
Object Placement in Parallel Hypermedia Systems*

Shahram Ghandeharizadeh Luis Ramos
Waheed Qureshi

Zubair Asad

Computer Science Department
University of Southern California

Abstract

During the past few years, hypermedia systems have
emerged as an essential component of many applica-
tion domains ranging from software engineering to li-
brary information systems. This is primarily due to the
capability of these systems to manage and represent ir-
regularly structured information, and to provide a user-
friendly interface for information retrieval by provid-
ing a browsing capability. However, most stand-alone
implementation of these systems (based on a worksta-
tion) cannot support a “real-time” display of audio and
video objects. This is due to the low I/O bandwidth of
the current disk technology and the large size of these
objects which requires them to be almost always disk
resident. With the predicted size and bandwidth re-
quirements of future multi-media objects, this limita-
tion must be resolved if hypermedia systems are to be
the wave of future.

This paper describes a placement strategy for the
objects of a parallel hypermedia system. The objec-
tives of this strategy are to support a “real-time” dis-
play of media objects and to maximize the through-
put of the system by uniformly distributing its work-
load across the processors. In addition, we describe a
prefetching mechanism to reduce the response time of
the system. Finally, we evaluate our object placement
algorithm and its distribution of the workload across
the processors.

1 Introduction

A hypermedia system represents and manages informa-
tion via a network of multi-media objects. It combines
different types of information (e,g., text, audio, video)
to construct a user-friendly interface for information
retrieval. Furthermore, it can organize and manipu-
late irregularly structured information. Consequently,
these systems have become an essential component of

‘This research was supported in part by R grant from the USC
Faculty Research and Innovation Fund.

many application domains (e.g., education, library in-
formation systems, legal research, software engineering,
etc.,) and are predicted to be the wave of future.

In a hypermedia application, certain words or
phrases (audible or visible) of an object are identified
and hyperlinked to other objects which describe them
in greater detail. Each hyperlink has a frequency of
access, defining how frequently it is used to retrieve’an
object’. These frequencies may be updated as a user’s
pattern of access evolves over time. The collection of
objects and hyperlinks form a hyperlink graph. This
graph can be viewed as a map that shows how informa-
tion in the system is organized (CONK871 and accessed.
In addition, it defines a user’s location in the graph and
displays the possible objects accessible from that loca-
tion (i.e., provides a browsing capability).

As an example of an application, consider Comp-
ton’s Multimedia Encyclopedia from Britannica Soft-
ware. According to the publisher [COMPSl], it in-
cludes the full text of the 19-volume, 5200 article,
8,784,000-word, 1989 edition of the Compton’s Ency-
clopedia; 15,800 pictures, maps, diagrams; 60 minutes
of recorded voice and sound; 45 animated sequences;
Webster’s Intermediate Dictionary; and Josten’s word
processing program. This is a large volume of infor-
mation and there are many ways to query it. A typi-
cal query would involve the traversal of a hierarchical
topic tree which establishes a connection between the
relevant pieces of information. So, for example, one can
traverse the historical time line (which is one of several
topic trees) to hear John F. Kennedy’s “Ask not what
your country can do for youn speech.

As suggested by this example, a hypermedia system
is almost always a read only database. It can be com-
pared to a library managing multiple books and users,
where each user accesses the system to retrieve infor-
mation. While updates are rare, multimedia objects
must be displayed in “real-time”. By “real-time”, we
mean a continuous retrieval of an object at the band-

’ One can use Markov chains to compute the frequency of ac-
cess to an object from the frequency of access associated with its
hype&&s (see Appendix A for details).

Proceedings of the 17th International
Conference on Very Large Data Bases

243
Barcelona, September, 1991

width required by its media type. This is a challenging
task because certain media types, in particular video,
require very high bandwidths. For example, the typical
bandwidth required to display a full-screen, full-motion
video (without companion audio) is 60 Mbits per second
(assuming a 32-bit depth for each pixel). In addition,
these objects are usually very large and almost always
disk resident. Due to the low bandwidth of the current
disk technology (typically rated at 10 Mbits per sec-
ond), the stand-alone implementation of these systems
(baaed on a workstation) suffers from frequent delays
and disruptions, termed hiccups [YU89], while the sys-
tem is displaying an object.

Currently, there are two standard techniques for
minimizing the number of hiccups. The first organizes
the objects across the disk in order to enhance its band-
width when retrieving objects [CHRI88]. The second
technique reduces the size of a media object in order
to decrease the continuous I/O bandwidth required for
its retrieval. This can be achieved in two ways: 1) sac-
rifice the quality of audio and video objects (e.g., use
either a low resolution or scanning rat.e)2, and 2) a.pply
data compression (e.g., [GALLSl, WALLSI, HAR,NSl,
LIPP89, SIJS91, TINK89]). However, not, all of these
techniques can satisfy the bandwidt,h required by most
current media objects (let alone the media objects of
the future).

In this paper, we propose the use of parallelism to
retrieve and display objects of a hypermedia system
at their required bandwidth (i.e., real-t,ime display). A
parallel hypermedia system is cost effective when mult,i-
ple users share an application (e.g., multiple users shar-
ing Compton’s Encyclopedia). Assuming such a sys-
tem, this paper describes a placement strategy which
declusters and assigns the objects of an application
across multiple disks to: 1) use bhe aggregate band-
width of several disks to match the handwidth required
for a “real-time” display of an object, and 2) uniformly
distribute the workload of an application across the
processors in order to maximize the throughput of the
system. In addition, we describe a prefetching mecha-
nism to minimize the interval of time elapsed between
a user’s requests for an object and the time that the
system begins to display that object (termed response
time). Moreover, we present a placement strategy that
can distribute the overhead of prefetching uniformly
across the processors of the system.

In order to simplify the discussion, we assume a
shared-nothing architecture [STON86], however, the al-
gorithms described here can be extended to other archi-
tectures (e.g., shared-disk or shared-memory). Briefly,
a shared-nothing architecture consists of a number of

2For example, Britannica uses B-bit, VGA color photos that
are soft and blurry. The animated sequences are fuzzy and calling
up an animation taker about six seconds (PRESSO],

Figure 1: Shared-Nothing Multiprocessor Architecture

processors interconnected by a high speed communica-
tion network such aa a hypercube or a ring. Proces-
sors do not share disk drives or random access memory
and can only communicate with one another by send-
ing messages using an interconnection network. Fur-
thermore, we assume that the stations used to display
objects are independent of the backend processors con-
taining the objects of a hypermedia system as shown in
Figure 1 (almost identical to a banking system which
consists of a backend database engine and the ATMs
attached to it).

The rest of this paper is organized as follows. In Sec-
tion 2, we describe how the degree of declustering for an
object is computed and introduce an algorithm to uni-
formly distribute the workload of an application across
the processors. Section 3 presents a prefetching mecha-
nism to reduce system’s response time when an object
is requested. Moreover, this section outlines heuristics
for dist,ribut(ing the overhead of prefetching uniformly
across the processors. In Section 4, we evaluate the ac-
curacy of these heuristics. Our conclusions and future
research directions are contained in Section 5.

2 Object Declustering

We decluster [RIES78,LIVN87] each object of an ap-
plication across several processors in order to use the
aggregate I/O bandwidth of these processors to display
each object in real-time. In Section 2.1 we describe
how to compute the degree of declustering for an ob-
ject,. Subsequently, Section 2.2 describes a placement
algorithm for assigning objects to processors in order
to uniformly distribute the workload of an application
across the processors.

Proceedings of the 17th International
Conference on Very Large Data Bases

244 Barcelona, September, 1991

2.1 Degree of Declustering

Assuming that the bandwidth (B) required to display
an object t that belongs to media type 2 is &, and
the bandwidth of each disk drive is BDisk, we decluster
object x across M processors in order to support its
bandwidth requirements, where A4 is defined as:

M=l$l (1)

Note that the degree of declustering (M) is a function
of the bandwidth required by the media type of an ob-
ject (i.e., objects of the same media type have identical
degrees of declustering). As long as the number of pro-
cessors in a system is greater than the degree of declus-
tering for the media type with the highest bandwidth
requirements, the system can display all objects of an
application at the required bandwidth in a single user
environments.

At first glance, one might attempt to decluster an ob-
ject across all P processors to: 1) uniformly distribute
the workload, and 2) exceed the consumpt,ion rate of a
user significantly. This strategy, however, suffers from
three limitations. First, in a system composed of hun-
dreds to thousands of processors, the time required to
activate all the processors might become significant and
constitute a significant fraction of the object retrieval
time4 [DEWI88, PATT88, DEWISO, GHANgO]. Sec-
ond, since each processor must at least read a disk page
to retrieve an object, declustering that object across a
large number of processors might cause the size of a
fragment to be smaller than the size of a disk page at
a processor (internal fragmentation), wasting the I/O
bandwidth of those processors reading partially empty
pages to retrieve that object. Third, when a large num-
ber of processors simultaneously send data to a single
display station, they might exceed its consumption rat,e
and overflow its memory buffers.

Once the degree of declustering (M) for an object x
is evaluated, we form its fragments using round-robin
partitioning (see Figure 2). Round-robin partitioning
allows a display station to construct, and display a por-
tion of x in parallel with the M processors retrieving
its remaining portion (i.e., pipelining). If, to the con-
trary, each fragment was formed by dividing G into M
contiguous pieces, the benefits of declustering would be
diminished because a display station would have to pro-
cess and display a fragment of z in its entirety before
processing the next fragment.

3 We have implicitly assumed that the bandwidth of the disk
drive is the limiting factor for the system (i.e., bandwidth of the
network and network device driver is higher than that of the disk
drive).

‘Equation I does not incorporate the overhead of activating

[block0

block1

block,-,

blOCJCM

.

blockM
I

blockM+l

block 2M-1

block (M-1)M bloc ml

b1ock (M-1)Mtl x-1 --7. I

block ,
fragment xM

Figure 2: R,ound-Robin Partitioning of Object z

At a processor, a fragment of an object is stored on
contiguous blocks in order to minimize disk seeks. This
is primarily because we assume that a user retrieves an
object in its entirety.

2.2 Placement Strategy

Once the fragments of each object are formed, they
must be assigned to the processors. Our main objec-
tive is to distribute the workload of an application uni-
formly across the processors in order to maximize the
throughput of the system. Below, we describe a method
t,hat achieves this objective.

Consider a hyperlink graph G = (V,A) where a me-
dia object x is defined by a node in V and a hyperlink
from object x to object y is represented by an arc (x,y)
in A. Assuming that the hyperlink graph maintains the
frequency of access to each objects, using the terminol-
ogy of [COPE881 and represent the frequency of access
t’o an object x as heat(x) and its size as size(z). Next,
we represent t,he work imposed on a processor by object
x as:

work(x) = heat(x) * size(x) (2)

Since object x consists of M fragments (XI, ~2, 2~)~
t,he work imposed by each fragment of 2 (that belongs

impact on the number of hiccups in the system (i.e., the goal of
this paper is to eliminate hiccups).

‘We compute the frequency of access to each object using the
frequency of access to each hyperlink accessing it (see Appendix

multiple processors because this is a one time cost that has no A).

Proceedings of the 17th International
Conference on Very Large Data Bases

245
Barcelona, September. 1991

3 Object Prefetching

In most hypermedia systems, the interval of time
elapsed between a user’s request for an object to the
time that the system begins to display that object
might be unacceptable. In this section, we describe a
prefetching mechanism that reduces the response time
of the system.

While a user is traversing an application, its hy-
perlink graph can specify the objects that might
be retrieved next. Assuming o&neighbors(z) de-
fines a set of media objects accessible from object
2 via a hyperlink (i.e., in a graph G = (V, A),
V y c V, y E outneighbors iff (z, y) c A), when a
user begins to display object t, one of the objects in
o&neighbors(z) will almost certainly be retrieved at
some point later in time. The system can prefetch
these objects at two different levels of hierarchy: 1)
prefetch from a processor’s disk to its memory (elimi-
nate the disk service time), and 2) prefetch from a pro-
cessor to the user’s display station (eliminate both the
disk and network service times). Since our emphasis is
on the I/O bottleneck, we focus on level one prefetch-
ing. However, we have designed algorithms for level two
prefetching that are not described in this paper.

In general, it is not beneficial to prefetch each out-
neighbor of object z in its entirety for two reasons.
First, the user will access only one of these objects. Sec-
ond, the bandwidth consumed to prefetch these objects
might interfere with the system’s display of objects to
other users, reducing the overall throughput of the sys-
tem. Instead, our prefetching mechanism is designed to
retrieve a small fraction of each object while providing
the illusion of prefetching each object entirely. Below,
we describe a mechanism for achieving this objective
and its impact on our declustering algorithm.

(1)

(2)
(3)

(4)

(5)

(6)

(7)

(8)

(9)

Initialize the workload of all the processors
to be 0;

Place the P processors in list L;

for each object x in V do

decluster z into M fragments;

remove the first M processors from list L;

assign the M fragments of 2 to these
processors;

increment the workload of these M proces-
sors by the work of each fragment zi;

insertion sort these processors back into list
L based on their workload;

md do;

Figure 3: A Greedy Algorithm for a Uniform Distribu-
tion of Workload

to media type t with bandwidth Bt) on a processor is
defined as:

tUOrk(Xi) = heat(x) * Si%e(Zi) = heat(z) *

The workload of a processor is defined as t,he total work
of the fragments (say N) assigned to it:

WOTklOUd(Pi) = 2 UJOTb(frUgj)

j=l
(4)

Using this terminology, the problem of assigning
fragments to processors can formally be stated as fol-
lows. Assign the objects of an application to proces-
sors such that: 1) the fragments of each object are as-
signed to different processors (i.e. V zc V, localion
locs2ion(zj) for distinct i and j), and 2) the work-
load of each processor is the same (i.e., workload(P,,)
= workload(for distinct n and m). The placement
algorithm shown in Figure 3 satisfies the first objective
while obtaining near optimal workload distributions on
most inputs. In this figure, the assignment of M frag-
ments of an object to the first M processors in list L
ensures that the fragments are assigned to different pro-
cessors. After adjusting the workload of these proces-
sors, by insertion sorting them back into list L at step 8,
we approximate a uniform distribut,ion of the workload
across the processors.

Assuming that F is an upper bound on the total
number of fragments in an application, and since a sin-
gle insertion or deletion from list L which consists of P
processors is order log P, the complexity of this algo-
rithm is O(F log P).

Prooxdiigs of the 17th Inte.mational
Cmferenec on Very Large Data Bases

3.1 What Portion of an Object is
Prefetched?

Without prefetching, when a user requests a neighbor
of object i (say y), its response time will consists of: 1)
the time for the display station to send a message re-
questing y to the processors containing y (Netlorencv),
2) the disk service time of these processors to read ob-
ject y (DisklatenCy), and 3) the network service time for
the first page of object y to arrive at the display station
(Nehtency). In current multiprocessor architectures,
the disk service time constitutes a significant portion
of the response time. In this section, we describe what
fraction of y should be prefetched to completely elimi-
nate this factor.

In a single user environment, the Disklatency con-

sists of seek, rotational latency, and transfer times 6.

sin this paper, we aaaume a zero system load and ignore the

246 Barcelona, September, 1991

In order to eliminate Dis/~l~~~,,~~ time, the system must
prefetch a portion of y such that it can overlap the dis-
play of this portion with the retrieval of the remain-
der of y in order to maintain a steady stream of data
to a display station. In terms of time, the system
should prefetch a portion corresponding to the max-
imum DisKlatenCy time (termed Dis/cmarlotency). As-
suming that the bandwidth required for a real-time dis-
play of objects belonging to media type t is Bt, the
Volume of Data that should be Prefetched (VDP) is:

VDP = Diskmarlatency * Bt (5)

For example, if Diskmasl.teney = 25 msec and y is
a video object (requires a 60 Mbits/set bandwidth)
whose size is 8 MBytes, only 192 KBytes of y must
be prefetched to eliminate its disk lat,ency time (i.e.,
by prefetching only 192 KBytes (or 2%) of y, we can
provide the same response time as when y is prefetched
in its entirety).

From this point on, we term the prefetched portion
of an object its head and the rest of it as its tail.

3.2 Degree of Declustering for the Head

A major assumption thus far has been that the band-
width of a disk drive is the limitingfactor for a real-time
display of an object. However, the bandwidth of the
network device driver of a processor is not that much
higher7. Thus, while the head of an object might, have
already materialized at the memory of a processor, the
bandwidth of its network device driver might not, be
high enough to support a real-time display of that por-
tion. In order to resolve this limitation, we decluster the
head of an object across several processors. Assuming
that the required bandwidth for a real-time display of
an object x of type t is Br, and the bandwidth of a net-

. .
work device driver 1s BN~~-~,,~~~J,,~~, we decluster the
head of object x into H fragments, where H is defined
aS:

the degree of declustering for the head of an object is
lower than that for its tail (i.e., H < M).

3.3 When Prefetching Should be
Avoided

At this point, one might be lead to believe that
prefetching is beneficial under all circumstances. HOW-
ever, this is not true for an object that has a lower
display time than the prefetch time of its outneighbora.
In this case, prefetching must be avoided as it will only
degrade the performance of the system. For example, if
the display time of object x is 0.05 seconds and the time
to prefetch each object in outneighbors is at least 5
seconds, then a user will display x before the system
can materialize the prefetch portion of any object in
outneighbors(Furthermore, once the user elects to
retrieve an object y in outneighbors(there will be
many hiccups because the head fragments of y are disk
resident while these fragments were formed based on
the assumption that they are memory resident (using
Equation 6). Moreover, in this case, prefetching wastes
a lot of resources because the system might continue
to prefetch objects in outneighbors even though the
user has already committed to retrieve only one of these
objects. In this case, prefetching is an overhead with no
benefits whatsoever. As a solution, we do not prefetch
objects in outneighbors whose prefetch-time is sig-
nificantly greater than the display time of 2. This is
achieved by analyzing the hyperlink graph and marking
the objects with a lower display time than the prefetch
time of its outneighbors.

3.4 Summary

(6) In summary, the objects of a hypermedia application
are placed across the processors as follows. First, the

Note once again, that the degree of declustering for the
objects of an application are grouped according to their

head is a function of the media t,ype. The degree of
media type and bandwidth requirements. For each ob-

declustering for the tail of an object is still det,ermined
ject in a. group, we evaluate its prefetch portion using
E

using Equation 1. Furthermore, since we assumed that
quation 5 and distinguish its head from its tail. Using

E
the bandwidth of the network interface is significantly

quation 1 and 6, we evaluate the degree of decluster-

greater that that of the disk ~~~~~~~~~~~~~~~ B BDirk)l
ing for the head and tail of each object (i.e., determine
M and H). The tail fragments are then assigned to pro-

time a request might spend in the disk queue of a processor wait- cessors using the algorithm outlined in Figure 3. Below,
ing for service. The extensions of this work to incorporate a we describe how the head fragments are assigned to pro-
system load is a part of our future research direct,ions.

7While the aggregate network bandwidth of a multiprocessor
censors. From this point on, whenever we refer to

is very high due to the recent advent, of hypercubc and mesh
fragments of an object we imply the fragments

interconnections, the bandwidth of a network device driver is that constitute the head of that object (since its
usually rated at 2.8 MBytes/Second. tail fragments have+already been assigned).

Proceedings of the 17th International
Conference on Very Large Data Bases

247 Barcelona. September, 1991

3.5 Placement of the Prefetched Frag-
ments

Ideally, we would like to assign the fragment,s of objects
in outneighbors such that the overhead of prefet,ch-
ing is evenly distributed across the processors. Fur-
thermore, prefetching should not interfere or compete
for resources with the current display of an object 2.
The problem can formally be stated as follows. Assign
the fragments of objects in outneighbors such t,hat,:
1) the fragments are evenly distributed across t-he pro-
cessors, and 2) the fragments are assigned to processors
different than those containing the tail of 2.

We have designed two placement algorithms for as-
signing head fragments to processors.a The first assigns
objects on an individual basis while the second assigns
objects on a set basis.

Before describing our algorit)hms, we define the term
sibling that is used repeatedly in this section. Given an
object 2, set Z consists of all object,s with an arc to E.
For example, given 04 in Figure 4, set Z consists of 07
and 03, For each object y in Z, if there is an arc from
y to w, where w is not 2, then w is a sibling of I (i.e.,
siblings(t) = {w : (y, z) E A, (y, w) t A, and w # z}.
Consequently, the siblings of 04 are: 01 1 02, OS, 06, og,
og, and 010. The siblings of 01 are: 02~ 04, 05, and 06.
Intuitively, the siblings of z are all the possible ohject,s
that might be prefetched along with 2.

3.5.1 Object-Based Assignment

With Object-Based (OB) assignment, the fragments of
each object are analyzed and assigned on an individ-
ual basis. In this context, we must address t,wo issues.
First, in what order should the system assign the ob-
jects of an application. Second, given an object, which
processors should contain its fragments. Below, we de-
scribe our heuristics for resolving these issues.

Our heuristic for choosing an object analyzes a graph
and associates a weight to each object. The objects
are assigned baaed on a Heaviest Object First (HOF)
heuristic. The weight of an object is the total size of
the fragments that constitute its siblings. For example,
if the degree of declustering for the head of each object
in Figure 4 is three, then the weight of 04 is 21 while
that of 01 is 12.

The rationale behind HOF is as follows. The head
fragments of a heavy object (say 5) is prefetched along
with many other objects in the system. Consequently, t
has a high number of constraints associated with it be-
cause these fragments should be uniformly distributed
across the processors in order to distribute the overhead

s We speculate that obtaining an optimal solution to this prob-
lem is NP-hard. However, we have not yet been able to reduce
this problem to one of the well known NP-hard problems.

Proceedings of the 17th International
Conference on Very Large Data Bases

PS(Oll - PSbp) - NULL

Ps(03)= ~01,02,04,05,06)

PS(04) = PSf05) - PS(06) - NULL

PSCO,)” ~04’05’06’os’og’010)

PSbS) - PS(og) - PS(oJ - NULL

Figure 4: An Example Hyperlink Graph

of prefetching uniformly. By assigning I first, one can
choose from a large number of available processors and
propagate its constraints to direct the assignment of ob-
jects with fewer constraints (HOF is based on the Con-
straint Propagdion [SUS%O, WALT751 heuristic used
for problem solving in AI). Thus, for example, HOF as-
signs 04, 05, and 0s of Figure 4 first, before assigning
any other object,

In Section 4, we quantify the advantages of using
HOF w compared to randomly choosing objects. In
addition, we analyze a Lightest Object First (LOF)
heuristic and characterize the tradeoffs associated with
assigning heavy objects last.

Given an object t, its head fragments are assigned
to the processors suggested by its siblings. Each of its
siblings suggests a set of processors different than those
containing that sibling. If a sibling is not assigned to
a processor, it suggests all the processors in the sys-
tem. We assign x to the Most Frequently Suggested
Processor (MFSP). This heuristic approximates a uni-
form distribution of the overhead of prefetching across
t)he processors.

It is import#ant to note that MFSP is the mechanism
that propagates the constraints of HOF to direct the as-
signment of other objects. To illustrate, if 04 is the first
object to be assigned, its siblings suggest each processor
in the system as frequently allowing 04 to be assigned
to any processor. However, after 04 is assigned, the set
of processors that can contain 01 is limited because 01
is a sibling of 04 and 04 will not vote for any processor
containing itself.

3.5.2 Set-Based Assignment

The set-based assignment analyzes the graph and forms
the prefetch-set of each object t. The prefetch-set of
t (denoted as either prefetch-set(+) or PS(r)) consists

248
Barcelona, September, 1991

of a set of objects accessible from x via a hyperlink. It
defines the objects that are prefetched every time a. user
displays object c. The set-based algorithm analyzes
and assigns the fragments of each prefetch-set one at a
time. This is a greedy strategy because it focuses on a
single prefetch-set and tries to distribute the overhead
of prefetching as evenly as possible for that set.

Since each object has a prefetch-set, a hyperlink
graph consisting of IV1 objects has IV1 prefetch-sets.
Figure 4 shows an example hyperlink graph and its cor-
responding prefetch-sets. Note that an object might
appear in several prefetch-sets. Consequently, once an
object in a set is assigned, it enforces constraints on
the processors that may contain the objects of other
sets that include it. For example, objects 04, 05, and
os of Figure 4 are common to both PS(os) and PS(or).
Assuming that PS(or) is assigned before PS(os), when
assigning objects in PS(os)! the assignment of 04, 05:
and os imposes constraints on the processors that may
contain 01 and oz. This is because we insist on a uni-
form distribution of the fragments of PS(os) across the
processors while some of its object (i.e., 04, 05, and 06)
have already been assigned by PS(or).

The order in which prefetch-sets are assigned affects
the distribution of the overhead of prefetching. For
example, if PS(or) is assigned before PS(os), when as-
signing PS(og), two objects (or and 02) can be used
to compensate for any uneven distribution that might
have resulted from the assignment of objects 04, 05,
and 06. On the other hand, if PS(os) is assigned be-
fore PS(or), more objects (os, og, and 010) can be used
to compensate for any uneven distribution. In realit,y,
there is a higher degree of freedom associated with a set
that consists of a large number of objects with indegree
one. This is because these objects can be used to com-
pensate for any uneven distribution in a set. Thus, we
would like to assign sets with a Low Degree of Freedom
First (i.e., a LDFF heuristic), in order to satisfy t,heir
constraints and propagate them to direct the assign-
ment of sets with fewer constraintsg.

The degree of freedom associated with a prefetch-set
is computed as follows. First, we determine the inde-
gree signature of ea.ch set. An indegree signature is
a vector consisting of IV1 elements (ii 1 izl ,,., ij, . ..(ilvl).
The jth element of this vector (ij) defines t,he numher
of objects with j incoming arcs (i.e., indegree). Thus,
ij specifies that there are i objects that appear in j
prefetch-sets. For example, the indegree signature of
PS(os) is (2,3). The first number specifies that there
are two objects (01 and 02) that appear in only one
prefetch-set (i.e., PS(o3)) while the second specifies
that) there are 3 objects (04, 05, 06) t,hat# appear in two

gSection 4 compares the performanceof LDFF with a Highest.
Degree of Freedom First (HDFF) heuristic.

prefetch-sets (i.e., PS(os) and PS(o4)). Given an inde-
gree signature of a prefetch-set, we define its Estimated
Degree of Freedom (EDF) as:

IVI
EDF=Cij X j

j=l

For example, the expected degree of freedom associated
with prefetch-set(os) is:

(2 x ;) + (3 x ;) = 2.5

The order in which prefetch-sets are assigned is de-
termined by the LDFF heuristic. Given a prefetch-set,
the objects in that set are assigned based on the HOF
heuristic. The fragments of an object are assigned to
the processors that retrieve the Lowest Volume of data
for the Prefetch-sets already assigned (LVP heuristic).

4 Evaluation of the Object
Placement Algorithm

In t,his section, we evaluate the alternative heuristics
for assigning fragments to processors. We begin by de-
scribing a criteria for conducting this evaluation. Next,
we analyze the heuristics based on a syntactically gen-
erated hyperlink graph. Finally, in Section 4.3, we eval-
uate the heuristics using a hyperlink graph of an actual
hypermedia application.

4.1 Evaluation Criteria

A major objective of our placement strategy is to uni-
formly distribute the overhead of prefetching across the
processors. This overhead is defined as the volume of
data retrieved on behalf of a prefetch-set. Thus, we use
the variance in the volume of data retrieved by each pro-
cessor for a prefetch set (ups) as the metric for evaluat-
ing our alternative assignment strategies. For example,
assume that each object oi in Figure 4 is declustered
into three fragments (oi,r , oi,z,oi,3). Furthermore, as-
sume that the head fragments of these objects are as-
signed t,o a. four processor system as shown in Figure
5. The objects in prefetch-set(os) are 01, 02, 04, or,,
06. For this prefetch-set, the assignment of Figure 5
results in the retrieval of five fragments by processor 1,
four fragments by processor 2, five fragments by pro-
cessor 3, and one fragment by processor 4. Assuming
equi-sized fragments, the variance in the volume of data
prefetched by each processor is skewed and vvps(,,) is
2.7. This variance is evaluated using a standard statis-
tical method that is described in Appendix B.

Pmceediigs of the 17th International
Conference on Very Large Data Bases

249
Barcelona, September, 1991

‘2,3 O7,3

‘3,2 O9,1

O4,3 O10.1

O1,3 ‘6,2

r-l O2,l O7,l

O4,2 ‘8,2

O5,2 OlO, 2

’ ‘-
Processor 1 Processor 2 Processor 3 Processor 4

Figure 5: Sample Placement of Head Fragments over a
Four Processor System

After evaluating the variance of each prefetch-set, we
compute the Average Variance for a graph according to
its frequency of access (i.e., heat):

Avg. Variance = c heat(PS(t)) x vp~(=) (8)
XCV

The heat of J’S(z) (or its frequency of access) is equiv-
alent to the heat of object t because every time 2 is
accessed, the objects in P,!?(z) are also retrieved. In
the following experiments, we assume a uniform distri-
bution of access to the objects of an application (i.e.,
heat(PS(z)) = he&(z) = h, where IV(is the total
number of objects in the application), and Equation 8
was used to compute the average variance in t,he over-
head of prefetching.

4.2 Evaluation of Different Heuristics

In these experiments, we evaluat,ed the alternative
heuristic combinations to determine how closely each
estimates an optimal solution. Finding an optimal as-
signment for a graph requires an exhaustive search of
the possible solution space which is extremely large and
not computable in a reasonable amount of t,ime. Con-
sequently, we designed a syntactic graph with a known
optimal solution (average variance of zero) for a sixteen
processor system. This graph consisted of fifty nodes,
with 50% of its node having an indegree one. Further-
more, we declustered the head and tail of each object
into 3 and 6 fragments respectively (i.e., H = 3 and
M = 8). Below, we analyze the accuracy of heuristics
for each of set-based and object-based assignments,

4.2.1 Accuracy of Alternative Set-Based
Heuristics

Table 1 presents the accuracy of different set-based
heuristics for a syntactically generated hyperlink graph.
The first three columns of this table contain the differ-
ent heuristic combinations, while the fourth contains
the average variance in the volume of data prefetched
by a sixteen processor system for a given heuristic com-
bination. The term “random” in either t,he prefetch-

of a prefetch-set or an object. Similarly, “random”
in the processor column denotes a random assignment
of the fragments of an object to processors”. The
term “round-robin” in the processor column refers to
a round-robin assignment of the fragments of an object
to processors.

The first six rows of Table 1 demonstrate that if the
fragments of a prefetch set are not assigned intelligently,
regardless of how accurately one choose the prefetch-
sets or objects of a prefetch-set, the distribution of the
overhead of prefetching will be skewed. The heuristic
for choosing processors (i.e., LVP) is quite effective by
itself (see row 7). However, note that LDFF in com-
bination with HOF and LVP can obtain an optimal
solution while LVP by itself cannot converge to such a
solution.

Rows 10, 11, and 12 show no difference between
HDFF and LDFF heuristics because LVP eclipses the
difference between these two heuristics. However, ob-
serve from rows 7, 8, and 9 that LDFF results in a
lower average variance as compared to either HDFF or
a random assignment of prefetch-sets.

The last column of Table 1 establishes the time com-
plexity for each heuristic. Table 3 contains the defini-
tion of terms used in that column. With the LDFF
and HDFF heuristics, forming the neighbor-sets and
computing each object’s weight requires /AI traversals.
Since sorting the prefetch-sets of an application is order
N log N, the algorithms that use either LDFF or HDFF
have at least a complexity of O(lAj + N log N + NH),
where NH is the total number of fragments.

4.2.2 Accuracy of Alternative Object-Based
Heuristics

Table 3 contains the accuracy of alternative object-
based heuristics. The results demonstrate that the
combination of HOF and MFSP heuristics approximate
the optimal solution significantly closer than the other
alternatives. The MFSP heuristic is very effective by
itself (compare row 7 with rows l-6). However, HOF
is instrumental as it reduces the average variance by a
factor of four as compared to MFSP all by itself. In ad-
dition, note that LOF heuristic degrades the accuracy
of MFSP strategy (compare row 7 with 9). A major
conclusion to be drawn here is that assigning an object
with highest number of constraints first is beneficial.

loThe experiments with a random assignment were repeated
many times in order to establish a 95% confidence interval on

set or object column specifies a random assignment the obtained results.

proceedings of the 17th International
Conference on Very Large Data Bases

250
Barcelona. September, 1991

Heuristics Used Avg. Variance in Time
PS Object Processor Overhead of Prefetching Complexity

1 Random Random Random 4438423 O(NH)
2 LDFF Random Random 443.2335 O(IAl+ NlogN + NH)
3 LDFF HOF Random 440.0519 O(lAl+ NlogN + NH)
4 Random Random Round-Robin 113.5160 O(NH)
5 LDFF Random Round-Robin 117.6105 O(lAl + NlogN + NH)
6 LDFF HOF Round-Robin 60.8869 O(lAl+ NlogN + NH)
7 Random Random LVP 1 TO655 O(N(H + P)logP)
8 LDFF Random LVP 0.8372 0(A + NlogN + N(H + P)logP)
9 HDFF Random LVP 1.6896 0(A + NlogN + N(H + P)logP)

10 LDFF HOF LVP 0.0000 O(A + NlogN + N(H + P)logP)
11 HDFF HOF LVP 0.0000 . O(,A, + NlogN + N(H + P)logP)
12 LDFF LOF LVP 0.0000 0(A + NlogN + N(H + P)logP)

Table 1: Set-Based Assignment

Table 2: Object-Baaed Assignment

Term 1 Definition
N 1 Number of objects in an application
IAl Number of arcs in a graph
P Number of processors
H Degree of declustering for the prefetch portion

Table 3: List of terms used for establishing time complexity and their respective definitions

Proceedings of the 17th International
Conference on Very Large Data Bases

251
Barcelona, September, 1991

Average Variance

250t

I! Set-Based

Improvement Factor

1oo,ooo,ooo t

Number of Processors Number of Processors

Figure 6: Accuracy oE Neighbor-Based versus Object-
Based Algorithms

4.3 A Comparison of Object-Based
with Set-Based Algorithms

Finally, we compared the best object-based heurist,ic
combinations (HOF, MFSP) with that of set-hased AS-
signment (LDFF, HOF, LVP). F,ach heuristic assigned
a hypermedia application termed “John Cocke: A Ret-
rospective By Friends”. This application was authored
at the Multimedia laboratory of the IBM TJ Wat-
son Research Center and consisted of audio, video and
bitmap media objects. For the purposes of our exper-
iment, we restricted this applicat#ion t,o video ohject,s
only (237 objects). The degree of declust,ering for t,he
tail of each object was set to six while that of it,s head
was set to three (i.e., M = 6 and H = 3).

In our experiments, we varied the number of proces-
sors in a system from 32 to 1024 while observing the
average variance of both set-based and Qbject, based
assignments. Figure 6 cont,ains the reslllts of t,hese cx-
periments. As we increased t,he number of processors
in the syst,em, the average variance of bot,h strat,egies
approached zero because the larger number of proces-
sors increases the degree of freedom associated with the
assignment procedure. To justify t,his claim, in a dif-
ferent experiment, we increased t,he degree of declus-
tering of each object proport,ional to t.he number of
processors in the system and observed no drop in the

Figure 7: Factor of Improvement as Compared to a 32
Processor System

average variance of either algorithm.

When the number of processors is less than sixty-
four, object-based assignment has a lower variance than
set-based assignment. However, with more processors,
set-based assignment starts to outperform object-based
assignment. Fewer processors translates into a larger
number of constraints on the assignment procedure. In
this case, object-based assignment can propagate con-
straints more effectively since it propagates them at a
lower granularity level, namely that of an object, where
constraints can be satisfied and propagated. While set-
based assignment propagates constraints at the gran-
ularity of a set (significantly larger than an object),
where constraints are neither satisfied nor propagated.

However, set-based assignment obtains a very low
variance when the number of processors is large enough
t,o pnahle constraint,s to be propagated among sets. In
order to demonstrat,e t#his affect, Figure 7 shows the im-
provement factor of each assignment strategy relative to
a 32 processor system as a function of the number of
processors in the system. The y-axis in this figure is
logarithmic. This figure shows that as the number of
processors is increased, set-based assignment can prop-
agat.e t,he constraints and estimate an optimal solution
significantly closer than the object-based assignment.

Proceedings of the 17th International
Conference on Very Large Data Bases

252 Barcelona, September, 1991

5 Conclusion and Future Re-
search Directions

In this paper, we described a placement strategy for the
objects of a parallel hypermedia system. This stralegy
declusters each object across multiple processors in or-
der to display it in real-time. Furthermore, it maxi-
mizes the throughput of the system by distributing the
workload of a hypermedia application uniformly across
the processors. We also described a prefetching mecha-
nism to reduce the response time of the system. In addi-
tion, we proposed and evaluated the accuracy of several
heuristics for distributing the overhead of prefetching
uniformly across the processors. Our evaluation indi-
cates that the proposed placement heuristics distribute
the overhead of prefetching more uniformly than both
round-robin and random object placement strategies.

This work is pioneering and we are currently ext,end-
ing it in several directions. First, we are augmenting
our placement algorithm to support a skewed distri-
bution of access to the hyperlinks of an application.
Second, we are extending our declustering strategy and
prefetching mechanism to incorporate different system
loads (an assumption of this paper is zero system load).
A system load can result in cert,ain amount of wait-time
for service which can have a significant impact, on the
real-time display of an object.

Third, we are designing several algorithms for dy-
namic on-line re-organization of objects to maintain an
even distribution of the workload in the presence of a
user’s changing pattern of access to the objects of a
hypermedia application.

Finally, we are implementing a simulation model
of a parallel hypermedia system to quantify the per-
formance of the declustering strategy and prefetching
mechanism proposed in this paper.

Appendix A Frequency of Ac-
cess to Objects

We compute the frequency of access to the objects
of a hypermedia application based on the frequency of
access to its hyperlinks. In this appendix, we provide a
stochastic method for performing this comput,ation.

Given a hyperlink graph G = (V,A), we construct
its Markov chain M = (S,T), where each object in V
is defined as a state in S and each hyperlink in A is
represented by a transition from one state to another.

where n is the number of states in the Markov chain.
The entry pi,j specifies the probability of using a hy-
perlink from object i to j provided that the user is cur-
rently viewing object i. For example, assuming a uni-
form probability of access to the outneighbors of object
i, the transition probability from object i to j is:

1
pi*’ = outdegree

where o°ree(j) is the number of outgoing hyper-
links from object j. Note that in this case, the proba-
bilities for each row must sum up to 1.

Assuming that the term xi of vector x =
[Xl, X2, s * *I Zit *. , , x,,] specifies the frequency of access
to each object i of a hypermedia application, then xi is
computed by finding a solution to x from the following
system of equations:

(P + Lx, - 1)x = lnx1

where I is the identity matrix and 1 is a matrix whose
elements are all 1.

Appendix B Variance in Volume
of Data

In this section, we describe how the variance in vol-
ume of data prefetched by each processors is computed.

Assuming a system composed of P processors, and
a hyperlink graph whose fragments have already been
assigned, we compute the volume of data prefetched
by processor i (1 5 i < P) on behalf of a prefetch-
set(x) (termed VOL p~(~),i). Next, we compute the av-
erage volume of data that should ideally be prefetched
by each processor had the fragments of PS(x) been
distributed uniformly across the processors (termed
VOLPS(,)) 11, Using this information, we compute the
variance in the volume of data prefetched by each pro-
cessor for a given prefetch set (vp~(~)), as follows:

DPS(+) =
p (VOLPS(l),i - voLPs(,))2 c P (9)

i=l

I1 When the number of fragments cannot be divided equally
among the processors, we adjust the variance to compensate for

We define an n x n probability transition matrix, this case.

Proceediigs of the 17th International
Conference on Very Large Data Bases

253
Barcelona, September, 1991

References
[CHRI88] S. Christodoulakis. Performance Analysis

and Fundamental Performance Trade Offs for CLV
Optical Disks. Tech. Report CS-88-06, University
of Waterloo, 1988.

[COMPSl] Brittanica Inc. Compton’s Multimedia En-
cyclopedia. Encyclopedia Brittanica, Inc. 1991.

(CONK871 E. Conklin. Hypertext: An Introduction
and Survey. IEEE Computer, September 1987.

[COPE881 G. Copeland, W. Alexandar, E, Bought,er,
and T. Keller. Data Placement, in Bubba. In Pro-
ceedings of the 1988 ACM SIGMOD Ini’i Conf. on.
Management of Dais, May 1988.

[DEW1881 D. Dewitt, S. Ghandehariaadeh, D. Schnei-
der. A Performance Analysis of the Gamma
Database Machine. In Proceedings of the 1988
ACM SIGMOD Int’l Conf. on Management of

[PRESSO) L. P ress. Compuvision or Teleputer? Com-
munications of the ACM, September 1990.

[RIES78] D. Ries and R. Epstein. Evaluation of distri-
bution criteria for distributed database systems.
UCB/ERL Technical Report M78/22, UC Berke-
ley, May 1987.

[SIJSSI] F. Sijstermans and J. van der Meer. CD-I Full-
Motion Video Encoding on a Parallel Computer.
In Communications of the ACM, April 1991.

[STONSf$ M. Stonebraker. The Case for Shared-
Nothing. In Proceedings of the 1986 Data Engi-
neering Conference, Los Angeles, CA, 1986.

[SUSSSO] G. Sussman and G. Steele. CONSTRAINTS:
A Language for Expressing Almost-Hierarchical
Description. In Atiificial I&clligence, 1980.

[TINK89] M. Tinker. DVI Parallel Image Compression.
In Communications of the ACM, July 1989.

Data, May 1988.
[WALL911 G. Wallace. The JPEG Still Picture Com-

[DEW1901 D. Dewitt, S. Ghandeharisadeh, D. Schnei- pression Standard. In Communicaiions of the
der, A. Bricker, H. Hsiao, and R. Rasmussen. ACM, April 1991.
The Gamma Database Machine Project. IEEE
Transactions on Knowledge and Data Engineering, [WALT751 D. Waltz. Understanding Line Drawings of

March 1990. Scenes with Shadows. In The Psychology of Com-
puter Vision, P. Winston (Ed.,), McGraw Hill,

[GALL911 D. Le Gall. MPEG: A Video Compression New York, 1975.
Standard for Multimedia Applications, In Com-
munications of the ACM, April 1991. [YU89] C. Yu, W. S un, D. Bitton, Q. Yang, R. Brunno,

and J. Tullis. Efficient placement of audio on op-
[GHANSO] S. Ghandeharizadeh and D. Dewitt. A mul-

tiuser performance analysis of alternative declus-
tering strategies. In Proceedings of the 6th Data
Engineering Conference, February 1990.

tical disks for real-time applications. In Commu-
nications of the ACM, July 1989.

(HARNSl] K. H arney, M. Keith, G. Lavelle, L. Ryan,
and D. Stark. The i750 Video Processor: A Total
Multimedia Solution. In Communications of the
ACM, April 1991.

[LIPP89] A. Lippman, and W. Butera. Coding Image
Sequences for Interactive Retrieval. In Communi-
cations of the ACM, July 1989.

[LIVNS’I] M. Livny, S. Khoshafian, and H. Boral.
Multi-Disk Management Algorithms. In Proceed-
ings of the 1987 ACM SIGMETRICS Int’l Conj.
on Measurement and Modelling of Computer Sys-
tems, May 1987.

[PATT88] D. Patterson, G. Gibson, and R. Katz. A
Case for Redundant Arrays of Inexpensive Disks
(RAID). In Proceedings of the 1988 ACM SIG-
MOD Int’l Conj. on Management of Data, May
1988.

Fkceedings of the 17th International
Conference on Very Large Data Bases

254
Barcelona, September, 1991

