], pt, [ob]))’
This effectively redirects the dependencies induced by
operations performed on the delegated objects from
the delegator to the delegatee and removes the ob-
jects in the delegateset(l;, t,?) from the Access Set of
the delegator and adds them to the Access Set of the
delegatee. Delegation effectively broadens the visibil-
ity of the delegatee and is useful in selectively making
tentative or partial results as well as hints, such as,
coordination information, accessible to other transac-
tions. Delegation fails in the event that the delegatee
has already committed or aborted.

The notion of inheritance used in nested trans-
actions is an instance of delegation. Specifically,
when a child transaction t,. commits, t, delegates
to its parent t, all the objects that it has accessed
(DelegateSet(t,, I,,) = AccessSet,,., where t,WZ, $,).
Delegation need not only occur upon commit or abort
but a transaction can delegate any of the objects in its
Access Set to another transaction at any point during
its execution. This is the case for Co-Transactions and
Reporting Transactions that we describe in [5 .

Delegation can be used not only in 1 control ing the
visibility of objects, but it can also be used to specify
the recovery properties of a transaction model. For in-
stance, if a subset of the effects of a transaction should
not be obliterated when the transaction aborts while
at the same time they should not be rnade permanent,
the Abort significant event associated with the trans-
action can be defined to delegate these effects to the
appropriate transaction. In this way, the effects of the
delegator on the delegated objects are not obliterated
even if the delegator aborts.

In cooperative environments, transactions (compo-
nents) cooperate by having intersecting Access Sets
and View Sets, by delegating objects to each other,
or by notifying each other of their behavior. Ry be-
ing able to capture these aspects of transactions, the
ACTA framework is designed to be applicable to co-
operative environments.

4 Examples of Correctness of
Extended Transaction Models

ACTA has been successfully used for characterizing
the structure and behavior of a number of extended
transactions models [6, 5, 4, 221. Here we show how
these characterizations can be used to reason about the
correctness properties, e.g., concurrency and recovery
properties, of some of these models.

‘This basically says that once delegation occurs, history
is “rewritten” to indicate that any operation p invoked on a
delegated object ob by the delegator t, is instead considered
to be invoked by the delegatce t,. To be more precise WC
should say that once the event L)elegalet,[rj] is appended
to the history and ob E DelegateSet(t,, tj), all the conflicts
and dependencies that 1; is associated with should instead
be associated with lj.

Proceedings of the 17th International
Conference on Very Large Data Bases

4.1 Atomic Transactions
Atomic transactions combine the properties of nerinl-
izability and failure atomicity. These properties en-
sure that concurrent transactions execute without any
interference as though they executed in some serial
order, and that either all or none of a transaction’s
operations are performed.

Let us first define the correctness properties of ob-
jects within formal ACTA, starting with the serializ-
abilit,,y correctness criterion.

Definition 10: Let H be a history. Let C
be a binary relation on transactions, and ti and
t, be transactions, ti # tj. tiCtj if 30b gp, q,
(confEict(P, q)A(Pt,[ob] ---) qtj[Ob]))’

Definition 11: Let C’ be the transitive-closure
Of C; i.e., tiC*tk if tiCtk Or 3rj, (riC*tj A tjc*tk)e

Definition 12: A set of transactions T is serial-
izable iff Vt E T, T(tC’t).

Definition 13: An object ob behaves correctly
iff Vti, tj, ti # tj VP, qr
(return-ualue-dependent(p,q)A(p,i[ob] + qt,[ob])) =+
((Abortt,[ob.p] E H,b) j (Aborttj(ob.q] E Nob)).

This definition implies that for an object to behave
correctly it must ensure that when an operation aborts,
any return-value dependent operation that follows it
must also be aborted. It is not necessary for it to
exhibit serial behavior, i.e., it is not necessary for the
order in which the operations are executed by different
transactions to be serializable.

Definition 14: An object ob behaves serializably
iff (1 Vti, tj, ti # t, VP, q, (con@t(p,q) A

1 (pti ob] ---) qtj [ob])) * ((Commihj[ob.q] E Hoh) *
((Commit,,[ob.p] E Hah) =+
(Cornmitt, [ob.p] --* Cornmitt .[ob.q]))),

(2) Vtvp, (Committ[ob.p] E H,,b) =+ -(tc*t).

This definition states that the serializable behavior of
an object is ensured by definin
tween transactions invoking con i

a commit order be-
icting operations and

by preventing transactions from forming cyclic C rela-
tionships.

Definition 16: An object ob is atomic if 06 be-
haves correctly and Jerializably.

Definition 16: Transaction t is failure atomic if
1. 3ob(3q Committ[ob.q] E H) =+ (Cornmitt E H);
2. (Committ E H) M

VobVq((qt[ob] E H) + (Committ[ob.q] E H));
3. 3ob(3q Abortt[ob.q] E H) 3 (Abort(E H); and
4. (Abortl E H) =F

VobVq((q,[ob] E H) * (Abortt[ob.q] E H)).

As mentioned earlier, failure atomicity implies that
all or none of a transaction’s operations are executed.
In the above definition, the “all” clause is captured by
condition (1) which states that if an operation is com-
mitted on an object, the invoking transaction must
commit, and condition (2) which states that a trans-
action commits iff all the operations invoked by the
t.ransact.ion are committed. The “none” clause is cap-
tured by condition (3) which states that if an opera-
tion is aborted on an object, the invoking transaction

108
Barcelona. September, 1991

must abort, and condition (4) which states that if a
transaction aborts, all the operations invoked by the
transaction are aborted.

Now let us express the basic properties of atomic
transactions with a set of axioms.

Definition 17:
Axiomatic definition of Atomic Transactions

Let 1 be an atomic transaction.
1.
2.

3.

4.
5.

6.

7.
8.

ESt = {Begin, Commit, Abort}.
(Begin* E H) * (y(Committ -+ Begint) A

-(Abortt -+ Begiw) A -(Begin, --+ Regint 1).
(Begint E H) + ((l’icu>sett = .4cceSJSett~~T)~)

(AccesaOrdert = (AcceasSett, LIB))).
t is failure atomic,

(COrnmitt E H) * ((Begint -+ Commttt) A
T(Abortt E H)).

(Abortt E H) + ((Begint -+ Abor&) A
y(Committ E I?)).

Vob, (3p,pt[ob] E H) =P (ob is atomic).
(Cammilt E H) * -(tC*t).

Axiom 1 states that atomic transactions are asso-
ciated with the three significant events: Regin, (lorn-
mit and Abort. Axiom 2 states that the Beginl event
which instantiates a new atomic transaction can be
invoked at most once by a transaction. Axiom 3 re-
stricts the visibility of a transaction to the objects in
its Access Set and the database. Axiom 4 expresses
the failure atomicity property of atomic transact,ions.
Axioms 5 states that only an instant.iated transaction
can commit and that an atomic transaction cannot he
committed after it has been aborted. Similarly, Ax-
iom G states that only an instantiated transaction can
abort and an atomic transaction cannot be aborted
after it has been committed. Axiom 7 specifies that
all objects upon which an atomic transaction invokes
an operation are atomic objects. That is, they detect
conflicts and induce the appropriate dependencies. Fi-
nally, Axiom 8 states that an atomic transaction can
commit only if it is not part of a cycle of C relations.
Note that the atomicity property local to individual
objects is not sufficient to guarantee serializable ex-
ecution of concurrent transactions across all objects
P91.

Definition 18: An atomic transaction manage-
ment scheme is correct if it conforms to definition
17.

4.2 Nested Transactions
In the Nested Transaction model, e.g. [23], transac-
tions are composed of subtransactions or child transac-
tions designed to localize failures within a transaction
and to exploit parallelism within transactions. A sub-
transaction can be further decomposed into other sub-
transactions, and thus, a transaction may expand in a
hierarchical manner. Subtransact,ions expcnt,e atomi-
cally with respect to their siblings, are failure atomic
with respect to their parent, and can abort indppen-
dently without causing the abortion of the whole trans-
action.

A subtransaction can potentially access any object
that is currently accessed by one of its ancestor trans-
actions. In addition, any object in DR is also pot,en-
tially accessible to the subtransaction. When a SII~-
transaction commits, the objects modified by it are

Proceedings of the 17th International
Conference on Very Large Data Bases

made accessible to its parent transaction. However,
the effects on the objects are made permanent in DB
only when the root, transaction commits.

The nested transaction model supports two types of
transactions, namely, root 1ran~ac2ions and subtrans-
a.ctions, which are associated with different significant
events (Axioms 1 and 2). The semantics of root trans-
actions are similar to atomic transactions (Axioms 3-8
and 18 . The Abort event has the same semantics
for bot h transaction types which are the same as the
Abort in atomic transactions (Axioms 6-7 and 14-15 .
However, the semantics of the Commit event are 1 di -
ferent for each transaction type. In the case of a root
transaction, Commit has the semantics of the Commit
event in atomic transactions (Axioms 5, 7 and 8). In
contrast, when a subtransaction commits, through del-
egation, the objects in its Access Set are made persis-
tent and visible only to its parent transaction (Axiom
13).

Spawn is used to instantiate a new subtransac-
tion. The spawn event establishes a parent/child rela-
tionship between the spawning and spawned transac-
tions. This relationship is reflected by the weak-abort-
dependency and commit dependency between the re-
lated transactions (Axiom 10). The ability of a sub-
transaction to access any object currently accessed by
one of its ancestor transactions is expressed by defin-
ing the View Set of the subtransaction in terms of the
Access Sets of its ancestor transactions (Axiom 11).

Definition 19:
Axiomatic definition of Nested Transactions

Let to be the root transaction, 1, be a root or a
subtransaction. and t,. be a subtransaction oft,.
1.
2.
3.

4.

5.

6.

7.
8.
9.

I!!&,, = {Begin, Spa&~, Commit, Abort}. ”
ES*, = {Spawn, Commit, Abort}.
(Begint,, E H) ti (-(Cornmitt,, + Beginf,,) A

y(Abortt,, -+ Begin,,,) A T(Begint,, -+ Begint,,))!
(Regin,,, E H) + ((ViewSett,, = AcceaaSelt,, U

DB) A (AccesaOrdert,, = (AccessSelf,,, DB))).
(Cornmitt,, E H) + ((Begin*,, -+ cornmitt,,) A

-(Abor&, -+ Cornmilt,,)).
(Abortt,, E H) 3 ((Begin*,, -+ Abort*,) A

-(Cornmitt, E If)).
to is failure atomic.
(Cornmitt,, E H) =+ +tnC’to).
(Spawnt, [tc] E H) 3 (T(Committ, +

Spawnt, [tc]) A -(Abortt, + Spawnt, [t,])).
10. (Spazont,[tc] E H) # ((tc WD tp) A (tp CD 1,)).
11. (Spawnt, [t,] E H) =3

((ViewSeh, = {UAcceasSett,(ti E Tsetc,}UDB)r\

109

(Cornmitt, E H) * ((Spawnt, [t,] +
Commilt,,) A y(Abortl,,[t,] + Committc)).
((Committq E H) e (Delegatet,.[tp] E H)) A
(DelegateSet(t,., tp) = AccesaSett,.).
(Abortt,. E H) 3 ((Spa~n~~[L] --) Abortt,) h
y(Committ, ---(Abortt,)).
3ob(3q Abortt,[ob.q] E H) + (Abort*, E H).
(Abortt, E H) + VobVq, ((qt[ob] E H) +
(Ah&,: [ob.q] E H)).
Vt,, 1, t W’D* t, Vob Vp, (pt[ob] E If) +
jlq((pt[obl -+ qt, [ob])A confEict(p,q)).
Vt, 1 = to v t = t, Vob

Barcelona, September. 1991

(Zlp,pr[ob] E H) =+ (ob is atomic). Definition 21: A nested transaction manage-
19. (Conmitt, E H) * -(2&Y&). ment scheme is correct if it conforms to definition

19. Axiom 17 states that given transaction 1. and its an-
cestor t, and conflicting operations p and q, t, cannot
invoke Q after t invokes p. In the absence of this re-
striction, it would be possible for an ancestor 2, of a
transaction t to develop an abort-dependency on t (i,,
AD t) by invoking an operation that is return-value
dependent on a preceding operation invoked by t. In
such a case in which a parent transaction develops an
abort-dependency on its child, if the child aborts, the
parent also aborts. This means that. it would be pos-
sible for a subtransaction to C~IISC the abortion of its
parent and possibly of the whoIF nested transact.iou
(if the parent happens to be the root transact,ion).
But this violates the property of nested transactions
that localizes failures by allowing a subtransaction to
abort independently without causing the abortion of
the whole transaction.

Although Axioms 7, 8, 18 and 19 would be suffi-

cient to ensure the serializability of atomic transac-
tions, they are not in the case of nested transactions
because of Axioms 11 and 13 which allow dependencies
between two transactions to be ignored or redirected.

Based on the above axiomatic definition of nested
transactions, the failure semantics and the serializabil-
ity property of nested transactions can be shown.

Lemma 1: No Orphan Commita Lemma
Let H be a history of a nested transaction, t, and
1, be transactions where 1, bc the parent off.,..
(((Commilc, E H) A ~(Commrtt, --+ Commttt,)) i’

((AbortI, E H) A y(Commrtt, + .4borttp))) 3
(AboTh, E H).

Informally, this states that an orphan, i.e., a child
whose parent has either committed or aborted before
it has terminated, will be aborted. This lemma is de-
rived from (t,, CV t,.) and (t,! WD t,,) which are a result
of Axiom 10.

Definition 20: Let C(H) be the committ~tl pro-
jection of a history H.
C(H) = P(H, {t/Committ E H}).

Theorem 1: A nested transaction to has the
following properties:
(1) (Abot& E H) j V&t WD’~O Vob Vp,

((qt[ob] E H) =+ (Abort,[ob.p] E H)):
2 31 3p, (pt E C(H)

ii
=+ (t is R root transaction);

3 if H a history o t’ nested transactions, C(H) is
serializable.

Property (1) which says that if a nested transaction
aborts, the operations invoked by its root and its sub-
transactions are all aborted, follows from the no or-
phan commits lemma and Axioms 7, 15 and 16. Prop-
erties (2) and (3) require that the effects of operations
of root transactions are committed in the database
in a serializable fashion. These properties are deriv-
able from the semantics of delegation (note that once
delegation is performed by a subtransaction when it
commits, the (committed) subtransaction in C(H) is
not associated with any operations and that delega-
tion preserves conflicts in a history), the semantics of
atomic objects, the no orphan commits lemma, and
axiom 8.

Proceedings of the 17th International
Conference on Very Large Data Bases

4.3 Split Transactions
III the Split Transaction model [25j, it 1s possible for a
transaction t, to split into two transactions, t, and tr,.
t, and th transactions may be independent, in which
case they can commit or abort independently, or they
may be Jerial, in which case t, must commit in order
for th to commit. Whether t,, and th transactions are
independent or serial depends on the objects accessed
hy them.

In t,he split transaction model, a transaction can
1)~ instantiated through either the Begin significant
event, called prtmary transaction, or the Split signifi-
cant event, called split transaction. Although primary
and split transactions are associated with different sig-
nificant events (Axioms 1 and 2), the events with the
same name share the same semantics (Axioms 5-15).
In fact, the Begin, Commit and Abort events have the
same semantics as the corresponding events in atomic
transactions.

The Sp/ittl [th] event splits a transaction into a split-
tlng transaction t, and split transaction i&. Note that
a split transaction th can invoke Splitl,[t,:] to create
another split transaction t,. In addition, a transaction
t, can invoke Spli&

I
tc] after invoking Spliti, [tb]. This

leads to hierarchica ly structured transactions. For
simplicity, we confine our attention in the rest of this
Section to t,he sit.uation when a transaction invokes the
split event at most once.

In contrast to the transaction instantiated by the
Begin event, through delegation, split transactions
may be associated with a non-empty Access Set (Ax-
iom 10). The ability of a split transaction to ac-
cess specific objects accessed by its splitting trans-
action is expressed by defining the View Set of the
split transaction in terms of a subset of the Access Set
(CanAccess(t,,, It,)) of the splitting transaction (Ax-
iom 11). CanAccess(t,, tb) contains the objects that
t, has accessed up to the split, and tb can poten-
tially access after the split. A splitting transaction
cannot invoke an operation on an object that con-
flicts with operations of its split transactions (and their
splits) (Axiom 13). After the split t, may still in-
voke an operation on an object in CanAccess(t,,th)
as long as the operation does not conflict with an
operation invoked by tr,. A split is independent, if
CanAccess(t,, th) is empty. In the case of serial split
in which CanAccess(t,, I*) is not empty, tb develops
an abort-dependency on t,’ (Axiom 14).

Definition 22:
Axiomatic definition of Split Transa.ctions

Let t, be a primary transaction, t, be a splitting
transaction, tt, be a split oft,.
I. EStr = {Begin, Split, Commit, Abort}.
2. ES,, = {Split, Commit, Abort}.
3. (.B;$;t,l~ H) =+ (-(Cornmitt,, -+ Begin$,) A

07 tp -+ Begint,) A y(Begint, ----) Begint,)).

‘By taking into consideration the semantics of oper-
ations on the individual objects in CanAccesa(t,,th), it
would be possible to induce weaker dependencies, e.g.
commit-dependrncy, rather than abort-dependency.

110
Barcelona, September, 1991

4. (Begint, E N) =+ ((ViewSe&, = AccesaSetcp U
DB) A (AcceaaOrdert, = (AcceasS&,, DB))).

6. (Splitt, [fb] E H) =+ (--(Committ, + Splilt, [to]) A
~(Aborlt, + Splitt, [It,])).

6. (Cornmitt, E N) + ((Begint, -+ Commit~p) A
-(Abortt,, + Commit,+)).

7. (Abortt, E H) =+ ((Begint,, + AhttP) A
-(Aborttp ---) Aboztt,)).

8. (Cornmitt, E H) * ((Splitt,[tbl -+ Commit,,,) A
-(Abort*, -+ Cornmitt,)).

9. (Abortt,, E H) =+ ((Splitt,, [th] -+ Abor&)) A
T(Abor&, -+ Abor&,)).

10. ((Spti&,[th] E H) e3 (Delegatet,[tb] E H)) A
(DelegateSet(t,,tb) C AcceasSett,,).

11. (Splitt,,[tJ E H) =+ ((ViewSetl,, = /,CCf=J,9.?c?tt, ir
CanAccess(t,,th) U DB) A (Accesshdert, =-
(AcceaaSett,, CanAccesa(l,, tb), DB))).

12. (CanAccesa(t,,th) C AccessSell,,) A
(CanAccess(&, tb) n DelegateSel(t,, h) = 4).

13. Vt,, t, tAV*t, Vob Vp, (pt[ob] E H) =+
Mbtbbl ---) qt,[obl)AconPict(p,s)).

14. (CanAccess(t,,tb) # 4) j (tt,A’%).
15. t is failure atomic.
16. vt, t = t, V t = t,, Vob vp,

(pt[ob] E H) =+ (ob is atomtc).
17. tjt, t = t, v t = tb, (COnmitt e H) + -(tc*t).

As in the case of nested transactions, Axioms 16 and
37 are not sufficient to ensure serializability of split
transactions due to Axioms 10 and 11. However, split
transactions are serializable as we show below.

Lemma 2: A primary transaction 1, is an alomtc
transaction if it does not split.
Lemma 3: Let t, be the splitting trans-
action and th be the split transaction.
CanAccess(t,, I*) = 4 (i.e., independent split;:
then t, and th conforms to definition 17 (atomic
transactions).
Assertion 1: Splittn [th] is equivalent to Beginl,,
if CanAccess(t n, th) = ~e~egdeL~et(t~, th) :: q!J.

This assertion points to an implementation that com-
bines the semantics of Begin and Split evenls.

Lemma 4: Let t, be the splitting transaction
and th be the split transaction.
((CanAccesa(&,, tb) # 4) A (Conmitt, E B)) +
(Cornmitt, -+ Cornmitt,).

That is, in the case of serial split, if both splitting and
split transactions commit then the splitting transnc-
tion commits before the split transaction. This follows
from axioms 13 and 14 in conjunction with Axioms
6-9.

Definition 23: A split transaction t, initiated by
the primary transaction 1 is a set of transactions
ti: ti = t, V tiAV’tp, w II ere AZ)’ is induced by
splits.
Theorem 2: A set of split) transactions 7’ is
serializable.

To prove this we show (1) that the transactions consti-
tuting a split transaction 1, are serializable with each
other using lemmas 3 and 4, (2) that they are serial-
izable with respect to all other transactions using the
semantics of delegation, lemma 2, and Axioms 15-17.

Proceedings of the 17rh International
Conference on Very Large Data Bases

111

Definition 24: A split transaction management
scheme is correct if it conforms to definition 22.

Sections 4.1 through 4.3 shown that ACTA can be
used to prove the correctness of concurrency control
algorithms for extended transactions similar to the se-
rializability theory [3, 241 for traditional transactions.

5 Conclusions

As a conclusion, let us evaluate the ACTA formalism
with respect to the motivating questions posed in the
introduction. ACTA captures the (extended) function-
ality of a transaction model (1) by allowing the specifi-
cation of significant events beyond commit and abort,
(2) by allowing the specification of arbitrary transac-
tion structures in terms of dependencies involving any
significant event, 3) by supporting finer grain visibil-

6 ity for objects in t e database by means of the Access
and View Sets and the notion of delegation, (4) and
by facilitating object-specific and transaction-specific
semantic-based concurrency control.

In addition, the ACTA formalism facilitates com-
parisons between two transaction models at both the
abstract. level of their correctness properties, e.g. fail-
ure atomicity,, serializability, objectwise serializability,
setwise-seriahzability etc., and the realization level in
terms of the significant events, structural properties
etc.

Finally, whether two transaction models can be used
in conjunction can be determined in ACTA by com-
bining the characterizations of the two models and
checking whether the new model retains the correct-
ness properties of the two original ones. This was in-
formally shown in [6] but it can easily be formalized
using the formalism outlined here. This, as well as
other examples of the use of the ACTA formalism, can
be found in [8, 71.

In terms of future work, the primitives underlying
ACTA suggest a set of primitive mechanisms that are
required to provide adequate implementation support
For building a flexible transaction system. Hence, it
will be useful to utilize ACTA to identify the transac-
lion management primitives required for a particular
database application. In addition, ACTA can be used
to show the correctness of a particular implementation
by first formalizing the properties of the specific mech-
anisms used in the implementations and then showing
that they will maintain the correctness properties of
the model.

References

[ll

PI

PI

Badrinath, B. and Ramamritham, K. Semantics-
based concurrency control: Beyond Commutativ-
ity. In Proceedings of the 4th IEEE Conference on
Data Engineering, pages 132-140, February 1987.
Bancilhon, F., Kim, W., and Korth, H. A model
of CAD Transactions. In Proceedings of the 11th
International Conference on VLDB, pages 25-33,
Stockholm, August 1985.
Bernstein, P. A., Hadzilacos, V., and Good-
man, N. Concurrency Control and Recovery
in Database Systems. Addison-Wesley, Reading,
MA, 1987.

Barcelona, September, 1991

[41

PI

PI

PI

[81

PI

[lOI

illI

[I21

iI31

I141

[I51

Buchmann, A., Hornick, M.. Markatos, E., and
Chronaki, C. Specification of a Transaction Mech-
anism for a Distributed Active Object System. In
Proceedings of the OOPSLA/ECOOP 90 IVork-
shop on Transac2ions and Oblects, pages I-9, Ot-
tawa, Canada, October 1990.

Chrysanthis, P. K. and Ramamritham, K. A IJni-
fying Framework for Transactions in Competitive
and Cooperative Environments. IEEE Bulleltn on
Office and Knowledge Engineertng, August 1990.

Chrysanthis, P. K. and Ramamritham, K. ACTA:
A Framework for Specifying and Reasoning about
Transaction Structure and Behavior. In Proceed-
ings of Ihe ACM SIGMOD Inlernalional Confer-
ence on Management of Data, pages 194-203, At-
lantic City, NJ, May 1990.

Chrysanthis, P. K. ACTA, A Frarneu!ork for Mod-
eling and Reasoning aboul. E&ended Tra.nsaciions.
PhD thesis, Department of Computer and In-
formation Science, University of Massachusetts,
Amherst, Massachusetts, September 1991.

Chrysanthis, P. K. and Ramamritham, K. ACTA:
The SAGA continues. In Elmagarmid, A. K.,
editor, (tentative) Z+ansaclion Processing in Ad-
vanced Applications. Morgan Kaufmann, 1991.

Dayal, U., Hsu, M., and Ladin, R. Organiz-
ing Long-Running Activities with Triggers and
Transactions. In Proceedings of Ihe ACM SIG-
MOD International Conference on Management
of Data, pages 204-214, Atlantic City, May 1990.

Elmagarmid, A., Leu, Y., Litwin, W., and
Rusinkiewicz, M. A Multidatabase Transaction
Model for InterBase. In Proceedcn.gs of t.h,e 16th
International Conference on VLDB, pages 507-
518, August 1990.

Elmagarmid A. (Issue Editor). Special Issue on
Unconventional Transaction Management. IEEE
Technical Committee on Data Engineering, 14(l),
March 1991.

Eswaran, K., Gray, J., Lorie, R,, and Traiger, I.
The Notion of Consistency and Predicate Locks
in a Database System. Communicalions of the
ACM, 19(11):624-633, November 1976.

Fernandez, M. and Zdonik, S. Transaction
Groups: A Model for Controlling Cooperative
Transactions. In Proceedings of the U’orkshop on
Persislent Object Syslems: Th,etr Destgn, Imple-
mentation and Use, pages 128-138, January 1989.

Garcia-Molina, H., Gawlick, D., Klein, J., Kleiss-
ner, K., and Salem, K. Modeling Long-Running
Activities as Nested Sagas. IEEE Techntcal Com-
mittee on Data Engineering, 14(1):14-18, March
1991.

Garcia-Molina, H. and Salem, K. SAGAS. In
Proceedings of the ACM SIGMOD Internation,al
Conference on Management of Data, pages X49--
259, May 1987.

Proceedings of the 17th International
Conference on Very Large Data Bases

[I’31

1171

[I81

[19j

(211

WI

(231

1241

1251

1261

1271

PI

P91

112

Gray, J. The Transaction Concept: Virtues and
Limitations. In Proceedings of the 7th VLDB Con-
ference, pages 144-154, September 1981.
Herlihy, M. P. and Weihl, W. Hybrid concur-
rency control for abstract data types. In Proceed-
ings of Ihe 7th ACM symposium on Principles of
Database Systems, pages 201-210, March 1988.
Kaiser, G. E. A Flexible Transaction Model for
Software Engineering. In Proceedings of Ihe 6th
International Conference on Data Engineering,
pages 560-567, Los Angeles, CA, February 1990.
Korth, H. F., Levy, E., and Silberschatz, A.
Compensating Transactions: A New Recovery
Paradigm. In Proceedings of Ihe the 16th VLDB
Conference, pages 95-106, Brisbane, Australia,
August 1990.
Korth, H. F. and Speegle, G. Formal Models of
Correctness without Serializability. In Proceed-
ingq of Ihe ACM SIGMOD Inlernalional Con-
ference on management of data, pages 379-386,
Chicago, Illinois, June 1988.
Korth, H. F. and Speegle, G. Encapsulation of
Tra’nsaction Management in Object Databases. In
Proceedings of Ihe OOPSLA/ECOOP’90 Work-
shop on Transaclions and Objects, pages 27-32,
Ottawa, Canada, October 1990.
Martin, B. E. and Pedersen, C. Long-Lived Con-
current Activities. Technical Report HPL-90-178,
HP Laboratories, October 1990.
Moss, J. E. B. Nested Transactions: An ap-
proach 20 reliable distributed computing. PhD the-
sis, Massachusetts Institute of Technology, Cam-
bridge, MA, April 1981.
Papadimitriou, C. H. The Theory of Database
Concurrency Control. Computer Science Press,
1986.
Pu, C., Kaiser, G., and Hutchinson, N. Split-
Transactions for Open-Ended activities. In Pro-
ceedings of the 14th International Conference on
VLDB, pages 26-37, Los Angeles, California,
September 1988.

Schwarz, P. M. and Spector, A. Z. Synchroniz-
ing Shared Abstract Data Types. ACM Trans-
actions on Computer Systems, 2(3):223-250, Au-
gust 1984.
Skarra, A. Localized Correctness Specifica-
tions for Cooperating Transactions in an Object-
Oriented Database. IEEE Bulletin on Ofice and
Knowledge Engineering, Summer 1990.
Vinter, S., Ramamritham, K., and Stemple, D.
Recoverable Actions in Gutenberg. In Proceedings
of Ih.e 6th Interna2ional Conference on Distributed
Computing Sys2ems, pages 242-249, May 1986.
Weihl, W. Specificalion and Implemenlalion of
Atomic Data Types. PhD thesis, Massachusetts
Institute of Technology, 545 Technology Square,
Cambridge, MA, March 1984.

Barcelona, September, 1991

