
Implementing Set-Oriented Production Rules
as an Extension to Starburst

Jennifer Widom
Roberta Jo Cochrane *

Bruce G. Lindsay
IBM Almaden Research Center

650 Harry Road
San Jose, CA 95120

widomOibm.com, bobbicbcs.umd.edu, bruceQibm.com

Abstract. This paper describes the implementation of a
set-oriented database production rule language proposed in
earlier papers. Cur implementation uses the extensibility
features of the Starburst database system, and rule exccu-
tion is fully integrated into database query and transaction
processing.

1 Introduction

In database systems, a prodzlction rules facility allows
definition of database operations that are executed auto-
matically whenever certain events occur or conditions are
met. Production rules in database systems can be used
for enforcing integrity constraints, maintaining derived
data, and building efficient knowledge-base and expert
systems. In [WF89,WF90] we propose a syntax for speci-
fying production rules in relational database systems and
a semantics for rule execution. In keeping with the set-
oriented approach of relational data manipulation lan-
guages, our production rules are set-oriented-they are
triggered by sets of changes to the database and may
perform sets of changes. The condition and action parts
of a production rule may refer to the current state of the
database as well as to the sets of changes that triggered
the rule. Our rule language has now been implemented
at the IBM Almaden Research Center as an extension to
Starburst. Starburst is a prototype relational database
system with a focus on extensibility [HCL+SO]. This pa-
per serves the dual role of describing our implementation
of the rule system and illustrating how the extensibility
features of Starburst facilitated its rapid development.

Several other research efforts also consider produc-
tion rules in database systems. Descriptions of a va-
riety of rule languages and prototype systems appear
in [Coh89, DE89, dMS88, Esw76, Han89, MD89, SLR88,
SJ+90], among others. The most significant difference
between our rule system and others is our focus on set-
orientation, whereby rules can be triggered by and pro-
cess arbitrary sets of changes t,o the database. We believe
this approach permits a flexible framework and adapts
well to the database setting. However, it requires a quite
different implementation strategy than more t,raditional
(instance-oriented) database rule systems, as described
in this paper. In addition, our rule system fully inte-
grates rule definition and execution with database pro-

‘Current address: Department of Computer Science, Uni-
versity of Maryland, College Park, MD 20742

Proceedings of the 17th International
Cmference on Very Large Data Bases

cessing, including features such as concurrency control
and rollback; these features are omitted in many other
database rule systems. Further discussion of the rule lan-
guage and comparison with related work can be found
in [WF89,WF90].

Section 2 reviews the syntax and semantics of the rule
language. Section 3 briefly describes Starburst, high-
lighting the extensibility features used by the rule sys-
tern. Section 4 gives the overall design of the rule sys-
tem and contrasts our approach with other systems; de-
tails of particular components are presented in the subse-
quent sections. Section 5 describes how rules are created,
dropped, and altered (hereafter referred to as rule dejini-
tion), and how they are stored in the database. Section 6
explains how transition information for rules is accumu-
lated at run-time-this information is used to determine
which rules are triggered and to evaluate references to
the database changes that triggered them. Rule execu-
tion itself is described in Section 7. Section 8 explains
how we handle rule ordering, including the rule priority
feature in our language. Section 9 discusses concurrency
control issues, in particular our approach to enforcing se-
rializability of transactions that may include rule defini-
tion. How the rule system reacts to complete and partial
rol1bac.k is described in Section 10. Section 11 covers au-
thorization issues in both rule definition and execution.
Finally, in Section 12 we discuss the current status of
the rule system and propose a number of enhancements
and extensions to it.

2 Rule Language

We provide a brief overview of our set-oriented relational
database rule language. It is based on SQL, since an ex-
tended version of SQL is the query language used in
Starburst [HCL+SO]. The production rules facility is
fully integrated into the database system. That is, all
the usual database tasks are performed; in addition, a
set of rules may be defined. A rule’s transition predicate
controls triggering; when triggered, a rule’s condition is
checked before it may execute its action, which is a se-
quence of database operations. Rules are not activated
until the commit point of each transaction, at which time
all triggered rules are considered.’ The database oper-

1 We will soon extend the system with a flexible mechanism
for additional rule triggtring points; see Section 12.

275
Barcelona, September, 1991

ations executed as part of a rule’s action may trigger
additional rules. Once there are no triggered rules left
to consider, the transaction is committed. Details are
given below.

To facilitate a quick prototype implementation, the
rule language supported by our system differs slightly
from that proposed in [WF90]. Some changes are purely
syntactic, others are restrictions that we intend to re-
move, and in one case we have added expressive power
to the language, To alleviate any confusion in readers fa-
miliar with [WF89,WF90], all changes are documented
in footnotes.

Our production rules are based on the notion of tran-
&ions. A transition is a database state change resulting
from execution of a sequence of database operations. We
consider the net eflecl of transitions, meaning that: (1)
if a tuple is updated several times, we consider only the
composite update; (2) if a tuple is updated then deleted,
we consider only the deletion; (3) if a tuple is inserted
then updated, we consider this as inserting the updated
tuple; (4) if a tuple is inserted then deleted, it is not
considered at all. A formal presentation of transitions
and their net effects appears in [WF89].

The syntax for creating production rules isi

create rule rule-name on Inble-name
when transition-predicate ,
[if con&ion ,]
then action-list ,

t
precedes rule-M ,]
follows rule-lisl] ;

The transition predicate specifies the rule’s triggering
operalions; it is a nonempty subset of

(inserted, deleted, updated [(column-M)])

where column-M is a list of columns in table-name. A
rule is triggered by a given transition if at least one of the
specified operations occurred on table-name in the net ef-
fect of the transition. In the case of updated, one of the
columns in column-lisl must be updated; if no columns
are specified, the rule is triggered by updates to any col-
umn. Once a rule is triggered, its condition is checked.
A rule condition is an arbitrary SQL predicate over the
database. If the condition evaluates to true, then the
rule’s list of actions is executed.3 (The condition may be
omitted, in which case it is always true.) Rule actions
are arbitrary Starburst database operations, including
select, insert, delete, and update expressions, as well

‘Note minor changes from the syntax in [WF90]. The
syntax used here allows us to take advantage of general com-
mands provided by Starburst (see Section 5). Also note that
rules are triggered by operations on only one table, while in
[WF90] they could be triggered by operations on any number
of tables. We intend to permit multiple tables in the fut,ure.

3For simplicity, in our current itnplementat.ion rule con-
ditions actually are SQL select expressions: if the select.
expression is noncmpty then the condition is true. The two
forms are interchangeable, and we intend to convert to pred-
icates in the near future.

Proceedings of the 17th International
Conference on Very Large Data Bases

as data definition commands and rollback requests.4
The optional precedes and follows clauses list existing
rules and are used to specify rule priorities. If a rule
RI includes a rule Rz in its precedes list, then if RI
and R2 are both triggered, RI will be considered first;
conversely for follows.5

The condition and action parts of a rule may refer
to the current state of the database through SQL op-
erations. In addition, these components may refer to
transition tables-logical tables reflecting the changes
that have occurred during a rule’s triggering transition.
There are four transition tables: inserted, deleted,
new-updated, and old-updated. A rule may refer
to any transition table corresponding to one of its trig-
gering operations. Consider a rule R on a table T. At
the end of a transition triggering rule R:

inserted refers to those tuples of table T in the cur-
rent state that were inserted by the transition.

deleted refers to those tuples of table T in the pre-
transition state that were deleted by the transition.

new-updated refers to those tuples of table Tin the
current state for which at least one of the triggering
columns was updatedee

old-updated refers to those tuples of table T in the
pre-transition state for which at least one of the trig-
gering columns was updated.

Transition tables may be referenced in the from clauses
of select operations using Starburst’s iable expression
syntax (see Section 3.2) as shown in this example:

select .,. from .., v as (inserted()) . . . where . . .

In the select and where clauses, references to table vari-
able v indicate transition table inserted.

Rules are dropped by issuing the command:

drop rule rule-name on table-name ;

Existing rules may be altered; we permit changes to all
aspects of a rule except its name, table, and triggering
operations. Rules are altered using the command:

alter rule rule-name on table-name
[if condition ,]
[then action-list ,]
[precedes rule-list ,]
[follows rule-list] ;

where each. specified clause replaces the existing at-
tribute for that rule. (Actually, for precede8 and fol-
lows we allow rule names to be added and removed from
the existing lists.) Finally, for convenience, rules may be
temporarily deactivated. Deactivated rules remain in the

‘In [WFgO] we proposed only data modification and roll-
back. The more general actions were readily implemented in
Starburst and mesh with our intention to eventually permit
rule actions to be arbitrary procedure calls.

‘In [WFSO] ru!c priorities are specified in separate com-
mands; the expressive power is equivalent.

‘jThis form combines the two forms given in [WF90].

276
Barcelona, September, 1991

system but cannot be executed. The syntax for deacti-
vation and reactivation is:

alter rule rule-name on table-name deactivate. ;
alter rule rule-name on table-name activate ;

We now describe the semantics of rule execution.
First, a user or application executes a transaction-a
sequence of SQL operations; rules are processed at the
commit point of the transaction. The state change re-
sulting from this initial transaction creates the first rel-
evant transition, and some set of rules are triggered by
this transition. One rule is chosen from this set for con-
sideration. The rule is chosen such that no other trig-
gered rule should precede it according to the rules’ pre-
cedes and follows clauses. The chosen rule’s condition
is checked; if the condition is false then another trig-
gered rule is chosen for consideration. Otherwise, the
rule’s list of actions is executed. Let R be the first rule
whose actions are executed and assume for the moment.
that it does not specify rollback. At this point, one
rule has been executed, although several rules may have
been considered. All rules not previously considered are
now triggered only if their transition predicate holds with
respect to the composite transition created by the ini-
tial transaction and subsequent execution of R’s action.
That is, these rules see R’s action as if it were executed
as part of the user-generated transaction, Rules already
considered (including R) have already “processed” the
initial transaction. Thus, these rules are triggered again
if their transition predicate holds with respect to the
transition created by R’s action.

Consider now an arbitrary point in rule processing,
where zero or more triggered rules have been consid-
ered, and those whose conditions were true have been
executed. A given rule is triggered at this point if its
transition predicate holds with respect to the (compos-
ite) transition since the point at which it was most re-
cently considered. r If a rule has not yet been considered,
then it is considered with respect to the transition since
the start of the transaction. If a rollback action is en-
countered during rule execution, the system rolls back to
the start of the transaction (including undoing all effects
of previously executed rule actions) and rule processing
terminates. Otherwise, rule processing terminates when
the set of triggered rules is empty or when no triggered
rule has a true condition; the entire transaction is then
committed.

2.1 Examples

We illustrate our rule language with three simple ex-
amples; for numerous additional examples see [CW90,
CW91, WF89, WF90, WidSl]. The first rule controls
salaries in a database of employees:

‘In [WF90] we specified that a rule is considered with
respect to the (composite) transition since the point, nt which
it was most rtcently erecuted. Although either semantics (or
both) could have been implemented, our current choice seems
intuitive and useful.

pmcccdings of the 17th International
Conference on Very Large Data Bases

create rule eal-control on emp
when (inserted, updated(salary)),
if ‘exists (select + from i as (inserted())

where i.salary > 100) of
exirte (select * from nu as (nra,updatedO)

where nu.salary > 100)‘.
then (‘update emp

set salary = 60
where emp.id in

(reelect v.id from v am (ineortodo))‘,
‘updat l emp

set salary * .S * salary
where ealary > 100’);

This rule is triggered whenever employees are inserted or
salaries are updated. The condition holds if any inserted
or updated employee has a salary greater than 100. If
true, the action sets the salaries of all inserted employees
to 50 and reduces each existing employee’s salary by 10%
if it is greater than 100. Notice that this rule triggers
itself until all salaries are reduced to less than or equal
to 100.

Suppose that in the extreme case, when an inserted or
updated salary exceeds 150, the entire transaction should
be rolled back. This is implemented by the following
rule:

create rule sal-extreme on amp.
when (inserted, updated(salary)),
if ‘exists (select * from i as (inrrrted0)

where i.salary > 160) or
exists (select + from nu as (new-updated())

where nu.salary > 150)‘,
then ‘rollback’,
precede8 Sal-control;

Since both rules will be triggered at the same time, the
precedes clause in this rule specifies that it is considered
first, so that salaries greater than 150 are not simply
reduced by rule sal-control.

As a final example, we show a rule that implements the
cascaded delete method of enforcing referential integrity.
Whenever employees are deleted, the rule deletes all em-
ployees managed by the deleted employees:

create rule dal-cascade on emp
when deleted,
then ‘delete from emp

where emp.mgr-id in
(select v.id from v aa (deleted()))‘,

precedes sal-control,
follows sal,extreme;

This rule has no condition, so its action is executed
whenever it is triggered. The rule triggers itself, with ter-
mination occurring when no employees satisfy the predi-
cate in the action, i.e., no deletions occur. For efl’iciency,
this rule is specified to follow Sal-extreme but precede
sal-control.

3 Starburst

Starburst is a prototype relational database system at
the IBM Almaden Research Center. One of the goals
of Starburst is to build an extensible system-a system

277
Barcelona. September, 1991

that can support non-traditional applications and can
serve as a testbed for innovations and improvements in
database technology. For a detailed description of Star-
burst, its extensibility architecture, and some of its cur-
rent extensions, see [HCL+90]. Our production rules fa-
cility is a substantial extension that takes advantage of
several features included in Starburst for extensibility.
We briefly introduce those features,

3.1 Attachments

The attachment mechanism in Starburst permits exten-
sions to the system that require procedures to be called
after each tuple-level database operation. (Our descrip-
tion of attachments here is somewhat simplified since
the rule system does not use all attac.hment features.)
A new a22achment type is created by registering a set of
procedures: a procedure to be invoked when an attach-
ment instance is created on a given table, a procedure to
be invoked when an instance is dropped, a procedure to
be invoked when an instance is altered, and procedures
to be invoked after each tuple-level insert, delete, or up-
date operation on a table with one or more attachment
instances.s Once an attachment type is established ha
registering these procedures, instances of that t,ype are
created, dropped, and altered using general data defi-
nition commands provided by Starburct. When an at-
tachment instance is created, the procedure registered
for creation may build an attachment descriptor. This is
an arbitrary data structure stored by the system in the
database and provided to the extension (for examina-
tion or modification) whenever subsequent attachment,
procedures are invoked. It is interesting to note that, the
Starburst attachment mechanism already provides the
internal power of a tuple-oriented database rule system.

3.2 Table Functions

Table functions extend the flexibility and expressive
power of the Starburst query language (an enhanced ver-
sion of SQL). A table function is created by registering a
function name, parameter specifications, a table schema,
and a procedure for producing the tuples of the table
function. Any table listed in the from clause of a Star-
burst query can instead be a table function; the syntax is
“from . . . v as (fn-name(pl . .pn)) . ..“* Appearances
of table variable v elsewhere in the query are references
to table function fn-name. The table produced by fn-
name at run-time has the schema that was registered
for the table function. To produce the table; parameters
Pl * * * p,, are passed to the table function’s procedure.
The procedure may perform any computations as long
as it generates a set of tuples with the specified schema.

3.3 Event Queues

The event queue mechanism in Starburst is used for de-
ferred execution of procedures. Once an event queue

‘A table may have many instances of a given attachment
type, and instances of a given type may be created on any
table. Each instance, however, is associated with exactly one
table.

Proceedings of the 17th International
Conference. on Very Large Data Bases

is declared, arbitrary parameterized procedures can be
placed on ,the queue to be executed when the queue is
invoked. Currently there are two built-in event queues:
one for procedures to be executed during the prepare-
to-commit phase of each transaction, and one for proce-
dures to be executed upon actual commit. These queues
also are invoked if a transaction rolls back; their pro-
cedures are passed a flag indicating that a rollback is
occurring. Starburst permits partial rollback, whereby
the process is rolled back to a user-specified save point
within the current transaction. During partial rollback,
all procedures placed on event queues during the portion
of the transaction being rolled back are removed from the
queue and executed with the “rollback” flag. Procedures
may be placed on event queues with parameters that will
then be available when the procedure is executed. Event
queue procedures are executed in reverse order of arrival
(i.e., the queue behaves as a stack).

4 Rule System Design

In this section we describe the overall structure of the
rule system. Details of particular components are given
in t,he remainder of the paper. Figure 1 illustrates most
of the rule system’s execution modules and data struc-
tures, showing how they fit together and how they in-
teract with Starburst. In the diagram, Starburst, its
query processor, and its data repository appear on the
left. The ovals in the center column indicate execution
modules of the rule system. The rectangles on the right
represent memory-resident data structures maintained
by the rule system. An arrow from an execution mod-
ule to data indicates that the execution module creates
the data, while the reverse arrow indicates that the ex-
ecution module uses the data. A (double-headed) arrow
from one execution module to another indicates that the
first module calls the second; the arrows are labeled by
the event causing a call to occur. When these arrows pass
through or originate from a star, this indicates that the
call is made through an extensibility feature of Starburst.

The data maintained by the rule system can be divided
into:

l Rule Catalog: This resides in the database and stores
the set of currently defined rules.

l Global Rule Information: For efficiency, some infor-
mation regarding the set of rules also is stored in
main memory. This information is shared by all user
processes. (We assume that the number of rules does
not exceed the capacity of (virtual) memory. An ar-
gument for this assumption appears in [HCK+SO].)

l Transition Log: This is a highly structured log of
those operations occurring within a transaction that
are relevant to currently defined rules. It is stored
in main memory and is called a transition log since,
during rule processing, information about the net ef-.
feet of triggering transitions is extracted from the
log. The log also is used to produce transition ta-
bles. This data structure is local, i.e., one Transition
Log is maintained for each user process.

278 Barcelona, September, 1991

Activating event Starburst extensibility feature rfs

(a) Table change ATTACHMENTS

(b) Transition table reference TABLE FUNCTIONS

(c) Rule condition or action

(d) Prepare to commit EVENT QUEUBS

k) Rule definition ATTACHMENTS

Figure 1: Overall Structure of the Rule System

l Rule Processing Information: This also is local. It
includes all information pertinent to executing rules
within a given transaction, including which rules have
been considered and when, and which rules are po-
tentially triggered at a given point in time.

In addition, an attachment type Rule has been registered
in Starburst. A table has one instance of this attachment
type if (and only if) at least one rule is defined on the ta-
ble. The attachment descriptor for an instance contains
an indicator of what information needs to be written to
the Transition Log when operations occur on the table
(see Sections 5 and 6 for details).

The execution modules depicted in Figure 1 are:

Rule Definition Module: This component processes
all rule definition commands. It is responsible for
maintaining the Rule Catalog and updating the
Global Rule Information. It also creates, deletes, and
modifies rule attachment instances as appropriate.

Rule Attachment Procedures: This set of procedures
writes to the Transition Log whenever relevant table
modifications occur. A rule attachment procedure is
called automatically whenever an insert, delete, or
update occurs on a table with at least one rule.

l Transition Table Procedures: This set of procedures
produces the transition tables that may be referenced
in rule conditions and actions. Transition tables are
implemented as (parameterless) table functions, so
these procedures are registered with Starburst as de-
scribed in Section 3.2. At run-time, they produce
transition tables one tuple at a time, extracting the
tuples from the Transition Log. Further details are
given in Section 6.

l Rule Execution Module: This component is responsi-
ble for selecting and executing triggered rules, It is
invoked automatically at the commit point of every
transaction for which a rule may have been triggered.
To determine which rules are triggered, the Transi-
tion Log, the Global Rule Information, and the lo-
cal Rule Processing Information are examined to see
which operations have occurred and which rules are
triggered by these operations. Rule ordering must
be considered here; it is represented in the Global
Rule Information (see Section 8). Rule conditions are
checked and actions are executed by fetching them
from the Rule Catalog (they are not stored in the
Global Rule Information) and calling the Starburst
query processor. When there are no triggered rules

Fkceediigs of the 17th International
Conference on Very Large Data Bases

279
Barcelona, September, 1991

left to execute and the Rule Execution Module ter-
minates, Starburst commits the transaction.

The rule system also contains several components not
illustrated in the diagram:

System Start-Up: When Starburst is started or
restarted, the rule system initializes the Global Rule
Information from the Rule Catalog. Rule attach-
ments are initialized automatically by Starburst.

Process Start- up and Transaction Clean- Up: At pro-
cess start-up, the rule system allocates its local data
structures-the Transition Log and the Rule Process-
ing Information. They are used during the course of
each transaction, then reset after rule processing.

Rollback Handler: The rule system must be prepared
for a partial or complete rollback at any. time. The
Rule Catalog and attachment information is rolled
back automatically by Starburst. However, the rule
system must ensure that all memory-resident data
structures are modified to undo any changes made
during the portion of the transaction being rolled
back. Details of this component are in Section 10.

Our design differs from other database rule systems
in several ways. The generality of the Rule Attachment
Procedures, Transition Log, and Transition Table Pro-
cedures is unique to our system; it is necessary because
rules are based on arbitrary state transitions (rather
than tuple-level or, for some rule systems, statement-
level changes) and can refer to the net effect of these
transitions. While other systems have achieved varying
degrees of interaction between rules and query process-
ing, we have fully integrated rules into the database sys-
tem. Rule definition is no different than data definition,
and rule actions may perform all database operations.
(In fact, the rule system will be used to implement future
Starburst features.) Concurrency control, authorization,
and transaction processing all are handled. Finally, we
note that Starburst transactions for which no rules are
applicable incur no overhead due to the existence of the
rule system (see Section 7).

5 Rule Definition and Storage

For rule definition, we were able to take advantage of
Starburst’s extensible commands for creating, dropping,
and altering attachment instances. Hence, the parser
did not need to be extended, and procedures to handle
rule definition commands could be registered with Star-
burst for automatic invocation. The general syntax for
creating an attachment instance in Starburst is:

create attach-type instance-name on table-name
attribute-name attribute-va1u.e ,

. . .
attribute-name attribute-value ;

It is clear how we have adapted this syntax to rules. The
attachment-type is rule, the instance-name is the rule
name, and the allowable attributes are when, if, then,
precedes, and follows, with values as described in Sec-
tion 2. We do not, however, actually create one rule

Pmceediigs of the 17th International
Conference on Vety Large Data Bases

attachment instance (i.e., a separate attachment descrip-
tor) for each rule created on a table. Rather, when our
procedure for attachment instance creation is invoked,
a new descriptor is created only if one does not already
exist for that table, as described below.

When a new rule is defined, it is entered into the
Rule Catalog. The Rule Catalog has a structured for-
mat (rather than containing the text of the rule) so that
each separate component can be accessed quickly.Q Some
information on the new rule also must be entered into
the Global Rule Information data structure. Concur-
rency control issues must be considered here, since other
transactions may be affected by the new rule (see Sec-
tion 9). An authorization scheme for rule definition also
has been implemented (see Section 11).

If there currently are no rules on the new rule’s ta-
ble, then a rule attachment descriptor is created for the
table; from that point on Starburst will invoke the pro-
cedures registered for rule attachments after every in-
sert, delete, and update operation on the table. When
invoked, these procedures are provided with the attach-
ment descriptor. Since the information that is written
to the Transition Log by these procedures depends on
the triggering operations and transition table references
in the rule, an information code to reflect this is stored
in the attachment descriptor. If there already are rules
on the new rule’s table, then the only change necessary
is recomputation of the information code to incorporate
the new rule’s triggering operations and transition table
references (see Section 6).

Starburst also provides a general syntax for dropping
and altering attachment instances, as illustrated for rules
in Section 2. When a rule is dropped, it is deleted from
the Rule Catalog, the Global Rule Information is modi-
fied, and the information code in the relevant attachment
descriptor is recomputed. If the dropped rule is the last
rule on its table, the attachment descriptor is deleted;
subsequently, rule attachment procedures for that table
no longer are invoked and operations on that table no
longer are written to the Transition Log. When a rule is
altered, the changes must again be reflected in the Rule
Catalog, the Global Rule Information, and the informa-
tion code in the attachment descriptor. In the case of
deactivation, a flag is set for that rule in the Global Rule
Information (and in the Rule Catalog) to indicate that
the rule should not be executed. Activation causes the
flag to be reset.

6 Transition Information

The attachment procedures that write to the Transi-
tion Log save information during a transaction so that
the Rule Execution Module can determine which rules
are triggered, and so the transition table references ap-
pearing in rule conditions and actions can be evaluated.
Since the effect of rule action execution also is considered

‘Currently, rule conditions and actions are stored as text,
however we ultimately intend to store and perhaps cache
them in compiled form.

280 Barcelona, September, 1991

by rules, the Transition Log must be maintained during
rule processing as well; in our design this happens auto-
matically.

The semantics of rule execution dictates that, at any
given time, different rules may be considered with re-
spect to different start points. (Recall Section 2: Each
rule is triggered with respect to the transition since it,
was last considered, or since the start of the transac-
tion if it has not yet been considered.) Hence, during
rule processing, we may need to construct the net effect
of many different transitions. To do this, entries in the
Transition Log include a (logical) time-stamp which is
obtained from Starburst. In the Rule Processing Infor-
mation we track the most recent time at which each rule
has been considered. The transition for a-given rule is
then constructed based on entries in the Transition Log
occurring after that time.

The triggering operations and transition table refer-
ences in rules determine which operations and what in-
formation must be written to the Transition Log. As an
example, suppose a rule R is triggered by inserted on a
table T, but does not reference the ineerted transition
table. It is necessary to log the times at which inser-
tions occur on T; it also is necessary to log the times
at which deletions occur for tuples in T that were previ-
ously inserted, since the net effect of an insert followed
by a delete is empty. Now suppose R does reference
the inserted transition table. In this case, the values
of the inserted tuples must be logged. In addition, the
new values of updated tuples must be logged for those
tuples that were previously inserted, since the inserted
transition table must contain current values for its tu-
ples. Finally, suppose R also is triggered by updated,
and suppose it references transition table new-updated
but not old-updated. Now, the new values of all up-
dated tuples must be logged; the old values need not
be logged since transition table old-updated is not rcf-
erenced. Clearly there are many cases to consider; we
omit their enumeration here. From the set of rules on
each table we compute the composite set of triggering
operations and transition table references for that ta-
ble. Based on this set, we produce the information code
stored in the table’s rule attachment descriptor. When
attachment procedures are invoked, they use this code
to determine what information should be written to the
Transition Log; our approach guarantees that we log all
and only the necessary information.

The data structure used for the Transition Log is a
“double hash table” storing lists of records. Each record
represents one tuple-level operation and contains the tu-
ple identifier, operation, time-stamp and, when neces-
sary, new and/or old values for the tuple. Often, it is
necessary to access all records representing a certain op-
eration on a certain table occurring after a given time
(e.g., all tuples inserted into T since a rule was last con-
sidered). For this, a hash is performed on the operation
and table to obtain a linked list of the relevant records in
descending order of time-stamp (i.e., most recent first).
It is sometimes necessary to consider the history of a
given tuple to form the net effect of a transition (e.g., to

wings of the 17th International
Conference on Very Large Data Bases

merge updates, or to detect if a deleted tuple was pre-
viously inserted). For this, records with the same table
and tuple identifier also are linked in descending order;
these lists can be traversed from a given record or can
be obtained for a particular tuple by hashing on the ta-
ble and tuple identifier. (In practice, we expect the tuple
list to be short, since each tuple generally is not modified
many times within a single transaction.)

We have developed a number of efficient algorithms for
maintaining and traversing the Transition Log structure.
The algorithms for checking if rules are triggered and for
producing transition tables are almost identical-by def-
inition a triggering operation has occurred if and only if
the corresponding transition table is non-empty. How-
ever, for triggering, no values are needed and the al-
gorithm stops as soon as it detects one instance of the
operation.

We note one remaining issue regarding transition ta-
bles. Starburst table functions expect a fixed schema,
declared when the function is registered (as described
in Section 3.2). The schema of a transition table, how-
ever, depends on the schema of the table for the rule in
which it is referenced. Hence, transition table schemata
may change with each invocation. Fortunately, Star-
burst provides a mechanism allowing us to install the
correct schema at compile-time. When a table func-
tion is registered with Starburst, an optional semantic
function may also be registered. Before a table function
reference is compiled, the semantic function is invoked.
Our semantic functions for transition tables look up the
schema of the appropriate table and use it to replace the
compile-time (dummy) schema; compilation then pro-
ceeds normally.

7 Rule Execution

The Rule Execution Module must be invoked at the
commit point of every transaction for which rules may
have been triggered. The first time a rule attachment
procedure is called during a transaction-indicating that
a relevant operation has occurred-the attachment pro-
cedure places the Rule Execution Module on the prepare-
to-commit event queue. Hence, when the transaction is
ready to commit, rule execution is invoked automati-
cally. Note that we queue only the fact that rule execu-
tion should occur (and only once per transaction); which
rules are triggered is determined at rule execution time.

A pseudo-code algorithm for rule execution is shown
in Figure 2. Potential-Rules is part of the local (per-
process) Rule Processing Information; it contains refer-
ences to those rules potentially triggered at a given point
in time. We say “potentially” triggered because the set is
conservative-every triggered rule is in the set, but there
may be rules in the set that actually are not triggered: At
the start of rule processing (i.e., at the end of the initial
transition) and at the end of each subsequent transition,
we add to Potential-Rules all rules triggered by opera-
tions that occurred during the transition; we do not con-
sider the net effect of the transition. Hence, for example,
if tuples were inserted into table T during the transition,

281
Barcelona. September, 1991

/* find potentially triggered rule8 l /
ret-potential-rulesO;
/* process rules until none left */
while Potential-Rules != empty do

/* look for triggered rule */
found :- false;
while not found and Potential-Rules != empty do

Rule := delete-next(Potential-Rules);
Start-Time : =

lookup-start-time(Rule, Rule-Processing-Info);
found := check-triggersd(Ruls, Start-Tine);

if found then
/* check condition, execute action *t/
roast-start-time(Rule, Rule-Processing-Info);
cond-hold6 := check-condition(Rule, Start-Time);
if cond-hold6 then

execute-action(Rulo, Start-Time);
/* new transition has occurred */
/* find Raw potentially triggerad rules */
set-potential-rules0

set-potential-rules0 :
scan Transition-Log for all operations in moat

recent tranrition;
for each operation Op on table T do

scan Global-Rule-Info for rules triggered
by Op on T;

for each rule R do insert R into Potential-Rulea

Figure 2: Rule Execution Algorithm

then all rules triggered by inserted on T are added to
Potential-Rules, regardless of whether the inserted tu-
ples subsequently were deleted. We expect that it will be
rare for operations in a transition to be “undone” in the
net effect, so our set should not be overly conservat,ive.
However, before processing a rule from Potential-Rules,
we must check that it is indeed triggered by considering
the net effect (as described in Section 6). Recall that
when a rule is fetched from Potential-Rules for consider-
ation, it must be chosen such that no rules with higher
precedence also are triggered. This is achieved by main-
taining Potential-Rules as a sort structure based on rule
ordering; see Section 8.

Lastly, we note some efficiency issues. In procedure
set-po~enliaGrules(), the Transition Log and the Global
Rule Information are scanned. We have implemented
the Transition Log hash structure such that scanning the
most recent entries is fast. The Global Rule Information
is organized as a hash structure based on operation and
table, SO finding all rules triggered by a given operation
on a given table requires hashing once to obtain a linked
list, of the desired rules. Note, however, that for each
transition including a particular operation, the Global
Rule Information yields all rules triggered by that op-
eration, regardless of whether the rules already are in
Potential-Rules. To avoid attempts at adding duplicate
rules to Potential-Rules, we keep in the Rule Processing
Information a local hash structure similar to the Global
Rule Information, but containing only rules not currently
in Potential-Rules.

Proceed@ of the 17th International
Conference on Very Large Data Bases

8 Rule Ordering

Recall from Section 2 that when a rule is defined, it
may specify that other rules should precede or follow
it. (Rule priorities may also be modified through alter
rule statements.) We refer to these specifications as
user-defined rule priorities, and the algorithm for rule
execution must enforce all such priorities. We impose
two additional constraints regarding rule ordering:

l Transitivity: If, in the user-specified priorities, RI
precedes Ra and Ra precedes Rs, then RI should
prec.ede R3, whether or not Ra is triggered.

l Determinism (or Repeatability): If the same transac-
tion is executed twice with the same database state
and same set of rules, then all rules should be con-
sidered in the same order, even if some rules have no
relative priority. (This is essential for debugging.)

To satisfy the first requirement, the system considers the
transitive closure of rule priorities, rather than consider-
ing only user-defined priorities. (Note that circularities
are not permitted: if creation of a rule would cause a
cycle in user-defined or transitive priorities, then that
create rule statement is rejected.) To satisfy the sec-
ond requirement, the system uses a deterministic scheme
to order rules with no user-defined or transitive priority;
details of this scheme are given in [ACLSl].

To enforce rule ordering, the set of potentially trig-
gered rules described in Section 7 is maintained as a sort
structure-a balanced binary tree. Inserting a rule or
fetching the highest priority rule requires time propor-
tional to log(number of rules in structure). However, to
insert rules we must be able to determine efficiently, for
any two rules, which prec.edes the other. A method for
doing this is described in [ACLSl].

9 Conwrrency Control

Since Starburst is a multi-user database system, we must
consider the effect on the rule system of concurrently
executing transactions. For most transactions, includ-
ing those with triggered rules, concurrency control is
handled automatically by the database system. (Recall
that rule conditions and actions are executed through
the Starburst query procawsar.) However, the rule sys-
tem itself must enforce concurrency control for trans-
actions that affect the set of rules in the system, i.e.,
for transactions that include any form of rule definition.
Many other database rule systems do not address this
issue-rule definition takes place in single-user mode or
off-line.10 In our rule system, we have implemented con-
c,urrency control mechanisms that allow rule definition
to be processed as a standard operation. The algorithms
we use guarantee consistency, yet they permit substan-
tial concurrency.

“In the Ariel[Han89] and HiPAC[MD89] systems, object-
orientation allows rules to be specified as database objectr,
so concurrency control is handled automatically. This is not
possible in Starburst.

282
Barcelona. September, 1991

We first define the consistency requirements, then ex-
plain the solutions we have implemented. There are
three forms of consistency to consider: zntra-trensaction.
consistency, which specifies that relevant rules remain
consistent throughout a transaction, inter-transaction
consistency, which specifies that transactions are seri-
alizable with respect to rules (as well as data), and or-
dering consistency, which specifies intra-transaction con-
sistency for user-defined and transitive rule priorities.
(Inter-transaction consistency for priorities follows from
inter-transaction consistency for rules.) The require-
ments are stated as follows.

Intra-transaction consistency: Let X be a transac-
tion. The set of rules on any table modified by X
cannot change after the first time X modifies the ta-
ble. If X modifies a table, X cannot subsequently
change the rules on that table.

Inter-transaction consistency: Let Xi and X2 be two
transactions such that Xi precedes X2 in the serial
schedule induced by the database system’s concur-
rency control mechanism. If X1 performs rule defi-
nition on a table modified by X2, then X2 must see
the effect of Xl’s rule definition. If X2 performs rule
definition on a table modified by X1, then X1 must
not see the effect of X2‘s rule definition.

Ordering consistency: Let X be any transaction and
let RI and Ra be any two rules on tables modified
by X. The precedence relationship between RI and
R2 must not change during X from the first time the
relationship is used in rule selection.

In the Starburst locking scheme, locks are acquired
throughout a transaction as needed and are held until
the transaction commits or rolls back. Hence, the in-
duced serial order of transactions is based on commit
time. Intra- and inter-transaction consistency for rules
is enforced quite easily using the existing lock mecha-
nism, as follows. Let X be a transaction that performs
rule definition. Consider one rule definition command in
X, and let T be the table of the created, dropped, or al-
tered rule. First, X checks to see if it has modified T. If
so, the rule definition statement is rejected. Otherwise,
X obtains a table-level shared lock on T. This forces
X to wait until all transactions currently modifying T
have committed, and it disallows future modifications to
T by other transactions until X commits. (Modifying a
table requires obtaining exclusive loc.ks on the modified
tuples, which are incompatible with a shared lock on the
entire table.) X itself may subsequently modify T.

This scheme ensures both intra- and inter-transaction
consistency. Consider first inter-transaction consistency.
Let Xi and X2 be two transactions such that Xr per-
forms rule definition on a table T modified by X2. Sup-
pose Xi precedes X2 in the serial order, i.e., Xr commits
before X2, Then X2 must obtain its exc.lusive tuple-locks
for modification after Xi commits and releases its shared
table-lock for rule definition. (Otherwise-if Xz obtains
its tuple-locks before XI commits-X2 would have com-
mitted before Xi.) Thus, Xz sees the effect of Xi’s rule

Proceedings of the 17th International
Conference on Very Large Data Bases

definition, as desired. Suppose instead that X0 precedes
X1 in the serial order. Then Xt must obtain its shared
table-lock for rule definition after X2 commits and re-
leases its exclusive tuple-locks for modification. Thus,
X2 does not see the effect of Xl’s rule definition, as de-
sired. Intra-transaction consistency follows directly from
inter-transaction consistency and the locking scheme.

To enforce ordering consistency, we introduce locks on
rules. Let an rs-lock be a shared rule lock and let an rx-
lock be an exclusive rule lock. (In Starburst, introducing
locks on new objects is trivial.) Recall that during its
rule execution phase, each transaction maintains a sorted
data structure, Potential-Rules, of potentially triggered
rules. Each time a transaction adds a rule to Potential-
Rules, it obtains an rs-lock on that rule. Consider a
transaction that performs rule definition. All rule de%
nition commands-create rule, drop rule, and alter
rule-may force some recomputation of rule priorities;
even the ordering between unchanged rules may be re-
versed [ACLSI]. When a rule definition command is exe-
cuted, there is an identifiable minimal set S of rule pairs
whose precedence relationship may be reversed by the
resulting recomputation of priorities. Before changing
priority data in the Global Rule Information, a transac-
tion must obtain an rx-lock on each rule that appears in
set S. To see how this guarantees ordering consistency,
consider the rule execution phase of a transaction Xr.
The first time Xi adds a rule R to Potential-Rules, X1
obtains an rs-lock on R. Consequently, no other trans-
action X1 can perform any priority recomputation that
may affect R, since Xs would need to obtain an rx-lock
on R. To prevent ordering relationships from chang-
ing within a transaction that performs rule definition,
rs-locks cannot be upgraded to rx-locks. Although this
scheme is more restrictive than required by the speci-
fication of ordering consistency, we believe it will have
minimal impact on concurrency.

The rule system also must maintain consistency for
its shared data-read and write operations must ap-
pear atomic. Starburst performs this task for the Rule
Catalog and attachment information. For the Global
Rule Information, we use Starburst’s lalching mechanism
for mutual exclusion-data items are latched in shared
mode for the duration of a read operation and are latched
in exclusive mode for the duration of a write operation.

10 Rollback

The rule system maintains two memory-resident data
struct’ures throughout execution: the Transition Log,
which contains information about operations relevant to
rule triggering and execution, and the Global Rule In-
formation, which contains information about the current
set of rules. A third data structure, the Rule Process-
ing Information, is maintained during the rule execution
phase of each transaction; it contains information about
potentially triggered rules and their triggering transi-
tions. When a transaction is partially or completely
rolled back, the rule system must ensure that its data
structures are rolled back accordingly. It turns out that

283
Bamlona, September. 1991

the Rule Processing Information never needs to be rolled
back: a partial rollback cannot occur during rule exe-
cution except within the actions of a single rule, and
a complete rollback causes termination of the rule exc-
cution phase. Hence, only the Transition Log and the
Global Rule Information must be considered.

In the case of complete rollback, the Transition Log
is set to empty. This occurs as part of a general rule
system “cleanup” procedure for local data. strwctures.
(The cleanup procedure is placed on the commit event
queue by each transaction the first time any informa-
tion is written to the Transition Log, and is executed
whether the transaction commits or rolls back.) In the
case of partial rollback, the rule system must remove
all entries in the Transition Log corresponding to opera-
tions that occurred during the rolled back portion of the
transaction. Starburst allows arbitrary procedures to be
invoked whenever a partial rollback occurs; these proce-
dures are called with a time-stamp parameter indicating
the point to which the transaction is rolling back. This
time-stamp corresponds to the time-stamps in Transition
Log entries. Hence, a procedure for the rule system is
invoked on partial rollback and removes from the Tran-
sition Log all entries with a time-stamp greater than the
time-stamp received as a parameter.

Handling rollback for the Global Rule Information is
somewhat different. Recall that the Global Rule Infor-
mation is initialized from the Rule Catalog on system
startup, then modified only when a create rule, drop
rule, or alter rule statement is executed. The rule sys-
tem must ensure that whenever a rule definition state-
ment is rolled back, the changes that were made to the
Global Rule Information are undone. This is achieved by
placing a parameterized procedure on the commit event
queue each time a rule definition statement is executed.
When one of these procedures is invoked with the “roll-
back” flag, it modifies the Global Rule Information ap-
propriately. For example, when a create rule st,atement
is processed, a procedure is queued with a paramet,er
that identifies the created rule. If a rollback occurs, this
procedure removes the information for that rule from the
Global Rule Information. (Recall that the--Rule Catalog
and attachment information are rolled back automati-
cally by the database system.) alter rule and drop
rule are handled similarly.

11 Authorization

We must consider three distinct authorization issues for
rule definition: authorization to create rules on a given
table, authorization to create rules with given condi-
tions and actions, and authorization to alter or drop
given rules. In addition, we must consider how autho-
rization is handled at rule execution time. To explain
how these issues have been addressed, we first briefly
describe (some of) Starburst’s extensible authorization
component [GLL89].

Lattices of privilege types can be defined for arbi-
trary database objects, and privileges on objects ran be
granted to and revoked from, users and groups of users.

Pmccdings of the 17th International
Chfemnce on Very Large Data Bases

In a lattice of privilege types, higher types subsume the
privileges of lower types. As an example, for database
tables the highest privilege is contro& below this are priv-
ileges write, alter, and alla&; below write are privileges
update, delete, and insert; below update and delete is
privilege read. When a table is created, its creator au-
t~omatically obtains control privilege on the table, which
includes the ability to grant and revoke privileges.

The lattice of privilege types for rules is linear: the
highest privilege is control, below this is alter, and privi-
lege deactivate/activate is lowest. As with tables, a rule’s
creator obtains control privilege on the rule and may
grant and revoke privileges on it. To create a rule R on
a table T, R’s creator must have both attach and read
privileges on T. During rule creation, R’s condition and
actions are checked using the creator’s privileges. If the
condition or actions contain statements the creator is not
authorized to execute, then the create rule statement is
rejected. To drop a rule R on a table T, the requirement
is either control privilege on T or attach privilege on T
with control privilege on R. To alter a rule, privilege al-
ter is required; to deactivate or activate a rule, privilege
dencfiuate/act?vate is required. During rule execution,
each rule is processed using the privileges of its creator.
To do this, privilege information for a rule’s creator is
stored together with the rule’s condition and actions.

12 Status, Conclusions, and Future
Work

The rule system as described in this paper is fully im-
plemented and operational. It consists of approximately
24,000 lines of C code with comments and blank lines
(approximately 8,000 semicolons), which includes a num-
ber of user facilities. The actual coding took only about
9 woman-months, but we carefully designed the system
before any implementation began. Currently, we are ex-
ercising the system and intend to conduct performance
measurements when a sufficient suite of examples has
been developed.

The fact that the rule system could be implemented
so quickly reflects well on the extensibility of Starburst.
One intention of Starburst is that it can easily be ex-
tended by ezternal customizers-database researchers
not involved in the Starburst system itself. We point
out that although the rule system design was performed
in collaboration with a Starburst team member (and
many others were consulted), the code itself was written
entirely by two people who did not participate in the
design or implementation of Starburst, i.e., by external
customizers.

In addition to performance measurements, a number
of enhancements and extensions to the rule system are
planned for the future:

l A flexible mechanism for user-specified triggering
points. With this mechanism, rules may be added to
rule assertion sets, and an assert rules statement
may be issued at any time to invoke rule processing
for the rules in a given set. (Our semantics based on

284
Barcelona, September, 1991

arbitrary transitions accommodates this approach di-
rectly.) All rules in the system are processed at the
end of each transaction, as usual. This mechanism is
fully designed and will be implemented shortly.

Allow rule actions to call arbitrary procedures (which
may include database operations).

Allow rules to be triggered by operations on multiple
tables. This is simply a matter of additional coding.

Develop an algorithm for incremental evaluation of
rule conditions, similar to that in [Han89,HCKt90]
but adapted for our language and semantics.

Implement a dependency tracking system for rules: If
a rule’s condition or action can no longer be executed
because, for example, a table has been deleted or
privileges have been revoked, then the rule should he
invalidated. This will be included as part of a general
dependency tracking facility planned for Starburst.

Clearly, the behavior of large sets of production rules
can be difficult to understand and control, so we are
developing a rule analysis facility as an aid to users of
the system. The facility uses conservative algorithms
to provide information about possible non-termination
of rule sets, whether rule ordering may affect the final
database state, etc. In addition, we plan to build specid-
purpose applications on top of the rule system, such as
the constraint maintenance facility described in [CWSO],
the incremental view maintenance facility described in
[CW91], and the deductive database facility described
in [WidSl].

Acknowledgements

We are grateful to Rakesh Agrawal, Manish Arya, Ste-
fano Ceri, George Lapis, Guy Lohman, John McPherson,
Joel Richardson, and Ulf Schreier, who all have helped
us out one way or another along the way.

References
[ACLSl]

[CohSS]

[CW90]

[CW91]

[DE891

R. Agrawal, R.J. Cochrane. and B. Lindsay. On
maintaining priorities in a production rule sys-
tem. In Proc. of the 17th Int. Conf. on Very Large
Data Bases, Barcelona, Spain, September 1991.

D. Cohen. Compiling complex database transi-
tion triggers. In Prac. of the ACM SIGMOD Int.
Conf. on Management of Data, pages 225-234,
Portland, Oregon, May 1989.

S. Ceri and J. Widom. Deriving production rules
for constraint maintenance. In Proc. of the 16th
Int. Conf. on Very Large Data Bases, pages 566-
577, Brisbane, Australia, August 1990.

S. Ceri and J. Widom. Deriving production rules
for incremental view maintenance. In Proc. of
the 17th Znt. Conf. on Very Large Data Bases,
Barcelona, Spain, September 199 1.

L.M.L. Delcambrc and J.N. Ethcrcdgc. The Rc-
lational Production Language: A production lan-
guage for relational databases. In L. Kcrschberg,
editor, Expert Database Systems-Proceeding8

Proceedings of the 17th Intcmational
Conferewe on Very Large Data Bases

[dMS88]

jEsw76]

[GLL89]

[Han891

[HCK + 901

[HCL+ 901

[MD891

(SJ+90]

[SLR88]

[WF89]

[WF90]

[WidSlj

285

from the Second Int. Conference, pages 333-361.
Benjamin/Cummings, Redwood City, California,
1989.

C. de Maindreville and E. Simon. A produc-
tion rule based approach to deductive databases.
In Proc. of the Fourth Int. Conf. on Data Engi-
neering, pages 234-241, Los Angeles, California,
February 1988.

K.P. Eswaran. Specifications, implementations
and inttcractions of a trigger subsystem in an in-
tegrated database system. IBM Research Report
RJ 1820, IBM San Jose Research Laboratory, Au-
gust 1976.

R. Gagliardi, G. Lapis, and B. Lindsay. A flex-
ible and efficient database authorisation facility.
IBM Research Report RJ 6826, IBM Almaden
Research Center, May 1989.

E.N. Hanson. An initial report on the design
of Ariel: A DBMS with an integrated produc-
tion rule system. SIGMOD Record, Special Iasue
on Rule Management and Processing in Expert
Database Systems, 18(3):12-19, September 1989.

E.N. Hanson, M. Chaabouni, C.-H. Kim, and Y.-
A predicate matching algorithm for

Eta??stgruIe systems. In Proc. of the ACM SZG-
MOD Int. Conf. on Management of Data, pages
271-280, Atlantic City, New Jersey, May 1990.

L. Haas, W. Chang, G.M. Lohman, J. McPher-
son, P.F. Wilms, G. Lapis, B. Lindsay, H. Pira-
hesh, M. Carey, and E. Shckita. Starburst mid-
flight: as the dust clears. IEEE Transactions on
Knowledge and Data Engineering, 2(1):143-160,
March 1990.

D.R. McCarthy and U. Dayal. The architecture of
an active database management system. In Proc.
of the ACM SIGMOD Int. Conf. on Management
of Data, pages 215-224, Portland, Oregon, May
1989.

M. Stonebraker, A. Jhingran, J. Goh, and
S. Potamianos. On rules, procedures, caching and
views in data hew-systems, In Proc. of the ACM
SIGMOD Int. Conf. on Management of Data,
pages 281-290, Atlantic City, New Jersey, May
1990.

T. Sellis, C.-C. Lin, and L. Raschid, Implement-
ing large production systems in a DBMS envi-
ronment: Concepts and algorithms. In Proc. of
the ACM SIGMOD Int. Conf. on Management of
Data, pages 404-412, Chicago, Illinois, June 1988.

J. Widom and S.J. Finkclstein. A syntax and
semantics for set-oriented production rules in re-
lational database systems. IBM Research Report
RJ 6880, IBM Almadcn Research Center, June
1989. Revised March 1990.

J. Widom and S.J. Finkclstein. Set-oriented pro-
duction rules in relational database systems. In
Proc. of th,e ACM SIGMOD Int. Conf. on Man-
agement of Data, pages 259-270, Atlantic City,
New Jersey, May 1990.

J. Widom. Deduction in the Starburst production
rule system. Submitted for publication, 1991.

Barcelona, Scptambcr, 1991

