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Abstract 

Domain mismatch _. and schema mismatch are 
two of the important semantic integration 
problems for interoperating heterogeneous 
databases. This paper structures the domain 
mismatch problem, illustrates approaches to 
its solution, and then extends r.his to the 
schema mismatch problem. Structuring of 
the problem and solution includes notions of 
conceptual territory, spheres, domain groups, 
localized and integrator functions, and type 
and function groups. Despite this structur- 
ing, the full generality of the problem still 
requires a rich language in which to describe 
the rules for reconciling discrepancies. Exarn- 
ple solutions are illustrated in the Iris Pro- 
gr;ring Language (IPL) extension of Iris 

1 Introduction 

Domain mismatch and schema mismatch a.re two of 
the important semantic integration problems for in- 
teroperating heterogeneous databases, as illustrated in 
[Ke, BL, DH]. Domain mismatch generally arises when 
several databases treat some common conceptual t,erri- 
tory in different ways, the simplest example being dif- 
ferences in units of measurement. Schema mismatch 
is much the same thing at the schema level. An in- 
teresting “cross-over” problem arises when t’hings in 
the data of one database correspond to t,hings in t,he 
schema of another. 

In this paper we structure the domain mismatch prob- 
lem, illustrate approaches to its solution, and then ex- 
tend this to the schema mismatch problem. Struc- 
turing of the problem and solution includes notions 
of conceptual territory, spheres, domain groups, lo- 
calized and integrator functions, a1u1 type and func- 
tion groups. Despite this struct,uring, the full gen- 
erality of the problem still requires a rich language 
in which to describe the rules for reconciling discrep- 
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ancies. Example solutions are illustrated in the Iris 
Programming Language (IPL) extension of Iris OSQL 
[An, Ly, Fl, F2 , with some further extensions being 

I proposed as we1 . 

To isolate these problems from other integration prob- 
lems, we. assume that the participating databases have 
been mapped into a single model, namely the Iris func- 
tional object model [AR]. We also avoid naming and 
identification problems, as well as other problems asso- 
ciated with the integration of heterogeneous databases. 
For the purpose of this paper, it hardly even matters 
whether things are in different databases; such seman- 
tic discrepancies could arise as well within a single 
database. 

This work is part of the Pegasus project at HP Labs 
[AD, PP], which is prototyping an extension of Iris to 
integrate heterogeneous dat,abases. 

2 Domain Mismatch 

2.1 Territories, Spheres, and Groups 

The clomain mismatch problem begins when some 
common conceptual territory is treated in different 
ways by different domains in different spheres. Spheres 
are usually different databases, but could also be sub- 
sets of the schema and data of one database, and might 
also span multiple databases, One sphere might be 
included in another. In Figure 1, the spheres might 
be databases in different countries for a multi-national 
corporation. 

Conceptual Sph eres 
Territories US UK m 

money ml m2 m3 +-domain group 
jobs jl jz j3 +domain group 

colors cl c2 c3 *domain group 

Figure 1: Domains. 

A domat7r group is a set of domains di which cover 
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some conceptual territory. Each domain di is typically 
in a distinct sphere si. In Figure 1, the domains ml, 
rraz, ms might be different currencies in which money 
is represented. 

When the conceptual territory is a measured quan- 
tity, such as weight, the different. domains in the group 
would simply be different represent,at,ions t=xpresspd in 
different units; this mismatch is easily reconciled by 
arithmetic. The spheres might be different databases, 
or they might be different sets of measurements in the 
same database, e.g., the weights used for cars and the 
weights used for horses. 

More complex discrepancies arise when the same con- 
ceptual territory is perceived as being populated, or 
partitioned, in different ways. The concept of “.job” 
might be common to several spheres, yet each sphere 
has a different notion of what the specific jobs are. 
One sphere might have engineer, secretary, and sales- 
man as jobs, while the jobs in another might -include 
technician, designer, engineer, secretary, administra- 
tive assistant, and customer representative. The same 
thing might arise with the sets of skills one might 
possess, or with ethnic groupings, or wit.11 organiza- 
tional units within different business entit,ies (projects, 
departments, sections, labs, divisions, groups, opera- 
tions, sectors, etc.). 

Other examples might include different palettes of col- 
ors covering the same spectrum, different grading sys- 
tems at different schools, different rating systems for 
restaurants (or for movies, or for hotels, et.c.), t.erms 
in different languages for the same or simi1a.r c.oncept.s, 
different kinds of geographic units (counties vs. post.al 
codes vs. voting districts vs. assessment districts, 
etc.). Another kind of mismatch arises if things are 
represented in one sphere as character strings but in 
another as persistent objects. 

Many examples in this paper deal with employees re- 
ceiving salaries in different currencies. Sonle examples 
try to reconcile a sphere in which jobs are represented 
as character strings (JobSpherel) with anot,her sphere 
in which they are represented as persist.ent objects 
(JobSphere~). When we consider schema mismatch, 
we will introduce JobSphere in which jobs occur as 
types. We will also use a stock market example, as in 
[KL], to illustrate schema mismatch. 

2.2 Domain Mappings 

The existence of different domains is not in itself a 
problem. So what if different databases represent 
money in different currencies? It only becomes a prob- 
lem when there is a need to see them all in some in- 
tegrated way. An important part of the solution is t,o 
be able to map between the domains in a group, 

A mapping pcj translates from elements of di to ele- 
ments of dj in a group D. The mappit?gs for the group 
might be provided as a single domarn group mopping 

pD(di,dj,Z) which takes as arguments a source and 
target domain, together with an elemtant of t,he source 
domain; it returns a corresponding element of thr t.ar- 

8 
et domain. It might simply invoke a corresponding 
irect mapping 

or it might do the conversion directly, based on appro- 
priate conversion factors. 

2.3 Localized Functions and Integra- 
tors 

St.ill, one doesn’t simply look at currencies; what we 
want to integrate are some facts involving those cur- 
rencies. The situation isn’t interesting until the vari- 
ous spheres have some stock prices, or some employee 
salaries, or other such facts. In a functional model, 
such facts are represented as functions; the facts of 
interest correspond to a set of functions 

fi :‘ti + di 

associated with the spheres si. These might, for ex- 
ample, be salaries of different sets of employees in a 
multi-national corporation, expressed in different cur- 
rencies. 

The existence of such functions and domains is still 
just a situation. It only becomes a problem when we 
want t&o see these facts in an integrated way, via an 
inlegrntor function 

f’ : t’ --+ d’ 

which might, for example, provide the salary of any 
employee, or the price of any stock. 

Thus in most cases, the treatment of domain mismatch 
can 

. 

b 

be separated into two parts: 

Mappings between domains (corresponding to the 
mappings in [KI,]). 

Integrator facilities which use such mappings (cor- 
responding to the rules in [KL]). 

Currency conversions represent mappings between dif- 
ferent domains, i.e., different ways of representing the 
territory of money values. The mapping is indepen- 
dent of usage. 

Integrator facilities depend on how the domains are 
being used. The paradigm for reconciling stock prices 
in different currencies may differ from the paradigm for 
reconciling salaries in different currencies, even though 
t,he same currency conversions are used. We might 
wish to see the average of stock prices but the sum of 
salaries. 

Domain mappings aren’t always independent of usage. 
We will also examine usage-dependent mappings. 

In later sections we will examine the definition and 
maintenance of domain mappings in detail, and then 
we will examine the definition and update of integrator 
functions. 
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2.4 Identifying Domains 

Domains often correspond to types in the various 
spheres. One would ideally hope to find the relevant 
domain specified as the result type’ in a function sig- 
nature, e.g., 

Salary: Employee -+ Dollars 

Unfortunately, domains often aren’t modeled as types. 
When literal subtypes can’t be defined, the result 
types of many functions are typically given as literal 
data types, such as Real or Char, without identifying 
the unit of measure, currency, or other relevant do- 
main. Currencies might simply be identified by char- 
acter string names, in which case the domain group 
Curr might simply be an enumerat’ed subtype of Char 
consisting of the names of the currencies. 

The actual domain might not be recorded anywhere, 
or it might be specified in the schema (dictionary) as 
an auxiliary property of the function. It might occa- 
sionally be returned with the function result, in some 
self-describing format (e.g., a Salary function might 
return both a money value and a currency code). It 
might conceivably be deduced from t,he type or some 
other property of the argument, e.g., the nationality 
of the employee. 

We can’t manage domain mismatch without ident,ify- 
ing the domains involved. We therefore postulate some 
function 6(f,z) which identifies the domain of the re- 
sult returned by f(z). It may or may not depend on 
the argument value 2. As mentioned, in the ideal case 
6(f,z) would simply return the result type from the 
signature of /, which might often bc a literal subtSype. 

Whether or not a domain di is a type, we can model 
it as a predicate such that di(~) is true if and only if 
z belongs to the domain. The populations of domains 
might be defined by various rules, in much the same 
way as derived types (Appendix A.2). One might be 
defined as the current set of results for some function; 
e.g., in JobSphere the domain of jobs might, Ix what- 
ever jobs people happen to he holtling at, the moment,: 

JobName ::= {x I3y AsgJob(y) = z}, 

or it might be defined as the set of jobs about which 
some data is maintained: 

JobName ::= {z 13~ JobSpecs = y}. 

This latter form might correspond to a domain defined 
as a primary key in a relational dat,ahase. 

Domains could be aggregate types, such as sets or tu- 
pies, but our examples only show atomic domains. 

3 Schema Mismatch 

Schema mismatch arises when similar co~~ccpt~ are ex- 
pressed differently in the schema. A cnlllmon byprocl- 
uct, is that data instances in one sphere correspond t.o 

’ “Domain” in the context of domain mismatch does not nec- 
essarily mean the domain of a function. A do.nain here can COI- 
respond either to the argument type or result type of a function. 
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schema elements in another. Depending on the model, 
the schema elements might be such thing as relations 
and attributes, entities and relationships, classes and 
methods, types and functions, etc. Our work will be 
expressed in terms of the types and functions in the 
Iris functional object model [Fl, F2j. 

Many schema mismatch problems are really domain 
mismatch problems, except that some of the domains 
are in the schema instead of in the data. Jobs, for 
example, are often modeled as types, i.e., subtypes 
of Employee. Instead of finding Sam’s job as a data 
value, e.g., AsgJob( Sum) = Engineer, we know that 
Sam is an engineer because he is an instance of the 
type, i.e., Engineer(Sam) is true. We thus have a 
JobSpheres in which jobs are types. In this case the 
domain itself is a set of types, i.e., the JobType type 
group (Appendix A.3). 

An example involving functions is adapted from the 
stock market examples of [KL]. We have a sphere 
StocLSpherel containing a base stock market A&iv- 
ity function on three arguments 

Activity: Company x Reading x Date -+ Price 

whose extension at the moment is shown in Figure 2. 

Activity 
Company 1 Reading 1 Date 11 Price 
hp I close I l/3/91 II 60 
hi, close l/4/91 51 
hp high l/3/91 62 
hp high l/4/91 53 
ibm close l/3/91 62 
ibm close l/4/91 61 
ibm 
ibm 

high 
high 

l/3/91 65 
l/4/91 64 

Figure 2: StockSpherel. 

Another sphere StockSpheres might maintain the 
same data in separate functions for each company, such 
as (Figure 3) 

HPActivity: Reading x Date -+ Price 
IBMActivity: Reading x Date + Pn’ce 

IBMActivitv 

high 
high 

Figure 3: ACFuncs function group in StockSphere2. 
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In SlockSpherel the domain of interest is a set of 
Company instances in the data. In SfockSphcre~ the 
corresponding domain is a set of functions, i.e., it, is a 
function group ACFuncs. 

4 The Nature of Domain Map- 
pings 

Mappings among domains have a wide variety of char- 
acteristics [BL, DII]: 

l Domain mappings could be multi-valued, e.g., a 
job in one company might correspond to a set of 
possible jobs in another company, or a color in 
one palette might correspond to several possible 
colors in another. 

l Domain mappings might be usage-dependent, in- 
volving auxiliary rules inseparable from the in- 
tegrator functions. Thus an 85 might. be a B 
for undergraduate courses, but an A for graduate 
courses. The mapping for jobs might depend on 
other attributes of the job-holder, such as length 
of time in job, or education level. 

l The mapping might be nat.ural, like a unit,s or 
currency conversion, or arbitrary, like mappings 
between jobs or colors, or the mapping from nu- 
meric grades to letter grades. It might be an ar- 
bitrary estirnate, such as a mapping from letter 
grades into numeric: A-95, B-85, etc. Such es- 
timates might be provided to facilitate statistical 
computations over large sets of students receiving 
both letter and number grades, even if there is 
some loss of accuracy. 

l If the mapping is not l:l, then it does not have 
a (single-valued) inverse. There is no natural in- 
verse of the mapping from numeric grades to letter 
grades. If an arbitrary estimate is introduced to 
serve as an inverse, then ident,ity may not be pre- 
served in composition: a 90 might. map t,o an A, 
then map back to a 95. 

l Mappings might be provided only among existing 
domains, or a new domain might be introduced 
to serve as a common denominator. ECU (Euro- 
pean Currency Units) is such a common denom- 
inator for national currencies. Or, different sys- 
tems for grading restaurant’s (movies, etc.) might 
be arbitrarily mapped int.o “low”, “medium”, and 
“high” 

l Domain mappings might be extended to yield 
auxiliary information besides a target domain 
value. The result might also include information 
about the source domain, or about the mapping 
process. Thus a conversion to do!lars might yield 
t,he result < 55.45, UK, 1.85 >, i.e., a dollar value, 
the country of origin, and the conversion used. 

That catalog of mapping characteristics illustrates the 
complexity of the domain mismatch problem, showing 
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that a rather rich language is required for its solu- 
tion. For our present purposes, we make the simplify- 
ing assumption that most useful domain mappings are 
usage-independent, and return simple single-valued re- 
sults. 

We should assume mappings are identities on a single 
domain: pD(di, di, Z) = Lc~i(+) = Z. 

The actual algorithms of domain mappings can be very 
rich and complex, involving various forms of computa- 
tion and assertion, requiring a “computationally com- 
plete” language for their expression. (It could be pro- 
cedural or declarative.) Following are a few examples 
in IPL.. . 

Simple numeric conversion: 

CREATE FUNCTION 
MapFoot2lnch(Number ft) --) Number in AS 

in := 12*ft; 

Non-algorithmic conversion might be done by some 
form of conditional (case statement, rule, etc.): 

CREATE FUNCTION 
MapColorsUS2French(Char us) + Char fr AS 

IF usz’red’ THEN fr := ‘rouge’; 
ELSE IF usz’white’ THEN fr :- ‘blanc’; 

ELSE fr := ‘unknown’; 

If the domains are large, or the mapping is frequently 
updated, it might be defined as a stored function 

CREATE FUNCTION 
Ma;Coti;UDS2French(Char us) - Char fr AS 

to be maintained by assertions such as 

MapColorsUS2French 
MapColorsUS2French t 

‘red’) := ‘rouge’; 
‘white’) := ‘blanc’; 

A domain group mapping for currencies, using a stored 
table of conversion rates: 

CREATE FUNCTION 
Con;yaOt; C;rr cl, Curr c2) -+ Number AS 

L, 

ConvRate(US,UK) ::= 1.85; 

CREATE FUNCTION 
MapCurr(Curr cl, Curr c2, Number x 

+ Num k er y AS 
IF cl=c2 THEN y := x 
ELSE y := x*ConvRate(cl,c2); 

Note the use of the domain group Curr as a type in 
the signature. 
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5 Maintaining Mappings and 
Domains 

The problem of maintaining mappings does not arise 
if the domains are fixed and the mappings are t,ot,all> 
defined, e.g., by a computation on data values. ‘I’llis 
is the case for units conversions, or st,ring mappings 
based on concatenation or similar operations. 

A mapping ~~~ might be a partial function, i.e., not 
defined for all values of the source domain di. For 
example, the mapping from letter grades to numeric 
may be defined as a mapping from character strings 
to integers, but only have defined values for five or six 
letters. The mapping would have t,o be adjust.ed if a 
new letter grade became meaningful. 

The maintenance problem most often arises from 
changes in the domains di or dj. Things might. he 
added to di or removed from dj; a result value of pfj 
might no longer exist, or might no longer belong to dj. 
Literal data types constitute fixed domains; their pop- 
ulations can’t change. In general, t,hough, t.he source 
and target domains di and dj might each have variable 
populations. Restricted literal types, such as enumer- 
ated types, might be fixed or variable, depending on 
whether they are subject to re-definit)ion. A domain 
defined by primary key values in a relational database 
is usually variable. Non-literal object t,ypes typically 
constitute variable domains, but they could somet,imes 
be considered fixed (e.g., the set of Earth’s planet,s). 

When the population of a domain changes, it ~nay af- 
fect mappings from and to this domain. \Vhen an el- 
ement is added to dk, it may be necessary t,o find 01 
create corresponding elements in the other domains ~1, 
in the group, and to adjust the mappings pcj. When 
an element is removed from dk, it may be necessary to 
remove or destroy corresponding elements in t,he other 
domains di in the group, and to adjust, tile mappings 
cl& 
The general problems: 

l When and how are such population changes de- 
tected, and the necessary adjustments initiated? 

defined for some argument. This will be discussed 
in subsequent sections. 

The easiest solution to implement puts the burden of 
responsibility on users, requiring them to manually 
maint.ain the domains and mappings by appropriately 
creating and deleting objects, and by modifying map- 
ping rules or data. In this case, when a mapping en- 
collnters an unfamiliar value it simply returns an error. 
The complexity of the problem still requires this solu- 
tion as a fall-back for the general case. 

The following sections identify some of the problems 
involved, and illustrate algorithmic solutions for some 
of the simpler cases. 

5.1 Mapping Faults 

We illustrate the case when a mapping is invoked with 
an argument for which it has no defined result, and it 
is programmed to make the adjustment. 

5.1.1 Creating Objects 

Let’s consider JobSphere and JobSphere?, in which 
jobs are represented as character strings and as per- 
sistent objects. In eneral, automatic object creation 
depends on being a le to do all the necessary initial- % 
ization. The correspondence here might simply be by 
name: the string in JobSphere is the name of the ob- 
ject in JobSpherez. When the mapping encounters a 
new string in JobSpherel, it could automatically cre- 
ate a job in JobSphere:, having that name: 

CREATE FUNCTION 
f;,gy;me2Job(Char n) --+ Job j AS 

j := SELECT Job jj WHERE Name(jj)=n; 
IF IsNull THEN 
BEGIN 

j := CREATE Job; 
Name(j) := n; 

END 
l How are the corresponding elements in other do- END; 

mains discovered or created? This is more com- 
plex if certain initializations arc required. Note the risk of relying on properties such as names 

l How are the mappings adjusted? 
as t,he basis for a mapping. If users can change the 
names of job objects, they may become unreliable for 

The need seems to arise in two contexts: mappings. 

l When it is necessary to enumerate the elements of 
some target domain dj, wit.h the expectation that 
it include the images of all the other domains di. 
This is much the same problcln as enumerating 
the instances of a derived type (r\ppfndix 1\.2). 

l IVhen a mapping is invoked, e.g.. when SOI’IICOIIC 
wants to see the jobs of all or certain people, as 
mapped into some target domain (1’. In this case, 
the adjustments could be triggered b y a “mapping 
fault” when the mapping recognizes that. it is not 

5.1.2 Creating Types 

The schema mismatch examples can be handled simi- 
larly. Suppose the target sphere is JobSpheres, which 
maint.ains jobs as types, e.g., as subtypes of Employee. 
The target domain for the mapping is the JobType 
type group described earlier. The appropriate action 
on encountering a new job name is to create a new 
type having that name: 
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CREATE FUNCTION 
F;gy;me2JobType(Char n) --) JobType j AS 

j := SELECT JobType jj 
WHERE Name(jj)=n; 

IF IsNull THEN 
BEGIN 

j := CREATE JobType; 
Name(j) := n; 

END 
END; 

Note that the object being created is a type. 

Without type groups, this mapping would have to be 
expressed in terms of Type rather than JobType. In 
that case it would really provide a mapping between 
any type and its name, whether or not the t,ype corre- 
sponds to a job. It would return spurious results when 
invoked with the name of a type which is not a job 
type. The problem cannot be solved simply by limiting 
to subtypes of Employee, since there may be other sub- 
types such as Male, Female, Retired, Exempt, Tempo- 
rary, PartTime, etc., which don’t correspond to jobs. 

5.1.3 Creating Functions 

Schema mismatch involving functions is also simi- 
lar. For the mapping CL!,* between StockSpherel 
and StockSpherez, we define the target domain in 
StockSphere as the function group ACFuncs. When- 
ever this mapping encounters a new company in 
StockSpherel, it should create a new funct.ion in the 
group. This can be done automatically if all the ini- 
tialization information is known. All functions in the 
group have the same signature, hence the argun-rent, 
and result types are known. The only thing niissing is 
a name for the function. We will assume that to be 
provided by an arbitrary MakeName function, which 
might engage in a user dialog to get a name, or it might 
simply concatenate some predefined prefix or suffix. 

If we don’t assume any algorithmic correspondence be- 
tween companies and functions, such as one based on 
naming patterns, then the correspondence has t,o bc 
maintained as stored assertions: 

CREATE FUNCTION 
Co2[~;4;; (Company c) -+ ACFuncs f AS 

With that, we can define the actual mapping function 
as 

CREATE FUNCTION 
l;gI..2ACFunc (Company c) --) ACFuncs f AS 

f := Co2FuncData(c); 
l&l;&J;ll(f) THEN 

fn := MakeName( 
f := CREATE ACFuncs fn(Reading,Date) - 

Price AS STORED; 
Co2FuncData(c) := f; 

END; 
END; 
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Note the programmatic creation of functions, with the 
function name provided in a variable. 

5.1.4 Completing the Mappings 

We have described how a mapping fault in pf might 
cause an adjustment to the mapping and the target 
domain d. upon encountering an unfamiliar element of 
a source d omain di. We haven’t addressed the question 
of further adjustments in other domains dk. How do 
we know how to map something from da into the new 
element of d ,? For example, when we created a new 
JobType in s obSphere3, how do we know how to map 
things from other spheres into that new type? 

We could wait until pfj faults on an unfamiliar ar- 
gument, and then see if’it should map to the recently 
created element in dj. But that raises a new ques- 
tion: how did we know to create a new element in dj 
when /.L?~ faulted? Maybe we should have mapped to 
a pre-existing element in dj. 

This is an aspect of the identity problem, trying to de- 
termine whether things in different domains are “the 
same thing”. Such identity problems are being investi- 
gat,ed separately, and are not addressed in this paper. 

5.2 Deletion 

All we do here is describe the problem. 

How do we know if deletion happens? 

When do jobs disappear in the first sphere? Under 
what conditions does the disappearance of a job name 
in the first sphere require deletion of the corresponding 
job in the second? There could be a pileup of superflu- 
ous objects when the corresponding literals disappear. 
(This could be more serious in schema mismatch, when 
the superfluous objects might be types or functions.) 

Under what conditions does deleting a job in the sec- 
ond sphere imply things should be changed in the first? 
What. sort, of change? Do people lose jobs? If we delete 
a job in the second sphere, and its name still occurs 
in the first, then the job might get re-created all over 
again in the second. 

The solutions require local administrators to establish 
policy, which needs to be expressible in the database 
programming language. 
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6 Integrated Use 

6.1 Integrator Functions 

The localized functions fi : 2i -+ di (Section 2.3) t,yp- 
ically occur in distinct spheres si whose autonomies 
need to be respected, i.e., new types, functions, or 
other objects cannot be created in these spheres for 
the purpose of integration. Integration is thus done 
in a new integrating sphere s*, which may or may not 
include the .si as sub-spheres. 

In terms of the salary example, the li would be set,s of 
employees in different countries, and t.he di correspond 
to the different currencies. The domain mappings /lFj 
are currency conversions. Salaries can be seen in a um- 
form way by mapping them into a common currency 
d’ in s*, which may or may not be one of the r/i. The 
localized functions fi might not have the same name, 
e.g., ‘Salary”, “Sal”, “Wages”, ‘Pay”, “Earnings”, 01 
equivalents in other languages. 

An integrating sphere might be in the style of one of 
the underlying spheres Sk, meaning that the forms and 
representations of functions, types, and objects in s* 
are like those in Sk. In that case we sometimes denote 
the integrating sphere as s*k to give us a hint of its 
style. 

The integrator function f‘ : t* + d’ would be defined 
in the integrating sphere 8, with 

t* =t1u...ut,, 
f*(l) ::= ifti(Z) then pD(di,d*, fi(z)). 

f*(z) chooses and executes the appropriate localized 
function fit then maps its result from t,he domain di 
to the domain d’. For now we rnak~ the simplifying 
assumption t,hat ti fl tj = d, for i # j, so t,hat we don’t 
have to worry about reconciling results from fi and fj 
for the same argument (to be relaxed later). 

We define the type group T = { 11,. . , t,,} and the 
function group F = {fl,. . ., fn) (Appendix A). 

The steps in evaluating f*(x): 

1. 

2. 

3. 

4. 

5. 

Determine the relevant type li of the argument s. 

Pick the corresponding localized function fi. 

Evaluate yi = fi(z). 

Identify the source domain di. 

Compute the final result by applying the domain 
group mapping: f*(x) = p’(diq d’, ?/i). 

Type groups (Appendix A.3) are useful for step 1. \\‘e 
are not interested in all the possible types to which 5 
might belong, but only one of the localized types ti in 
the group T. We can do step 1 as ti = Classif y(z, T). 

Step 2 requires choosing the localized function fi de- 
fined on the argument type li. Function groups are 
useful here since we don’t want just any function t.1ia.t 
happens to be defined on ti. Step 2 consists of picking 
the fi in F which is defined on ti. This mechanism is 
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at the heart of the integrator function, and will be dis- 
cussed at length in subsequent sections. (The astute 
reader may observe a close resemblance to the reso- 
luGon of overloaded functions.) Whatever the mech- 
anism, we can characterize it as a “binding” function 
@(f’, ti) which returns the corresponding fi E F. 

yi = fi(x) is readily evaluated for step 3. Step 4 is 
handled by the arbitrary function we defined in Sec- 
tion 2.4: di = S(fi,2). Step 5 is a straightforward 
application of the domain group mapping. 

Combining all these steps, we can express the behavior 
of f’(x) as 

f + P(f* ) Classif y(c T)), 
f*(a) = $%Vf,4,d*,f(4). 

The binding step, i.e., picking the localized function 
fi in F corresponding to the localized type td, can be 
done 

Implicitly via overloading. 

Programmatically, e.g., via case statements or 
conditionals. 

Via explicit stored mappings, using function 
groups. 

6.1.1 Binding Via Overloading 

Integrators strongly resemble overloaded functions. In 
both cases, invocation of a function requires choosing 
from a set of other functions to be executed. Simple 
resolution (binding) of overloaded functions is based 
on the types of the arguments, which is just what we 
want here. In fact, this is a very simple form of over- 
load resolution, since it is only based on single types, 
and there is no inheritance through intermediate types. 

Let’s first illustrate overloading applied to simple 
integration when there are no mismatches. As- 
sume we have disjoint sets of employees AEmployee 

ZEmployee, perhaps in different sectors of the com- 
pany, and there is a Salary function on each, all re- 
turning salaries in US dollars. These existing Salary 
funct.ions constitute a group of localized functions 
fA *.*f.Z. 
In order to access the salary of all employees, all we 
have to do is define a supertype spanning all the em- 
ployees [DH], with a Salary function defined on it (Fig- 
ure 4): 

CREATE TYPE Employee 
SUPERTYPE OF AEmployee . . .ZEmployee; 

CREATE FUNCTION 
Salary(Employee) 4 Number AS 0; 
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Salary Salary 

Figure 4: 

The Salary function on Employee is defined to provide 
a default value, in case the Employer supert,ype is in- 
stantiahle. Via late binding and overlontl rrsolut,ion 
[Ly], an invocation of Salary(x) will bind to t.he Salnry 
function defined on whichever subtype z belongs to. 
(We are still assuming these types are disjoint.) 

If the salary functions don’t all have the same name, 
overload resolution could be extended with a simple 
aliasing mechanism to allow them to behave as though 
they had the same name. Equivalently, the function 
group F could be explicitly defined as the set of func- 
tions to which f*(z) could be resolved. 

Overloading can also be exploited in several cases when 
there are domain mismatches, i.e., different currencies: 

l If localized functions can be installed to do the 
currency conversion. This reduces to t,he previous 
case. 

l Currency can be automatically determined, either 
because it is explicitly returned by the localized 
functions or because it can be deduced from the 
type or country of the employee. 

Assume now that the various Salary functions ret.urn 
results in local currencies, and we wan1 lo see tlic>ni all 
in US dollars. If there is a Collr,/ry l’ltnction dcfincd 
for each employee (possibly defined in terns of the 
subtype to which he belongs), then we might, define a 
global salary function as 

CREATE FUNCTION 
GSalary(Employee e) --+ Number s AS 
s := MapCurr(Country(e).‘US’,Salary(e)); 

Bere Salary(e) is again bound to the appropriate lo- 
calized function by overloading. Its result is then con- 
verted by MapCurr, based on the country of the em- 
ployee. Note that County is serving as the 6 function 
for identifying the domain. 

6.1.2 Binding By Cases 

When overloading cannot be explo;ted, equivalent 
functionality can be explicitly specified in condition- 
als, case statements, or rules. 

Suppose we didn’t have appropriate name correspon- 
dences, and aliasing is not supported (Figure 5). 

Then the Salary function for all eml~loyees coul~.l he 
written as 

Proceedings of the 17th International 
Conference on Very Large Data Bases 

---------------------- 

I I 
AEmployee . . . ZEmployee 

ASalary ZSalary 

Figure 5: 

CREATE FUNCTION 
SBa~aC;YNEmployee e) --) Number s AS 

IF AEmoloveefe) THEN 
s := Ma’pC’urr(C!ountry(e ,‘US’,ASalary(e)); 
ELSE IF BEmployee(e) 4 HEN 
s := MapCurr(Country(e),‘US’,BSalary(e)); 

ELSE IF ZEmployee(e) THEN 
s := MapCurr(Country(e),‘US’,ZSalary(e)); 
ELSE 0; /* or other default or error */ 

END; 

Note that compile-time type checking needs to observe 
the conditionals. For example, ASalay is applied to 
the variable e, which has only been declared as Em- 
ployee, not AEmployee. Verifying that e will in fact be 
bound to an instance of AEmployee requires awareness 
of the logic flow. An alternative would be to defer to 
ruu-time type checking. 

6.1.3 Binding Via Stored Mappings 

The logic of overloading can also be simulated via 
st.ored mappings. Suppose we defined the type group 
and function group 

I<mpType = {A Employee, . . , ZEmployeej 
SalFunc = {ASalary, , . . , ZSalary} 

as follows: 

CREATE TYPEGROUP EmpType; 
ADD TYPE EmpType TO 
TypeNamed(AEmployee),. . . , 

TypeNamed(ZEmployee); 

CREATE FUNCTIONGROUP SalFunc; 
ADD TYPE SalFunc TO 
FuncNamed(ASalary),. . . , 

FuncNamed(ZSalary); 

We can establish the mapping between EmpType and 
SalFunc in stored data: 

CREATE FUNCTION ET2SF (EmpType) --) 
SalFunc AS STORED; 

ET2SF(TypeNamed(‘AEmployee’)) := 
FuncNamed(‘ASalary ); 

ET2SF(TypeNamed(‘ZEmployee’)) := 
FuncNamed(‘ZSalary ); 
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Using the Classih function to determine the EmpType 
of an employee, we can define the Salary function on 
Employee as 

CREATE FUNCTION Salary(Employee e) -+ 
Number s AS 

s := MapCurr 
(r 

Country(e),‘US’, 
E 2SF(Classify(e,EmpType))(e)); 

Let’s do that again with the functions unnested, t,o see 
the logic: 

CREATE FUNCTION Salary(Employee e) -+ 
Number s AS 

BEGIN 
VAR t,f,x,c; 
t := Classify(e,EmpType); /*an EmpType*/ 
f := ET2SF(t); /* a salary function */ 
x := f(e); /* a salary in local currency */ 
c := Country(e); /* the local currency */ 
s := MapCurr(c,‘US’,x); 

/* convert to US currency */ 
END; 

Note the application of function variables. 

6.2 Generalized Integration 

Integrator functions have so far been relatively sim- 
ple, mimicking the behavior of the underlying locaiized 
functions by simply picking one of tllcm and convcrt- 
ing its result to another domain. 

Sometimes they need to be more elaborate, e.g., t,o 
reconcile mismatch wit,hin the argumcllt t.ype, to com- 
pensate for missing localized functions, to reconcile the 
results of several localized functions, to provide aux- 
iliary information, or to incorporate usage-dependent 
domain mappings. 

For a more general example, suppose wc wantt:tl t,o 
know the starting salaries of jobs in a multi-national 
corporation, where each sect,or in t.lle corporation may 
use different concepts and representations of jobs, as 
well as different currencies. The sectors correspond to 
the underlying spheres si, and the corporation is the 
integrating sphere 3. 

Corresponding to each domain group D = {dl, . , d,) 
there is an integrating domain d‘ in the sphere s’ . It 
is the target domain for the mappings /L:. to be rlsed 
in integration. If the integrating domain is “in the 
style of” one of the cfk, e.g., it uses the same sort of 
representation, we will write the domain as d’k. In this 
case, we would typically expect /LC, to be the identity 
mapping, i.e., pD(dk, d*k,z) = I. 

There are also image domains q, each being the srlbset 

of d’ covered by $‘*, i.e., those elPmt>nts of d’ \rhich 
are images of elements in di. 

Let’s say that each sphere si has a t,ype (domain) Job,, 
which together constitute the group JobGroup. Job] 
in sphere s1 might be a set of job names occurring 
as primary keys; Job:, in s2 might be a set of persis- 
tent job objects. The integrat.ing domain Job’ might, 

be chosen to be in the form of persistent job objects; 
if we reuse the objects in Job, then the integrating 
domain might be written Job’a. There may be more 
job objects in the latter, corresponding to jobs exist- 
ing in s1 but not in ~2. There may or may not be a 
direct correspondence between jobs in s’ and the jobs 
in any si, i.e., the mapping may be very complex and 
arbitrary, as discussed earlier. 

To get starting salaries in s* we need a function 
StartSal’: Job’ ---t d’. 

d’ is the common currency chosen for the corporation, 
e.g., US dollars. 

For a given job in Job*, the StartSal* function has to: 

1. Get the starting sa.lary from each sector that has 
such a job. 

2. Convert that to the common currency. 

3. Do something about results from multiple sectors. 
Step 1 is difficult if there is not a good inverse mapping 
from the integrated type Job* and the type Jobi in 
each sphere si. We will assume such a mapping exists. 

Step 1 essentially amounts to having a function 
SiurtSulr defined for each image domain Job;. A sim- 
ple case is when sphere si has a StartSali function, 
and there is a simple mapping ~ii from Job* to Jobi. 
It#‘s simplest when the nlapping is the identity map- 
ping; t,hen StarLS’ul~ (x) = StartSali(x). This simple 
case corresponds to our first integration example, in- 
volving salaries of employees. We essentially assumed 
that the Employee t,ype was already integrated, and 
t,llat a salary fulkction was available for each subtype 

If a StartSali function is not available, StartSal; has 
to be provided in some other way in s*, either explititly 
or implicitly. The mechanism might be to simply re- 
name (alias) an existing function in sir or to provide a 
function which either supplies a default value or makes 
use of other functions available in si. Such functions 
nlight be e.uplicitly defined in s*, or they might be im- 
plicitly specified in the definition of StartSal’ itself. 

6.2.1 Missing Localized Functions 

Sometimes the appropriate localized functions simply 
don’t exist,. Then it becomes necessary to invent them 
in the integrating sphere, either to provide default val- 
ues or to reconstruct results from other information 
known in the localized spheres. This can either be 
done directly within the integrator function, or by sim- 
ulating separate localized functions in the integrating 
sphere. 

For example, Lllere miglrl Ilot, be a Salary function for 
ZEmployees. but rarll~~r~ the two functions BasePay 
and OwrtzmePay WIIICI~ could be added together to 
give a total salary. One approach would be to define 
a Salary function for ZEmployees (in the integrating 
sphere, if autonomy needs to be respected as the sum 
of the other two. Then integration coul d proceed as 
before. Alternatively, it could be incorporated into the 
integrator function: 
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CREATE FUNCTION 
!Bar;,y Employee e) -+ Number s AS 

rl 
IF AEmployee e THEN 
s := MapCurr tc’ ountry(e ,‘US’,ASalary(e)); 
ELSE IF BEmployee(e) -2 HEN 
s := MapCurr(Country(e),‘US’,BSalary(e)); 

ELSE IF ZEmployee(e) THEN 
s := MapCurr(Country(e),‘US’, 

BasePay(e)+OvertimePay(e)); 
ELSE 0; /* or other default or error */ 

END: 

6.2.2 Integration of Overlapping Spheres 

When the underlying populations are not disjoint 
(h n ti # 4), th e results of several localized functions 
may need to be reconciled. This might arise, for ex- 
ample, when the same movie or restaurant is rated in 
several databases, or various sources of income for a 
given person are reported in different databases. The 
integrator function might be programmed to take var- 
ious possible actions, such as 

Simply report all the results, identifying the 
sources. 

Select a “best” one, by some criterion. 

Merge the results, perhaps by summing or aver- 
aging, as appropriate. 

While the resolution of this situation generally requires 
some arbitrary computation to he specified, two basic 
requirements can be identified: 

l Aggregation of multiple results from the localized 
functions. 

l Operations on such aggregates 

Suppose, for example, that an employee could belong 
to more than one EmpType, earning a salary in each. 

6 
We won’t say how that is detected across multiple 
atabases. Since we are not addressing identifier prob- 

lems in this paper, we simply assume an employee has 
the same identifier everywhere.) 

If we wished to simply report all such salaries for a 
given employee, together with t#he type from which 
each salary comes, we might define a query over the 
possible types: 

CREATE FUNCTION Salary(Employee e) -+ 
Set of <EmpType, Number> AS 

SELECT 
t, MapCurr(Country(e),‘US’,ET2SF(t)(e)) 

FOR EACH EmpType t WHERE t(e); 

The query in that function itcrates over the types 2 in 
EmpType (not over the instances of those types). If 
the employee e is an instance of an EmpType I, the 
result will include a tuple < t,s >. where s is the 
corresponding salary converted to US dollars. 
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Note the use of a type group in the signature and in 
the for-each clause. 

If we wished to simply report the sum of salaries: 

CREATE FUNCTION Salary(Employee e) + 
Number s AS 

s “sB”lBEsd;“c 

6.2.3 Auxiliary Results 

Auxiliary information might indicate the underlying 
source of the information, e.g., the currency from 
which it was converted. Or it might provide some in- 
dication of the reliability of the conversion; mapping 
from letter grades back to numeric might be accompa- 
nied by a flag identifying it as an estimate. Auxiliary 
information was illustrated in the previous section, 
when the particular EmpType was returned along with 
the salary. 

6.2.4 Usage-Dependent Domain Mappings 

Sometimes mappings cannot be separated from the 
integrator functions. The mapping might depend on 
auxiliary rules involving the use of the source domain. 
Thus an 85 might be a B for undergraduate courses, 
but an A for graduate courses. Similarly, the mapping 
for jobs might depend on other attributes of the job- 
holder, such as length of time in job, or educational 
level. Then the mapping needs to know the job-holder 
(or information about him), not just the job being 
mapped. In such cases the domain mappings would 
be incorporated into the integrator functions. 

6.3 Integrators For Schema Mismatch 

6.3.1 With Types 

In general, we can’t integrate JobSpheres with the 
other two without knowing which types correspond to 
jobs. It might occasionally turn out that those are 
the only (user-defined) types in the schema, or the 
only types that employees might possess, or the only 
subtypes of Employee. Usually, however, we can’t do 
the integration without type groups. 

Once we have the JobType type group, we can assume 
the three localized functions 

Job1 : Empl -+ JobName, 

Job2 : Empz * Job, 

,I063 : h’mp3 + JobType, 
Jobs(e) ::= Classify(e, Jobtype). 

in t.he three spheres (if not present, they could be 
added as part of the integration). Now we are back to 

156 
Barcelona, September, 1991 



the previous case of defining an integrator over three 
localized functions. 

Creating types in the integrat,ing sphere is potentially 
more complex than described in Sect,ion 5.1.2. Each 
created type is itself potentially an int.egrat,ing domain 
(Section 6.2) with a complex definition. 

Integrating the job spheres in the style of JobSpheres 
would require making each job a type. Introducing a 
new job such as “Designer” into JobSphere. means 
introducing a definition of Designer itself as a de- 
rived type, being the image of designer jobs in all the 
spheres. Providing a rule to generate such deAnit,ions 
automatically could be difficult.. 

Other uses of types in the integrated sphere are simi- 
larly complicated by the fact that they are essentially 
derived types (Appendix A.2), with corresponding im- 
plications for type checking and queries. 

6.3.2 With Functions 

The relationship between StockSpherel and Stock- 
Sphere2 is expressed in the equivalence 

Activity(c,r,d) = /~f,~(c)(r, d). 

That is, the function obtained from the mapping 
~f,~(c) (Section 5.1.3) is in turn applied to (r,d) to 
yield the same result as Activity(c, r, II). For example, 

~f,~ (HP) = HPActivity; 
Activity(HP,r,d) = HPActivity(r,d). 

As in [KL], we might want to 

1. Integrate in a sphere StockSphere’ in which all 
stocks are presented in the style of StockSpherel, 
i.e., as arguments to a single Aclivi2y’ funct,ion. 

2. Integrate in a sphere StockSphere’ in which all 
stocks are presented in the style of StockSpherez, 
i.e., via an individual XActivity’ function for 
each company X. 

The existing functions in the underlying spheres will 
be labelled Activity1 and XActivityz. 

For StockSphere’ , the integrator function has the 
form 

Activity’: Company’ x Reading x Date -+ 
Price. 

For simplicity, we assume that Reading, Date, and 
Price are uniform across the spheres. In this case, 
we are integrating mismatched arguments rather than 
results, and the general mechanisms of image domains 
and associated mappings as described in Section 6.2 
apply here. We will need image domains Company; 
and Company; corresponding to the stocks existing in 
the two spheres. As before, we start with the simpli- 
fying assumption that they are disjoint. 

A key step is to recognize that the localized function 
Activity2 does not exist. Wecan introduce it explicitly 
as a distinct function, or incorporat,e in t.o t.he definition 
of Activity* as follows: 

Act.ivity’(c, r, d) ::= 
ifcompanyl (c) then Activityl (c, r, d) 
else pf,2(c)(fj 4. 

The mapping /.J:,~ is largely the same as /.L?,~. 

For StockSphere’a , integration is actually accom- 
plished by a group of functions ACFuncs* cor- 
responding to the group of functions ACFuncs in 
StockSpherez. There may be more functions in 
ACFuncs’ than in ACFuncs. There is an integrator 
function for each company in either sphere, having a 
form such as 

HPActivity’(r, d) ::= 
ifCompanyl(HP) then Activityl(HP, r,d) 
else &(HP)(r, 4. 

Again, note that creating new functions in the inte- 
grating sphere is potentially more complex than de- 
scribed in Section 5.1.3. Each created function is itself 
an integrating function with a complex definition of 
the form just shown. 

6.4 Updating Integrator Functions 

Update is a major aspect of the domain mismatch 
problem. In the integrated view, we not only want to 
see the salaries of employees, we may want to update 
them as well. 

Update in a functlional object model [Sh, Fl, F2, Ly] 
is modeled as an assignment 

f(x) := Y 
causing subsequent invocations of f(z) to return y. A 
localized function could be directly updated by 

fi(Z) I= j/i 

in which yi is an element of di. This might be a di- 
rect update of the salary of an individual in his local 
currency. 

One might wish to do such updates throu h an inte- 
grator function, e.g., express a salary up f ate in US 
dollars and have it converted to the local currency. 
This might occur in a global update giving everyone 
in the compa.ny a 10% increase. 

With y* E d’, the update of an integrator function 

f’(x) := y’ 

should be performed as 

ifti(z) then fi(x) I= pD(d*, di, y’), 

i.e., 

1. 

2. 

Determine the type f+ of z (recall our disjointness 
assumption), 

Apply the corresponding mapping ~~~ (e.g., a cur- 
rency conversion) to y’, yielding an element yi of 
d;. 

3. Find the corresponding localized function fi. 
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4. Do the update. 

Update through integrator funct,ions is much the same 
as the view update problem. It can only be done au- 
tomatically in limited cases, i.e., when the integrator 
function and the domain mapping arc both simply in- 
vertible. Otherwise, as described in [KL], it is nec- 
essary to explicitly define the update algorithm to be 
associated with the integrator funclion, which could be 
done via “update entry points” (a proposed extension 
to OSQL): 

CREATE FUNCTION Salary(Employee e) - 
Number s AS 

s := MapCurr(Country(e),‘US’, 

ENTRY( 
ET2SF(Classify(e,EmpType))(e)); 

ET2SF‘(&sify(e,EmpType))(e) := 
MapCurr(‘US’,Country(e),s); 

As before, we can explode this without, nestfed func- 
tions to see the logic: 

CREATE FUNCTION Salary(Employee e) - 
Number s AS 

BEGIN 
VAR t,f,x,c; 
t := Classify 

I 
e,EmpType); /* an EmpType */ 

f := ET2SF t); /* a salary function */ 
x := f(e); /* a salary in local currency */ 
c := Country(e); /* the local currency */ 
s := MaDCurr(c.‘US’.xl: 

END; 
/* c‘onvert tk US currency */ 

EWG”;F;‘:=): 

VAR t,f,x,c; 

l 
; /*an EmpType*/ 

a sa ary function */ 
the local currency */ 

/*c&vert tdiocal currency*/ 
f(e) := x; /* the update */ 

END; 

Note the function variable in the uptlat,e. 

7 Conclusions 

Domain mismatch and schema mismatch are complex 
problems. They can best be understood by struct)ur- 
ing the environment in terms of domain groups corre- 
sponding to conceptual territ,orics, with different do- 
mains occurring in different spheres. Integration t.hPn 
occurs using integrating domains in an int,egrating 
sphere. The domain mismat#ch problem separates int.o 
two parts, t,he definition and maitrtcnance of doma.in 
mappings, and the definit,ion and upda.te of integra- 
tor functions. Schema mismatch can in many cases be 
reduced to the domain mismatch problem by treating 
type groups and function groups as tlolnains in them- 
selves. The problems can generally he decomposed 
intoa mapping aspect (corresponding to tile mappings 
in [KL]) and an integrating aspect (corresponding lo 
the rules in [KL]). 

Although such analysis and decomposition is helpful, 
the solutions generally require sophisticated language 
capabilities. The role of a database programming lan- 
guage is to permit the solutions to be expressed and 
maintained with the database, rather than in applica- 
tion code. 

Thus behavior specification is an essential contribution 
of object-orientation to the solution of the mismatch 
problem. Subtypes and supertypes are another essen- 
tial feature for reconciling disparate domains. Over- 
loaded operators are also useful. Object identity, on 
the other hand, seems to add problems: maintaining 
domain mappings can require explicit creation or dele- 
tion of persistent objects. 

In a context which includes type systems, persistent 
objects, and non-trivial correspondences between do- 
mains, desirable language facilities include: 

Arbitrary computational power: conditionals, it- 
eration, and probably even recursion (though we 
haven’t actively looked for examples requiring re- 
cursion), as well as aggregate types and opera- 
tions. 

Type and function groups, including disjointness 
and covering specifications. 

Uniform treatment of system and user objects: 

Uniform syntax/semantics for creating user- 
and system-type objects. 

Variables and expressions allowed wherever 
system objects can occur, i.e., functions and 
types. This would include their occurrence 
in declarations and queries. 

DDL within procedures, e.g., dynamic cre- 
ation of types and functions, with parame- 
terized arguments. 

User subtypes of system types (e.g., type and 
function groups). 

Creation of user-defined supertypes as well 
as subtypes. 

l Update entry points. 

l Extended overloading, via aliasing and compati- 
ble result types. 

l Derived types. 

l Subtypes of literals, including 

- Dimensioned types (units). 

- Enumerated types. 

- Lengt,h-constrained types. 

OSQL and IPL are still evolving, and we have not 
completed our analysis of the extent to which they 
currently support t,hese requirements. This will be 
continued in the Pegasus project. 
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A Appendix: Type Groups and 
Function Groups 

A.1 Types 

We model a type t as a predicate function t(z) which 
is true if and only if x is an instance oft. More gener- 
ally, for any predicate and its correspor,ding extension, 
we let p denote the set and p(x) the corresponding 
predicat,e expression, such t,hat l)(r) H x E p. Thus 
[p(x) = q(r) V r(x)] -+ [p = q lJ ~1. ‘T‘his notat ion 
applies to types and groups. 

A.2 Derived Types 

Like any function, predicate functions which serve as 
types can have their values established l>y assertion 
(stored c1nt.a) or by derivation r111w. ‘1‘11(> typr of RI1 

object call be asserted whe~r it is crcaIv(I (e.g., as a per- 
son) or lat,er during its lifetime (e.g., wllcn it Ix=con~cs 
an employee). 

Special derivation rules apply to t.ypes via subtype rc- 
lationships: every employee is a pc~rson. 

Derived types (a proposed extension t,o OSQL) could 
be defined in much the same way as derived fllnctions: 

CREATE TYPE Senior 
SUBTYPE OF Person x 
AS Age(x) > 65; 

Much like view maintenance, derived types can be 
supported in a backward-chaining or forward-chaining 
fashion. Backward chaining means the derivation is 
evaluated whenever the type is referenced (e.g.! in 
queries), which could be inefTicicnt for complex cleriva- 
tions. Forward chaining means tliat, rvcry acidilion 01 
deletion has to be detected (e.g., whenever a person is 
created or destroyed, or changes age) and propagated 
into the extension of the type. This would require 
some sort of monitor or trigger facilit,y. 

A.3 Type Groups 

A type group is a type whose instances arp types, i.r., 
a subtype of Type in t,he Iris modrl. It, is an auxiliary 
concept being proposed as an estrnsion t.o OSQL. 

Type groups are useful in the signatures of functions 
which have types as their argument,s or results, when 
they are const,rained to accept, or return rest rict,etl scat.s 
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of types. For example, when jobs such as Engineer 
and Programmer are types, we may want to define a 
mapping which returns one of these job types, but not 
any other type. We also might want a query to range 
over just this set of types. 

‘1‘1 p4’; roup (I he t.ype whose instances are type groups) 
wo111d itself be a type group, and so would Type. A 
t,ypc group such as JobType might be definable in 
OSQI, by eilher of the following: 

CREATE TYPEGROUP JobType; 

CREATE TYPE JobType SUBTYPE OF Type; 

‘1’11~ following three could then be equivalent: 

CREATE TYPE Engineer; 
ADD TYPE JobType TO Engineer; 

x := CREATE JobType; 
Name(x) := ‘Engineer’; 

CREATE JobType ‘Engineer’; 

Clnss/fy(r,g) classifies an object 2 with respect to the 
types in a group g, returning the types in g of which 
T is an instance: 

Classify: Object x TypeGroup -+ Type, 
Classify(x,g) ::= (2 1 g(l) A t(x)}, 

or, in OSQL, 

CREATE FUNCTION Classify(Object x, Type- 
Group g) -+ Set of Type AS 

SELECT Type t WHERE g(t) AND t(x); 

Soticc how types are being applied as variable func- 
t.ions (predicates) via 9 and t. 

If the types in g are disjoint, then Classify(x,g) is 
single-valued. For example, Classify(~, JobType) re- 
turns the instance of JobType of which 2 is an in- 
st,ancc. 

Type groups have several potential uses: 

l As domains when dealing with schema mismatch. 

0 In specifying that the types in a type group are 
disjoint, or that they cover or partition some other 
type. For example, JobType usually partitions 
Employee. 

Type groups are closely related to parameterized 
types. A “paramcterized t,ype” is typically not really 
a t ypc itself, but, a mapping into a set of types. A type 
group corresponds to the set into which this mapping 
maps. 

A.4 Covered Types 

A coflerrd lype (also a proposed OSQL extension) is 
tlio union of types in a type group: 

CREATE TYPE t COVERED BY T; 

The type Employee could be defined as being covered 
by the group JobType. 

Properties: 
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l Every instance 2i in the group 7‘ is a sul)typc of 1 

l Any type added to the group T becomes a suht,ype 
ofi. 

l The group T covers t, i.e., every instance of 1 is an 
instance of at least one ti E T. It follows that t has 
no “immediate” instances, i.e., it, is an abstract, 
type, not instantiable. Oi~,jcct~s cannot bc crwtctl 
as iristances of 1, or matlc instnncc:s of f (IIIII~S 
simultaneously made an instance of some f,). A 
type ti cannot be removed from an object, 1111less 
the object retains or is immediately given anot.her 
type tj E T. 

l If the group T is disjoint, then it patiilions t, i.e., 
every instance of t is an illstilrlcr: of exact,ly 011~ 
ii E T. 

Enumerating the instances of a type t covered by a 
group T is logically equivalent to the OSQL-like query 

SELECT UNIQUE x FROM Object x, Type ti 
WHERE T(ti) AND t;(x); 

A covered type is effectively a derived t.ype, i.e., one 
having a menlhership condition derivctf by somr r111c. 
Enumerating the instances of a covt=rcd t,ypr (‘ould be 
as difficult as enumerating the inst,anccs of a derived 
type, especially when the types in the covering group 
are themselves derived. 

Type groups provide a useful way t,o organize the sub- 
types of a type. A type can be covered or partitioned 
by several independent type grollps, corresponding to 
difTerent ways of subdividing the type. For ~samplc, 
employees might also bc partitioned Ijy the two sub- 
types Male and Female, which might constit,ulc a Gen- 
der type group. Employees may also be divided into 
subtypes A,B,C,. . . by organizational criteria, e.g., by 
division or country. These subtypes would constitute 
yet another type group. (It would hr interesting to 
explore combinations of type groups, yif>lfling groups 
of intersections of types, e.g., I\laleE:ngtneers.) 

A.5 Function Groups 

A function group is analogous to a type group, being a 
type whose instances are functions, hence a subtype of 
Function. Useful type groups t,gpically l~ave t.lw same 
or similar signat,ures, related via t,ypc groups. 

If types are modeled as predicat.e functions, t,hen type 
groups turn out to be a special case of fllnction groups. 
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