
A Model for Active Object Oriented Database

Catriel Reeri Tova Milo

The Hebrew University of Jerusalem*
{beeri,tova}Qhumus.bitnet

Abstract

This paper presents a logical model for an
active object oriented dntahaae. The main
idea is to use standard concepts of OODB
such aa encapsulation and inheritance, In
particular triggers are special met,hods en-
capsulated in the appropriate object. The
execution model uses nested transactions.
The model is shown to he flexihle and to
generalize previous proposals,

1 Introduction

Conventional DBMS’s execute only operations that
are explicitly specified in users’ requests, or in appli-
cation code. In active datahmes operations can act as
trigger8 that cause the execution of other operat,ions.
Such a facility has many uses. such as allt,horizRt.ion
and access logging, integrity constraint maint,ennncc,
and alerting [4, 7, 10, 12, 17, 19, 20, 161. Its ad-
vantages include, among others, code reuse, and ten-
tralization of code storage and management [6, 181.
Code for integrity checking and maint,enance is writ-
ten, stored, and managed by t,he dat,ahase adminis-
tration, and is ‘called’ automa.tically by applications,
without any reference in the application code, The
incorporation of a trigger facility into a database sys-
tem requires careful planning, so that it can be emily
integrated with the data model and the processing
mode of the system.

Proceedings of the 17th International
Conference on Very Large Data Bases

In DBMS’s, operations are organized in Iran.+
acfions: collection of operations that are consid-
ered as at,omic units for concurrency and recovery
purposes[l4]. This has been refined to a model of
tles2ed transactions [3, 131, in which transactions can
have subtransactions, thus allowing for a hierarchi-
cal organization of processing. It is natural to view
triggered operations as subunits of the users’ trans-
actions, that is, as aubtransactions. Thus, recently
proposed models for active databases [ll] are based
on the nested transaction concept.

An important trend in DBMS evolution is the de-
velopment of d sophisticated database models, in
particular obje&oriented databasea (OODB’s) [I, 21.
OODR’s supports rich data structuring mechanisms,
hierarchical and general relationships between oh-
jects, and the representation of data processing in the
form of code (i.e., methods) that is stored and man-
aged by the DBMS. The advantage of code reuse and
centralized and uniform code management is shared
by active databases. The hierarchical organization of
st.ruct.ure and processing in OODB’e is highly com-
patible with the nested transactions model, This
paper is a study of the integration of these three
paradigms: active databases, OODB’s, and nested
Iransaciions.

An hctive database model needs to address sev-
eral issues: How are triggers specified; when are trig-
gers enabled and executed; how is the environment of
trigger execution specified and implemented; how do

337 Barcelona, September, 1991

we specify and control concurrently enabled triggers.
Each of these hae received considerable attention in
the literature, [6, 7, 10, 12, 18, 19, 20, 161. We con-
sider these isauea in the context of the object-oriented
paradigm, and present an integrated execution model
that is based on objects and their structure, methods,
and neated transactions. The following are the signif-
icant point8 of our approach:

Our model uses extensively OODB concepts such
88 encapsulation and inheritance. For lack of space
we present here only a logical model, a framework,
not a specific system. Issues relevant to performance
are not included.

In section 2 we present an OODB and nested trans-
action models, and relate them to active behavior,
The following sections consider the extensions to an
active object-oriented model. Section 3 extends the
description of methods to include triggering informa-
tion. Section 4 describes how information about trig-
gered action8 is stored. An execution model is de-
scribed in section 5. These three section8 assume a
simplified situation, where triggering and execution
of triggered actions occur in a single object. Section
6 presents the general multi-object ca8e. Section 7
present a review and comparison with previous work,
and conclueions are presented in Section 8.

2 The Database Model

There is no single accepted OODB model. However,
there are certain Characteristic8 of OODB’s that are
widely agreed upon [l, 21, which are sufficient for the
development of our approach. In,‘the following we
briefly describe these characteristics. We also briefly
describe a general nested transaction model.

2.1 Objects, Methods, Classes and
Encapsulation

An object oriented database is a collection of objects.
Every object has a unique, unchanging identity, and
a state. Update8 are reflected in change8 of objects’
states. In addition, object8 are associated with opera-
tions that can be performed on them, called methods,
that serve to perform both updates and retrievals.
A method of an object ia invoked by a message sent
to the object, possibly with parameters. A method

Proceedings of the 17th International
Conference on Very Large Data Bases

may directly acce88 the object’8 etate, or invoke other
methods of the 8ame or other object(s). An object
encapsulates both data (its state) and behavior (it8
methods), and can only be manipulated using the (ex-
ternal) methods associated with it. In our model the
active aspects of an object’8 behavior are part of the
object, like its state and methods.

In relational databa8e8, the triggering events are
operations such aa retrieve and update, or transac-
tions. In OODB’s the interaction with the database
is through the methods. Therefore, we postulate that
the method8 are the triggering events. In particular,
one can view the database a8 one big object, and each
transaction a8 a method of this object. Hence, there
is no lose of generality in this approach. Similarly, the
triggered operations are methods (often internal).

The common structure and behavior(methods) of
objects is factorized in classes r. Active behavior is
also defined at the class level.

2.2 Inheritance and Overriding

Inheritance is used to factor out common structure
and behavior. If a class C has a subclass D than
D inherits the structure and methods of C; it may
have additional data and methods. We extend the
inheritance mechanism to the active components of
the behavior. If a method is defined to be a trigger of
some action in a class, it ha8 this property in all sub-
classes. Further, the inheritance mechanism applies
to all the properties and behavior associated with the
triggering facility. The benefit8 of inheritance for ac-
tive databases are the same 88 for regular databases,
namely flexibility, and economy of specification.

Some OODB’s allow redefinition (overriding) of
methods in subclasses, even redefining methods for
individual object8 in a class. The mechanism, if it
exists, applies also to triggers.

2.3 Nested Transactions and Methods

In the nested transaction model a transaction may
execute both operations and subtransactions. Sub-
transaction8 may also invoke subtransactions, so the
execution of a transaction forms a tree in which the

’ In some systems, part of this information may be given in
type defmitionr.

338
Barcelona, September, 1991

leaves represent atomic actions and the internal nodes
represent subtransactions. The executions of sev-
eral transactions form a forest. Specific models are
obtained by imposing restrictions or specific proto-
cols; however, for this paper the differences are irrel-
evant. The advantages of nest)ed transactions include
increased concurrency and resiliency to failures. For
example, when a subtransaction aborts, its parent is
notified, and may then decide to execute an alterna-
tive subtransaction, or to change its execution plan,
or to abort itself. Concurrency control and recovery
for nested transactions have been investigated quite
thoroughly. See, for example,[3, 131.

The nested transactions model is highly compati-
ble with OODB’s. Indeed, a transaction in an OODB
executes operations on objects, by invoking methods.
A method execution looks atomic from the transac-
tion’s viewpoint, but is often not atomic when viewed
inside the object. It is natural to model it as a sub-
transaction. Methods invoked by other methods also
can be viewed as subtransactions. One can view the
database as a ‘big’ object, and the transactions as
methods of this object. Subtransactions correspond
to methods that are invoked by this method. We
extend this idea further, following [7, 111 to include
triggered operations as subtransactions.

Method invocations and terminations are the trig-
gering events in our model. By the discussion above,
this covers the complete range from database t,rans-
actions to individual object operations.

3 Methods and Triggered Ac-
t ions

In this section, we consider how and where proper-
ties of triggered actions are defined and represented.
These properties determine, e.g., scheduling of the
triggered actions, and their relationships to the trig-
gering methods in terms of behavior under failures
and concurrency, as explained in Section 5.

As stated previously, method executions cause the
triggering of operations. We view methods (and also
triggered actions) as entities with properties. We de-
scribe a method as a tuple:
type method = [m-name, m-code] .
The first attribute is the method’s name, the second

Proceedings of the 17th International
Conference on Very Large Data Bases

is the method’s code. This tuple is included in a class
definition. When the method m-name is invoked on
any of the class objects, the code m-code is executed.
Inheritance applies to this tuple in the sense that this
name is associated with this code also in subclasses;
overriding allows us to replace the code.

To enable methods to serve as triggers, we extend
the definition of a method to the following triple:

type method =

[m-name, m-code, {triggered-action}]

Each element in {triggered-action} is a name of
an action. Whenever the method is executed on an
object, the actions in the set are triggered (although

they are not necessarily executed immediately).

3.1 An Example

We shall use the following as a running example.

A bank’s database stores information about cus-
tomers accounts. A customer may have several ac-
counts: current account, savings account, and so on.
Each customer is represented by an object that in-
cludes a subobject for each of the customer’s ac-
counts. In addition, the customer’s credit standing
is summarized in a field, which we take for simplicity
to be just the total balance of the accounts. This is a
derived field; its value is kept current by appropriate
triggers: Whenever any account is updated an action
is triggered that recomputes the balance by summing
the individual account balances.

3.2 Tlkiggered Actions Scheduling

When should a triggered action be executed ? Many
proposals do not support explicit specification of trig-
gered operation scheduling; it is determined by a fixed
algorithm embedded in the system [lo, 17, 19, 201.
The most elaborate scheme to date seems to be that
of HIPAC [7], that offers immediate, deferred, and de-
coupled execution (See section 7). We believe that a
more flexible definition of scheduling is both desirable
and feasible.

Consider, in the banking example, a transaction
that updates the balance in several of a customer’s ac-
counts, and after some additional processing retrieves

339 Barcelona, September, 1991

the new total balance. Since account balances are be-
ing updated, the total balance must be recomputed.
However, there is no need to perform this update im-
mediately; it must be executed only before the total
balance is retrieved. Postponing the recomputation
has the advantages that it can be performed once
only, although several accounts were updated, and
that the system may have some freedom in choosing
the precise time when it is performed. We would like
to be able to specify such behavior.

Our solution is to allow a programmer to specify
an execution interval, in which the triggered ac-
tion must be executed. An interval is specified by
describing its end points. These points are events
recognizable by the system. We consider events re-
lated to the execution of methods (not necessarily
the method that triggered the action). In the above
example, suppose that the transaction invokes two
methods: The accounts are updated by the method
up&e-accounts (which, in turn, calls the method
update-account for each account). This is the trig
gering method. Then the total balance is retrieved
by get-balance. The execution interval for the trig-
gered action that updates the total balance starts at
the end of update-accounts execution, and ends just
before get- balance begins. Thus, the beginning and
end of method execution are events.

A method may be executed several times within a
transaction, and any number of times in other trans-
actions. Obviously, an event refers to a specific exe-
cution of a method. It follows that the system must
provide a mechanism for referring to method execu-
tions, Recall that every method execution is a node
in the forest of the nested transactions in a system
execution. The programmer of a triggering method
cannot refer to other transactions; but should be able
to refer to other nodes in the tree that contains that
method. In our example, the programmer may label
the executions of update-accounts and get- balance,
and use those labels as event denotation in the execu-
tion interval. It is also desirable to refer to methods
by name or type, such ss “any retrieval”. See section
5. Also other events e.g., time points, such as ‘12:O0
noon’, or ‘monday morning’ should also be specifi-
able. We consider those in section 6.2.

In addition, it seems desirable to have events con-

structors, to create complex events. For example min
and max specify the first or last of a set of events,
and specifies that all events in a set need to occur,
and so on. Finally, to be able to specify only one end
point of an interval, it is useful to have the event any
time.

In summary, we envision an event specification lan-
guage, that supports naming conventions for events,
and event expressions. Since we do not describe a
specific system, we do not present a specific language.

An execution interval is described by the tuple:

type ezecution-interval =

[start-euent,end-event]

The triggered action must be executed as early as the
start event and no later than the end event.

We conclude with two observations. First, for each
event, the system must be able to detect that it has
occurred, for otherwise it cannot ensure that trig-
gered actions are executed in the appropriate time.
Second, it is in principle possible to specify an in-
terval such that the start event follows the end event.
This is considered as error; it is the the programmer’s
responsibility to provide correct specifications.

In general, there may exist several triggered actions
that are simultaneously eligible for execution. This
subject is considered in section 6 and 6.

3.3 Failures

Transaction management is concerned with concur-
rency and failures, and these need also be addressed
for triggered actions. We leave the discussion of con-
currency to Section 5, and consider here failures. It is
necessary to specify what happens to a triggered ac-
tion in case the triggering method aborts, and what
should be done in case a triggered action fails.

It is convenient to assume that the system has a
transaction managemeni sublanguage, that is used in
triggered action definitions for specifying what should
be done in the various failure cases. We do not
present any specific language, but the discussion be-
low presents options it should support.

3.3.1 Triggering Method Failure

There are two options in this csse. Either the abort
of the triggering method causes the rollback of the

Proceedings of the 17th International
Cmfemnee on Very Large Data Bases

340 Barcelona, September, 1991

triggered action if it has already been executed and
its deletion otherwise; or the triggered action is ex-
ecuted as planned. In the bank example, when an
account update is aborted, there is no need to re-
compute the total balance. But in an access control
system that uses triggers for logging of update re-
quests, those triggers should be executed regardless
of whether their triggering updates succeed or abort.

This idea is not new; in the HIPAC system [7]
irreversible triggering is achieved by the decoupling
mechanism (the triggered action that logs the access
is executed aa a separate top transaction) However,
in HIPAC whenever the triggered action is not decou-
pled, it is a subtransaction of the triggering method
and is aborted if that method aborts. We propose
to allow the triggered action not to be aborted, in-
dependently of whether it is a subtransaction of the
triggering method. This can be specified by abort
and ignore statements in the appropriate part of the
triggered action description.

An issue that deserves attention is the relationship
with the execution interval specification. What hap-
pens if a triggered action is scheduled for execution
after the termination of a method that failed? One
option is that in this case the termination event never
occurs, hence the triggered action will never be exe-
cuted. This means that irrespective of the specifica-
tion given by the programmer, the triggered action
is in effect aborted and it can be deleted. Better
option is to distinguish explicitly between successful
and aborted terminations, and specify the execution
interval in terms of these event types.

3.3.2 Triggered Action Failure

In the banking example, the recomputation of the
total balance is essential for the correctness of subse-
quent retrievals. If the execution of this trigger fails,
the system must either roll back the balance update
that triggered it, or retry to execute the trigger and
block retrievals of the total balance until it succeeds.

In general the options that one should be able to
specify for such failures should include ignore and
abort(trans) for specifying that the failure of the trig
gered action should be ignored, or should cause some

(sub)transaction in its transaction tree to be aborted.
Other useful options include: Iry n times before de-

Proceediigs of the 17th International
Confemnce on Very Large Data Bases

341

tiding 20 abort, and run 2 instead. (the second op-
tion allows, in particular, to execute a compensating
transaction for the triggering method.) More gener-
ally, combinations of these basic options are useful,
for example: “Try to run the action at least 5 times
and if they all fail try to run t instead. If t also fails,
abort the transaction”.

3.4 The Triggered Action Description

The description of a triggered action should include
the action it executes, i.e. a name of the method to be
executed, and the object where it is to be executed.
This may be the same object as the one in which
the triggering method executed, or a different object.
In the banking example, the ‘update total balance’
operation is executed on the same customer object
in which the balance updates took place. Similarly,
it includes the parameters passed from the trigger-
ing method execution. In summary, the information
about each triggered action is recorded by a tuple:

type triggered-action-description =

[triggered-action,

ad- to-perform(location,parametere),

etecution- interval,

scheduling- information,

triggered-action-fail,

trigger-fail]

The attribute triggered-action contains the name
of the trigger. Its value serves to connect this tuple
with the method specifications where the same value
appears in the third field. act -to-perform names
the action to be taken, the object where it is to be ex-
ecuted, and parameters. Of the other attributes, only
scheduling-information has not yet been described.
It records information, such as a priority, that may
be used by the system to determine which of a set of
enabled triggers is to be scheduled for execution.

Naturally, the inheritance and overriding mecha-
nisms apply to the new data that we have now added
to classes. Method and trigger descriptions apply
to all objects in the class, and are inherited by sub-
classes. Each field in these tuples, except for the name
field , may be redefined. Thus, one can add or delete

Barcelona. September, 1991

triggered actions, change the behavior under failures
of an action, and so on.

4 Active Objects

When a method is executed, actions may be trig-
gered, but they need not be executed immediately.
Hence there is a need to store information about trig-
gered actions, until they are executed. The informa-
tion is derived from the data recorded in triggered-
action-descriplion, possibly by instantiation of at-
tribute valueaS We discuss in this section the struc-
ture used for storing this information, and avoid the
consideration of where, i.e., in which object, this in-
formation is stored. For simplicity, we assume for now
that both triggering and execution of an action occur
at the same object, and the information is stored in
this object. The multi-object environment will be
considered later,

4.1 Object Structure

We extend the structure of the object state so aa to
contain information about triggered actions that are
waiting for execution at the object. The regular
part of the state is referred M the passive part, and
the new information as the aciive part. For each ac-
tion waiting for execution, there is a record of the
following form:

type active-action =

[triggered-oction(parameters),

triggering-method-identity(localion), . . .]

The triggering method identity identifies both its
name and the execution, since several instances of a
method may execute concurrently, and it is necessary
to relate a given triggered action instance with the
appropriate execution of the method. In the present
context, location that describes the object where the
triggering method executed is redundant, but it is
needed in the general case.

Whenever a triggering method executes on an ob-
ject, elements that represent the method’s triggered

?E.g., o template reprerenting the triggering method is re-
placed by its actual identity.

Proceedings of the 17th International
Conference on Very Large Data Bases

actions are inserted into the active part of the object,
and kept there until after the corresponding actions
have been successfully executed.

4.2 Methods for Handling The Active
Part

The information in the active component is an in-
tegral part of the object. It can be accessed by any
authorized user, and is also used by the system for ex-
ecuting the triggered actions. Following the OODB
paradigm, the active part is accwed only by meth-
ods. We mention three methods (actually, methods
types) that are relevant here. One is used for insert-
ing active-actions, the second is used for retrieving
and executing, and the third for deleting triggered
actions when no longer needed. These methods share
the properties of regular methods, they are inherited,
and may trigger other operations. They are not visi-
ble to application programs.

We can use the same three methods for handling all
triggers in all classes, But we suggest to use for every
triggered-action a special insertion method to handle
its insertion. The following example illustrates why
this may be useful. Recall that the update-balance
method triggers a total balance recomputation. But
several account updates for the same customer will
trigger several instances of this action, and obviously
only one is really needed. This problem can be solved
by using for this trigger a special insertion method,
that inserts a record for the triggered action only if
there is no record for the same action in the object.
Thus, the first update to any account of the customer
causea the insertion of an update-total triggered ac-
tion, but subsequent updates do not insert this action
again, as long a the trigger has not been executed
yet.

The use of special insertion methods enables us to
explicitly define how new triggered action relates to
the waiting actions, to cancel the triggered action, or
merge it with other actions. It is possible to have a
general insertion method that is used for all triggered
actions, and define special insertion behavior by over-
riding. Another option is to record the method to be
used in an attribute, called insert-method- name,
that is added to the triggered-action record.

342
Barcelona, September, I991

5 An Execution Model

So far we have presented fragments of our ap-
proach, such as what information concerning triggers
is needed, and how it is recorded. In this section we
describe a mechanism, that is responsible for all the
activities of method execution, trigger recording and
execution (but is still essentially restricted to a one
object situation).

The basic idea is that when a method is invoked by
a message, a me2liod processor takes control. It is re-
sponsible for executing the method, recording its trig-
gers, and executing triggers that need to be executed.
In the following we refer to the execution of this pro-
cessor when a method m is invoked as extended-m.

5.1 General Execution Plan

In the set of actions triggered by a method m, one
can distinguish two subsets: actions t,hat do not use
any of the output parameters of m, and those that do.
Those in the second set must be scheduled after m ter-
minates. We denote the first set by TI and the second
by Ta. The execution of the method processor when
m is invoked is composed of five sub-transactions:

l The first sub-transaction, called insert-start-m,
inserts records corresponding to the elements in
TI into the active part of the object by invok-
ing the insertion method of the triggered action,
as a subtransaction. insert-start-m may also
chooses the insertion order, or carries some main-
tenance activity such as changing priorities of
elements in the active part of the object. At
the end of the insertion, the active part contains
the information about all the triggered actions
of in Tl, as well as about all triggered actions
that where triggered by some other methods, and
have not yet been executed.

l The second subtransaction, called execute -
start-m, now checks the contents of the active
part of the object and executes the triggered ac-
tions that must be executed before the beginning
of m, and possibly some that may be executed
now but can also be executed later. Each of these
actions is also executed by the method processor
and may also trigger some actions.

Proceedings of the 17th International
Conference on Vev Large Data Bases

343

The third sub-transaction executes the method
m. If m invokes other methods, a nested transac-
tion structure is created and executed, using the
method processor for each method. In particu-
lar, methods invoked by m may trigger actions.

After the execution of m terminates, the values
of the output parameters of m are well defined, so
the fourth subtransaction, called insert-end-m,
inserts records describing the actions in T2 into
the active part of the object. It thus completes
the task partially executed by insert-start-m.

l The last sub-transaction, execute-end-m, exe-
cutes the actions that must be executed no later
than the end of m, and possibly a few others. It
has the same structure aa execute-start-m.

The following diagram describes the nested struc-
ture of extended- m generated by the execution of
the method processor for m:

The root node global -control-m is the execu-
tion of the method processor. It executes the five
subtransactions in a sequence, as indicated by 4 in
the diagram. It receives notifications about the suc-
cess or failure, and in the latter case determines the
course of action by analyzing the content of the ac-
tive part of the object. For example, if m aborts,
it may decide to abort itself, or to only delete some
triggered actions, or to roll back some of those that
have executed. (Note that such a rollback applies to
the complete tree rooted at the aborted action.) Al-
though such behavior might be considered abnormal
if m were the root, it is now standard behavior of a
nested transaction.

Also note that actions triggered by other methods
may be executed as sub-transactions of extended-m.
For example, if a previous method updated any of
the accounts, then a trigger for updating the total
balance was posted, and may be executed as part of
a balance retrieval method.

In section 3 we defined a method as a triple that
contains the method’s name, code, and triggered ac-
tions. Now, we need to add components: the names
of the methods that fill the roles of insert-start -
m, execute-start-m, insert-end-m, execute-end-m
for it. As remarked above, it may be reasonable to use

Barcelona, September, 1991

global-control-m

maintenance choose execute1 executen maintenance choose execute,+1 executem

diagram 1, extended-m

special method for these tasks in some cases, rather
than use general purpose methods.

Although the mechanism we have described is very
flexible, it might seem too complicated; the effort in-
volved in defining all the components of a method
may seem to be a high price to pay. That is not
the case however. Using a general method processor
(which accepts m aa parameter) implies a standard
treatment of the triggered action execution for all
classes and methods. Definitions of these standard
methods are included in the class object, that is the
root of the class hierarchy, and are inherited by all
classes. Once this is given, the definition of a regu-
lar method is very simple: One must only specify the
method name, its code, and the actions it triggers.
This is the same amount of work as required in any
other active system. The flexibility described above is

Proceedings of the 17th International
Gmferenee on Very Large Data Bases

344

still available for cases that need a special treatment
by using the overriding mechanism.

5.2 The Sub-transactions

Of the five subtransactions, most of the work is done
by execute-start-m and execute-end-m. It suffices
to describe one of these, since they are almost identi-
cal. We present a full description of execut+start-m,
followed by some general remarks.

The subtransaction execute-start-m is in charge
of executing triggered actions before the start of m.
It goes through a cycle composed of the following
phases:

maintenance - The event ‘beginning of m’ is now
considered as having happened. The execution
intervals of the triggered actions are examined,

Barcelona, September, 1991

and those whose start event ‘has happened’ are
marked, if not already marked (perhaps in a pre-
vious execution of the method processor). In ad-
dition, actions whose end event ‘has happened’
(for example, those whose end event is ‘beginning
of m’) are marked as manda2ory. These must be
executed now, before m is executed. The other
marked actions are considered aa optional. These
actions can be executed at any time between now
and the end of their interval.

choose - A set of actions is now chosen for execu-
tion. The considerations may include system
load and performance (e.g., in a loaded system
only .mandatory actions may be chosen). If an
empty set is chosen, then execute-start-m ter-
minates. Hence, as long as mandatory actions
remain, one of them at least will be chosen. It

is not necessary to choose all the mandatory ac-
tions; those that were not chosen now will be
chosen and executed subsequently. For example,
it is possible to choose only the set of actions with
the highest priority. Actions with lower priorities
will be executed later. The cycles mechanism of
HIPAC [ll] is essentially such an algorithm.

execute - If the system supports parallel execution
of subtransactions, the actions that were cho-
sen can be executed in parallel: otherwise they
are executed sequentially. The execution order
among those that were chosen can be determined
by analyzing the scheduling information that is
stored for each action. Each of the actions is ex-
ecuted aa a subtransaction unless it is specified
to be independent (see section 5.3).

To execute an action, etecule - start - m marks
it as ‘being executed’, then invokes it as a sub-
transaction (except when it is independent) . If
this subtransaction aborts, execute-start-m ex-

ecutes the program in the attribute triggered-
action-fail, which aa explained in section 3 con-
tains a specification of what to do when the trig-
gered action fails. Note that execute-start-m

can execute commands such as ignore, execute n
times, or execute t instead. However, it can not,
for example, execute abort m (since m is not one
of its sub transactions). For such a command, it

Pmcfdiigs of the 17th International
Conference on Very Large Data Bases

informs its parent, the method processor about
the failure and request the desired treatment, If
the execution of a triggered action terminates
successfully, the element describing it is removed
from the active part.

The triggered actions that are executed are meth-
ods, so each of them may trigger actions. The exe-
cution of an action may spawn a subtree of triggered
actions of its own. When the execution of this eubtree
terminates, control returnsto ezecute-start-m. The
database state may then contain information about
additional triggered actions that have not executed
yet. Therefore, the cycle of maintain, choose, and
execute must be repeated.

5.3 Concurrency Control, Failures,
and Recovery

A triggered action may be executed as a subtrans-
action of the method processor of some m, or as an
independent transaction (if independence is explicitly
specified). If for an action, neither the execution in-
terval, nor any of its other parameters such aa behav-
ior in case of failure and scheduling information are
related to m, than there is no reason to execute it as a
subtrirnsaction, which may delay the execution of m.
If this is the case, the triggered action should be exe-
cuted aa an independent transaction, by sending
an appropriate message to the transaction manager.
We assume that the key word independent may be
used in the specification of the triggered action for
this purpose. The correctness of the specification is,
as in other cases, the programmer’s responsibility.

If the right end of the action’s execution interval
is the end of the triggering method, than it is exe-
cuted as a sub-transaction of the extended trigger-
ing method. If the execution interval extends be-
yond the triggering method’s end, than the algorithm
used in choose determines in which transaction tree
it executes. The data in the trigger- fail and the
triggered-action- fail attributes must be compati-
ble with the position that may chosen for the action
in the transaction forest. One may specify that if the
action aborts then so must do some or all of its par-
ents. However, if the action is executed in a different
transaction then the triggering method, it makes no

345 Barcelona, September, 1991

sense to specify that the latter should be aborted -
it may have committed already when the action fails,
Of course, it is still possible to specify that a compen-
sating transaction to the triggering method should be
executed.

We recall from the way the method processor op-
erates that triggering an action entails writing data
in the active part of the object, and executing a trig-
ger entails reading data from the active part, then
modifying and finally deleting it. To ensure a serial-
izable execution, concurrency control must apply to
the active part of the object &9 well EM on the passive
part. Since every method that operates on an object
must access its active part, if the whole active part is
locked for each access, it may become a bottle neck.
Our solution is baaed on locks for components of the
active part of the object, and on a variant of predicate
locking. Details will be presented elsewhere.

6 The General Multi Object
Model

So far we have assumed a simplified situation where
both triggering and execution occur at the same ob-
ject. We now consider the general multi-object case,
where the triggering method and the triggered ac-
tions may operate on different objects, and the events
mentioned in the execution interval may occur in
other objects. For example suppose that every de-
posit of more than lOO,OOO$ triggers a notification to
the branch manager, to be executed at 6pm. The de-
posit is executed on a customer’s object, the triggered
action on the manager object, and the event occurs
at the system’s clock.

Where should triggered actions be stored ? We
adopt the principle that an object should encapsulate
all the information relevant to it. Hence, the active

part of an object must contain all the information
regarding the triggered actions that will be executed
at the object. It follows that each triggered action is
inserted into the active part of the object on which
that action operates.

The second issue is how does a method processor
in an object know about events that occur in other
objects. Such knowledge is needed for it to execute
actions whose execution interval usea events of other

proceedings of the 17th International
Conference on Very Large Data Bases

objects. Our solution is based on n&@&ions about
the occurrences of events that are sent to it. The final
issue we consider here is the notion of time events,
such aa ‘at 6p.m.’

6.1 The Notification Mechanism

Suppose that a method m of object o triggers an ac-
tion on the object o’ that is scheduled to be executed
when the event e occurs at an object o’~. Our so-
lution is to decompose the triggered action into a
notification action on o”, whose task is to notify o’
about the occurrence of the desired event e (it is
scheduled to the occurrence of the event), and the
original triggered action on 0’. Each of those will
be stored, and executed, at the appropriate object.
We sasume that every object has send-notification
and receive-notification methods, for notifying and
receiving notifications. Additionally, since execution
intervals may contain complex events, it is necessary
that each object should be able to store information
it receives about events that occurred in other ob-
jects (or alternatively that we should be able to sim-
plify complex events by removing events that had oc-
curred).

In particular, receive - notification is a method
and is executed by the method processor just like
any other method. Note that actions that should
be executed when some event in another object oc-
curs, will be executed at the end of the extended
receiue - notification, since only then it is known
that the event has indeed occurred.

6.2 Time Events

The mechanism we have described is appropriate for
events that are the beginning or end of a method.
Now, we can easily extend it to time events, such
aa ‘6pm 11.1.91’. All that is needed is to have one
active object in the database, call it a timer. For
each triggered action whose execution interval con-
tains a time event, it contains a triggered action, to
send a notification to the appropriate object when
the time arrives. It receives inputs from the system
clock (at a sufficiently high frequency), and treats
each ‘clock tick’ as a message from the outside world.
The method processor than wakes up a notification

346
Barcelona, September, 1991

method to send messages to the appropriate objects.
The mechanism is, therefore, a special case of that
described above.

7 Related Work

There have been quite a few proposals for augmenting
a database with triggers or production rules [6, 7, 10,
12, 17, 18, 19,20, 161. We discuss here briefly some of
the concepts and ideas of these proposals, and their
implementation in our model.

7.1 Events

The above models typically consider relational
databases and actions that are triggered by stan-
dard database operations such as retrieve and up-
date [20, 18). ETM [12] and HIPAC [7) have refined
the event concept to include triggers caused by “ab-
stract“ events. We have followed and refined this ap-
proach: every method (even points in its execution)
is a potential triggering event.

The HIPAC system also allows definition of com-
posite events [8] using disjunction, sequencing. and
closure. Our mode1 does not directly support se-
quencing and closure but they can be simulated (i.e.,
programmed). For example, the sequence of two ac-
tions can be simulated by defining the first event, as
a trigger to an action that records it has occurred in
a given transaction. The second event triggers the
desired action, but its insertion method first checks if
the active part contains the needed information about
the first event. Closure is simulated similarlya Thus,
in a sense, our mode1 is more general since it allows
programming of a variety of constructs, and is not
restricted to a given set.

7.2 Rules

Focusing on relational databases, [20] presented set-
oriented rules, that are triggered by an arbit’rary
set of changes to the database and may perform
a set of changes. (For example a single set ori-
ented rule might operate on all tuples that were in-
serted/updated/deleted from the database during the
course of a (sub)transaction). Our model is essen-
tially an instance oriented model. However, a set, ori-

Proceedings of the 17th International
Conference on Very Large Data Bases

ented approach can easily be implemented in it. We
can make a (sub)transaction which operates on some
class a trigger to an operation that accepts the set of
changes as a parameter. In addition, each access to
an object in the class triggers an action that records
the changes, and sends the object id to the class, as
a parameter to be used in the previous action. The
overall algorithm is similar to the one described in
[20]. The idea can of course be extended in various
ways, since it is now under the control of the method
programmer, rather than built into the system.

Generally, a production rule take the form of when
X lhen Y, where X is a triggering condition(event)
and Y is an action [20]. Our model considers rules of
the form when X then {v) , i.e all the actions that
are triggered by an event are grouped together. This
can be seen to be only a syntactic change.

Central to the HIPAC mode1 is the concept of
event -condition-a&ion (ECA) rules[8]. When the
event occurs, the condition is evaluated and if satis-
fied the action is executed. Our mode1 supports only
events and actions. However, this idea can be pro-
grammed in our model: The event triggers an opera-
tion that evaluates the condition, and if the condition
is satisfied it triggers3 the action. Hipac uses similar
mechanism for implementing ECA rules [111.

HIPAC also supports enabling and disabling of trig-
gers. Following HIPAC’s implementation, a new at-
tribute can be added to triggered actions to indicate
whether they are enabled. insert - start -m and
insert-end-m will insert only enabled actions.

7.3 Triggers and -Transactions

In System R [lo], Postgres [17] and Sybase (191, trig-
gered actions are typically executed in the same trans-
action as the triggering updates. They are either exe-
cuted immediately (Sybase,System R), or deferred to
the end of the transaction (assertions in system R). In
Postgres, triggered actions can also occur on demand.
In [20) triggers are executed at the end of the execu-
tion unit. The HIPAC model [7] supports three ex-
ecution options: immediate - immediately when the
event occurs, deferred - at the end of the transaction

3The triggering can he done by execution a “nuIl“ action
which does not affect the database state, and is defined as a
trigger to the desired action.

347 Barcelona. September. 1991

in which the event occurred, decoupled - in a separate
transaction. In the first and second options, triggers
are executed as sub-transactions of the transaction in
which the triggering event occurred. In the third op-
tion the actions are executed as separate transactions,
which can be either causally dependent, .i.e must be
serialized after the triggering event, and aborted if
the triggering transaction fails, or independent. The
HIPAC model supports two options for handling a
rule failure: either the execution of that rule alone is
aborted, or the whole transaction is aborted [9]. It
can be easily seen from the discussion in the previous
sections that our model supports all these features,
and a few more.

7.4 Execution Order

Proposed systems offer different strategies for order-
ing triggered actions scheduled for the same time. In
early System R (10) triggered actions are executed in
a system defined order. Sybase [19] does not allow
more than one trigger to be defined for an operation
on a relation. Postgres [17] uses a conflict resolution
strategy such that only the highest priority action is
executed. In [20] several strategies are offered includ-
ing partial order, and preferring least recently used
rules. In HIPAC [7] triggered operations can be ex-
ecuted concurrently, using priority categories for or-
dering. It supports a cycling mechanism for deferred
sub-transactions, and a pipeline mechanism for de-
coupled actions. We have not treated this issue in
our model, but any mechanism or language for de-
scribing scheduling information can be incorporated
into it, without affecting the overa!l structure.

8 Discussion

The model we have presented in this paper is a logi-
cal model that provides a clear semantics for the ac-
tive behavior of an object oriented database. The
integrations of the three paradigms (acfiue behavior,
OODB’s, and nesied transactions) supporta a very
powerful and flexible trigger mechanism. An advan-
tage of our approach is uniformity: The standard
mechanisms of OODB’s and of nested transactions
are applied to all the extensions needed to support ac-
tive behavior. This includes inheritance and overrid-

Proceedings of the 17th International
Cmfemnee on Very Large Data Bases

348

ing, and identification of methods, actions and sub-
transactions.

We have left many issues open. These include: the
development of appropriate sublanguages for specifi-
cation of events, scheduling, transactional structure
and behavior; developmpnt of concurrency control
protocols that will prevent the active components of
objects from becoming bottlenecks; appropriate ef-
ficient strategies for storing active-behavior related
data; mechanisms for selective execution of triggers
(a feature that is very helpful for debugging). These
are left for future research.

References

PI

PI

[31

I41

PI

PI

(71

M. Atkinson, F. Bancilhon, D. Dewitt, K.
Ditrich, D. Maier, S. Zdonik. The object-
oriented database system manifieto. Firsi In-
iemotional Conference on Deduciive and Object
Oriented Databases. W. Kim, J-M. Nicolae, S.
Nishio(ede), 1989,40-57

C. Beeri. Formal Models for Object Ori-
ented Database Systems. Firsi International
Conference on Deductive and Object Orienied
Databases. W. Kim, J-M. Nicolas, S. Nishio(eds),
1989,370-395

C. Beeri, P.A, Bernstein, N. Goodman. A Model
for Concurrency in Nested nansaction Systems.
Jutnal of the ACM 36(~):%30-$69, April 1989.

CODASYL Data Description Language Com-
mittee. CODASYL- Bata Description Language
Jumal of Development June 1973. NBS Hand-
book 113 (1973).

S.Ceri, J.Widon. Deriving Production Rules for
Constraint Maintenance. IBM Research Report
&I 7348, IBM Almaden Research Center, March
1990.

Dayal,U. Active Database Managment Systems.
Proceedings of the 3th International Conference
on Data and Knoledge Bases. Jerusalem, Israel
(June 1988)

Dayal,U. et al. The HIPAC Project: Combining
Active Database and Timing Constraints. Spe-
cial Issues of real Time Database Systems SIG-
MOD Record 17,1, March 1988

Barc&ma, sepember. 1991

PI

PI

PO1

Pll

Dayal,U. Bushmann,D. McCarty,D. Rules are
Objects Too: A Knoledge Model for an Ac-
tive, Object Oriented Database Managment
System. Proc.2nd International Workshop on
Object-Oriented Database Systems West Ger-
many, September 1988

1191

WI

Dayal,U. Hsu,M. Ladin&.. Organizing Long-
Runing Activities with Triggers and Transac-
tions. Proc of the ACM SIGMOD Int. conf.
on Managment of Data. Atlantic City, NJ. May
1990.

Eswarn,K.P. Specifications of Trigger System
in an Integrated Databases Managment System.
IBM research Report RJ1820. August 1976.

Hsu,M. Ladin,R. McCarthy,D. An Execution
Model for Active Database Managment Systems.
PFOC. 3rd International Conf. on Database And
Knoledge bases Jerusalem, Israel, June 1988 .

[12] Kots,A.M. K.R.Dittrich, J.A.Mueller, Support-
ing Semantic Rules by Generalized
Event/Trigger Mechanism. PFOC. Conf on Ex-
tending Database Technology Venice, 1988.

[13] Moss,J.B.E. Nested Transactions:An Approach
to Reliable Distributed Computing. MIT Press
Cambridge Mass. 1985.

[14] Papadimitriou,C.M. The Theory of Database
Concurrency Control. Computer Science Pres.9
Rockville,md.,l986.

[15] T. Risch Monitoring Database Objects Proc. of

th 15th international conf. on VLDB, Amster-
dam, 1989.

[16] E. Simon, C. de Mandreville. Deciding Whether
a Production Rule is Relational Computable.
PFOC. of the Int. Conf. on Database Theory,
Bruges(Belgium), Sept. 1988.

[17] Stonbreaker,M. et al. A R.ule Manager for Rela-
tional Database Systems. The POSTGRES Pa-
pers. Univ. of Carolina, Berkley, Ca. Eiectron-
its Research Lab, Memo no UCB/ERL M86/85,
1986.

[18] Stonbreaker,M. Jhingran,A. Goh,J. Potami-
anos,S. On Rules, Procedures, Ch.aching and
Vies in Data Base Systems. Proc of the ACM

SIGMOD Int. conf. on Managment of Data. At-
lantic City, NJ. May 1990

Sybase,Inc. Transact-SQL User’s guide 1987.

Widon,J. Finke1steinS.J. Set-Oriented Produc-
tion Rules in Relational Database Systems Proc
of the ACM SIGMOD Int. conf. on Managment
of Data. Atlantic City, NJ. May 1990.

FWceediigs of the 17th International
Conference on Very Large Data Bases

349
Barcelona, September, 1991

