Recovery and Coherency-Control Protocols for Fast Intersystem Page Transfer
and Fine-Granularity Locking in a Shared Disks Transaction Environment

C. Mohan
Inderpal Narang

Data Base Technology Institute, IBM Aimaden Research Center, San Jose, CA 95120, USA
{mohan, narang)@ibm.com

Abstract This paper proposes schemes for fast page
transfer between transaction system instances in a
shared disks (SD) environment where all the sharing
instances can read and modify the same data. Fast page
transfer improves transaction response time and concur-
rency because one or more disk |/Os are avoided while
transferring a page from a system which modified it to
another system which needs it. The proposed methods
work with the steal and nc-force buffer management
policies, and fine-granularity (e.g.. record) lnocking For
each of the page-transfer schemes, we present both
recovery and coherency-control protocols Updates can
be made te a page by several systems before the page
is written to disk. Many subtleties involved in correctly
recovering such a page in the face of single system or
complex-wide failures are also discussed. Assuming that
each system maintains its own log, some methods require
a merged log for restart recovery while others don't
Our proposals should also apply to distributed.
recoverable file systems and distributed virtual memory
in the SD environment, and to the currently popular
client-server object-oriented DBMS environments where
the clients cache data.

1. Introduction

One approach to improving the capacity and avadabilily
characteristics of a single-system transaction system
(e.g., a data base management system (DBMS)) is to
use muitiple systems. There are two major architectures
in use in the multisystem environment: shared disks (SD)
or also called data sharing [DIRY89, MoNaS!h, MoNPSO0,
MoNS80, Rahm88, RahmB88, Shoe88). and shared nothing
(SN} or also called partitioned [Ston85’ With SD. all
the disks cantaining the data base are shared among
the different systems. Every system that has an instance
of the transaction system executing on it may access
and modify any portion of the data base on the shared
disks. Since each transaction system instance has its
own buffer pool and because conflicting accesses to the
same data may he made simuitaneously from different

Proceedings of the 17th Intemational
Conference on Very Large Data Bases

systems, the interactions among the systems must be
controlled via various synchronization protocols. This
necessitates the use of global locking facilities and pro-
tocols for the maintenance of the coherency of the data
buffered (cached) in the different systems. SD is the
approach used in IBM’s IMS/VS Data Sharing product
[StUW82], TPF product [Scru8?] and the Amoeba re-
search project [MoNaS1b, MoNP90, MoNS90, SNOP8S],
and in DEC’s VAX DBMS' and VAX Rdb/VMS' [KrLS88,
ReSW83]. More recently, for the VAXcluster' environ.
ment, third-party DBMSs like ORACLE' and INGRES have
been modified to support SD. Hitachi and Fujitsu also
have products which support the SD environment, SD
has also, of late, become popular in the area of distributed
virtual memory [Li88, WuFu89].

With SN, each transaction system instance owns a portion
of the data base and only that portion may be directly
read or modified by that instance. That is, the data base
is partitioned amongst the multiple systems. The kind
of synchronization protocols mentioned before for SD
are not needed for SN. But, a transaction accessing data
in muitiple systems would need a form of two-phase
commit protocol (e.g., the industry-standard Presumed
Abort pratocol of [MoLO86]) to coordinate its activities,
SN is the approach taken in Tandem’s NonStop SQL!
[Tand87], Teradata’s DBC/1012' [Nech88], MCC’s Bubba
(BACCDO0), and Unijversity of Wisconsin’s Gamma
(DGSBHO0]. There are many advantages and disadvan-
tages with both SO and SN [Bhid88, PMCLS90, Shoe8s,
Ston86]. Qur intention in this paper is not to argue the
relative merits of the two approaches. Even though ma-
jor products have come out which support either SD or
SN, the debate still goes on. We concentrate on solving
some problems relating to SD.

The rest of the paper is organized as follows. In the
remainder of this section, we first introduce the buffer-
coherency problem and IMS’s solution for handling it.
Then, we state the assumptions that we make in propos-
ing our solutions. in section 2, we provide a brief over-
view of the different page-transfer schemes. The details
of the Medium, Fast and Super-Fast schemes with record
locking are covered in section 3. Due to space constraints
in this paper, we do not discuss the optimized versions
of these protocols that are possible when the granularity
of logical locking . is a page, rather than a record
"MoNa81b]. In section 4, we compare our proposals with
existing proposals and implementations by others. Lastly,
in section 5, we summarize our contributions.

1.1. Buffer Coherency and Page Transfer

In a single-system transaction system, if a transaction
were to update a record in a page, then that update is

Barcelona, September, 1991
193 P

made visible to other transactions once the updating
transaction, after committing, releases the (exclusive)
lock on the record. This visibility is the result of per-
forming the update in the same buffer pool which is
shared among all the transactions, We call this ingtant
propagation of updates. However, in SD, when a trans-
action updates a record in one system, the update is not
reflected instantly in the other systems’ buffer pools.
This is the buffer-coherency probiem. Special protocols
must be used to ensure that transactions do not see
data that is not current. An updated page can be prop-
agated by the updating system to the other sharing sys-
tems in many ways such as via disk only, or disk and
intersystem communication links, or links only, A factor
which plays a role in how propagation could take place
is whether the single-system transaction system writes
pages updated by a transaction to disk at commit time.
The latter policy is followed by IMS, VAX DBMS, VAX
Rdb/VMS, etc.

In IMS Data Sharing, propagation of updates takes place
as follows: (1) the updater writes the page to disk, (2)
after the disk I/0 completes, the updater sends a mes-
sage to the other systems to invalidate their cached, if
any, copies of the page, (3) the other systems acknowl!-
edge the invalidation messages after their cached copies
have been marked invalid, (4) the updater releases its
(exclusive) locks on modified data after receiving all the
acknowledgements, and (§) the other systems, when they
need to access the cached copies which have been
marked invalid, read the page from disk to get a more
recent copy of the page. Actions (1) and (2) typically
happen at commit time, thereby increasing the lock hold
time and the transaction response time, For IMS, prop-
agation via disk is a natural approach to take because
(1) IMS in the single-system environment, before releas-
ing the exclusive locks of a transaction, writes the up-
dated pages to disk (follows the force policy) anyway
and (2) IMS in the SD environment supports only
page-level concurrency between systems for updates.?

If a single-system transaction system like DB2', which
does not write updated pages to disk at commit time
(foliows the no-force policy), were enhanced to operate
in the SD environment, then update propagation via disk
and sending of invalidation messages would be very
expensive in terms of concurrency and transaction re-
sponse time, when compared to a single-system envi-
ronment. Then, in this context, the following question
arises. how are updates to be propagated when the
updater neither writes the page to disk nor sends inval-
idation messages? One possible answer is: the updater
(1) leaves a trail with the global lock manager using
which the other systems can detect that their cached
versions of the page are not current, and (2} sends the
updated page quickly to the other systems when they

need it. The former is called detection and the latter
reaction. Since detection takes place when the transac-
tions in the other systems actually need a more current
version of the page, it is imperative that we make the

raaction nart evecute as fact ae nnscihle Tharafora in
reaclucn pari execuie as 'ast as possinie. inereiore, in

this paper, we describe schemes for fast page transfer
between systems and their recovery implications in case
of a variety of failures. The detection technique that we
employ is similar to the techniques used in [Rahm88],
which calls it on-request invalidation (Check-on-Access),
and [DIRY89], and in DEC’s VAXcluster file system
[KrLs86], VAX DBMS and VAX Rdb/VMS [ReSW89].

Fast page transfer improves transaction response time
and concurrency because one or more disk 1/Os are
avoided while transferring a page from a system which
modified it to another system which needs it. This per-
mits updates to be performed on a page by several
systems before the page is written to disk, thereby fur-
ther increasing concurrency and amortizing the cost of
disk writes. With such a flexible scheme, care must be
taken to ensure that recovery is performed correctly
should failures occur. For the schemes that we propose,
we ensure that recovery is performed correctly in the
face of {1) loss of messages and (2) single system or
complex-wide failures. The proposed schemes work with
the steal and no-force buffer management policies
{HaRe83] and fine-granularity (e.g., record) locking. As-
suming that each system maintains its own log, some of
our schemes require a merged log for restart recovery
while others don’t. Of course, a merged log will always
be needed for media recovery. We also present some
techniques for enhancing data availability when one or
more systems fail while holding some important locks.
Our proposals should also apply to distributed, recover-
able file systems and distributed virtual memory in the
SD environment, and to the client-server architecture
environments where the clients cache data obtained
from the server. The latter has become popular in the
object-oriented data base area [CFLS91, DMFV30,
WiNe90].

1.2. Assumptions

In proposing our solutions, we make the following as-
sumptions about the transaction system.

Log Management For performance reasons, each of the
systems maintains its own log to which log records are
first written, For the purpose of handling data recovery,
ane system in the SD complex which has connectivity to
all the local logs’ disks produces a merged version of
those logs. A standby log merge process is available to
take over in case the current merge process fails. The
jocal log manager associates with each log record a log
sequence number (LSN) which is a monotonically increas-

! DB2 and IBM are rademarks of the International Business Machines Corp. NonStop SQL and Tandem are trademarks of Tandem Computers, Inc.
DEC, VAX DBMS, VAX, VAXcluster and Rdh/VMS are trademarks of the Digital Equipment Corp. Oracle is a registered trademark of the Oracle

Corp. DBC/1012 is a trademark of the Teradata Corp.

1 In IMS, updating transactions, in addition to acquiring commut-duration global exclusive locks on records that they modify, also obtain commit-duration
global exclusive locks on the poges which contain those modified records. These global exclusive page locks do not prevent multiple updating transactions
within the same system from modifying the same page concwrrently, IMS supports record-level concurrency between an updating system and reading
systems of a page since a transaction reagding records in a page acquires global (share) locks only on records and not on the page.

Proceedings of the 17th Intemational
Conference on Very Large Data Bases

194 Barcelona, September, 1991

ing value. Typically, in single-system (nonSD) transaction
systems, LSNs are the logical addresses of the corre-
sponding log records [MHLPS89]. At times, version num-
bers or timestamps are also used as LSNs [MoNP80].
Here, we are assuming that the LSN is a timestamp and
that the clocks across the SD complex are perfectly syn-
chronized.

Recovery Recovery is based on write-ahead logging
(WAL). In WAL systems, an updated page is written back
to the same disk location from where it was read. That
is, In-place updating is performed on disk. Even in the
buffer pool, in-ptace updating is performed. The WAL
protocol asserts that the log records representing
changas to a page must already he on stable storage
before the changed page is allowed to replace the pre-
vious version of that page on disk. Every page in the
data base has a page_LSN field which contains the LSN
of the log record that describes the latest update to
that page. This allows the page state to bhe related pre-
cisely with respect to the log records that have been
written for that page in order for recovery to be performed
correctly. The buffer manager aiso uses the page_LSN
information to ensure that the log has been written to
stable storage (forced) up to that LSN before it writes
the modified page to disk. We are assuming that an
ARIES-style [MHLPS89, MoPi9t, RoMo89] recovery
method is in use. This means that the sa-called com-
pensation log records (CLRs) will be written to describe
the updates that are performed as a result of rolling
back some actions of a transaction. Writing CLRs allows
us to think of the page state, as reflected by page_LSN,
as always going forward in time, even though at times
some earlier updates of a transaction might be getting
undone [MHLPS89].

Lock Management Locking is managed by a global lock
manager {GLM) in conjunction with one local lock man-
ager (LLM) in each system. When it is not necessary to
distinguish between LLM and GLM, we use the generic
term LM (lock manager). The transaction system makes
its lock request to its LLM which may then forward it to
GLM. This is similar to the way lock management is
done in the DEC VAXcluster [KrL.S888] for the SD envi-
ronment. Such a lock manager provides global locking
functions for its clients but it does nct perform disk 1/Os
for them. LM assists a transaction system instance in
determining which transaction system instance, if any,
has a dirty version of a particular page. A page version
is considered to be dirty if the buffer pool (cached) ver-
sion of the page is more recent than the disk version of
the page. Given a message and a lock name, LM can
send the message to the current holder(s) of that lock.
This is called the notlfy mechanism, In order to deal
with a failure of GLM, a backup GLM is defined and it
monitors the state of the primary GLM to determine
when to take over. When a backup GLM takes aver, it
communicates with LLMs to reconstruct GLM’s global
lock table information. When GLM notices that an LLM
has failed, it will release all the locks, except those that
were specifically asked to be retained, that were held
by the failed LLM. To recover from the failure of multiple
systems in the SD compiex, GLM’s lock tables are peri-
odically checkpointed. Such a failure is treated as an
$D-complex failure. It should be emphasized that the

Proceedings of the 17th Intemational
Conference on Very Large Data Bases

focus of this paper is not on how to build a highly avaii-
able LM. The design assumed above can be easily
changed to produce a more distributed LM.

Buffer Managemeant The buffer manager (BM) is free to
adopt the very flexible policies of steal and no-force
[HaRe83). if a page modified by a transaction is allowed
to be written to disk before that transaction commits,
then the steal policy is said to be followed by BM, Oth-
erwise, the no-steal policy is said to be in effect. Steal
implies that during narmatl or restart rollback, some undo
work might have to be performed on the disk version of
the data base. If a transaction is not allowed to commit
until all pages modified by it are written to disk, then the
force palicy is said to be in effect. Otherwise, the no-force
policy is said to be in effect. With the force policy, during
restart recovery, no redo work will be necessary for
committed transactions. No-force decreases lock hold
times. It also allows write 1/Os to disk to be performed
more efficiently by writing multiple pages in one i/0 and
by amortizating the cost of a disk write of a page over
updates made by several transactions. Many more ar-
guments in favor of adopting the no-force and steal pol-
icies are given in [MHLPS89].

Locking and Coharency-Control Protocols We do not wish
to permit the same page to be updated concurrently in
different systams since that would require that a mech-
anism exist to merge those updates into a single version
of the page. Furthermore, we could have difficulties with
storage management when fine-granularity (e.g., record)
locking is supported in the most general way (e.g., as in
ARIES/IM [MolLe89] and ARIES/KVL [Moha%0]). To
avoid these problems, we use a physical (P} lock on a
page to serialize the updating of that page by multiple
systems. Note that, unlike logical (L) locks which are
held for the duration of a transaction, physical locks are
not held for the duration of a transaction. P locks will
never be involved in deadlocks, unlike L locks. In this
paper, P locks are acquired only on pages, while L locks
are acquired only on records. Hence, later in the paper,
we do not always identify the type (L or P) of a lock
explicitly. P locks need to be held only as long as a
system is caching a page in its buffer pool. P locks are
acquired by BM on behalf of the transaction system
while L locks on records are acquired by the data man.
ager on behalf of individual transactions. To update
(read, respectively) a record, the transaction gets an X
(S) lock on the record. The compatibility relationships
amongst the different modes of locking, for both L and
P locks, are shown in Figure 1. A check mark (') indi-
cates that the corresponding modes are compatible.
That is, in the case of such an entry, if transaction T1
were to hold the lock in the mode indicated by the row
and T2 were to request the lock in the mode indicated
by the column, then T2’s request will be granted imme-
diately.

c

s
$ N} J
v

Figure 1: Lock Mode Compatibility Matrix

195 Barcelona, September, 1991

P locks are also used to detect that a cached page in a
particular buffer pool is not the iatest version of the
page. BM gets an S lock on a page before caching it in
the local buffer pool. This lock is held as long as the
page remains cached in the local buffer pool. Before
allowing a transaction to dirty a clean page, BM gets a
U lock on the page. This lock must be held by BM as
long as the page remains dirty and it is cached by this
BM. As a resuit of these locking protocols, the
intersystem concurrency is multiple readers and an
updater per page as far as the buffer managers are
concerned. Of course, because of the record locking
performed by transactions, a given page can contain at
any time the uncommitted updates of transactions run-
ning in any number of the sharing systems. LM will be
asked to retain all the U and X locks.

Communications The different systems in the complex
are directly connected to one another via high-speed
communication links (Comm-links) whose performance
is orders of magnitude better than that achievable by
communicating via the shared disks. When pages are
shipped directly between the systems, a datagram pro-
tocol is used with no guarantees about delivery. Using
datagrams is important to assure that the cost of shipping
pages directly is not high.

Distributed Transactions For simplicity, we assume here
that each transaction executes entirely within a transac-
tion system instance. it is easy to extend the propaosed
schemes to work in a complex in which a single trans-
action might span multiple transaction system instances
in order to exploit paralielism even more than what is
possible within a single system [PMCLS90]. With this
assumption, we are not precluding the possibility of the
transactions executing in this complex being distributed
transactions which also access data outside of this com-
plex. For distributed data base management purposes,
this complex is thought of as a single node of the distrib-
uted system.

2. Overview

In an SD environment, if a dirty page is cached in one
gystem (referred to as the ownar), then a different system
requiring access to that page must get the current ver-
sion of the page from the owner. P locks are used to
detect that a cached page in a particular buffer poo! is
not the latest version of the page. When a transaction
T1 updates a record in page P1 in system 81, it updates
P1‘s page_LSN. When T1 commits, P1's current page_LSN
is sent to LM along with the unlock requests for the L
locks. LM registers the page_LSN in the P lock entry for
P1, before unlocking the L locks. When T2 in S2 locks a
record in P1, it requests P1’s page_LSN. When LM re-
turns the latter as part of granting the L lock, §2 can
detect if its cached version, if any, of P1 is not current.
if P1 in 82 is not current, then LM assists S2 in getting
the current version of P1 from P1’s owner St.

Before updating a page, a system which is not already
the owner of the page must first become the owner of
the page by acquiring a U mode P lock on the page. The
ownership of a page can be given up by a system only
after the dirty page is written to disk or as part of trans-

Proceedings of the 17th Intemational
Conference on Very Large Data Bases

fer of ownership to another system. The current owner
of a page couid transfer the page to a requesting system

1. by writing the page to disk and then making the
requestor read it from disk, or
2. by a memory-ta-memory transfer.

With memory-to-memory transfer, the response time and
concurrency advantages are the same as with caching
a dirty page in a single-system environment. This is
because, with memory-to-memory transfer, it is possible
to save 2 disk I/Os - a write 1/0 by the owner and a read
1/0 by the requestor.

Next, we give a brief description of the mechanics of a
page transfer and how LM assists a requestor in getting
the latest verison of a page.

When BM acquires a U mode P lock to update a page,
it declares to LM that BM’s page-transfer procedure
should be invoked if (1) there is an intersystem lock
conflict involving that page (i.e., another system wants
to update the page), or (2) the requestor, in another
system, makes a nonconflicting lock request for that
page (i.e., another system wants to read the page). BM
will then make the page available to the requestor.

BM can transfer the page to the requesting system using
one of the following schemes: Simple, Medium, Fast, and
Super-Fast. For each scheme, we compare the number
of 1/0s and messages to obtain for updating purposes a
dirty page cached in another system. This comparison
is done to motivate the development of faster page-
transfer schemes.

A transaction in the requesting system initiates access
to a page by invoking its BM via the fix_page call (also
called pin). The fix_page request will also indicate
whether the transaction intends to update the page. If
the page is not already cached, then BM will request a
P lock for the page in the appropriate mode (S for read
access and U far update). If the page is cached but the
request is for update and the current system is not al-
ready the owner of the page, then BM will make a re-
quest to upgrade (from S to U mode) the P lock for the
page. This request triggers LM to invoke the page-
transfer procedure in the owning system, if there is one.
BM in the owning system then transfers the page. The
owning BM, if necessary, downgrades its P lock so that
the requesting BM’s lock is granted. The downgrading
from U to $ would be required if the request is for a U
lock. The subsequent fix_page processing depends on
the scheme used for the page transfer.

Next, we briefly describe four page-transfer schemes. In
this section, we consider the case where an owner for
a page exists and another system wants to become the
owner. The schemes are also applicable when the second
system only wants to read the page. The latter case is
covered in the section "3. Details of the Page-Transfer
Schemes”.

2.1. Simple Scheme

In this scheme, the following actions accur on the owner
and the requestor sides. We are not showing the lock

196 Barcelona, September, 1991

request message from the requestor to GLM and the
lock grant message from GLM to the requestor since
these costs are common to all the schemes discussed
here.

® Alock conflict message is sent from GLM to the owner.

¢ A disk I/0 is performed by the owner to write the page
to disk. Due to the WAL protocol. there will he an
implicit log force.

e After the disk /O completes, a message is sent from
the owner to GLM for downgrading the P lock to S mode.

¢ A disk /O is performed by the requesting system to
read the page from disk.

Therefore, using the Simple scheme, the costs of a page
transfer are 2 messages, 2 1/0Os and, possibly, a log
force. As it should be obvious, the simple scheme is
very costly compared to the single-system case where
BM locates the updated page in memory at CPU speed.
These additionai costs increase transaction response
time and decrease concurrency. Hence, the need for
more efficient page-transfer schemes. In IMS, VAX
DBMS, VAX Rdb/VMS and Oracle 6.2 in a VAXcluster, a
page is transferred from one system to another via disk.
This simple scheme is not discussed further in the rest
of this paper.

2.2. Medium Scheme

Continuing with the above example, the Medium scheme
differs as follows: The owning BM writes the page to disk
and simultaneously ships the page directly to the re-
questor using the comm-link. After the disk write is
complete, the owning BM downgrades the P lock to the
S mode. Then, LM grants the lock to the requestor.

The costs involved in accessing a page using the Medium
scheme are as follows:

® A lock conflict message from GLM to the owner.

¢ A disk I/O by the owner to write the page to disk. Due
to the WAL protocol, there will be an implicit fog force.

¢ A message to send the page directly to the requesting
BM.

e A message from the owner to GLM for downgrading
the P lock.

Therefore, using the Medium scheme, the costs of a
page transfer are 3 messages, 1 /O and, possibly, a log
force. This scheme is more efficient than the Simple
scheme, because (1) the page transfer is a memory-
to-memory transfer which should be much faster than a
disk /0 and which should reduce the contention on the
disk arm, and (2) the page transfer is overlapped with
the disk write. Of course, there is nc guarantee that the
requestor would receive the shipped page in a timely
manner or receive it at all. Therefore, care has to be
taken so that the requestor does not (1) wait forever for
the page to arrive, or (2) use a stale version of the page.
The details about the avoidance of such problems are
described in the section “? on page ?".

2.3. Fast Scheme

The Fast scheme differs from the Medium scheme as
follows: the owner BM does not write the page to disk.

Proceedings of the 17th International
Conference on Very Large Data Bases

In the page-transfer procedure, the owning BM issues,
if necessary, a log force for ensuring the WAL protocol,
ships the page to the requestor and then downgrades
the P lock. Then, LM grants the lock to the requestor.
With the Fast scheme, the costs of a page-transfer are
3 messages, no disk |/O and, possibly, a log force. The
disk write, which in the Simple and Medium schemes
causes most of the delay, is entirely eliminated in this
scheme.

In the normal case, the Fast scheme provides better
response time and concurrency than the Simple and
Medium schemes. However, it complicates page recov-
ery since a dirty page may be transferred from one
system to another and since it may contain updates from
more than one system. In the Simple and Medium
schemes, a dirty page contains updates of only the own-
ing system. Hence, with the Fast scheme, during recovery
from a system failure or on noticing the nonarrival of a
shipped page, a merged log of all the systems may be
required to recover a dirty page. Since a dirty page may
contain updates from muitiple systems which have not
been reflected in the disk version of the page, for each
such page, the transaction system records a value called
the Recover LSN (RLSN) at GLM. An RLSN is the eariiest
log point in the merged log from where the log must be
scanned to redo the changes logged for the associated
page in case the system owning the page were to fail
before writing the page to disk. Since the clocks across
the SD complex are synchronized, we use a timestamp
as the value of RLSN. In the section “3.3.1. Assigning
and Tracking Recover LSN", we discuss how the RLSN
value at GLM is manipulated.

2.4. Super-Fast Scheme

With the Super-Fast scheme, the owner is not required
to ensure that the log is forced up to the LSN of the
page before shipping the page. With this scheme, the
costs of a page transfer are 3 messages, no disk 1/0,
and no log force. However, in order to ensure that the
WAL protocol is followed before the dirty page is written
to disk by some owning system uitimately, this scheme
requires the tracking of the LSN values associated with
a dirty page on a per system basis for all the systems
whose updates to the page have not yet been reflected
in the disk version of the page. For each updating sys-
tem, the LSN to be remembered is the LSN of the page
when the page was shipped by that system to some
other system. The page can be written to disk only after
all those updating systems have forced their respective
logs up to the LSNs being tracked. Note that this is
required since we have assumed that each system has
its own log which makes the log force of each system
independent of those of the other systems.

3. Details of the Page-Transfer Schemes

In this section, we describe the Medium, Fast and Super-
Fast schemes in detail when the granularity of logical
locking is a record within a page. Due to space con-
straints, we do not discuss here the optimized versions
of these protocols that can be used when the granularity

197 Barcelona, September, 1991

o
%
-
GLM
LLM2
&
° o (9
q §d
& ~ o
~ i
h? & / QO- 6‘
& g' Qtl Q,’ \ t’ l:v
& & 10) &
; g, 5
~ &
R
D BM2
1 Fix Page
Pl for Read
e AN ®.Q
(LSN = 15) A &
Occur in
1
20 P Parallel
In this scenario, a transaction T, in system S1, finds out, via the L-Short-message returned on L locking record R10 in page P1,
that it needs to access P1’s version with an LSN that is at least as high as 15. Buffer manager BM1 in 81 has no cached version
of P1, but BM2 in S2 has a dirty version of P1. BM1, by P locking P1 in S mode and with the assistance of LM, acquires P1 with
LSN 20 from the owner {BM2). The P-Short-message sert by BM2 informs BM1 that the shipped page has 20 as its LSN. Since
only an 8 mode P lock is requested, BM2’'s Page-Transfer procedure does not write P1 to disk, irrespective of the page-transfer
scheme.
Figure 2: Scenario Showing Logical and Physical Locking, and Page Transfer

of logical locking is a page, rather than a record
[MoNad1b].

We illustrate message flows relating to locking and page
transfer for 4 different scenarios in Figure 2, Figure 3,
Figure 4, and Figure 5. The figures inciude descriptions
of the illustrated scenarios. We will refer to these figures
in the following descriptions. Before we delve into the

Proceedings of the 17th Intemational
Conference on Very Large Data Bases

details of the different page-transfer schemes, we discuss,
in the next subsection, how the lock manager assists in
dealing with the buffer-coherency prablem.

3.1. Lock Manager's Coherency Assists

For record locking, LM assists in maintaining a page
coherent in the following ways:

198 Barcelona, September, 1991

ZXa

U Lock P1;
Set RSN
Conditionally
to 50

LIM
U Lock P1;
Set RLON 9
Conditicnall
to 50
P-8hoxt-msg
(L8N = 20)
(RLSX = 10)
(Ovnex_ExistsuYes)
2
Fix Page,
Pl for C DML
na Update

20

but BM2 in S2 has a dirty version of P1. BM1, by P locking P1

P~8hort-msg

(L8N = 20)

(RLEN = 10) U Lock Pl
(Ownex_Exists=Yes) from 81

=L

In this scenario, a transaction T, in system S1, wants to update page P1, Buffer manager BM1 in $1 has no cached version of P1,

version of P1 from 8M2. BM2's Page-Transfer procedure downgrades its U mode P lock on P1 to the S mode. The P-Short-message
sent by BM2 informs BM1 (the new owner) that the shipped page has 20 as its LSN. When BM2 ships the page to BM1, it indicates
that the page is dirty. This means that either the Fast or the Super-Fast scheme is being used for page transfer. LM ignores the
RLSN value of 50 provided by BM1 since the page is already dirty and its current RLSN is 20.

Figure 3: Scenario Showing Physical Locking, and Page and Ownership Transfer

Downgrade Pl's
Lock to 8

P-Bhorxt

(L8N = 20)

LIMN2

Invoke

Page-Transfexr| 5 $

Proa (Pl,81,

U loak)

Downgrade Pl’s
Loak to 8
P-8hort-mag
(L8 = 20)

©.O

Pl Ocour in Parallel

Dixty

in U mode and with the assistance of LM, acquires the current

In each P lock’s lock table entry, LM assigns a field for
keeping track of the LSN of the associated page. This
field is in addition to the RLSN, the log point for page
recovery, mentioned before. LM initializes the LSN field
to zeroes. LM replaces this field’s value in its lock table
entry only when an LSN provided by a system is greater
than the currently stored value. Each lock table entry
for a held P lock would have at least the following pieces
of information:

Proceedings of the 17th International
Conference on Very Large Data Bases

Page Recover Current Lock

Lock LSN LSN Holder,

Name (RLSN) (LSN) Waiter
info, ...

With an unlock request, LM accepts a list of lock names
and their associated LSNs. When a transaction termi-
nates and the transaction system issues an unlock call
to release all the (L) locks heid by the transaction, it
also sends, along with the unlock request, a list of page

199 Barcelona, September, 1991

£X4

GIM
U Loak P1;
Set RLSN
S:n:ttiondly P-Short-msg
(LBN w 0)
0
o: Bilt)--!!o)
L
U Lock P1;
S8et RLSN
Conditionally P-8hort-mag
te 50 (LSN = 0)

(Owhas Bxlstantio)

na Fixzx Page oMl
P1 Tor

Read P1 Update
from Disk

in this scenario, a transaction T, in system S1, wants to up-
date page P1. BM1 has no cached version of P1 and currently
there is no owner for P1, BM1 P locks P1 in U mode and LM
sets the RLSN of P4 to the value 50 provided by BM1 since
there is no previous owner for the page. On being told, via
the P-Short-message generated by GLM, that there is no pre-
vious owner for P1, BM1 reads the page from disk.

Figure 4. Scenario Showing Ownership Acquisition with No
Previous Qwner and No Cached Version of Page

(P) lock names and those pages’ current LSNs to LM.
The purpose of passing the list with the unlock call is to
register the LSNs of the updated pages so that other
systems which have cached those pages may verify the
currency of their pages. It is using this information that
the page incoherency detection problem discussed be-
fore is solved. LM updates the supplied LSNs before
processing the accompanying unlock request. Also, when
BM steals a dirty page’s buffer slot by writing the page
to disk, it passes to LM the LSN of the page with the
unlock request for the P lock.

LM supports a verify option with a lock request. The
verify option is used by the data manager to ensure that
it will read only the correct version of a needed page.

Proceedings of the 17th Intemational
Conference on Very Large Data Bases

rxa

=1 87
Upgrade Pl's
Lock to U; PoShort-msg
Set RLANW g‘_:: - 0;0)
zznggnenllly (Ovnex_Rxistssiio)
LM
Upgrade Pl’'s
Loak to U;
Sat RLSN P-g8hort-msg
Conditiocnally (LSK = 0)
to 50 RL3N = 50
(Ovhes ‘Bxietemtio)
: DMl
o Fix Page
Pl Tor

Version of

Use RBxisting @ Update
Page

In this scenario, a transaction T, in system S4, wants to up-
date page P1. BM1 already has a cached version of P1 and
currently therae is no owner for P1, BM1 upgrades its P lock
on Pt tothe U mode and LM sets the RLSN of P1 to the value
50 provided by BM1 since there no previous owner for the
page. On being told, via the P-Short-message generated by
GLM, that there is no previous owner for P1 and that the LSN
of the page is 0, BM1 realizes that its cached version is
current and continues to let it be used by its transactions.

Figure 5: Scenario Showing Ownership Acquisition with No
Previous Owner and a Cached Version of Page

That is, it helps the systems in dealing with the detection
problem. The verify option returns the LSN associated
with a second lock name provided in the lock request.

With this option, when the data manager issues the

record lock request, it gets the LSN for the corresponding

poge lock {see steps 1, 2. 3 and 4 in Figure 2). If the

latter lock is not currently held by any system, then LM
returns an LSN value of zero which implies that the
latest version of the page is on disk (see steps 4 and §
in Figure 4). A value of zero will be returned even if the
page lock is currently held by one or more systems,
including possibly an owner, in case the owner has not
so far committed its updates (see steps 4 and § in Figure

5). In all cases, a returned value of zero means that the

latest committed version of the page is definitely on disk.

200 Barcelona, September, 1991

The LSN value is looked up by LM after the record lock
is granted to the requestor and, obviously, before LM
returns to the requestor with the lock-granted response.
This is important since, at the time the record lock re-
quest is made, anaother system might be still modifying
that record and we need the LSN of the corresponding
page after the modification of the other system is com-
mitted. By delaying looking up the LSN until the record
lock becomes grantable to the requesting system, LM
can guarantee that it would have come to know about
the LSN of the latest committed version of the page
The latter is made possible since a transaction’s logical
locks are not released until it is ensured that the current
LSNs of the pages modified by the transaction have been
stored at LM, It was to accomplish this that the LSNs
are updated before the unlock requests accompanying
the LSNs are processed during transaction termination.
as mentioned before.

The LSN requested as part of a verify request is returned
as a Short-message that accompanies the lock grant
response. We refer to the Short-message returned with
an L lock request as an L-Short-message (see steps 3
and 4 in Figure 2). The L-short-message is used in
fix_page processing (see step 5 in Figure 2). If the
cached page’s LSN is less than the LSN in the L-
short-message, then BM needs to obtain a new version
of the page. BM would use LM’s Notify option to get a
new version of the page from the owner, if there is one
BM would note in the buffer control block (BCB) which
is associated with the buffer pool slot that is allocated
for the page that a new version has been requested so
that subsequent requestors who need a more recent
version than the cached version are made to wait until
the new version arrives. The readers whose requests
can be satisfied with the older version can continue to
use the cached version. If LM indicates that there is no
owner for the page, then that would imply that the disk
version of the page is the latest version. In that case,
BM would read the page from disk.

In the page-transfer procedure, the owner’s BM sends
the page directly to the requesting system’s BM (see
step A in Figure 2). In addition, it sends, via LM (LLM
on owner to GLM to LLM on requestor) a P-
Short-message (see steps 10, 11, 12 and 13 in Figure 2).
The P-Short-message contains the LSN of the shipped
page. The owner attaches the message to the P lock
related downgrading operation if it does such an opera-
tion as part of the page-transfer processing. Otherwise,
it passes to LM just the P-Short-message as a response
to the Notify message presented to it earlier by LM. A
flag (Owner_Exists) is included in the Short-message
which indicates whether or not an owner exists for the
page (Yes or No, respectively). This flag is set by GLM
If there is no owner for the requested page, then GLM
creates the P-Short-message and inciudes the LSN that
it has for the page. When there is no owner, GLM will
already have an entry for this page if at least one system
is already holding an § lock on the page. In this case,
the LSN value could be nonzero as a result of the page
having been updated and then the U lock having been
given up by the updater after the latter updated the LSN
at GLM. Otherwise, the LSN will be zero due to the fact
that the lock table entry would have been created as a

Proceedings of the 17th International
Conference on Very Large Data Bases

201

result of the current lock request (see steps 3 and 4 in
Figure 4). In the latter case, as mentioned before, the
LSN field would have been initialized to the value of
zero. If no owner exists and the requestor finds that its
cached version, if any, is out of date, then it can obtain
the latest version from disk (see step 6 in Figure 4)

Due to space constraints, we are unable to include some
interesting details about our protocols here. The reader
is referred to [MoNa91a] for those details,

3.2. Medium Scheme Details
3.2.1. Avoiding Using Stale Pages

In the Medium scheme, the page is transferred by the
owner initiating a disk write (write is done only in the
case of ownership transfer for a dirty page) and simul-
taneously shipping the page via comm-link, but without
requiring a guarantee that the requestor will receive the
shipped page. The page may arrive (1) before the P lock
is granted to the requestor (the normal case), (2) after
the P lock is granted and the page is already cached
(because it was read from disk), (3) after the requesting
BM read the page from disk, allowed it to be modified,
wrote it to disk and purged it from the buffer pool, or
(4) all actions of (3) followed by a fix_page request which
causes a P lock to be requested. In cases (3) and (4),
the received old version of the page is referred to as a
stale page. Below, we describe how we handle the ab-
normal cases (2), (3) and (4).

If the P lock is granted and the page is not cached, then
the BCB for the page is marked to indicate that the page
will be read from disk. Note that there is no timeout
mechanism to request the page again from the owner.
In the case of a U mode lock request, since the lock
would have been granted to the requestor only after the
disk write was complete, the requestor can read the
page from disk. If the S mode lock had been requested,
since the page would not have been written to disk by
the owner, the requestor would have to first ensure that
the page gets written to disk before it does the read
from disk. This can be accomplished by the requestor
becoming the owner by upgrading the lock to the U
mode Subsequently, if the originally shipped page were
to arrive when there is already a cached version, then
the shipped version will be discarded.

We avoid using a stale version of the page as follows:
In case (3), when the page arrives a BCB for it would
not exist and hence the received page will be discarded.
In case (4), when the P lock is granted, the LSN included
in the P-Short-message will be used to ensure that the
cached page will not be used if it is not the current version.

3.2.2. Recovery from Failures

Since the Medium scheme writes the updated page to
disk before another system is allowed to update the
page, only one system’s log records are needed to re-
cover the page in case of a system failure. For a single
system failure, the failing system would have retained
U locks on the dirty pages that were in its buffer pool
at the time of its failure. These pages are recovered
using the failed system’s log. Even if the retained locks

Barcelona, September, 1991

are lost because of a catastrophic failure of LM, the log
records of only one system will possibly be reapplied for
a given page. In the ARIES-style recovery methods
[MHLPS89, MoPig91, RoM089], the LSN of a log record
refating to a page is compared with the page LSN and
only if the latter is less than the former is that log
record’s update redone.

With reference to restart recovery after a system failure,
the following points should also be noted:

® During the undo pass, the U lock must be reacquired
on an affected page if it is not already held This U
lock acquisition will not cause deadlocks since, even
during forward processing, U locks are not involved in
deadlocks.

® In the case of recovery from a single system failure,
a page involved in redo recovery (i.e.. a page for
which the U lock was held at the time of system failure)
is transferable to any other system which needs it
after the redo pass is completed. If the failed system
is in its restart recovery, then LM would queue the
incoming remote lock request until the failed system
indicates that its page-transfer procedure is enabled.
The transaction system would enable the page-transfer
procedure at the end of the redo pass (i.e, after
repeating history for all the missing updates
[MHLPS89]).

® The current way of determining the restart recovery
point (e.g., by the analysis pass of a single system
recovery method like ARIES) would ensure that all the
log records which might have to he reapplied will be
encountered during the redo pass of restart recovery
This will be the case even if there is an SD-complex
failure.

® In the case of an SD-complex failure I(GLM and at least
one LLM failed), which is expected to be very rare, no
surviving system will be granted any . locks by the
backup GLM which has taken over until all the failed
systems recover completely (i.e., redo and undo passes
are completed). P locks will not be granted until all
the failed systems (1) complete their reco pass of re-
covery, and (2) on completion of the redo pass, they
reacquire the needed P locks (U mode for dirty pages
and § mode for nondirty pagesj for pages currently in
their buffer pools and register LSNs for the dirty pages
in their buffer pools. At this point, GLM can reconstruct
its lock table entries for all the P locks by gathering
the information from all the LLMs. The undc pass of
recovery for none of the recovering systems can be
started until this happens. During this undo pass pro-
cessing, P locks may need to be acquired as in normal
processing. Once the undo pass is completed for all
the recovering systems, GLM will be able to populate
its lock table with all the L locks needed to protect all
the uncommitted updates for the in-doubt (prepared
state of two-phase commit [MoLp86]) transactions in
the recovered systems and all the locks held by active
transactions in the systems which did not fail. Note
that the redo (undo) passes for the different recovering
systems can be performed in parallel.

3.3. Fast Scheme Details

The key considerations in the Fast scheme are:

* A dirty page 1s transferred from one system to another
without writing it to disk. if, as a result of this action,
the page’s ownership is also transferred, then if BM
were to maintain a queue of dirty pages, call it Dirty_Q,
to support deferred and batched writes to disk, then
the shipped page will be removed from it. The page
can contain committed and/or uncommitted updates
from multiple systems. When adirty pageis transferred
to another system for updating by the latter (ownership
transfer), i1t is the latter system’s responsibility to write
the page to disk. That is, the system which has the U
lock on the page (the owner) is the one responsible
for writing the page to disk. The owner is also respon-
sible for recovering the page in case the owner fails
before writing the page to disk. Of course, the owner-
ship may be further transferred without the page being
written to disk.

¢ Since, during the transfer of ownership of a page, BM
removes the page from Dirty_Q of the transferring
system, the LSN of the page’s earliest unapplied (to
the disk version of the page) log record is not factored
in the computation of the restart recovery point which
is checkpointed by the previous owner. For example,
if there is only one dirty page in system S1 and its
ownership is transferred to system S2, then the next
checkpoint in S1 would result in the recording of the
restart recovery point to be the start of this checkpoint
as opposed to the RLSN of the dirty page (see
"MHLPS89]). But, the RLSNs of all the pages which
are owned by a recovering system must be factored
in the calculation that determines the restart recovery
redo point starting from which redo might have to be
performed using the encountered log records.

¢ Since, during the transfer of ownership of a page, BM
removes the page from Dirty_Q of the transferring
system, there is a time period during which if the RLSN
is lost (e.g., as a result of an SD complex failure), then
the recovery of the page would be jeopardized. The
following scenario shows that: A page was held in U
mode in system $1 and system S2 requests it in U
mode. S1 ships the page to S2, removes it from
Dirty_Q, and releases the lock. Then, §1’s next check-
point starts which records the restart point which is
later than the earliest unapplied log record for the
dirty page which was shipped. Now the complex fails.
The RLSN is lost and S1’s and S2's checkpoint infor-
mation will not position us to include the relevant log
records of the dirty page. Hence, to correctly deal
with this problem, we need to checkpoint GLM’s lock
table, including the RLSNs, on a periodic basis. This
is a complex-wide checkpoint of the dirty page list.
The lowest recorded RLSN is used to determine the
restart redo recovery point during an SD-complex re-
start.

s A copy of the page is shipped via comme-link, as in the
Medium scheme. A P-Short-message is sent to the

Proceedings of the 17th Intemational 202 Barcelona, September, 1991

Conference on Very Large Data Bases

requestor with the lock grant. The usage of a stale
version of the page is avoided in the same way as in
the Medium scheme. However, with the Fast scheme,
if a stale version is cached or the page is not received
by the time the lock is granted, the requestor cannot
read the page from disk and use it as it is since, even
during ownership transfer, the previous owner does
not write the page to disk. The requestor first becomes
the owner of the page, if it hasn’t already become the
owner as a result of getting the P lock. In doing so. it
asks, via the lock request message, that the page be
written to disk by the previous owner. If the previous
owner has not failed, then it writes the page to disk
and lets the requestor read the page from there. |f
the previous owner has failed, then the requestor
would recover the page. Such a recovery involves
reading the older version of the page from disk and
applying the log records by scanning the merged log
from the RLSN to the LSN when the owning system
failed. An upper bound for the iatter can be obtained
by the new owner by noting, at the time it becomes
the owner of the page, what the LSN would be if a
new log record were to be written right then.

3.3.1. Assigning and Tracking Recover LLSN

With the Fast scheme, since a dirty page’s ownership is
transferred without first writing it to disk, the page’s
Recover LSN (RLSN) has to be tracked at GLM to recover
the page correctly in case the new owner fails before
the page is written to disk. To accomplish this, BM as-
signs and tracks RLSN in the BCB when a U lock is
requested for a page or whenever the page’s state
changes from nondirty to dirty. BM chooses as RLSN
the LSN that would be associated with a log record if it
were to be written now (essentially the end-of-log LSN)
LLM and GLM initialize the RLSN field of a lock table
entry to the maximum number that can be stored in that
field (referred to as Hi-Value). An RLSN value of Hi-Value
for a page impiies that no recovery is needed for that
page. When a U lock is requested for a page, the P lock
request would include the RLSN value assigned hy BM.
BM would request that the value be set conditionally
by LM. LM would set its lock table entry’s RLSN field to
the suppiied value if the current RLSN value at LM is
Hi-value. This means that when a dirty page’s ownership
is being transferred from one system to another, without
the page being written to disk, the RLSN value at LM is
not modified. In any case, LM would return to BM the
RLSN value that it has after it processes the lock re-
quest. When a U lock is released or downgraded to an
S lock without the ownership of the page being transferred
to another system (which can happen only after the cur-
rent owner writes the page to disk}, LM can set RLSN
to Hi-Value.

To reduce the log range that would have to be processed
for page recovery, BM in the owning system pushes the
RLSN forward after writing the page to disk, but before
it is dirtied again, by asking LM to set RLSN to Hi-value
unconditionally. In this case, when the page hecomes
dirty again, BM would have to first update RLSN at LM
before allowing the update to take place. Alternatively.
the RLSN can be pushed after the page becomes dirty

Proceedings of the 17th International
Conference on Very Large Data Bases

again to the higher value tracked in the BCB without the
value heing set at LM to Hi-value in between. Pushing
the RLSN forward is not required by the algorithms pre-
sented here. This is an optimization to reduce the range
of the log that would have to be scanned in case a failure
happens and the page needs to be recovered.

3.3.2. Recovery from a Single System Failure

We first discuss the case when the page locks and their
RLSNs are availabie from GLM at the time of the restart
of a failed system. A page which needs redo recovery
would have a U lock heid and its RLSN will not be equal
to Hi-value. The minimum of the RLSNs of aii the pages
for which U locks were retained by the recovering system
is taken into account in computing the start point for the
log scan of the redo pass [MHLPS88]. The merged log
is scanned during the redo pass for redoing any updates
which might be missing from the pages. A log record’s
update would be redone only if the U lock is held and
the page’s LSN is less than the LSN of the log record.
The log is scanned up to End-LSN (the last log record
written by the recovering system before it failed).

If a system requests a page lock which is retained in the
U mode and the failed system has not begun its recovery
processing, then GLM can grant the lock to the other
system along with the message you recover the page.
This option improves availability to the data. GLM can
indicate, via the P-Short-message, to the requestor the
need for recovering the page before it is used. With this
enhancement, under the above conditions, even if only
the S lock was requested, GLM will grant the U lock to
make that page recovery possible.

The P-Short-message would have the following additional
information:

» Indicator - you recover the page.
® System-ID of the system which retained the lock.

The requestor can query the system merging the local
logs to determine the End-LSN of the failed system that
heid the U lock. As before, the RLSN kept at GLM would
be returned when the lock is granted. The requestor can
then read the page from disk, scan the merged log from
RLSN to End-LSN of the failed system and recover the
page. When such a recovery is done, the recovered
page is marked dirty and placed in the Dirty_Q.

3.3.3. Recovery from an SD-Complex Failure

An SD-complex failure is characterized by the loss of all
the locks at GLM and the inability to recreate at least
some of them since one or more LLMs would have aiso
failed, This means that for the U mode page locks, the
LSNs and RLSNs would have also been lost. In such an
event, the start point for the redo processing scan of the
log cannot be determined as in the case of a single
system failure. For this reason, periodically, a system
takes a GLM checkpoint by first writing a
Begin GLM Checkpoint log record and then requesting the
IDs of all pages and associated RLSNs for pages with
RLSNs not equal to Hi-value from GLM and writes them
into an £nd GLM Checkpoirt log record. The following is
required to determine the restart redo point after an
SD-complex failure:

Barcelona, September, 1991
203 ptem

¢ The end_GLM_checkpoint log record must be accessed
and, based on its contents, the minimum of the RLSNs
must be determined. If no page had an RLSN value
smalier than Hi-value when the GLM lock table check-
point was taken, then the above minimum is set to be
the LSN of the begin_GLM_checkpoint log record.

¢ The merged log must then be processed starting from
the LSN which is the minimum of the LSN of the
begin_GLM_checkpoint log record and the LSN deter-
mined in the previous step. This redo processing is
similar to the way it is done in ARIES [MHLPS891.
Until the redo scan reaches the begin_ GLM _checkpoint
log record, only log records relating to pages in the
GLM checkpoint log record need to be processed. Af-
ter that point, all log records would have to be pro-
cessed until the end of the log is reached.

¢ The rest of the processing here is mostly the same as
that for the Medium scheme. But, unlike in the case
of the Medium scheme, here the redo pass for gll the
systems must be performed by cne system by doing
a single scan of the merged log. The easiest thing to
do at the end of this pass is to write to disk all the
dirty pages. If this is not desirable, then the RLSNs
can be determined as redo is performed by associating
with each page the LSN of that log record whose redo
causes the page state to go from nondirty to dirty.
The lock table entries for the dirty pages that are in
the buffer poo! at the end of the pass can be initialized
from those RLSNs. Once the redo pass is completed
by a single system on behalf of all the failed systems,
the undo passes can be performed in parallel by the
individual systems, as in the Medium scheme.

3.4. Super-Fast Scheme Details

In addition to the key points described for the Fast
scheme, the following points also apply to the Super-Fast
scheme:

¢ To enforce the WAL protoco!, a page cannot be written
to disk until all the log records written for that page
by the different updating systems have been forced to
stable storage. The tracking of these log records is
done as follows: Associated with each dirty page, there
are a certain number of slots. Each slot is used to
track the LSN of the latest log record written by one
of the systems which updated the page and whose
updates have not yet been reflected in the disk version
of the page. If a slot is available, then an updating
system notes {(or modifies its already existing entry)
the LSN of the log record it just wrote for this page.
Otherwise, the system would follow the Fast scheme
when it is asked to transfer ownership of the page.
That is, it would force the log before transferring the
page. If a dirty page’s ownership is transferred without
some updating systems’ logs having been forced to
the requisite points, then the information in the slots
is also passed on to the new owner along with the page.

¢ Before writing a dirty page to disk, its owner ensures
that all the systems which updated the page have
forced their respective logs up to the LSNs noted in

Proceedings of the 17th Intemnational
Conference on Very Large Data Bases

the corresponding slots (see below for a method to do
this check efficiently). If the log is not already known
to have been forced up to the desired LSN in another
system, then the owner sends a message to that sys-
tem and requests it to do so. The interesting question
that now arises is what happens if such a system had
failed and hence it wouldn’t respond. We may have,
in the buffer pool, a dirty page which has some updates
for which there are no log records on stable storage.
Therefore, the page must be recovered by the owner
by reading its old version from disk and redoing its
updates using the merged log. Before doing such a
page recovery, all surviving systems which had pre-
viously updated the page must be made to force their
log records up to the requisite LSNs. This is required
because it would be incorrect to miss a log record
which is not yet forced and which relates to an update
made by another system which may be committed
later on.

¢ On a periodic basis, each system would register with
GLM the highest LSN up to which that system’s log
has been forced to stable storage. This highest LSN
is referred to as Hi-LSN. GLM locates the entry cor-
responding to the system-ID and replaces its Hi-LSN
value. Periodically, when it sends a message to a
particular system, GLM would forward Hi-LSNs of all
the other systems. Each system has a vector of the
other systems’ IDs and their respective Hi-LSNs. This
vector’s information is updated based on the messages
from GLM.

4. Comparisons with Existing Work

We know of no existing work where

¢ fine-granularity (e.g., record) locking is supported with
as much flexibility {e.g., semantically-rich modes of
locking) as our schemes do,

¢ the combination of no-force and steal buffer manage-
ment policies are supported,

® the extent of data availability under failure conditions
is as high as with our schemes,

® recovery issues are addressed for the different
schemes in as much depth as we have done,

¢ partial rolibacks are supported,

¢ the Super-Fast scheme is described, and

s pages are shipped using datagrams.

4.1. Rahm’s Scheme

The only paper in the SD area that discusses recovery
to a reasonable extent in the context of concurrency and
coherency control is [Rahm839]. In the following, we
compare our work with Rahm’s protocols in that paper.

Rahm’s coherency control and recovery protocols are
designed for supporting a very particuiar form of con-
currency control protocol called primary copy locking
(PCL). With PCL, the data base is divided into logical
partitions and each system is assigned the synchroniza-
tion responsibility (or primary copy authority (PCA)) for
one partition. This PCA/PCL method increases the burden
on the data base administrator who now has to decide

204 Barcelona, September, 1991

how to partition the data base into logical partitions.
This is very similar to the data base design problem in
the partitioned (shared nothing) architecture [PMCLSS0,
Shoe86].

When a system fails, access to all the data for which
that system was the PCA is denied. In our case, only
the data for which the failed system had retained locks
would be unavailable until recovery is completed for the
failed system. Almost always, the latter data would be
a much smaller portion of the data base than would be
the case with the former data.

The detection technique that we employ is similar to the
technique used by Rahm. The LSN for a locked page is
maintained only at the PCA system for that page. Rahm
supports essentially only page locking, although he hints
at how the protocols might be extended for some very
restricted forms of record locking. This means that
index concurrency control methods like ARIES/KVL
[Moha90] and ARIES/IM [MolLe88] cannot be supported
in the SD environment by his protocols.

Rahm’s protocols support only physical, not logical or
operation, logging [MHLPS88). Further, they do not sup-
port partial rolibacks. No logging is done of updates
performed during roltbacks of transactions. That is, com-
pensatian fog records (CLRs) are not written. As a result,
media recovery requires a two-pass algorithm to make
sure that no log records written by uncommitted trans-
actions are redone, Also, it requires that image (archive)
copies be taken with locking being done on the copied
data to ensure that no uncommitted data is copied. With
this approach, image copy will take a longer time to
finish, will be more expensive in terms of CPU overhead
and there will be more interferences between the image
copy operation and (regular) transactions. We support
the cheaper fuzzy image copy method of [MHLPS89].

Rahm supports only the no-steal buffer management
policy (i.e., pages with uncommitted data cannot be writ-
ten to disk). As argued in [MHLPS89], this is an inflexible
and expensive policy, especially when fine-granularity
locking is being done. This will be the case even if large
amounts of real memory are available. Also, too much
bookkeeping is needed to enforce the policy.

Like us, Rahm also allows a modified page to be shipped
over a comm-link. Before a page is written to disk, it
may be modified by many systems. However, in Rahm’s
scheme, only the PCA node for the page has the authority
to write the page to disk. Congsequently, at commit time,
an updating system has to send pages updated by the
transaction to the pages’ respective PCA systems. This
leads to wasted buffer storage since the updated version
of the page is present in at least two buffer pools when
the updating system is different from the PCA system
for the page. Further, when a page is modified in any
system other than its own PCA system, double logging
is required: logging is done in the modifying system as
well as in the PCA system for that page. For this reason,
the updating system sends the fog records written by a
transaction to the PCA system for the affected data at
commit time. These commit time actions can significantly
increase the communication traffic, in terms of volume
of data, on the intersystem communication network.

Proceedings of the 17th Intemational
Conference on Very Large Data Bases

They also increase the complexity of the software since
log records have to he separated by the PCA nodes of
the updated data. In our schemes, any system which is
currently the owner (updater) of the page has the au-
thority to write the page to disk.

Rahm does not describe shipping the page with the
Super-Fast scheme. That is, not forcing the log before
shipping the page. We addressed the page-recovery is-
sues when the Super-Fast scheme is used.

Rahm does not mention his assumptions about the char-
acteristic of the communication protocol (guaranteed de-
livery or datagram) used for shipping the page. Rahm’s
protocols ship the page with the lock grant message if
the page is present in the buffer pool of the PCA system
and that version of the page is not already present in
the buffer pool of the locking system.

4.2. Dias et al.'s Scheme

An approach to concurrency and coherency control is
presented by Dias et al. in [DIRY89]. There are some
major differences between our approach and theirs. They
do not deal with most of the fallure and recovery impli-
cations of their design. They support only page-level
granularity of locking by transactions between systems
for reads and updates. Their GLM treats transactions,
rather than LLMs, as the owners of locks. This means
that the number of locks acquired, and the message and
processing overhead will be higher if multiple transac-
tions within a system access the same page. Further,
separate page-level (global) locks are used for coherency
control and these locks are acquired by BM. The message
overhead is reduced for these extra locks by piggybacking
them on transaction lock requests. Due to space con-
straints, we did not describe here our optimized protocols
for page locking by transactions. Those protocols
[MoNa91h] are even more efficient than the protocols
of Dias et al.

Dias et al. require that the system always write pages
modified by a transaction to disk or an intermediate
shared storage before commit. Hence, a requestor al-
ways reads the page from disk or the intermediate stor-
age. For their Check-on-Access scheme, they do not
track the LSN of the page at GLM. Instead, when a page
is updated and the updating transaction releases its
locks at GLM, their scheme invalidates the page at GLM
for the other systems by releasing the other systems’
BM locks, if any, for that page.

4.3. DEC’s VAXcluster Scheme

As mentioned before, DEC’s VAX DBMS and VAX Rdb/
VMS [KrLS86, ReSW8S] support the SD environment in
a VAXcluster with a detection scheme very similar to
ours. They also use version numbers. Like IMS, those
systems also force updated pages to disk at commit
time, use physical logging and use the simple scheme
for page transfer between systems.

Uniike our assumption that each system has its local
log. in the VAXcluster, all the sharing systems use a
single global log. Having a single log for direct use by
all the systems becomes expensive since every write to

1991
205 Barcelona, September, 199

the global log requires acquiring a globel lock to serialize
the space allocation in the log file. In the VAXcluster,
even single system failures are very disruptive. This is
because, locking activities across all the sharing systems
are suspended until the failed system’s recovery is com-
pleted by one of the surviving systems. Because of the
force policy being used, recovery invoives only roiling
back uncommitted transactions. This could take a very
long time if some long update transactions which were
executing on the failed system have to be rolled back.

5. Summary

A transaction system, such as DB2, which does not write
an updated page to disk at transaction commit has the
current version of a page in its buffer pool. In an 8D
environment, each sharing transaction system instance
has its own buffer pool. Therefore, when a system re-
quests a page whose current version is cached in another
system (referred to as the owner), the owner must pro-
vide the page to the requestor. We proposed efficient
schemes by which the owner provides a copy of the
current version of the page to the requestor without disk
I/0s. These schemes improve transaction response time
and concurrency. Techniques which enhance availability
of data in the presence of failures were also described.

We described how the owner ships the page, the reques-
tor ensures that it always uses the current version of
the page, and the system recovers the page in case of
failures. The methods presented here do not rely on any
timeout mechanisms, We did not discuss media recovery
specifically since there is nothing special that needs to
be done for it, except for the use of the merged log. The
jatter is very similar to the way recovery from an SD-
complex failure is handled in the Fast and Super-Fast
schemes. The algorithm for fuzzy image (dump) copy
proposed in [MHLPS89] can be easily adapted for use
in the SD environment,

In the foliowing, we summarize what we consider to be
the novel! features of our schemes.

1. Support for the no-force and steql buffer manage-
ment policies, and fine-granularity locking and partial
rollbacks in a flexible fashion, thereby accommodat-
ing even the high-concurrency index locking proto-
cols like ARIES/IM [MolLe88] and ARIES/KVL
[Moha80]. Also, support for nested transactions by
using the ARIES/NT logging and recovery method
[(RoMo8g].

2. The concept of keeping the recovery starting point,
referred to as the Recover LSN (RLSN) of the page,
at the lock manager and the use of a merged log to
allow transfer of committed or uncommitted data
from one system to another without having to write
the modified page to disk first.

3, The idea of communicating the LSN of the latest
update that each system made to a page so that a
page can be sent through and modified by a series
of systems without the modifying systems having to

Proceedings of the 17th Intemational
Conference on Very Large Data Bases

write the page or the log to disk before they pass
on the page to a succeeding system in the series.

4. The use of Recover LSN to enhance availability of
data by allowing the recovery of a page by one
system when another system has failed while owning
the update privilege on the page.

5. The use of a Short-message as grant data with a
lock to ensure that the requestor never uses a stale
version of the page which was transferred via a
datagram.

6. The idea of checkpointing the GLM lock table to
recover in the case of an SD-complex failure (i.e.,
when locks are lost).

7. The idea of transferring the page via datagram con-
currently with the disk write which reduces the pro-
gramming system complexity by not requiring a
merged log for restart recovery.

The choice of a particular scheme for page transfer can
be based on the following criteria:

e Intersystem Contention for the Page For low contention
data, Medium scheme should suffice; for high conten-
tion data, Fast and Super-Fast schemes should be con-
sidered.

® Requirement of a Merged Log For Fast and Super-Fast
schemes, restart recovery requires a merged log. For
the Medium scheme, restart recovery does not require
a merged iog. Of course, with all schemes, for media
recovery, a merged log is required.

¢ Record Locking Versus Page Locking With record lock-
ing, the Fast and the Super-Fast schemes should be
considered since the intent is to improve concurrency
within a page. With page locking, the Super-Fast
scheme does not apply [MoNad1b].

o Complexity of Programming The complexity of program-
ming for the different schemes in increasing order is:
Simple, Medium, Fast and Super-Fast.

Our schemes can be easily incorporated in SD systems
which are currently using schemes which are less efficient
and which also have poor availability characteristics.
Qur schemes should also apply to distributed virtual
memory and distributed, recoverable file systems in the
SD environment and to the currently popular client-server
object-oriented DBMS environments where the clients
cache data.

Acknowledgements We would like to convey our thanks
to Pat Selinger for her editorial comments.

6. References

BACCDS0 Boral, H., Alexander, W., Clay, L., Copetand, G.,
Danforth, S., Frankiin, M., Hart, B, Smith, M,
Valduriez, P. Prototyping Bubba, a Highly Parallel

206 Barcelona, September, 1991

Bhidss

CFLS91

DGSBH90

DiRYB9

DMFV80

HaRe823

KrLS88

Lies

MHLPSES

Mohago

Mol e89

MolLO8g

MoNas1a

MoNa81b

MoNP80

Database System, IEEE Transactions on Knowledge
and Data Engineering, Vol 2, No. 1, March 1990.
8hide, A. An Analysis of Three Traonsaction
Processing Architectures, Proc. 14th international
Conference on Very Large Data Bases, Los Angeles,
August 1988.

Caray, M., Franklin, M., Livny, M., Shekita, E. Data
Caching Tradeoffs in Client-Server DBMS Architect
ures, Proc. ACM SIGMOD International Conference
on Management of Data, Denver, May 1981,
Dewitt, D., Ghandeharizadeh, S., Schneider, D.,
Bricker, A., Hsiao, H.-l, Rasmussen, R. The Gamma
Database Machine Project, IEEE Transactions on
Knowledge and Data Engineering, Vo!. 2, No. 1,
March 1990,

Dias, D., lyer, B., Robinson, J., Yu, P. Integrated
Concurrency-Coherency Controls for Multisystem
Data Sharing, |IEEE Transactions on Software Engi-
neering, Vol 15, No. 4, April 1989,

Dewitt, D,, Maier, D., Futtersack, P., Velez, F A
Study of Three Alternative Workstation-Server Arc
hitectures for Object Oriented Database Systems,
Proc. 16th International Conference on Very Large
Data Bases, Brisbane, August 1890.

Haerder, T., Reuter, A. Principles of Transaction
Oriented Database Recovery - A Taxonomy, Computing
Surveys, Vol. 15, No. 4, December 1883.
Kronenberg, N, Levy, H., Stracker, W. VAXclusters:
A Closely-Coupled Distributed System, ACM Trans-
actions on Computer Systems, Vo!. 4, No. 2, May
10886,

Ui, K. IVY: A Shared Virtual Memory System for
Parallel Computing, Proc. 1888 International Con-
ference on Parailel Processing, August 1988,
Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H.,
Schwarz, P, ARIES: A Transaction Recovery Method
Supporting Fine-Granularity Locking and Partigl
Rollbacks Using Write-Ahead Logging, To Appear in
ACM Transactions on Database Systems, Also
avaiiable as IBM Research Report RJ6648, IBM
Aimaden Research Center, January 1988; Revised
November 1990,

Mohan, C. ARIES/KVL: A Key-Value lLocking Method
for Concurrency Control of Multiaction
Transactions Operating on B-Tree Indexgs, Proc.
16th International Conference on Very Large Data
Bases, Brisbane, August 1990.

Mohan, C., Levine, F. ARIES/IM: An Efficient and
High Concurrency Index Management Method Using
Write-Ahead Logging, IBM Research Report RJEB4E,
1BM Almaden Research Center, August 1989,
Mohan, C,, Lindsay, B., Obermarck, R. Transoction
Management in the R* Distributed ODato Base
Management System, ACM Transactions on Database
Systems, VVo!. 11, No. 4, December 1886. Also avaii-
able as IBM Research Report RJ5037, {BM Aimaden
Research Center, February 1986.

Mohan, c., Narang, i, Recovery and
Coherency-Control Protocols for Fast Intersystem
Page Transfer and Fine-Granularity locking in a
Shared Disks Transaction Environment, IBM Re-
search Report RJ8017, |BM Aimaden Research Cen-
ter, March 1981,

Mohan, C., Narang, |. ARIES/SD: A Transaction
Recovery and Concurrency Control Method for the
Shared Disks Environment, 1BM Research Report,
{BM Almaden Research Center, Forthcoming, 1881,
Mohan, C., Narang, |., Paimer, J. 4 (ase Study of
Problems - in Migrating to QDistributed Computing:

Proceedings of the 17th Intemational
Conference on Very Large Data Bases

MoNS$80

MoPig1

Nechgg

PMCLS80

Rahma8s

Rahm8g

ReSW839

RoMo89

Scrug?

Shoe86

SNOPBS

Stonge

stuwe2

Tand8s7

WiNe90

WuFu8s

207

Page Recovery Using Multiple Logs in the Shared
Disks Environment, |IBM Research Report RJ7343,
IBM Almaden Research Canter, March 1990.
Mohan, C., Narang, |., Silen, S. Solutions to Hot
Spot Problems in a Shared Disks Transaction
Environment, I1BM Research Report, iBM Almaden
Research Center, December 1990,

Mohan, C., Pirahesh, H. ARIES-RRH: Restricted
Repeating of History in the ARIES Transaction
Recovery Method, Proc. 7th internationali Conference
on Data Engineering, Kobe, April 1891, Also avail-
able as IBM Research Report RJ7342, I1BM Aimaden
Research Center, February 1990.

Neches, P. The Ynet: An Interconnect Structure
for a Highly Concurrent Data Base Computer System,
Proc. 2nd Symposium on the Frontiers of Massively
Parallel Computation, Fairfax, October 1988.
Pirahesh, H., Mohan, C., Cheng, J., Liu, T.S,
Selinger, P, Parallelism in Relational Dota Base
Systems: Architectural Issues and Design App
roaches, Proc. 2nd international Symposium on Da-
tabases in Parallel and Distributed Systems, Dublin,
July 1890. An expanded version of this paper is
available as 1BM Research Report RJ 7724, I1BM
Almaden Research Center, October 1990,

Rahm, E. Primary Copy Synchrontzation for
D8-Sharing, Information Systems, Vol. 11, No. 4,
1986.

Rahm, E. Recovery Concepts for Data Sharing
Systems, Technical Report 14/88, University of
Kaiserslautern, October 1989,

Rengarajan, T.K., Spiro, P., Wright, W. High Availa
bility Mechanisms of VAX DB8MS Software, Digital
Technical Journal, No. 8, February 1988.
Rothermel, K., Mohan, C. ARIES/NT: A Recovery
Method Bosed on Write-Ahead Logging for Nested
Transactions, Proc. 15th International Conference
on Very Large Data Bases, Amsterdam, August
1989, A longer version of this paper is available
as |IBM Research Report RJE6650, IBM Almaden Re-
search Center, January 1988,

Scrutchin, T. TPF: Performance, Capacity, Availa
bility, Proc. IEEE Compcon Spring ‘87, San Fran-
cisco, February 1987.

Shoens, K. Data Sharing vs. Partitioning for
Copacity and Availability, Database Engineering,
Vol. 8, No. 1, March 1886.

Shoens, K., Narang, |, Obermarck, R., Paimer, J,
Silen, S., Traiger, 1, Treiber, K. Amoeba Project,
Proc. IEEE Compcon Spring ‘86, San Francisco,
February 19885,

Stonebraker, M. The Case for Shared Nething, IEEE
Database Engineering, Vol, 8, No. 1, 1988.
Strickland, J., Uhrowczik, P., Watts, V. IMS/VS: An
Evolving System, IBM Systems Journal, Vol. 21, No.
4, 1982,

The Tandem Database Group NonStop SQL: A
Distributed, High-Performance, High-Availability
Implementation of SQL, Proc. 2nd International Work-
shop on High Performance Transaction Systems,
Asilomar, September 1987.

Wilkinson, K., Neimat, M.-A, Maintaining
Consistency of Client-Cached Data, Proc. 16th In-
ternational Conference on Very Large Data Bases,
Brisbane, August 1890.

Wu, K.-L., Fuchs, W.K. Recoverable Distributed
Shared Virtual Memory: Memory Coherence and Storage
Structures, Proc. 18th international Symposium on
Fault-Tolerant Computing, Chicago, June 1989,

Barcelona, September, 1991

