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Abstract 

During the past few years, hypermedia systems have 
emerged as an essential component of many applica- 
tion domains ranging from software engineering to li- 
brary information systems. This is primarily due to the 
capability of these systems to manage and represent ir- 
regularly structured information, and to provide a user- 
friendly interface for information retrieval by provid- 
ing a browsing capability. However, most stand-alone 
implementation of these systems (based on a worksta- 
tion) cannot support a “real-time” display of audio and 
video objects. This is due to the low I/O bandwidth of 
the current disk technology and the large size of these 
objects which requires them to be almost always disk 
resident. With the predicted size and bandwidth re- 
quirements of future multi-media objects, this limita- 
tion must be resolved if hypermedia systems are to be 
the wave of future. 

This paper describes a placement strategy for the 
objects of a parallel hypermedia system. The objec- 
tives of this strategy are to support a “real-time” dis- 
play of media objects and to maximize the through- 
put of the system by uniformly distributing its work- 
load across the processors. In addition, we describe a 
prefetching mechanism to reduce the response time of 
the system. Finally, we evaluate our object placement 
algorithm and its distribution of the workload across 
the processors. 

1 Introduction 

A hypermedia system represents and manages informa- 
tion via a network of multi-media objects. It combines 
different types of information (e,g., text, audio, video) 
to construct a user-friendly interface for information 
retrieval. Furthermore, it can organize and manipu- 
late irregularly structured information. Consequently, 
these systems have become an essential component of 

‘This research was supported in part by R grant from the USC 
Faculty Research and Innovation Fund. 

many application domains (e.g., education, library in- 
formation systems, legal research, software engineering, 
etc.,) and are predicted to be the wave of future. 

In a hypermedia application, certain words or 
phrases (audible or visible) of an object are identified 
and hyperlinked to other objects which describe them 
in greater detail. Each hyperlink has a frequency of 
access, defining how frequently it is used to retrieve’an 
object’. These frequencies may be updated as a user’s 
pattern of access evolves over time. The collection of 
objects and hyperlinks form a hyperlink graph. This 
graph can be viewed as a map that shows how informa- 
tion in the system is organized (CONK871 and accessed. 
In addition, it defines a user’s location in the graph and 
displays the possible objects accessible from that loca- 
tion (i.e., provides a browsing capability). 

As an example of an application, consider Comp- 
ton’s Multimedia Encyclopedia from Britannica Soft- 
ware. According to the publisher [COMPSl], it in- 
cludes the full text of the 19-volume, 5200 article, 
8,784,000-word, 1989 edition of the Compton’s Ency- 
clopedia; 15,800 pictures, maps, diagrams; 60 minutes 
of recorded voice and sound; 45 animated sequences; 
Webster’s Intermediate Dictionary; and Josten’s word 
processing program. This is a large volume of infor- 
mation and there are many ways to query it. A typi- 
cal query would involve the traversal of a hierarchical 
topic tree which establishes a connection between the 
relevant pieces of information. So, for example, one can 
traverse the historical time line (which is one of several 
topic trees) to hear John F. Kennedy’s “Ask not what 
your country can do for youn speech. 

As suggested by this example, a hypermedia system 
is almost always a read only database. It can be com- 
pared to a library managing multiple books and users, 
where each user accesses the system to retrieve infor- 
mation. While updates are rare, multimedia objects 
must be displayed in “real-time”. By “real-time”, we 
mean a continuous retrieval of an object at the band- 

’ One can use Markov chains to compute the frequency of ac- 
cess to an object from the frequency of access associated with its 
hype&&s (see Appendix A for details). 
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width required by its media type. This is a challenging 
task because certain media types, in particular video, 
require very high bandwidths. For example, the typical 
bandwidth required to display a full-screen, full-motion 
video (without companion audio) is 60 Mbits per second 
(assuming a 32-bit depth for each pixel). In addition, 
these objects are usually very large and almost always 
disk resident. Due to the low bandwidth of the current 
disk technology (typically rated at 10 Mbits per sec- 
ond), the stand-alone implementation of these systems 
(baaed on a workstation) suffers from frequent delays 
and disruptions, termed hiccups [YU89], while the sys- 
tem is displaying an object. 

Currently, there are two standard techniques for 
minimizing the number of hiccups. The first organizes 
the objects across the disk in order to enhance its band- 
width when retrieving objects [CHRI88]. The second 
technique reduces the size of a media object in order 
to decrease the continuous I/O bandwidth required for 
its retrieval. This can be achieved in two ways: 1) sac- 
rifice the quality of audio and video objects (e.g., use 
either a low resolution or scanning rat.e)2, and 2) a.pply 
data compression (e.g., [GALLSl, WALLSI, HAR,NSl, 
LIPP89, SIJS91, TINK89]). However, not, all of these 
techniques can satisfy the bandwidt,h required by most 
current media objects (let alone the media objects of 
the future). 

In this paper, we propose the use of parallelism to 
retrieve and display objects of a hypermedia system 
at their required bandwidth (i.e., real-t,ime display). A 
parallel hypermedia system is cost effective when mult,i- 
ple users share an application (e.g., multiple users shar- 
ing Compton’s Encyclopedia). Assuming such a sys- 
tem, this paper describes a placement strategy which 
declusters and assigns the objects of an application 
across multiple disks to: 1) use bhe aggregate band- 
width of several disks to match the handwidth required 
for a “real-time” display of an object, and 2) uniformly 
distribute the workload of an application across the 
processors in order to maximize the throughput of the 
system. In addition, we describe a prefetching mecha- 
nism to minimize the interval of time elapsed between 
a user’s requests for an object and the time that the 
system begins to display that object (termed response 
time). Moreover, we present a placement strategy that 
can distribute the overhead of prefetching uniformly 
across the processors of the system. 

In order to simplify the discussion, we assume a 
shared-nothing architecture [STON86], however, the al- 
gorithms described here can be extended to other archi- 
tectures (e.g., shared-disk or shared-memory). Briefly, 
a shared-nothing architecture consists of a number of 

2For example, Britannica uses B-bit, VGA color photos that 
are soft and blurry. The animated sequences are fuzzy and calling 
up an animation taker about six seconds (PRESSO], 

Figure 1: Shared-Nothing Multiprocessor Architecture 

processors interconnected by a high speed communica- 
tion network such aa a hypercube or a ring. Proces- 
sors do not share disk drives or random access memory 
and can only communicate with one another by send- 
ing messages using an interconnection network. Fur- 
thermore, we assume that the stations used to display 
objects are independent of the backend processors con- 
taining the objects of a hypermedia system as shown in 
Figure 1 (almost identical to a banking system which 
consists of a backend database engine and the ATMs 
attached to it). 

The rest of this paper is organized as follows. In Sec- 
tion 2, we describe how the degree of declustering for an 
object is computed and introduce an algorithm to uni- 
formly distribute the workload of an application across 
the processors. Section 3 presents a prefetching mecha- 
nism to reduce system’s response time when an object 
is requested. Moreover, this section outlines heuristics 
for dist,ribut(ing the overhead of prefetching uniformly 
across the processors. In Section 4, we evaluate the ac- 
curacy of these heuristics. Our conclusions and future 
research directions are contained in Section 5. 

2 Object Declustering 

We decluster [RIES78,LIVN87] each object of an ap- 
plication across several processors in order to use the 
aggregate I/O bandwidth of these processors to display 
each object in real-time. In Section 2.1 we describe 
how to compute the degree of declustering for an ob- 
ject,. Subsequently, Section 2.2 describes a placement 
algorithm for assigning objects to processors in order 
to uniformly distribute the workload of an application 
across the processors. 
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2.1 Degree of Declustering 

Assuming that the bandwidth (B) required to display 
an object t that belongs to media type 2 is &, and 
the bandwidth of each disk drive is BDisk, we decluster 
object x across M processors in order to support its 
bandwidth requirements, where A4 is defined as: 

M=l$l (1) 

Note that the degree of declustering (M) is a function 
of the bandwidth required by the media type of an ob- 
ject (i.e., objects of the same media type have identical 
degrees of declustering). As long as the number of pro- 
cessors in a system is greater than the degree of declus- 
tering for the media type with the highest bandwidth 
requirements, the system can display all objects of an 
application at the required bandwidth in a single user 
environments. 

At first glance, one might attempt to decluster an ob- 
ject across all P processors to: 1) uniformly distribute 
the workload, and 2) exceed the consumpt,ion rate of a 
user significantly. This strategy, however, suffers from 
three limitations. First, in a system composed of hun- 
dreds to thousands of processors, the time required to 
activate all the processors might become significant and 
constitute a significant fraction of the object retrieval 
time4 [DEWI88, PATT88, DEWISO, GHANgO]. Sec- 
ond, since each processor must at least read a disk page 
to retrieve an object, declustering that object across a 
large number of processors might cause the size of a 
fragment to be smaller than the size of a disk page at 
a processor (internal fragmentation), wasting the I/O 
bandwidth of those processors reading partially empty 
pages to retrieve that object. Third, when a large num- 
ber of processors simultaneously send data to a single 
display station, they might exceed its consumption rat,e 
and overflow its memory buffers. 

Once the degree of declustering (M) for an object x 
is evaluated, we form its fragments using round-robin 
partitioning (see Figure 2). Round-robin partitioning 
allows a display station to construct, and display a por- 
tion of x in parallel with the M processors retrieving 
its remaining portion (i.e., pipelining). If, to the con- 
trary, each fragment was formed by dividing G into M 
contiguous pieces, the benefits of declustering would be 
diminished because a display station would have to pro- 
cess and display a fragment of z in its entirety before 
processing the next fragment. 

3 We have implicitly assumed that the bandwidth of the disk 
drive is the limiting factor for the system (i.e., bandwidth of the 
network and network device driver is higher than that of the disk 
drive). 

‘Equation I does not incorporate the overhead of activating 
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Figure 2: R,ound-Robin Partitioning of Object z 

At a processor, a fragment of an object is stored on 
contiguous blocks in order to minimize disk seeks. This 
is primarily because we assume that a user retrieves an 
object in its entirety. 

2.2 Placement Strategy 

Once the fragments of each object are formed, they 
must be assigned to the processors. Our main objec- 
tive is to distribute the workload of an application uni- 
formly across the processors in order to maximize the 
throughput of the system. Below, we describe a method 
t,hat achieves this objective. 

Consider a hyperlink graph G = (V,A) where a me- 
dia object x is defined by a node in V and a hyperlink 
from object x to object y is represented by an arc (x,y) 
in A. Assuming that the hyperlink graph maintains the 
frequency of access to each objects, using the terminol- 
ogy of [COPE881 and represent the frequency of access 
t’o an object x as heat(x) and its size as size(z). Next, 
we represent t,he work imposed on a processor by object 
x as: 

work(x) = heat(x) * size(x) (2) 

Since object x consists of M fragments (XI, ~2, . . . . 2~)~ 
t,he work imposed by each fragment of 2 (that belongs 

impact on the number of hiccups in the system (i.e., the goal of 
this paper is to eliminate hiccups). 

‘We compute the frequency of access to each object using the 
frequency of access to each hyperlink accessing it (see Appendix 

multiple processors because this is a one time cost that has no A). 
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3 Object Prefetching 

In most hypermedia systems, the interval of time 
elapsed between a user’s request for an object to the 
time that the system begins to display that object 
might be unacceptable. In this section, we describe a 
prefetching mechanism that reduces the response time 
of the system. 

While a user is traversing an application, its hy- 
perlink graph can specify the objects that might 
be retrieved next. Assuming o&neighbors(z) de- 
fines a set of media objects accessible from object 
2 via a hyperlink (i.e., in a graph G = (V, A), 
V y c V, y E outneighbors iff (z, y) c A), when a 
user begins to display object t, one of the objects in 
o&neighbors(z) will almost certainly be retrieved at 
some point later in time. The system can prefetch 
these objects at two different levels of hierarchy: 1) 
prefetch from a processor’s disk to its memory (elimi- 
nate the disk service time), and 2) prefetch from a pro- 
cessor to the user’s display station (eliminate both the 
disk and network service times). Since our emphasis is 
on the I/O bottleneck, we focus on level one prefetch- 
ing. However, we have designed algorithms for level two 
prefetching that are not described in this paper. 

In general, it is not beneficial to prefetch each out- 
neighbor of object z in its entirety for two reasons. 
First, the user will access only one of these objects. Sec- 
ond, the bandwidth consumed to prefetch these objects 
might interfere with the system’s display of objects to 
other users, reducing the overall throughput of the sys- 
tem. Instead, our prefetching mechanism is designed to 
retrieve a small fraction of each object while providing 
the illusion of prefetching each object entirely. Below, 
we describe a mechanism for achieving this objective 
and its impact on our declustering algorithm. 

(1) 

(2) 
(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

Initialize the workload of all the processors 
to be 0; 

Place the P processors in list L; 

for each object x in V do 

decluster z into M fragments; 

remove the first M processors from list L; 

assign the M fragments of 2 to these 
processors; 

increment the workload of these M proces- 
sors by the work of each fragment zi; 

insertion sort these processors back into list 
L based on their workload; 

md do; 

Figure 3: A Greedy Algorithm for a Uniform Distribu- 
tion of Workload 

to media type t with bandwidth Bt) on a processor is 
defined as: 

tUOrk(Xi) = heat(x) * Si%e(Zi) = heat(z) * 

The workload of a processor is defined as t,he total work 
of the fragments (say N) assigned to it: 

WOTklOUd(Pi) = 2 UJOTb(frUgj) 

j=l 
(4) 

Using this terminology, the problem of assigning 
fragments to processors can formally be stated as fol- 
lows. Assign the objects of an application to proces- 
sors such that: 1) the fragments of each object are as- 
signed to different processors (i.e. V zc V, localion 
# locs2ion(zj) for distinct i and j), and 2) the work- 
load of each processor is the same (i.e., workload(P,,) 
= workload( for distinct n and m). The placement 
algorithm shown in Figure 3 satisfies the first objective 
while obtaining near optimal workload distributions on 
most inputs. In this figure, the assignment of M frag- 
ments of an object to the first M processors in list L 
ensures that the fragments are assigned to different pro- 
cessors. After adjusting the workload of these proces- 
sors, by insertion sorting them back into list L at step 8, 
we approximate a uniform distribut,ion of the workload 
across the processors. 

Assuming that F is an upper bound on the total 
number of fragments in an application, and since a sin- 
gle insertion or deletion from list L which consists of P 
processors is order log P, the complexity of this algo- 
rithm is O(F log P). 

Prooxdiigs of the 17th Inte.mational 
Cmferenec on Very Large Data Bases 

3.1 What Portion of an Object is 
Prefetched? 

Without prefetching, when a user requests a neighbor 
of object i (say y), its response time will consists of: 1) 
the time for the display station to send a message re- 
questing y to the processors containing y (Netlorencv), 
2) the disk service time of these processors to read ob- 
ject y (DisklatenCy), and 3) the network service time for 
the first page of object y to arrive at the display station 
(Nehtency ). In current multiprocessor architectures, 
the disk service time constitutes a significant portion 
of the response time. In this section, we describe what 
fraction of y should be prefetched to completely elimi- 
nate this factor. 

In a single user environment, the Disklatency con- 

sists of seek, rotational latency, and transfer times 6. 

sin this paper, we aaaume a zero system load and ignore the 
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In order to eliminate Dis/~l~~~,,~~ time, the system must 
prefetch a portion of y such that it can overlap the dis- 
play of this portion with the retrieval of the remain- 
der of y in order to maintain a steady stream of data 
to a display station. In terms of time, the system 
should prefetch a portion corresponding to the max- 
imum DisKlatenCy time (termed Dis/cmarlotency). As- 
suming that the bandwidth required for a real-time dis- 
play of objects belonging to media type t is Bt, the 
Volume of Data that should be Prefetched (VDP) is: 

VDP = Diskmarlatency * Bt (5) 

For example, if Diskmasl.teney = 25 msec and y is 
a video object (requires a 60 Mbits/set bandwidth) 
whose size is 8 MBytes, only 192 KBytes of y must 
be prefetched to eliminate its disk lat,ency time (i.e., 
by prefetching only 192 KBytes (or 2%) of y, we can 
provide the same response time as when y is prefetched 
in its entirety). 

From this point on, we term the prefetched portion 
of an object its head and the rest of it as its tail. 

3.2 Degree of Declustering for the Head 

A major assumption thus far has been that the band- 
width of a disk drive is the limitingfactor for a real-time 
display of an object. However, the bandwidth of the 
network device driver of a processor is not that much 
higher7. Thus, while the head of an object might, have 
already materialized at the memory of a processor, the 
bandwidth of its network device driver might not, be 
high enough to support a real-time display of that por- 
tion. In order to resolve this limitation, we decluster the 
head of an object across several processors. Assuming 
that the required bandwidth for a real-time display of 
an object x of type t is Br, and the bandwidth of a net- 

. . 
work device driver 1s BN~~-~,,~~~J,,~~, we decluster the 
head of object x into H fragments, where H is defined 
aS: 

the degree of declustering for the head of an object is 
lower than that for its tail (i.e., H < M). 

3.3 When Prefetching Should be 
Avoided 

At this point, one might be lead to believe that 
prefetching is beneficial under all circumstances. HOW- 
ever, this is not true for an object that has a lower 
display time than the prefetch time of its outneighbora. 
In this case, prefetching must be avoided as it will only 
degrade the performance of the system. For example, if 
the display time of object x is 0.05 seconds and the time 
to prefetch each object in outneighbors is at least 5 
seconds, then a user will display x before the system 
can materialize the prefetch portion of any object in 
outneighbors( Furthermore, once the user elects to 
retrieve an object y in outneighbors( there will be 
many hiccups because the head fragments of y are disk 
resident while these fragments were formed based on 
the assumption that they are memory resident (using 
Equation 6). Moreover, in this case, prefetching wastes 
a lot of resources because the system might continue 
to prefetch objects in outneighbors even though the 
user has already committed to retrieve only one of these 
objects. In this case, prefetching is an overhead with no 
benefits whatsoever. As a solution, we do not prefetch 
objects in outneighbors whose prefetch-time is sig- 
nificantly greater than the display time of 2. This is 
achieved by analyzing the hyperlink graph and marking 
the objects with a lower display time than the prefetch 
time of its outneighbors. 

3.4 Summary 

(6) In summary, the objects of a hypermedia application 
are placed across the processors as follows. First, the 

Note once again, that the degree of declustering for the 
objects of an application are grouped according to their 

head is a function of the media t,ype. The degree of 
media type and bandwidth requirements. For each ob- 

declustering for the tail of an object is still det,ermined 
ject in a. group, we evaluate its prefetch portion using 
E 

using Equation 1. Furthermore, since we assumed that 
quation 5 and distinguish its head from its tail. Using 

E 
the bandwidth of the network interface is significantly 

quation 1 and 6, we evaluate the degree of decluster- 

greater that that of the disk ~~~~~~~~~~~~~~~ B BDirk)l 
ing for the head and tail of each object (i.e., determine 
M and H). The tail fragments are then assigned to pro- 

time a request might spend in the disk queue of a processor wait- cessors using the algorithm outlined in Figure 3. Below, 
ing for service. The extensions of this work to incorporate a we describe how the head fragments are assigned to pro- 
system load is a part of our future research direct,ions. 

7While the aggregate network bandwidth of a multiprocessor 
censors. From this point on, whenever we refer to 

is very high due to the recent advent, of hypercubc and mesh 
fragments of an object we imply the fragments 

interconnections, the bandwidth of a network device driver is that constitute the head of that object (since its 
usually rated at 2.8 MBytes/Second. tail fragments have+already been assigned). 
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3.5 Placement of the Prefetched Frag- 
ments 

Ideally, we would like to assign the fragment,s of objects 
in outneighbors such that the overhead of prefet,ch- 
ing is evenly distributed across the processors. Fur- 
thermore, prefetching should not interfere or compete 
for resources with the current display of an object 2. 
The problem can formally be stated as follows. Assign 
the fragments of objects in outneighbors such t,hat,: 
1) the fragments are evenly distributed across t-he pro- 
cessors, and 2) the fragments are assigned to processors 
different than those containing the tail of 2. 

We have designed two placement algorithms for as- 
signing head fragments to processors.a The first assigns 
objects on an individual basis while the second assigns 
objects on a set basis. 

Before describing our algorit)hms, we define the term 
sibling that is used repeatedly in this section. Given an 
object 2, set Z consists of all object,s with an arc to E. 
For example, given 04 in Figure 4, set Z consists of 07 
and 03, For each object y in Z, if there is an arc from 
y to w, where w is not 2, then w is a sibling of I (i.e., 
siblings(t) = {w : (y, z) E A, (y, w) t A, and w # z}. 
Consequently, the siblings of 04 are: 01 1 02, OS, 06, og, 
og, and 010. The siblings of 01 are: 02~ 04, 05, and 06. 
Intuitively, the siblings of z are all the possible ohject,s 
that might be prefetched along with 2. 

3.5.1 Object-Based Assignment 

With Object-Based (OB) assignment, the fragments of 
each object are analyzed and assigned on an individ- 
ual basis. In this context, we must address t,wo issues. 
First, in what order should the system assign the ob- 
jects of an application. Second, given an object, which 
processors should contain its fragments. Below, we de- 
scribe our heuristics for resolving these issues. 

Our heuristic for choosing an object analyzes a graph 
and associates a weight to each object. The objects 
are assigned baaed on a Heaviest Object First (HOF) 
heuristic. The weight of an object is the total size of 
the fragments that constitute its siblings. For example, 
if the degree of declustering for the head of each object 
in Figure 4 is three, then the weight of 04 is 21 while 
that of 01 is 12. 

The rationale behind HOF is as follows. The head 
fragments of a heavy object (say 5) is prefetched along 
with many other objects in the system. Consequently, t 
has a high number of constraints associated with it be- 
cause these fragments should be uniformly distributed 
across the processors in order to distribute the overhead 

s We speculate that obtaining an optimal solution to this prob- 
lem is NP-hard. However, we have not yet been able to reduce 
this problem to one of the well known NP-hard problems. 
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PS(Oll - PSbp) - NULL 

Ps(03)= ~01,02,04,05,06) 

PS(04) = PSf05) - PS(06) - NULL 

PSCO,)” ~04’05’06’os’og’010) 

PSbS) - PS(og) - PS(oJ - NULL 

Figure 4: An Example Hyperlink Graph 

of prefetching uniformly. By assigning I first, one can 
choose from a large number of available processors and 
propagate its constraints to direct the assignment of ob- 
jects with fewer constraints (HOF is based on the Con- 
straint Propagdion [SUS%O, WALT751 heuristic used 
for problem solving in AI). Thus, for example, HOF as- 
signs 04, 05, and 0s of Figure 4 first, before assigning 
any other object, 

In Section 4, we quantify the advantages of using 
HOF w compared to randomly choosing objects. In 
addition, we analyze a Lightest Object First (LOF) 
heuristic and characterize the tradeoffs associated with 
assigning heavy objects last. 

Given an object t, its head fragments are assigned 
to the processors suggested by its siblings. Each of its 
siblings suggests a set of processors different than those 
containing that sibling. If a sibling is not assigned to 
a processor, it suggests all the processors in the sys- 
tem. We assign x to the Most Frequently Suggested 
Processor (MFSP). This heuristic approximates a uni- 
form distribution of the overhead of prefetching across 
t)he processors. 

It is import#ant to note that MFSP is the mechanism 
that propagates the constraints of HOF to direct the as- 
signment of other objects. To illustrate, if 04 is the first 
object to be assigned, its siblings suggest each processor 
in the system as frequently allowing 04 to be assigned 
to any processor. However, after 04 is assigned, the set 
of processors that can contain 01 is limited because 01 
is a sibling of 04 and 04 will not vote for any processor 
containing itself. 

3.5.2 Set-Based Assignment 

The set-based assignment analyzes the graph and forms 
the prefetch-set of each object t. The prefetch-set of 
t (denoted as either prefetch-set(+) or PS(r)) consists 
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of a set of objects accessible from x via a hyperlink. It 
defines the objects that are prefetched every time a. user 
displays object c. The set-based algorithm analyzes 
and assigns the fragments of each prefetch-set one at a 
time. This is a greedy strategy because it focuses on a 
single prefetch-set and tries to distribute the overhead 
of prefetching as evenly as possible for that set. 

Since each object has a prefetch-set, a hyperlink 
graph consisting of IV1 objects has IV1 prefetch-sets. 
Figure 4 shows an example hyperlink graph and its cor- 
responding prefetch-sets. Note that an object might 
appear in several prefetch-sets. Consequently, once an 
object in a set is assigned, it enforces constraints on 
the processors that may contain the objects of other 
sets that include it. For example, objects 04, 05, and 
os of Figure 4 are common to both PS(os) and PS(or). 
Assuming that PS(or) is assigned before PS(os), when 
assigning objects in PS(os)! the assignment of 04, 05: 
and os imposes constraints on the processors that may 
contain 01 and oz. This is because we insist on a uni- 
form distribution of the fragments of PS(os) across the 
processors while some of its object (i.e., 04, 05, and 06) 
have already been assigned by PS(or). 

The order in which prefetch-sets are assigned affects 
the distribution of the overhead of prefetching. For 
example, if PS(or) is assigned before PS(os), when as- 
signing PS(og), two objects (or and 02) can be used 
to compensate for any uneven distribution that might 
have resulted from the assignment of objects 04, 05, 
and 06. On the other hand, if PS(os) is assigned be- 
fore PS(or), more objects (os, og, and 010) can be used 
to compensate for any uneven distribution. In realit,y, 
there is a higher degree of freedom associated with a set 
that consists of a large number of objects with indegree 
one. This is because these objects can be used to com- 
pensate for any uneven distribution in a set. Thus, we 
would like to assign sets with a Low Degree of Freedom 
First (i.e., a LDFF heuristic), in order to satisfy t,heir 
constraints and propagate them to direct the assign- 
ment of sets with fewer constraintsg. 

The degree of freedom associated with a prefetch-set 
is computed as follows. First, we determine the inde- 
gree signature of ea.ch set. An indegree signature is 
a vector consisting of IV1 elements (ii 1 izl ,,., ij, . ..( ilvl). 
The jth element of this vector (ij) defines t,he numher 
of objects with j incoming arcs (i.e., indegree). Thus, 
ij specifies that there are i objects that appear in j 
prefetch-sets. For example, the indegree signature of 
PS(os) is (2,3). The first number specifies that there 
are two objects (01 and 02) that appear in only one 
prefetch-set (i.e., PS(o3)) while the second specifies 
that) there are 3 objects (04, 05, 06) t,hat# appear in two 

gSection 4 compares the performanceof LDFF with a Highest. 
Degree of Freedom First (HDFF) heuristic. 

prefetch-sets (i.e., PS(os) and PS(o4)). Given an inde- 
gree signature of a prefetch-set, we define its Estimated 
Degree of Freedom (EDF) as: 

IVI 
EDF=Cij X j 

j=l 

For example, the expected degree of freedom associated 
with prefetch-set(os) is: 

(2 x ;) + (3 x ;) = 2.5 

The order in which prefetch-sets are assigned is de- 
termined by the LDFF heuristic. Given a prefetch-set, 
the objects in that set are assigned based on the HOF 
heuristic. The fragments of an object are assigned to 
the processors that retrieve the Lowest Volume of data 
for the Prefetch-sets already assigned (LVP heuristic). 

4 Evaluation of the Object 
Placement Algorithm 

In t,his section, we evaluate the alternative heuristics 
for assigning fragments to processors. We begin by de- 
scribing a criteria for conducting this evaluation. Next, 
we analyze the heuristics based on a syntactically gen- 
erated hyperlink graph. Finally, in Section 4.3, we eval- 
uate the heuristics using a hyperlink graph of an actual 
hypermedia application. 

4.1 Evaluation Criteria 

A major objective of our placement strategy is to uni- 
formly distribute the overhead of prefetching across the 
processors. This overhead is defined as the volume of 
data retrieved on behalf of a prefetch-set. Thus, we use 
the variance in the volume of data retrieved by each pro- 
cessor for a prefetch set (ups) as the metric for evaluat- 
ing our alternative assignment strategies. For example, 
assume that each object oi in Figure 4 is declustered 
into three fragments (oi,r , oi,z,oi,3). Furthermore, as- 
sume that the head fragments of these objects are as- 
signed t,o a. four processor system as shown in Figure 
5. The objects in prefetch-set(os) are 01, 02, 04, or,, 
06. For this prefetch-set, the assignment of Figure 5 
results in the retrieval of five fragments by processor 1, 
four fragments by processor 2, five fragments by pro- 
cessor 3, and one fragment by processor 4. Assuming 
equi-sized fragments, the variance in the volume of data 
prefetched by each processor is skewed and vvps(,,) is 
2.7. This variance is evaluated using a standard statis- 
tical method that is described in Appendix B. 
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Figure 5: Sample Placement of Head Fragments over a 
Four Processor System 

After evaluating the variance of each prefetch-set, we 
compute the Average Variance for a graph according to 
its frequency of access (i.e., heat): 

Avg. Variance = c heat(PS(t)) x vp~(=) (8) 
XCV 

The heat of J’S(z) ( or its frequency of access) is equiv- 
alent to the heat of object t because every time 2 is 
accessed, the objects in P,!?(z) are also retrieved. In 
the following experiments, we assume a uniform distri- 
bution of access to the objects of an application (i.e., 
heat(PS(z)) = he&(z) = h, where IV( is the total 
number of objects in the application), and Equation 8 
was used to compute the average variance in t,he over- 
head of prefetching. 

4.2 Evaluation of Different Heuristics 

In these experiments, we evaluat,ed the alternative 
heuristic combinations to determine how closely each 
estimates an optimal solution. Finding an optimal as- 
signment for a graph requires an exhaustive search of 
the possible solution space which is extremely large and 
not computable in a reasonable amount of t,ime. Con- 
sequently, we designed a syntactic graph with a known 
optimal solution (average variance of zero) for a sixteen 
processor system. This graph consisted of fifty nodes, 
with 50% of its node having an indegree one. Further- 
more, we declustered the head and tail of each object 
into 3 and 6 fragments respectively (i.e., H = 3 and 
M = 8). Below, we analyze the accuracy of heuristics 
for each of set-based and object-based assignments, 

4.2.1 Accuracy of Alternative Set-Based 
Heuristics 

Table 1 presents the accuracy of different set-based 
heuristics for a syntactically generated hyperlink graph. 
The first three columns of this table contain the differ- 
ent heuristic combinations, while the fourth contains 
the average variance in the volume of data prefetched 
by a sixteen processor system for a given heuristic com- 
bination. The term “random” in either t,he prefetch- 

of a prefetch-set or an object. Similarly, “random” 
in the processor column denotes a random assignment 
of the fragments of an object to processors”. The 
term “round-robin” in the processor column refers to 
a round-robin assignment of the fragments of an object 
to processors. 

The first six rows of Table 1 demonstrate that if the 
fragments of a prefetch set are not assigned intelligently, 
regardless of how accurately one choose the prefetch- 
sets or objects of a prefetch-set, the distribution of the 
overhead of prefetching will be skewed. The heuristic 
for choosing processors (i.e., LVP) is quite effective by 
itself (see row 7). However, note that LDFF in com- 
bination with HOF and LVP can obtain an optimal 
solution while LVP by itself cannot converge to such a 
solution. 

Rows 10, 11, and 12 show no difference between 
HDFF and LDFF heuristics because LVP eclipses the 
difference between these two heuristics. However, ob- 
serve from rows 7, 8, and 9 that LDFF results in a 
lower average variance as compared to either HDFF or 
a random assignment of prefetch-sets. 

The last column of Table 1 establishes the time com- 
plexity for each heuristic. Table 3 contains the defini- 
tion of terms used in that column. With the LDFF 
and HDFF heuristics, forming the neighbor-sets and 
computing each object’s weight requires /AI traversals. 
Since sorting the prefetch-sets of an application is order 
N log N, the algorithms that use either LDFF or HDFF 
have at least a complexity of O(lAj + N log N + NH), 
where NH is the total number of fragments. 

4.2.2 Accuracy of Alternative Object-Based 
Heuristics 

Table 3 contains the accuracy of alternative object- 
based heuristics. The results demonstrate that the 
combination of HOF and MFSP heuristics approximate 
the optimal solution significantly closer than the other 
alternatives. The MFSP heuristic is very effective by 
itself (compare row 7 with rows l-6). However, HOF 
is instrumental as it reduces the average variance by a 
factor of four as compared to MFSP all by itself. In ad- 
dition, note that LOF heuristic degrades the accuracy 
of MFSP strategy (compare row 7 with 9). A major 
conclusion to be drawn here is that assigning an object 
with highest number of constraints first is beneficial. 

loThe experiments with a random assignment were repeated 
many times in order to establish a 95% confidence interval on 

set or object column specifies a random assignment the obtained results. 
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Heuristics Used Avg. Variance in Time 
PS Object Processor Overhead of Prefetching Complexity 

1 Random Random Random 4438423 O(NH) 
2 LDFF Random Random 443.2335 O(IAl+ NlogN + NH) 
3 LDFF HOF Random 440.0519 O(lAl+ NlogN + NH) 
4 Random Random Round-Robin 113.5160 O(NH) 
5 LDFF Random Round-Robin 117.6105 O(lAl + NlogN + NH) 
6 LDFF HOF Round-Robin 60.8869 O(lAl+ NlogN + NH) 
7 Random Random LVP 1 TO655 O(N(H + P)logP) 
8 LDFF Random LVP 0.8372 0( A + NlogN + N(H + P)logP) 
9 HDFF Random LVP 1.6896 0( A + NlogN + N(H + P)logP) 

10 LDFF HOF LVP 0.0000 O( A + NlogN + N(H + P)logP) 
11 HDFF HOF LVP 0.0000 . O(,A, + NlogN + N(H + P)logP) 
12 LDFF LOF LVP 0.0000 0( A + NlogN + N(H + P)logP) 

Table 1: Set-Based Assignment 

Table 2: Object-Baaed Assignment 

Term 1 Definition 
N 1 Number of objects in an application 
IAl Number of arcs in a graph 
P Number of processors 
H Degree of declustering for the prefetch portion 

Table 3: List of terms used for establishing time complexity and their respective definitions 
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Figure 6: Accuracy oE Neighbor-Based versus Object- 
Based Algorithms 

4.3 A Comparison of Object-Based 
with Set-Based Algorithms 

Finally, we compared the best object-based heurist,ic 
combinations (HOF, MFSP) with that of set-hased AS- 
signment (LDFF, HOF, LVP). F,ach heuristic assigned 
a hypermedia application termed “John Cocke: A Ret- 
rospective By Friends”. This application was authored 
at the Multimedia laboratory of the IBM TJ Wat- 
son Research Center and consisted of audio, video and 
bitmap media objects. For the purposes of our exper- 
iment, we restricted this applicat#ion t,o video ohject,s 
only (237 objects). The degree of declust,ering for t,he 
tail of each object was set to six while that of it,s head 
was set to three (i.e., M = 6 and H = 3). 

In our experiments, we varied the number of proces- 
sors in a system from 32 to 1024 while observing the 
average variance of both set-based and Qbject, based 
assignments. Figure 6 cont,ains the reslllts of t,hese cx- 
periments. As we increased t,he number of processors 
in the syst,em, the average variance of bot,h strat,egies 
approached zero because the larger number of proces- 
sors increases the degree of freedom associated with the 
assignment procedure. To justify t,his claim, in a dif- 
ferent experiment, we increased t,he degree of declus- 
tering of each object proport,ional to t.he number of 
processors in the system and observed no drop in the 

Figure 7: Factor of Improvement as Compared to a 32 
Processor System 

average variance of either algorithm. 

When the number of processors is less than sixty- 
four, object-based assignment has a lower variance than 
set-based assignment. However, with more processors, 
set-based assignment starts to outperform object-based 
assignment. Fewer processors translates into a larger 
number of constraints on the assignment procedure. In 
this case, object-based assignment can propagate con- 
straints more effectively since it propagates them at a 
lower granularity level, namely that of an object, where 
constraints can be satisfied and propagated. While set- 
based assignment propagates constraints at the gran- 
ularity of a set (significantly larger than an object), 
where constraints are neither satisfied nor propagated. 

However, set-based assignment obtains a very low 
variance when the number of processors is large enough 
t,o pnahle constraint,s to be propagated among sets. In 
order to demonstrat,e t#his affect, Figure 7 shows the im- 
provement factor of each assignment strategy relative to 
a 32 processor system as a function of the number of 
processors in the system. The y-axis in this figure is 
logarithmic. This figure shows that as the number of 
processors is increased, set-based assignment can prop- 
agat.e t,he constraints and estimate an optimal solution 
significantly closer than the object-based assignment. 
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5 Conclusion and Future Re- 
search Directions 

In this paper, we described a placement strategy for the 
objects of a parallel hypermedia system. This stralegy 
declusters each object across multiple processors in or- 
der to display it in real-time. Furthermore, it maxi- 
mizes the throughput of the system by distributing the 
workload of a hypermedia application uniformly across 
the processors. We also described a prefetching mecha- 
nism to reduce the response time of the system. In addi- 
tion, we proposed and evaluated the accuracy of several 
heuristics for distributing the overhead of prefetching 
uniformly across the processors. Our evaluation indi- 
cates that the proposed placement heuristics distribute 
the overhead of prefetching more uniformly than both 
round-robin and random object placement strategies. 

This work is pioneering and we are currently ext,end- 
ing it in several directions. First, we are augmenting 
our placement algorithm to support a skewed distri- 
bution of access to the hyperlinks of an application. 
Second, we are extending our declustering strategy and 
prefetching mechanism to incorporate different system 
loads (an assumption of this paper is zero system load). 
A system load can result in cert,ain amount of wait-time 
for service which can have a significant impact, on the 
real-time display of an object. 

Third, we are designing several algorithms for dy- 
namic on-line re-organization of objects to maintain an 
even distribution of the workload in the presence of a 
user’s changing pattern of access to the objects of a 
hypermedia application. 

Finally, we are implementing a simulation model 
of a parallel hypermedia system to quantify the per- 
formance of the declustering strategy and prefetching 
mechanism proposed in this paper. 

Appendix A Frequency of Ac- 
cess to Objects 

We compute the frequency of access to the objects 
of a hypermedia application based on the frequency of 
access to its hyperlinks. In this appendix, we provide a 
stochastic method for performing this comput,ation. 

Given a hyperlink graph G = (V,A), we construct 
its Markov chain M = (S,T), where each object in V 
is defined as a state in S and each hyperlink in A is 
represented by a transition from one state to another. 

where n is the number of states in the Markov chain. 
The entry pi,j specifies the probability of using a hy- 
perlink from object i to j provided that the user is cur- 
rently viewing object i. For example, assuming a uni- 
form probability of access to the outneighbors of object 
i, the transition probability from object i to j is: 

1 
pi*’ = outdegree 

where o&degree(j) is the number of outgoing hyper- 
links from object j. Note that in this case, the proba- 
bilities for each row must sum up to 1. 

Assuming that the term xi of vector x = 
[Xl, X2, s * *I Zit *. , , x,,] specifies the frequency of access 
to each object i of a hypermedia application, then xi is 
computed by finding a solution to x from the following 
system of equations: 

(P + Lx, - 1)x = lnx1 

where I is the identity matrix and 1 is a matrix whose 
elements are all 1. 

Appendix B Variance in Volume 
of Data 

In this section, we describe how the variance in vol- 
ume of data prefetched by each processors is computed. 

Assuming a system composed of P processors, and 
a hyperlink graph whose fragments have already been 
assigned, we compute the volume of data prefetched 
by processor i (1 5 i < P) on behalf of a prefetch- 
set(x) (termed VOL p~(~),i). Next, we compute the av- 
erage volume of data that should ideally be prefetched 
by each processor had the fragments of PS(x) been 
distributed uniformly across the processors (termed 
VOLPS(,)) 11, Using this information, we compute the 
variance in the volume of data prefetched by each pro- 
cessor for a given prefetch set (vp~(~)), as follows: 

DPS(+) = 
p (VOLPS(l),i - voLPs(,))2 c P (9) 

i=l 

I1 When the number of fragments cannot be divided equally 
among the processors, we adjust the variance to compensate for 

We define an n x n probability transition matrix, this case. 
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