
Solving Domain Mismatch and
Schema Mismatch Problems

with an Object-Oriented
Database Programming Language

William Kent
Hewlett-Packard Laboratories

1501 Page Mill Road
Palo Alto, CA 94303-0971, USA

kent@hplabs.hp.com

Abstract

Domain mismatch _. and schema mismatch are
two of the important semantic integration
problems for interoperating heterogeneous
databases. This paper structures the domain
mismatch problem, illustrates approaches to
its solution, and then extends r.his to the
schema mismatch problem. Structuring of
the problem and solution includes notions of
conceptual territory, spheres, domain groups,
localized and integrator functions, and type
and function groups. Despite this structur-
ing, the full generality of the problem still
requires a rich language in which to describe
the rules for reconciling discrepancies. Exarn-
ple solutions are illustrated in the Iris Pro-
gr;ring Language (IPL) extension of Iris

1 Introduction

Domain mismatch and schema mismatch a.re two of
the important semantic integration problems for in-
teroperating heterogeneous databases, as illustrated in
[Ke, BL, DH]. Domain mismatch generally arises when
several databases treat some common conceptual t,erri-
tory in different ways, the simplest example being dif-
ferences in units of measurement. Schema mismatch
is much the same thing at the schema level. An in-
teresting “cross-over” problem arises when t’hings in
the data of one database correspond to t,hings in t,he
schema of another.

In this paper we structure the domain mismatch prob-
lem, illustrate approaches to its solution, and then ex-
tend this to the schema mismatch problem. Struc-
turing of the problem and solution includes notions
of conceptual territory, spheres, domain groups, lo-
calized and integrator functions, a1u1 type and func-
tion groups. Despite this struct,uring, the full gen-
erality of the problem still requires a rich language
in which to describe the rules for reconciling discrep-

Proceedings of the 17th International
Conference on Very Large Data Bases

ancies. Example solutions are illustrated in the Iris
Programming Language (IPL) extension of Iris OSQL
[An, Ly, Fl, F2 , with some further extensions being

I proposed as we1 .

To isolate these problems from other integration prob-
lems, we. assume that the participating databases have
been mapped into a single model, namely the Iris func-
tional object model [AR]. We also avoid naming and
identification problems, as well as other problems asso-
ciated with the integration of heterogeneous databases.
For the purpose of this paper, it hardly even matters
whether things are in different databases; such seman-
tic discrepancies could arise as well within a single
database.

This work is part of the Pegasus project at HP Labs
[AD, PP], which is prototyping an extension of Iris to
integrate heterogeneous dat,abases.

2 Domain Mismatch

2.1 Territories, Spheres, and Groups

The clomain mismatch problem begins when some
common conceptual territory is treated in different
ways by different domains in different spheres. Spheres
are usually different databases, but could also be sub-
sets of the schema and data of one database, and might
also span multiple databases, One sphere might be
included in another. In Figure 1, the spheres might
be databases in different countries for a multi-national
corporation.

Conceptual Sph eres
Territories US UK m

money ml m2 m3 +-domain group
jobs jl jz j3 +domain group

colors cl c2 c3 *domain group

Figure 1: Domains.

A domat7r group is a set of domains di which cover

147
Barcelona, September, 1991

some conceptual territory. Each domain di is typically
in a distinct sphere si. In Figure 1, the domains ml,
rraz, ms might be different currencies in which money
is represented.

When the conceptual territory is a measured quan-
tity, such as weight, the different. domains in the group
would simply be different represent,at,ions t=xpresspd in
different units; this mismatch is easily reconciled by
arithmetic. The spheres might be different databases,
or they might be different sets of measurements in the
same database, e.g., the weights used for cars and the
weights used for horses.

More complex discrepancies arise when the same con-
ceptual territory is perceived as being populated, or
partitioned, in different ways. The concept of “.job”
might be common to several spheres, yet each sphere
has a different notion of what the specific jobs are.
One sphere might have engineer, secretary, and sales-
man as jobs, while the jobs in another might -include
technician, designer, engineer, secretary, administra-
tive assistant, and customer representative. The same
thing might arise with the sets of skills one might
possess, or with ethnic groupings, or wit.11 organiza-
tional units within different business entit,ies (projects,
departments, sections, labs, divisions, groups, opera-
tions, sectors, etc.).

Other examples might include different palettes of col-
ors covering the same spectrum, different grading sys-
tems at different schools, different rating systems for
restaurants (or for movies, or for hotels, et.c.), t.erms
in different languages for the same or simi1a.r c.oncept.s,
different kinds of geographic units (counties vs. post.al
codes vs. voting districts vs. assessment districts,
etc.). Another kind of mismatch arises if things are
represented in one sphere as character strings but in
another as persistent objects.

Many examples in this paper deal with employees re-
ceiving salaries in different currencies. Sonle examples
try to reconcile a sphere in which jobs are represented
as character strings (JobSpherel) with anot,her sphere
in which they are represented as persist.ent objects
(JobSphere~). When we consider schema mismatch,
we will introduce JobSphere in which jobs occur as
types. We will also use a stock market example, as in
[KL], to illustrate schema mismatch.

2.2 Domain Mappings

The existence of different domains is not in itself a
problem. So what if different databases represent
money in different currencies? It only becomes a prob-
lem when there is a need to see them all in some in-
tegrated way. An important part of the solution is t,o
be able to map between the domains in a group,

A mapping pcj translates from elements of di to ele-
ments of dj in a group D. The mappit?gs for the group
might be provided as a single domarn group mopping

pD(di,dj,Z) which takes as arguments a source and
target domain, together with an elemtant of t,he source
domain; it returns a corresponding element of thr t.ar-

8
et domain. It might simply invoke a corresponding
irect mapping

or it might do the conversion directly, based on appro-
priate conversion factors.

2.3 Localized Functions and Integra-
tors

St.ill, one doesn’t simply look at currencies; what we
want to integrate are some facts involving those cur-
rencies. The situation isn’t interesting until the vari-
ous spheres have some stock prices, or some employee
salaries, or other such facts. In a functional model,
such facts are represented as functions; the facts of
interest correspond to a set of functions

fi :‘ti + di

associated with the spheres si. These might, for ex-
ample, be salaries of different sets of employees in a
multi-national corporation, expressed in different cur-
rencies.

The existence of such functions and domains is still
just a situation. It only becomes a problem when we
want t&o see these facts in an integrated way, via an
inlegrntor function

f’ : t’ --+ d’

which might, for example, provide the salary of any
employee, or the price of any stock.

Thus in most cases, the treatment of domain mismatch
can

.

b

be separated into two parts:

Mappings between domains (corresponding to the
mappings in [KI,]).

Integrator facilities which use such mappings (cor-
responding to the rules in [KL]).

Currency conversions represent mappings between dif-
ferent domains, i.e., different ways of representing the
territory of money values. The mapping is indepen-
dent of usage.

Integrator facilities depend on how the domains are
being used. The paradigm for reconciling stock prices
in different currencies may differ from the paradigm for
reconciling salaries in different currencies, even though
t,he same currency conversions are used. We might
wish to see the average of stock prices but the sum of
salaries.

Domain mappings aren’t always independent of usage.
We will also examine usage-dependent mappings.

In later sections we will examine the definition and
maintenance of domain mappings in detail, and then
we will examine the definition and update of integrator
functions.

Proceediigs of the 17th International
Conference on Very Large Data Bases

148
Barcelona, September. 1991

2.4 Identifying Domains

Domains often correspond to types in the various
spheres. One would ideally hope to find the relevant
domain specified as the result type’ in a function sig-
nature, e.g.,

Salary: Employee -+ Dollars

Unfortunately, domains often aren’t modeled as types.
When literal subtypes can’t be defined, the result
types of many functions are typically given as literal
data types, such as Real or Char, without identifying
the unit of measure, currency, or other relevant do-
main. Currencies might simply be identified by char-
acter string names, in which case the domain group
Curr might simply be an enumerat’ed subtype of Char
consisting of the names of the currencies.

The actual domain might not be recorded anywhere,
or it might be specified in the schema (dictionary) as
an auxiliary property of the function. It might occa-
sionally be returned with the function result, in some
self-describing format (e.g., a Salary function might
return both a money value and a currency code). It
might conceivably be deduced from t,he type or some
other property of the argument, e.g., the nationality
of the employee.

We can’t manage domain mismatch without ident,ify-
ing the domains involved. We therefore postulate some
function 6(f,z) which identifies the domain of the re-
sult returned by f(z). It may or may not depend on
the argument value 2. As mentioned, in the ideal case
6(f,z) would simply return the result type from the
signature of /, which might often bc a literal subtSype.

Whether or not a domain di is a type, we can model
it as a predicate such that di(~) is true if and only if
z belongs to the domain. The populations of domains
might be defined by various rules, in much the same
way as derived types (Appendix A.2). One might be
defined as the current set of results for some function;
e.g., in JobSphere the domain of jobs might, Ix what-
ever jobs people happen to he holtling at, the moment,:

JobName ::= {x I3y AsgJob(y) = z},

or it might be defined as the set of jobs about which
some data is maintained:

JobName ::= {z 13~ JobSpecs = y}.

This latter form might correspond to a domain defined
as a primary key in a relational dat,ahase.

Domains could be aggregate types, such as sets or tu-
pies, but our examples only show atomic domains.

3 Schema Mismatch

Schema mismatch arises when similar co~~ccpt~ are ex-
pressed differently in the schema. A cnlllmon byprocl-
uct, is that data instances in one sphere correspond t.o

’ “Domain” in the context of domain mismatch does not nec-
essarily mean the domain of a function. A do.nain here can COI-
respond either to the argument type or result type of a function.

Proceedings of the 17th International
Conference on Very Large Data Bases

schema elements in another. Depending on the model,
the schema elements might be such thing as relations
and attributes, entities and relationships, classes and
methods, types and functions, etc. Our work will be
expressed in terms of the types and functions in the
Iris functional object model [Fl, F2j.

Many schema mismatch problems are really domain
mismatch problems, except that some of the domains
are in the schema instead of in the data. Jobs, for
example, are often modeled as types, i.e., subtypes
of Employee. Instead of finding Sam’s job as a data
value, e.g., AsgJob(Sum) = Engineer, we know that
Sam is an engineer because he is an instance of the
type, i.e., Engineer(Sam) is true. We thus have a
JobSpheres in which jobs are types. In this case the
domain itself is a set of types, i.e., the JobType type
group (Appendix A.3).

An example involving functions is adapted from the
stock market examples of [KL]. We have a sphere
StocLSpherel containing a base stock market A&iv-
ity function on three arguments

Activity: Company x Reading x Date -+ Price

whose extension at the moment is shown in Figure 2.

Activity
Company 1 Reading 1 Date 11 Price
hp I close I l/3/91 II 60
hi, close l/4/91 51
hp high l/3/91 62
hp high l/4/91 53
ibm close l/3/91 62
ibm close l/4/91 61
ibm
ibm

high
high

l/3/91 65
l/4/91 64

Figure 2: StockSpherel.

Another sphere StockSpheres might maintain the
same data in separate functions for each company, such
as (Figure 3)

HPActivity: Reading x Date -+ Price
IBMActivity: Reading x Date + Pn’ce

IBMActivitv

high
high

Figure 3: ACFuncs function group in StockSphere2.

149
Barcelona, September, 1991

In SlockSpherel the domain of interest is a set of
Company instances in the data. In SfockSphcre~ the
corresponding domain is a set of functions, i.e., it, is a
function group ACFuncs.

4 The Nature of Domain Map-
pings

Mappings among domains have a wide variety of char-
acteristics [BL, DII]:

l Domain mappings could be multi-valued, e.g., a
job in one company might correspond to a set of
possible jobs in another company, or a color in
one palette might correspond to several possible
colors in another.

l Domain mappings might be usage-dependent, in-
volving auxiliary rules inseparable from the in-
tegrator functions. Thus an 85 might. be a B
for undergraduate courses, but an A for graduate
courses. The mapping for jobs might depend on
other attributes of the job-holder, such as length
of time in job, or education level.

l The mapping might be nat.ural, like a unit,s or
currency conversion, or arbitrary, like mappings
between jobs or colors, or the mapping from nu-
meric grades to letter grades. It might be an ar-
bitrary estirnate, such as a mapping from letter
grades into numeric: A-95, B-85, etc. Such es-
timates might be provided to facilitate statistical
computations over large sets of students receiving
both letter and number grades, even if there is
some loss of accuracy.

l If the mapping is not l:l, then it does not have
a (single-valued) inverse. There is no natural in-
verse of the mapping from numeric grades to letter
grades. If an arbitrary estimate is introduced to
serve as an inverse, then ident,ity may not be pre-
served in composition: a 90 might. map t,o an A,
then map back to a 95.

l Mappings might be provided only among existing
domains, or a new domain might be introduced
to serve as a common denominator. ECU (Euro-
pean Currency Units) is such a common denom-
inator for national currencies. Or, different sys-
tems for grading restaurant’s (movies, etc.) might
be arbitrarily mapped int.o “low”, “medium”, and
“high”

l Domain mappings might be extended to yield
auxiliary information besides a target domain
value. The result might also include information
about the source domain, or about the mapping
process. Thus a conversion to do!lars might yield
t,he result < 55.45, UK, 1.85 >, i.e., a dollar value,
the country of origin, and the conversion used.

That catalog of mapping characteristics illustrates the
complexity of the domain mismatch problem, showing

Proceedings of the 17th International
Conference on Very Large Data Bases

that a rather rich language is required for its solu-
tion. For our present purposes, we make the simplify-
ing assumption that most useful domain mappings are
usage-independent, and return simple single-valued re-
sults.

We should assume mappings are identities on a single
domain: pD(di, di, Z) = Lc~i(+) = Z.

The actual algorithms of domain mappings can be very
rich and complex, involving various forms of computa-
tion and assertion, requiring a “computationally com-
plete” language for their expression. (It could be pro-
cedural or declarative.) Following are a few examples
in IPL.. .

Simple numeric conversion:

CREATE FUNCTION
MapFoot2lnch(Number ft) --) Number in AS

in := 12*ft;

Non-algorithmic conversion might be done by some
form of conditional (case statement, rule, etc.):

CREATE FUNCTION
MapColorsUS2French(Char us) + Char fr AS

IF usz’red’ THEN fr := ‘rouge’;
ELSE IF usz’white’ THEN fr :- ‘blanc’;

ELSE fr := ‘unknown’;

If the domains are large, or the mapping is frequently
updated, it might be defined as a stored function

CREATE FUNCTION
Ma;Coti;UDS2French(Char us) - Char fr AS

to be maintained by assertions such as

MapColorsUS2French
MapColorsUS2French t

‘red’) := ‘rouge’;
‘white’) := ‘blanc’;

A domain group mapping for currencies, using a stored
table of conversion rates:

CREATE FUNCTION
Con;yaOt; C;rr cl, Curr c2) -+ Number AS

L,

ConvRate(US,UK) ::= 1.85;

CREATE FUNCTION
MapCurr(Curr cl, Curr c2, Number x

+ Num k er y AS
IF cl=c2 THEN y := x
ELSE y := x*ConvRate(cl,c2);

Note the use of the domain group Curr as a type in
the signature.

150
Barcelona, September, 1991

5 Maintaining Mappings and
Domains

The problem of maintaining mappings does not arise
if the domains are fixed and the mappings are t,ot,all>
defined, e.g., by a computation on data values. ‘I’llis
is the case for units conversions, or st,ring mappings
based on concatenation or similar operations.

A mapping ~~~ might be a partial function, i.e., not
defined for all values of the source domain di. For
example, the mapping from letter grades to numeric
may be defined as a mapping from character strings
to integers, but only have defined values for five or six
letters. The mapping would have t,o be adjust.ed if a
new letter grade became meaningful.

The maintenance problem most often arises from
changes in the domains di or dj. Things might. he
added to di or removed from dj; a result value of pfj
might no longer exist, or might no longer belong to dj.
Literal data types constitute fixed domains; their pop-
ulations can’t change. In general, t,hough, t.he source
and target domains di and dj might each have variable
populations. Restricted literal types, such as enumer-
ated types, might be fixed or variable, depending on
whether they are subject to re-definit)ion. A domain
defined by primary key values in a relational database
is usually variable. Non-literal object t,ypes typically
constitute variable domains, but they could somet,imes
be considered fixed (e.g., the set of Earth’s planet,s).

When the population of a domain changes, it ~nay af-
fect mappings from and to this domain. \Vhen an el-
ement is added to dk, it may be necessary t,o find 01
create corresponding elements in the other domains ~1,
in the group, and to adjust the mappings pcj. When
an element is removed from dk, it may be necessary to
remove or destroy corresponding elements in t,he other
domains di in the group, and to adjust, tile mappings
cl&
The general problems:

l When and how are such population changes de-
tected, and the necessary adjustments initiated?

defined for some argument. This will be discussed
in subsequent sections.

The easiest solution to implement puts the burden of
responsibility on users, requiring them to manually
maint.ain the domains and mappings by appropriately
creating and deleting objects, and by modifying map-
ping rules or data. In this case, when a mapping en-
collnters an unfamiliar value it simply returns an error.
The complexity of the problem still requires this solu-
tion as a fall-back for the general case.

The following sections identify some of the problems
involved, and illustrate algorithmic solutions for some
of the simpler cases.

5.1 Mapping Faults

We illustrate the case when a mapping is invoked with
an argument for which it has no defined result, and it
is programmed to make the adjustment.

5.1.1 Creating Objects

Let’s consider JobSphere and JobSphere?, in which
jobs are represented as character strings and as per-
sistent objects. In eneral, automatic object creation
depends on being a le to do all the necessary initial- %
ization. The correspondence here might simply be by
name: the string in JobSphere is the name of the ob-
ject in JobSpherez. When the mapping encounters a
new string in JobSpherel, it could automatically cre-
ate a job in JobSphere:, having that name:

CREATE FUNCTION
f;,gy;me2Job(Char n) --+ Job j AS

j := SELECT Job jj WHERE Name(jj)=n;
IF IsNull THEN
BEGIN

j := CREATE Job;
Name(j) := n;

END
l How are the corresponding elements in other do- END;

mains discovered or created? This is more com-
plex if certain initializations arc required. Note the risk of relying on properties such as names

l How are the mappings adjusted?
as t,he basis for a mapping. If users can change the
names of job objects, they may become unreliable for

The need seems to arise in two contexts: mappings.

l When it is necessary to enumerate the elements of
some target domain dj, wit.h the expectation that
it include the images of all the other domains di.
This is much the same problcln as enumerating
the instances of a derived type (r\ppfndix 1\.2).

l IVhen a mapping is invoked, e.g.. when SOI’IICOIIC
wants to see the jobs of all or certain people, as
mapped into some target domain (1’. In this case,
the adjustments could be triggered b y a “mapping
fault” when the mapping recognizes that. it is not

5.1.2 Creating Types

The schema mismatch examples can be handled simi-
larly. Suppose the target sphere is JobSpheres, which
maint.ains jobs as types, e.g., as subtypes of Employee.
The target domain for the mapping is the JobType
type group described earlier. The appropriate action
on encountering a new job name is to create a new
type having that name:

Proceedings of the 17th International
Conference on Very Large Data Bases

Barcelona, September, 1991
1.51

CREATE FUNCTION
F;gy;me2JobType(Char n) --) JobType j AS

j := SELECT JobType jj
WHERE Name(jj)=n;

IF IsNull THEN
BEGIN

j := CREATE JobType;
Name(j) := n;

END
END;

Note that the object being created is a type.

Without type groups, this mapping would have to be
expressed in terms of Type rather than JobType. In
that case it would really provide a mapping between
any type and its name, whether or not the t,ype corre-
sponds to a job. It would return spurious results when
invoked with the name of a type which is not a job
type. The problem cannot be solved simply by limiting
to subtypes of Employee, since there may be other sub-
types such as Male, Female, Retired, Exempt, Tempo-
rary, PartTime, etc., which don’t correspond to jobs.

5.1.3 Creating Functions

Schema mismatch involving functions is also simi-
lar. For the mapping CL!,* between StockSpherel
and StockSpherez, we define the target domain in
StockSphere as the function group ACFuncs. When-
ever this mapping encounters a new company in
StockSpherel, it should create a new funct.ion in the
group. This can be done automatically if all the ini-
tialization information is known. All functions in the
group have the same signature, hence the argun-rent,
and result types are known. The only thing niissing is
a name for the function. We will assume that to be
provided by an arbitrary MakeName function, which
might engage in a user dialog to get a name, or it might
simply concatenate some predefined prefix or suffix.

If we don’t assume any algorithmic correspondence be-
tween companies and functions, such as one based on
naming patterns, then the correspondence has t,o bc
maintained as stored assertions:

CREATE FUNCTION
Co2[~;4;; (Company c) -+ ACFuncs f AS

With that, we can define the actual mapping function
as

CREATE FUNCTION
l;gI..2ACFunc (Company c) --) ACFuncs f AS

f := Co2FuncData(c);
l&l;&J;ll(f) THEN

fn := MakeName(
f := CREATE ACFuncs fn(Reading,Date) -

Price AS STORED;
Co2FuncData(c) := f;

END;
END;

Procxe4lings of the 17th International
Conference on Very Large Data Bases

Note the programmatic creation of functions, with the
function name provided in a variable.

5.1.4 Completing the Mappings

We have described how a mapping fault in pf might
cause an adjustment to the mapping and the target
domain d. upon encountering an unfamiliar element of
a source d omain di. We haven’t addressed the question
of further adjustments in other domains dk. How do
we know how to map something from da into the new
element of d ,? For example, when we created a new
JobType in s obSphere3, how do we know how to map
things from other spheres into that new type?

We could wait until pfj faults on an unfamiliar ar-
gument, and then see if’it should map to the recently
created element in dj. But that raises a new ques-
tion: how did we know to create a new element in dj
when /.L?~ faulted? Maybe we should have mapped to
a pre-existing element in dj.

This is an aspect of the identity problem, trying to de-
termine whether things in different domains are “the
same thing”. Such identity problems are being investi-
gat,ed separately, and are not addressed in this paper.

5.2 Deletion

All we do here is describe the problem.

How do we know if deletion happens?

When do jobs disappear in the first sphere? Under
what conditions does the disappearance of a job name
in the first sphere require deletion of the corresponding
job in the second? There could be a pileup of superflu-
ous objects when the corresponding literals disappear.
(This could be more serious in schema mismatch, when
the superfluous objects might be types or functions.)

Under what conditions does deleting a job in the sec-
ond sphere imply things should be changed in the first?
What. sort, of change? Do people lose jobs? If we delete
a job in the second sphere, and its name still occurs
in the first, then the job might get re-created all over
again in the second.

The solutions require local administrators to establish
policy, which needs to be expressible in the database
programming language.

152
Barcelona, September, 1991

6 Integrated Use

6.1 Integrator Functions

The localized functions fi : 2i -+ di (Section 2.3) t,yp-
ically occur in distinct spheres si whose autonomies
need to be respected, i.e., new types, functions, or
other objects cannot be created in these spheres for
the purpose of integration. Integration is thus done
in a new integrating sphere s*, which may or may not
include the .si as sub-spheres.

In terms of the salary example, the li would be set,s of
employees in different countries, and t.he di correspond
to the different currencies. The domain mappings /lFj
are currency conversions. Salaries can be seen in a um-
form way by mapping them into a common currency
d’ in s*, which may or may not be one of the r/i. The
localized functions fi might not have the same name,
e.g., ‘Salary”, “Sal”, “Wages”, ‘Pay”, “Earnings”, 01
equivalents in other languages.

An integrating sphere might be in the style of one of
the underlying spheres Sk, meaning that the forms and
representations of functions, types, and objects in s*
are like those in Sk. In that case we sometimes denote
the integrating sphere as s*k to give us a hint of its
style.

The integrator function f‘ : t* + d’ would be defined
in the integrating sphere 8, with

t* =t1u...ut,,
f*(l) ::= ifti(Z) then pD(di,d*, fi(z)).

f*(z) chooses and executes the appropriate localized
function fit then maps its result from t,he domain di
to the domain d’. For now we rnak~ the simplifying
assumption t,hat ti fl tj = d, for i # j, so t,hat we don’t
have to worry about reconciling results from fi and fj
for the same argument (to be relaxed later).

We define the type group T = { 11,. . , t,,} and the
function group F = {fl,. . ., fn) (Appendix A).

The steps in evaluating f*(x):

1.

2.

3.

4.

5.

Determine the relevant type li of the argument s.

Pick the corresponding localized function fi.

Evaluate yi = fi(z).

Identify the source domain di.

Compute the final result by applying the domain
group mapping: f*(x) = p’(diq d’, ?/i).

Type groups (Appendix A.3) are useful for step 1. \\‘e
are not interested in all the possible types to which 5
might belong, but only one of the localized types ti in
the group T. We can do step 1 as ti = Classif y(z, T).

Step 2 requires choosing the localized function fi de-
fined on the argument type li. Function groups are
useful here since we don’t want just any function t.1ia.t
happens to be defined on ti. Step 2 consists of picking
the fi in F which is defined on ti. This mechanism is

Proceedings of the 17th International
Conference on Very Large Data Bases

at the heart of the integrator function, and will be dis-
cussed at length in subsequent sections. (The astute
reader may observe a close resemblance to the reso-
luGon of overloaded functions.) Whatever the mech-
anism, we can characterize it as a “binding” function
@(f’, ti) which returns the corresponding fi E F.

yi = fi(x) is readily evaluated for step 3. Step 4 is
handled by the arbitrary function we defined in Sec-
tion 2.4: di = S(fi,2). Step 5 is a straightforward
application of the domain group mapping.

Combining all these steps, we can express the behavior
of f’(x) as

f + P(f*) Classif y(c T)),
f*(a) = $%Vf,4,d*,f(4).

The binding step, i.e., picking the localized function
fi in F corresponding to the localized type td, can be
done

Implicitly via overloading.

Programmatically, e.g., via case statements or
conditionals.

Via explicit stored mappings, using function
groups.

6.1.1 Binding Via Overloading

Integrators strongly resemble overloaded functions. In
both cases, invocation of a function requires choosing
from a set of other functions to be executed. Simple
resolution (binding) of overloaded functions is based
on the types of the arguments, which is just what we
want here. In fact, this is a very simple form of over-
load resolution, since it is only based on single types,
and there is no inheritance through intermediate types.

Let’s first illustrate overloading applied to simple
integration when there are no mismatches. As-
sume we have disjoint sets of employees AEmployee

ZEmployee, perhaps in different sectors of the com-
pany, and there is a Salary function on each, all re-
turning salaries in US dollars. These existing Salary
funct.ions constitute a group of localized functions
fA *.*f.Z.
In order to access the salary of all employees, all we
have to do is define a supertype spanning all the em-
ployees [DH], with a Salary function defined on it (Fig-
ure 4):

CREATE TYPE Employee
SUPERTYPE OF AEmployee . . .ZEmployee;

CREATE FUNCTION
Salary(Employee) 4 Number AS 0;

153
Barcelona, September, 1991

Employee

t Sa1ary

Employee

I Sdlary
--------------------__

I I
AEmployee . . , ZEmployee

Salary Salary

Figure 4:

The Salary function on Employee is defined to provide
a default value, in case the Employer supert,ype is in-
stantiahle. Via late binding and overlontl rrsolut,ion
[Ly], an invocation of Salary(x) will bind to t.he Salnry
function defined on whichever subtype z belongs to.
(We are still assuming these types are disjoint.)

If the salary functions don’t all have the same name,
overload resolution could be extended with a simple
aliasing mechanism to allow them to behave as though
they had the same name. Equivalently, the function
group F could be explicitly defined as the set of func-
tions to which f*(z) could be resolved.

Overloading can also be exploited in several cases when
there are domain mismatches, i.e., different currencies:

l If localized functions can be installed to do the
currency conversion. This reduces to t,he previous
case.

l Currency can be automatically determined, either
because it is explicitly returned by the localized
functions or because it can be deduced from the
type or country of the employee.

Assume now that the various Salary functions ret.urn
results in local currencies, and we wan1 lo see tlic>ni all
in US dollars. If there is a Collr,/ry l’ltnction dcfincd
for each employee (possibly defined in terns of the
subtype to which he belongs), then we might, define a
global salary function as

CREATE FUNCTION
GSalary(Employee e) --+ Number s AS
s := MapCurr(Country(e).‘US’,Salary(e));

Bere Salary(e) is again bound to the appropriate lo-
calized function by overloading. Its result is then con-
verted by MapCurr, based on the country of the em-
ployee. Note that County is serving as the 6 function
for identifying the domain.

6.1.2 Binding By Cases

When overloading cannot be explo;ted, equivalent
functionality can be explicitly specified in condition-
als, case statements, or rules.

Suppose we didn’t have appropriate name correspon-
dences, and aliasing is not supported (Figure 5).

Then the Salary function for all eml~loyees coul~.l he
written as

Proceedings of the 17th International
Conference on Very Large Data Bases

I I
AEmployee . . . ZEmployee

ASalary ZSalary

Figure 5:

CREATE FUNCTION
SBa~aC;YNEmployee e) --) Number s AS

IF AEmoloveefe) THEN
s := Ma’pC’urr(C!ountry(e ,‘US’,ASalary(e));
ELSE IF BEmployee(e) 4 HEN
s := MapCurr(Country(e),‘US’,BSalary(e));

ELSE IF ZEmployee(e) THEN
s := MapCurr(Country(e),‘US’,ZSalary(e));
ELSE 0; /* or other default or error */

END;

Note that compile-time type checking needs to observe
the conditionals. For example, ASalay is applied to
the variable e, which has only been declared as Em-
ployee, not AEmployee. Verifying that e will in fact be
bound to an instance of AEmployee requires awareness
of the logic flow. An alternative would be to defer to
ruu-time type checking.

6.1.3 Binding Via Stored Mappings

The logic of overloading can also be simulated via
st.ored mappings. Suppose we defined the type group
and function group

I<mpType = {A Employee, . . , ZEmployeej
SalFunc = {ASalary, , . . , ZSalary}

as follows:

CREATE TYPEGROUP EmpType;
ADD TYPE EmpType TO
TypeNamed(AEmployee),. . . ,

TypeNamed(ZEmployee);

CREATE FUNCTIONGROUP SalFunc;
ADD TYPE SalFunc TO
FuncNamed(ASalary),. . . ,

FuncNamed(ZSalary);

We can establish the mapping between EmpType and
SalFunc in stored data:

CREATE FUNCTION ET2SF (EmpType) --)
SalFunc AS STORED;

ET2SF(TypeNamed(‘AEmployee’)) :=
FuncNamed(‘ASalary);

ET2SF(TypeNamed(‘ZEmployee’)) :=
FuncNamed(‘ZSalary);

154
Barcelona, September, 1991

Using the Classih function to determine the EmpType
of an employee, we can define the Salary function on
Employee as

CREATE FUNCTION Salary(Employee e) -+
Number s AS

s := MapCurr
(r

Country(e),‘US’,
E 2SF(Classify(e,EmpType))(e));

Let’s do that again with the functions unnested, t,o see
the logic:

CREATE FUNCTION Salary(Employee e) -+
Number s AS

BEGIN
VAR t,f,x,c;
t := Classify(e,EmpType); /*an EmpType*/
f := ET2SF(t); /* a salary function */
x := f(e); /* a salary in local currency */
c := Country(e); /* the local currency */
s := MapCurr(c,‘US’,x);

/* convert to US currency */
END;

Note the application of function variables.

6.2 Generalized Integration

Integrator functions have so far been relatively sim-
ple, mimicking the behavior of the underlying locaiized
functions by simply picking one of tllcm and convcrt-
ing its result to another domain.

Sometimes they need to be more elaborate, e.g., t,o
reconcile mismatch wit,hin the argumcllt t.ype, to com-
pensate for missing localized functions, to reconcile the
results of several localized functions, to provide aux-
iliary information, or to incorporate usage-dependent
domain mappings.

For a more general example, suppose wc wantt:tl t,o
know the starting salaries of jobs in a multi-national
corporation, where each sect,or in t.lle corporation may
use different concepts and representations of jobs, as
well as different currencies. The sectors correspond to
the underlying spheres si, and the corporation is the
integrating sphere 3.

Corresponding to each domain group D = {dl, . , d,)
there is an integrating domain d‘ in the sphere s’ . It
is the target domain for the mappings /L:. to be rlsed
in integration. If the integrating domain is “in the
style of” one of the cfk, e.g., it uses the same sort of
representation, we will write the domain as d’k. In this
case, we would typically expect /LC, to be the identity
mapping, i.e., pD(dk, d*k,z) = I.

There are also image domains q, each being the srlbset

of d’ covered by $‘*, i.e., those elPmt>nts of d’ \rhich
are images of elements in di.

Let’s say that each sphere si has a t,ype (domain) Job,,
which together constitute the group JobGroup. Job]
in sphere s1 might be a set of job names occurring
as primary keys; Job:, in s2 might be a set of persis-
tent job objects. The integrat.ing domain Job’ might,

be chosen to be in the form of persistent job objects;
if we reuse the objects in Job, then the integrating
domain might be written Job’a. There may be more
job objects in the latter, corresponding to jobs exist-
ing in s1 but not in ~2. There may or may not be a
direct correspondence between jobs in s’ and the jobs
in any si, i.e., the mapping may be very complex and
arbitrary, as discussed earlier.

To get starting salaries in s* we need a function
StartSal’: Job’ ---t d’.

d’ is the common currency chosen for the corporation,
e.g., US dollars.

For a given job in Job*, the StartSal* function has to:

1. Get the starting sa.lary from each sector that has
such a job.

2. Convert that to the common currency.

3. Do something about results from multiple sectors.
Step 1 is difficult if there is not a good inverse mapping
from the integrated type Job* and the type Jobi in
each sphere si. We will assume such a mapping exists.

Step 1 essentially amounts to having a function
SiurtSulr defined for each image domain Job;. A sim-
ple case is when sphere si has a StartSali function,
and there is a simple mapping ~ii from Job* to Jobi.
It#‘s simplest when the nlapping is the identity map-
ping; t,hen StarLS’ul~ (x) = StartSali(x). This simple
case corresponds to our first integration example, in-
volving salaries of employees. We essentially assumed
that the Employee t,ype was already integrated, and
t,llat a salary fulkction was available for each subtype

If a StartSali function is not available, StartSal; has
to be provided in some other way in s*, either explititly
or implicitly. The mechanism might be to simply re-
name (alias) an existing function in sir or to provide a
function which either supplies a default value or makes
use of other functions available in si. Such functions
nlight be e.uplicitly defined in s*, or they might be im-
plicitly specified in the definition of StartSal’ itself.

6.2.1 Missing Localized Functions

Sometimes the appropriate localized functions simply
don’t exist,. Then it becomes necessary to invent them
in the integrating sphere, either to provide default val-
ues or to reconstruct results from other information
known in the localized spheres. This can either be
done directly within the integrator function, or by sim-
ulating separate localized functions in the integrating
sphere.

For example, Lllere miglrl Ilot, be a Salary function for
ZEmployees. but rarll~~r~ the two functions BasePay
and OwrtzmePay WIIICI~ could be added together to
give a total salary. One approach would be to define
a Salary function for ZEmployees (in the integrating
sphere, if autonomy needs to be respected as the sum
of the other two. Then integration coul d proceed as
before. Alternatively, it could be incorporated into the
integrator function:

Barcelona, September, 1991 Proceedings of the 17th International
Conference on Very Large Data Bases

155

CREATE FUNCTION
!Bar;,y Employee e) -+ Number s AS

rl
IF AEmployee e THEN
s := MapCurr tc’ ountry(e ,‘US’,ASalary(e));
ELSE IF BEmployee(e) -2 HEN
s := MapCurr(Country(e),‘US’,BSalary(e));

ELSE IF ZEmployee(e) THEN
s := MapCurr(Country(e),‘US’,

BasePay(e)+OvertimePay(e));
ELSE 0; /* or other default or error */

END:

6.2.2 Integration of Overlapping Spheres

When the underlying populations are not disjoint
(h n ti # 4), th e results of several localized functions
may need to be reconciled. This might arise, for ex-
ample, when the same movie or restaurant is rated in
several databases, or various sources of income for a
given person are reported in different databases. The
integrator function might be programmed to take var-
ious possible actions, such as

Simply report all the results, identifying the
sources.

Select a “best” one, by some criterion.

Merge the results, perhaps by summing or aver-
aging, as appropriate.

While the resolution of this situation generally requires
some arbitrary computation to he specified, two basic
requirements can be identified:

l Aggregation of multiple results from the localized
functions.

l Operations on such aggregates

Suppose, for example, that an employee could belong
to more than one EmpType, earning a salary in each.

6
We won’t say how that is detected across multiple
atabases. Since we are not addressing identifier prob-

lems in this paper, we simply assume an employee has
the same identifier everywhere.)

If we wished to simply report all such salaries for a
given employee, together with t#he type from which
each salary comes, we might define a query over the
possible types:

CREATE FUNCTION Salary(Employee e) -+
Set of <EmpType, Number> AS

SELECT
t, MapCurr(Country(e),‘US’,ET2SF(t)(e))

FOR EACH EmpType t WHERE t(e);

The query in that function itcrates over the types 2 in
EmpType (not over the instances of those types). If
the employee e is an instance of an EmpType I, the
result will include a tuple < t,s >. where s is the
corresponding salary converted to US dollars.

Proceedings of the 17th International
Conference on Very Large Data Bases

Note the use of a type group in the signature and in
the for-each clause.

If we wished to simply report the sum of salaries:

CREATE FUNCTION Salary(Employee e) +
Number s AS

s “sB”lBEsd;“c

6.2.3 Auxiliary Results

Auxiliary information might indicate the underlying
source of the information, e.g., the currency from
which it was converted. Or it might provide some in-
dication of the reliability of the conversion; mapping
from letter grades back to numeric might be accompa-
nied by a flag identifying it as an estimate. Auxiliary
information was illustrated in the previous section,
when the particular EmpType was returned along with
the salary.

6.2.4 Usage-Dependent Domain Mappings

Sometimes mappings cannot be separated from the
integrator functions. The mapping might depend on
auxiliary rules involving the use of the source domain.
Thus an 85 might be a B for undergraduate courses,
but an A for graduate courses. Similarly, the mapping
for jobs might depend on other attributes of the job-
holder, such as length of time in job, or educational
level. Then the mapping needs to know the job-holder
(or information about him), not just the job being
mapped. In such cases the domain mappings would
be incorporated into the integrator functions.

6.3 Integrators For Schema Mismatch

6.3.1 With Types

In general, we can’t integrate JobSpheres with the
other two without knowing which types correspond to
jobs. It might occasionally turn out that those are
the only (user-defined) types in the schema, or the
only types that employees might possess, or the only
subtypes of Employee. Usually, however, we can’t do
the integration without type groups.

Once we have the JobType type group, we can assume
the three localized functions

Job1 : Empl -+ JobName,

Job2 : Empz * Job,

,I063 : h’mp3 + JobType,
Jobs(e) ::= Classify(e, Jobtype).

in t.he three spheres (if not present, they could be
added as part of the integration). Now we are back to

156
Barcelona, September, 1991

the previous case of defining an integrator over three
localized functions.

Creating types in the integrat,ing sphere is potentially
more complex than described in Sect,ion 5.1.2. Each
created type is itself potentially an int.egrat,ing domain
(Section 6.2) with a complex definition.

Integrating the job spheres in the style of JobSpheres
would require making each job a type. Introducing a
new job such as “Designer” into JobSphere. means
introducing a definition of Designer itself as a de-
rived type, being the image of designer jobs in all the
spheres. Providing a rule to generate such deAnit,ions
automatically could be difficult..

Other uses of types in the integrated sphere are simi-
larly complicated by the fact that they are essentially
derived types (Appendix A.2), with corresponding im-
plications for type checking and queries.

6.3.2 With Functions

The relationship between StockSpherel and Stock-
Sphere2 is expressed in the equivalence

Activity(c,r,d) = /~f,~(c)(r, d).

That is, the function obtained from the mapping
~f,~(c) (Section 5.1.3) is in turn applied to (r,d) to
yield the same result as Activity(c, r, II). For example,

~f,~ (HP) = HPActivity;
Activity(HP,r,d) = HPActivity(r,d).

As in [KL], we might want to

1. Integrate in a sphere StockSphere’ in which all
stocks are presented in the style of StockSpherel,
i.e., as arguments to a single Aclivi2y’ funct,ion.

2. Integrate in a sphere StockSphere’ in which all
stocks are presented in the style of StockSpherez,
i.e., via an individual XActivity’ function for
each company X.

The existing functions in the underlying spheres will
be labelled Activity1 and XActivityz.

For StockSphere’ , the integrator function has the
form

Activity’: Company’ x Reading x Date -+
Price.

For simplicity, we assume that Reading, Date, and
Price are uniform across the spheres. In this case,
we are integrating mismatched arguments rather than
results, and the general mechanisms of image domains
and associated mappings as described in Section 6.2
apply here. We will need image domains Company;
and Company; corresponding to the stocks existing in
the two spheres. As before, we start with the simpli-
fying assumption that they are disjoint.

A key step is to recognize that the localized function
Activity2 does not exist. Wecan introduce it explicitly
as a distinct function, or incorporat,e in t.o t.he definition
of Activity* as follows:

Act.ivity’(c, r, d) ::=
ifcompanyl (c) then Activityl (c, r, d)
else pf,2(c)(fj 4.

The mapping /.J:,~ is largely the same as /.L?,~.

For StockSphere’a , integration is actually accom-
plished by a group of functions ACFuncs* cor-
responding to the group of functions ACFuncs in
StockSpherez. There may be more functions in
ACFuncs’ than in ACFuncs. There is an integrator
function for each company in either sphere, having a
form such as

HPActivity’(r, d) ::=
ifCompanyl(HP) then Activityl(HP, r,d)
else &(HP)(r, 4.

Again, note that creating new functions in the inte-
grating sphere is potentially more complex than de-
scribed in Section 5.1.3. Each created function is itself
an integrating function with a complex definition of
the form just shown.

6.4 Updating Integrator Functions

Update is a major aspect of the domain mismatch
problem. In the integrated view, we not only want to
see the salaries of employees, we may want to update
them as well.

Update in a functlional object model [Sh, Fl, F2, Ly]
is modeled as an assignment

f(x) := Y
causing subsequent invocations of f(z) to return y. A
localized function could be directly updated by

fi(Z) I= j/i

in which yi is an element of di. This might be a di-
rect update of the salary of an individual in his local
currency.

One might wish to do such updates throu h an inte-
grator function, e.g., express a salary up f ate in US
dollars and have it converted to the local currency.
This might occur in a global update giving everyone
in the compa.ny a 10% increase.

With y* E d’, the update of an integrator function

f’(x) := y’

should be performed as

ifti(z) then fi(x) I= pD(d*, di, y’),

i.e.,

1.

2.

Determine the type f+ of z (recall our disjointness
assumption),

Apply the corresponding mapping ~~~ (e.g., a cur-
rency conversion) to y’, yielding an element yi of
d;.

3. Find the corresponding localized function fi.

Proceedings of the 17th International
Conference on Very Large Data Bases

157
Barcelona, September, 1991

4. Do the update.

Update through integrator funct,ions is much the same
as the view update problem. It can only be done au-
tomatically in limited cases, i.e., when the integrator
function and the domain mapping arc both simply in-
vertible. Otherwise, as described in [KL], it is nec-
essary to explicitly define the update algorithm to be
associated with the integrator funclion, which could be
done via “update entry points” (a proposed extension
to OSQL):

CREATE FUNCTION Salary(Employee e) -
Number s AS

s := MapCurr(Country(e),‘US’,

ENTRY(
ET2SF(Classify(e,EmpType))(e));

ET2SF‘(&sify(e,EmpType))(e) :=
MapCurr(‘US’,Country(e),s);

As before, we can explode this without, nestfed func-
tions to see the logic:

CREATE FUNCTION Salary(Employee e) -
Number s AS

BEGIN
VAR t,f,x,c;
t := Classify

I
e,EmpType); /* an EmpType */

f := ET2SF t); /* a salary function */
x := f(e); /* a salary in local currency */
c := Country(e); /* the local currency */
s := MaDCurr(c.‘US’.xl:

END;
/* c‘onvert tk US currency */

EWG”;F;‘:=):

VAR t,f,x,c;

l
; /*an EmpType*/

a sa ary function */
the local currency */

/*c&vert tdiocal currency*/
f(e) := x; /* the update */

END;

Note the function variable in the uptlat,e.

7 Conclusions

Domain mismatch and schema mismatch are complex
problems. They can best be understood by struct)ur-
ing the environment in terms of domain groups corre-
sponding to conceptual territ,orics, with different do-
mains occurring in different spheres. Integration t.hPn
occurs using integrating domains in an int,egrating
sphere. The domain mismat#ch problem separates int.o
two parts, t,he definition and maitrtcnance of doma.in
mappings, and the definit,ion and upda.te of integra-
tor functions. Schema mismatch can in many cases be
reduced to the domain mismatch problem by treating
type groups and function groups as tlolnains in them-
selves. The problems can generally he decomposed
intoa mapping aspect (corresponding to tile mappings
in [KL]) and an integrating aspect (corresponding lo
the rules in [KL]).

Although such analysis and decomposition is helpful,
the solutions generally require sophisticated language
capabilities. The role of a database programming lan-
guage is to permit the solutions to be expressed and
maintained with the database, rather than in applica-
tion code.

Thus behavior specification is an essential contribution
of object-orientation to the solution of the mismatch
problem. Subtypes and supertypes are another essen-
tial feature for reconciling disparate domains. Over-
loaded operators are also useful. Object identity, on
the other hand, seems to add problems: maintaining
domain mappings can require explicit creation or dele-
tion of persistent objects.

In a context which includes type systems, persistent
objects, and non-trivial correspondences between do-
mains, desirable language facilities include:

Arbitrary computational power: conditionals, it-
eration, and probably even recursion (though we
haven’t actively looked for examples requiring re-
cursion), as well as aggregate types and opera-
tions.

Type and function groups, including disjointness
and covering specifications.

Uniform treatment of system and user objects:

Uniform syntax/semantics for creating user-
and system-type objects.

Variables and expressions allowed wherever
system objects can occur, i.e., functions and
types. This would include their occurrence
in declarations and queries.

DDL within procedures, e.g., dynamic cre-
ation of types and functions, with parame-
terized arguments.

User subtypes of system types (e.g., type and
function groups).

Creation of user-defined supertypes as well
as subtypes.

l Update entry points.

l Extended overloading, via aliasing and compati-
ble result types.

l Derived types.

l Subtypes of literals, including

- Dimensioned types (units).

- Enumerated types.

- Lengt,h-constrained types.

OSQL and IPL are still evolving, and we have not
completed our analysis of the extent to which they
currently support t,hese requirements. This will be
continued in the Pegasus project.

Proceedings of the 17th International
Conference on Very Large Data Bases

158
Barcelona, September, 1991

8 Acknowledgments

Thanks go to Jurgen Annevelink for developing IPL,
Ravi Krishnamurthy for ident.ifying key language re-
quirements, and to Abhas Rafii an(l thr other Pecnsrls
project tearnlnates for disclwsion
ccpts and exanIpl(>s. Jurgcn itl\cl
valuable feedback on prior drafts.

A Appendix: Type Groups and
Function Groups

A.1 Types

We model a type t as a predicate function t(z) which
is true if and only if x is an instance oft. More gener-
ally, for any predicate and its correspor,ding extension,
we let p denote the set and p(x) the corresponding
predicat,e expression, such t,hat l)(r) H x E p. Thus
[p(x) = q(r) V r(x)] -+ [p = q lJ ~1. ‘T‘his notat ion
applies to types and groups.

A.2 Derived Types

Like any function, predicate functions which serve as
types can have their values established l>y assertion
(stored c1nt.a) or by derivation r111w. ‘1‘11(> typr of RI1

object call be asserted whe~r it is crcaIv(I (e.g., as a per-
son) or lat,er during its lifetime (e.g., wllcn it Ix=con~cs
an employee).

Special derivation rules apply to t.ypes via subtype rc-
lationships: every employee is a pc~rson.

Derived types (a proposed extension t,o OSQL) could
be defined in much the same way as derived fllnctions:

CREATE TYPE Senior
SUBTYPE OF Person x
AS Age(x) > 65;

Much like view maintenance, derived types can be
supported in a backward-chaining or forward-chaining
fashion. Backward chaining means the derivation is
evaluated whenever the type is referenced (e.g.! in
queries), which could be inefTicicnt for complex cleriva-
tions. Forward chaining means tliat, rvcry acidilion 01
deletion has to be detected (e.g., whenever a person is
created or destroyed, or changes age) and propagated
into the extension of the type. This would require
some sort of monitor or trigger facilit,y.

A.3 Type Groups

A type group is a type whose instances arp types, i.r.,
a subtype of Type in t,he Iris modrl. It, is an auxiliary
concept being proposed as an estrnsion t.o OSQL.

Type groups are useful in the signatures of functions
which have types as their argument,s or results, when
they are const,rained to accept, or return rest rict,etl scat.s

Proceedings of the 17th International
Conference on Very Large Data Bases

of types. For example, when jobs such as Engineer
and Programmer are types, we may want to define a
mapping which returns one of these job types, but not
any other type. We also might want a query to range
over just this set of types.

‘1‘1 p4’; roup (I he t.ype whose instances are type groups)
wo111d itself be a type group, and so would Type. A
t,ypc group such as JobType might be definable in
OSQI, by eilher of the following:

CREATE TYPEGROUP JobType;

CREATE TYPE JobType SUBTYPE OF Type;

‘1’11~ following three could then be equivalent:

CREATE TYPE Engineer;
ADD TYPE JobType TO Engineer;

x := CREATE JobType;
Name(x) := ‘Engineer’;

CREATE JobType ‘Engineer’;

Clnss/fy(r,g) classifies an object 2 with respect to the
types in a group g, returning the types in g of which
T is an instance:

Classify: Object x TypeGroup -+ Type,
Classify(x,g) ::= (2 1 g(l) A t(x)},

or, in OSQL,

CREATE FUNCTION Classify(Object x, Type-
Group g) -+ Set of Type AS

SELECT Type t WHERE g(t) AND t(x);

Soticc how types are being applied as variable func-
t.ions (predicates) via 9 and t.

If the types in g are disjoint, then Classify(x,g) is
single-valued. For example, Classify(~, JobType) re-
turns the instance of JobType of which 2 is an in-
st,ancc.

Type groups have several potential uses:

l As domains when dealing with schema mismatch.

0 In specifying that the types in a type group are
disjoint, or that they cover or partition some other
type. For example, JobType usually partitions
Employee.

Type groups are closely related to parameterized
types. A “paramcterized t,ype” is typically not really
a t ypc itself, but, a mapping into a set of types. A type
group corresponds to the set into which this mapping
maps.

A.4 Covered Types

A coflerrd lype (also a proposed OSQL extension) is
tlio union of types in a type group:

CREATE TYPE t COVERED BY T;

The type Employee could be defined as being covered
by the group JobType.

Properties:

1.59
Barcelona, September. 1991

l Every instance 2i in the group 7‘ is a sul)typc of 1

l Any type added to the group T becomes a suht,ype
ofi.

l The group T covers t, i.e., every instance of 1 is an
instance of at least one ti E T. It follows that t has
no “immediate” instances, i.e., it, is an abstract,
type, not instantiable. Oi~,jcct~s cannot bc crwtctl
as iristances of 1, or matlc instnncc:s of f (IIIII~S
simultaneously made an instance of some f,). A
type ti cannot be removed from an object, 1111less
the object retains or is immediately given anot.her
type tj E T.

l If the group T is disjoint, then it patiilions t, i.e.,
every instance of t is an illstilrlcr: of exact,ly 011~
ii E T.

Enumerating the instances of a type t covered by a
group T is logically equivalent to the OSQL-like query

SELECT UNIQUE x FROM Object x, Type ti
WHERE T(ti) AND t;(x);

A covered type is effectively a derived t.ype, i.e., one
having a menlhership condition derivctf by somr r111c.
Enumerating the instances of a covt=rcd t,ypr (‘ould be
as difficult as enumerating the inst,anccs of a derived
type, especially when the types in the covering group
are themselves derived.

Type groups provide a useful way t,o organize the sub-
types of a type. A type can be covered or partitioned
by several independent type grollps, corresponding to
difTerent ways of subdividing the type. For ~samplc,
employees might also bc partitioned Ijy the two sub-
types Male and Female, which might constit,ulc a Gen-
der type group. Employees may also be divided into
subtypes A,B,C,. . . by organizational criteria, e.g., by
division or country. These subtypes would constitute
yet another type group. (It would hr interesting to
explore combinations of type groups, yif>lfling groups
of intersections of types, e.g., I\laleE:ngtneers.)

A.5 Function Groups

A function group is analogous to a type group, being a
type whose instances are functions, hence a subtype of
Function. Useful type groups t,gpically l~ave t.lw same
or similar signat,ures, related via t,ypc groups.

If types are modeled as predicat.e functions, t,hen type
groups turn out to be a special case of fllnction groups.

References

[AD] R. Ahmed, I’. DeSmedt, \\‘. Kent., AI. Ketahchi,
W. Litwin, A. Rafii, M.-C. Shari,, “J-)egasus:
A System for Seamless Integration of Het-
erogeneous Information Sourc(!s”, Proc. IEEE
COMPCON, hlarch 1991, San Francisco, Calif.

[I\ RI

WI

[I)111

[Fll

[F2]

[Ke]

[IX]

[W

PPI

WI

Rafi Ahrned and Abbas Rafii, “Relational
Schema RI apping and Query Translation in Pe-
gasus”, \Vorkshop on Multidatabases and Se-
mantic Interoperability, Nov. 2-4, 1990, Tulsa
OK. Also HPL-DTD-90-4, Hewlett-Packard
Laboratories, Oct. 9, 1990.

J urgen Annevelink, “Database Programming
Languages: A Functional Approach”, Proc
ACM SIGMOD Int’l Conf on Mgmt of Data,
Denver, Colorado, May 29-31 1991. Also
HPL-DTD-90-12, Hewlett-Packard Laborato-
ries, Nov. 30, 1990.

C. Batini, M. Lenzerini, and S.B. Navathe,
“A Comparative Analysis of Methodologies for
Database Schema Integration”, ACM Comput-
ing Surveys 18(4), Dec. 1986.

U mesh war Dayal and Hai-Yann H Wang, “View
Definition and Generalization for Database In-
tegration in a Multidatabase System”, IEE
Trans. Software Engrg, Vol SE-10 No 6, Nov.
1984.

D.11. Fishman et al, “Iris: An Object-Oriented
Database Management System”, ACM Trans-
a.ctions on Ofice Information Systems, 5(l),
January 1987. Also in Readings in Object-
Oriented nuiabase Systems, Zdonik and Maier,
editors, Morgan Kaufmann, San Mateo, Cali-
fornia, 1989.

D.H. Fishman, et al, “Overview of the Iris
DI3RIS”, ObJecl-Oriented Concepts, Databases,
and Appllcatzons, Kim and Lochovsky, editors,
Atltlisoll-\Vesley, 1989.

William Kent, “The Many Forms of a Single
Fact”, Proc. IEEE COMPCON, Feb. 27-Mar.
3, 1989, San Francisco. Also HPL-SAL-88-8,
Hewlett-Packard Laboratories, Oct. 21, 1988.

Ravi Krishnamurthy, Witold Litwin and
1Villiam Kent, “Language Features for Inter-
operabilit,y of Dat.abases with Schematic Dis-
ctepancies”, Proc ACM SIGMOD Int’l Conf on
Mgmt of Data, Denver, Colorado, May 29-31
1991. Also HPL-DTD-90-14, Hewlett-Packard
Laboratories, Dec. 17, 1990.

Peter Lyngbaek, “OSQL: A Language for Ob-
jet t Databases”, HPL-DTD-91-14, Hewlett-
Packard Laboratories, Dec. 17, 1990.

Pegasus Project, “Pegasus: An Interoperable
IIeterogeneous Information Management Sys-
tern”“” [Submitted for publication.]

D.W. Shipman, “The Functional Data Model
and the Data Language DAPLEX”, ACM
Transactions on Database Systems 6:1, 1981.

Proceedings of the 17th International
Conference on Very Large Data Bases

160 Barcelona, September, 1991

