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Abstract 

This paper presents a logical model for an 
active object oriented dntahaae. The main 
idea is to use standard concepts of OODB 
such aa encapsulation and inheritance, In 
particular triggers are special met,hods en- 
capsulated in the appropriate object. The 
execution model uses nested transactions. 
The model is shown to he flexihle and to 
generalize previous proposals, 

1 Introduction 

Conventional DBMS’s execute only operations that 
are explicitly specified in users’ requests, or in appli- 
cation code. In active datahmes operations can act as 
trigger8 that cause the execution of other operat,ions. 
Such a facility has many uses. such as allt,horizRt.ion 
and access logging, integrity constraint maint,ennncc, 
and alerting [4, 7, 10, 12, 17, 19, 20, 161. Its ad- 
vantages include, among others, code reuse, and ten- 
tralization of code storage and management [6, 181. 
Code for integrity checking and maint,enance is writ- 
ten, stored, and managed by t,he dat,ahase adminis- 
tration, and is ‘called’ automa.tically by applications, 
without any reference in the application code, The 
incorporation of a trigger facility into a database sys- 
tem requires careful planning, so that it can be emily 
integrated with the data model and the processing 
mode of the system. 
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In DBMS’s, operations are organized in Iran.+ 
acfions: collection of operations that are consid- 
ered as at,omic units for concurrency and recovery 
purposes[l4]. This has been refined to a model of 
tles2ed transactions [3, 131, in which transactions can 
have subtransactions, thus allowing for a hierarchi- 
cal organization of processing. It is natural to view 
triggered operations as subunits of the users’ trans- 
actions, that is, as aubtransactions. Thus, recently 
proposed models for active databases [ll] are based 
on the nested transaction concept. 

An important trend in DBMS evolution is the de- 
velopment of d sophisticated database models, in 
particular obje&oriented databasea (OODB’s) [I, 21. 
OODR’s supports rich data structuring mechanisms, 
hierarchical and general relationships between oh- 
jects, and the representation of data processing in the 
form of code (i.e., methods) that is stored and man- 
aged by the DBMS. The advantage of code reuse and 
centralized and uniform code management is shared 
by active databases. The hierarchical organization of 
st.ruct.ure and processing in OODB’e is highly com- 
patible with the nested transactions model, This 
paper is a study of the integration of these three 
paradigms: active databases, OODB’s, and nested 
Iransaciions. 

An hctive database model needs to address sev- 
eral issues: How are triggers specified; when are trig- 
gers enabled and executed; how is the environment of 
trigger execution specified and implemented; how do 
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we specify and control concurrently enabled triggers. 
Each of these hae received considerable attention in 
the literature, [6, 7, 10, 12, 18, 19, 20, 161. We con- 
sider these isauea in the context of the object-oriented 
paradigm, and present an integrated execution model 
that is based on objects and their structure, methods, 
and neated transactions. The following are the signif- 
icant point8 of our approach: 

Our model uses extensively OODB concepts such 
88 encapsulation and inheritance. For lack of space 
we present here only a logical model, a framework, 
not a specific system. Issues relevant to performance 
are not included. 

In section 2 we present an OODB and nested trans- 
action models, and relate them to active behavior, 
The following sections consider the extensions to an 
active object-oriented model. Section 3 extends the 
description of methods to include triggering informa- 
tion. Section 4 describes how information about trig- 
gered action8 is stored. An execution model is de- 
scribed in section 5. These three section8 assume a 
simplified situation, where triggering and execution 
of triggered actions occur in a single object. Section 
6 presents the general multi-object ca8e. Section 7 
present a review and comparison with previous work, 
and conclueions are presented in Section 8. 

2 The Database Model 

There is no single accepted OODB model. However, 
there are certain Characteristic8 of OODB’s that are 
widely agreed upon [l, 21, which are sufficient for the 
development of our approach. In,‘the following we 
briefly describe these characteristics. We also briefly 
describe a general nested transaction model. 

2.1 Objects, Methods, Classes and 
Encapsulation 

An object oriented database is a collection of objects. 
Every object has a unique, unchanging identity, and 
a state. Update8 are reflected in change8 of objects’ 
states. In addition, object8 are associated with opera- 
tions that can be performed on them, called methods, 
that serve to perform both updates and retrievals. 
A method of an object ia invoked by a message sent 
to the object, possibly with parameters. A method 
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may directly acce88 the object’8 etate, or invoke other 
methods of the 8ame or other object(s). An object 
encapsulates both data (its state) and behavior (it8 
methods), and can only be manipulated using the (ex- 
ternal) methods associated with it. In our model the 
active aspects of an object’8 behavior are part of the 
object, like its state and methods. 

In relational databa8e8, the triggering events are 
operations such aa retrieve and update, or transac- 
tions. In OODB’s the interaction with the database 
is through the methods. Therefore, we postulate that 
the method8 are the triggering events. In particular, 
one can view the database a8 one big object, and each 
transaction a8 a method of this object. Hence, there 
is no lose of generality in this approach. Similarly, the 
triggered operations are methods (often internal). 

The common structure and behavior(methods) of 
objects is factorized in classes r. Active behavior is 
also defined at the class level. 

2.2 Inheritance and Overriding 

Inheritance is used to factor out common structure 
and behavior. If a class C has a subclass D than 
D inherits the structure and methods of C; it may 
have additional data and methods. We extend the 
inheritance mechanism to the active components of 
the behavior. If a method is defined to be a trigger of 
some action in a class, it ha8 this property in all sub- 
classes. Further, the inheritance mechanism applies 
to all the properties and behavior associated with the 
triggering facility. The benefit8 of inheritance for ac- 
tive databases are the same 88 for regular databases, 
namely flexibility, and economy of specification. 

Some OODB’s allow redefinition (overriding) of 
methods in subclasses, even redefining methods for 
individual object8 in a class. The mechanism, if it 
exists, applies also to triggers. 

2.3 Nested Transactions and Methods 

In the nested transaction model a transaction may 
execute both operations and subtransactions. Sub- 
transaction8 may also invoke subtransactions, so the 
execution of a transaction forms a tree in which the 

’ In some systems, part of this information may be given in 
type defmitionr. 
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leaves represent atomic actions and the internal nodes 
represent subtransactions. The executions of sev- 
eral transactions form a forest. Specific models are 
obtained by imposing restrictions or specific proto- 
cols; however, for this paper the differences are irrel- 
evant. The advantages of nest)ed transactions include 
increased concurrency and resiliency to failures. For 
example, when a subtransaction aborts, its parent is 
notified, and may then decide to execute an alterna- 
tive subtransaction, or to change its execution plan, 
or to abort itself. Concurrency control and recovery 
for nested transactions have been investigated quite 
thoroughly. See, for example,[3, 131. 

The nested transactions model is highly compati- 
ble with OODB’s. Indeed, a transaction in an OODB 
executes operations on objects, by invoking methods. 
A method execution looks atomic from the transac- 
tion’s viewpoint, but is often not atomic when viewed 
inside the object. It is natural to model it as a sub- 
transaction. Methods invoked by other methods also 
can be viewed as subtransactions. One can view the 
database as a ‘big’ object, and the transactions as 
methods of this object. Subtransactions correspond 
to methods that are invoked by this method. We 
extend this idea further, following [7, 111 to include 
triggered operations as subtransactions. 

Method invocations and terminations are the trig- 
gering events in our model. By the discussion above, 
this covers the complete range from database t,rans- 
actions to individual object operations. 

3 Methods and Triggered Ac- 
t ions 

In this section, we consider how and where proper- 
ties of triggered actions are defined and represented. 
These properties determine, e.g., scheduling of the 
triggered actions, and their relationships to the trig- 
gering methods in terms of behavior under failures 
and concurrency, as explained in Section 5. 

As stated previously, method executions cause the 
triggering of operations. We view methods (and also 
triggered actions) as entities with properties. We de- 
scribe a method as a tuple: 
type method = [m-name, m-code] . 
The first attribute is the method’s name, the second 
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is the method’s code. This tuple is included in a class 
definition. When the method m-name is invoked on 
any of the class objects, the code m-code is executed. 
Inheritance applies to this tuple in the sense that this 
name is associated with this code also in subclasses; 
overriding allows us to replace the code. 

To enable methods to serve as triggers, we extend 
the definition of a method to the following triple: 

type method = 

[m-name, m-code, {triggered-action}] 

Each element in {triggered-action} is a name of 
an action. Whenever the method is executed on an 
object, the actions in the set are triggered (although 

they are not necessarily executed immediately). 

3.1 An Example 

We shall use the following as a running example. 

A bank’s database stores information about cus- 
tomers accounts. A customer may have several ac- 
counts: current account, savings account, and so on. 
Each customer is represented by an object that in- 
cludes a subobject for each of the customer’s ac- 
counts. In addition, the customer’s credit standing 
is summarized in a field, which we take for simplicity 
to be just the total balance of the accounts. This is a 
derived field; its value is kept current by appropriate 
triggers: Whenever any account is updated an action 
is triggered that recomputes the balance by summing 
the individual account balances. 

3.2 Tlkiggered Actions Scheduling 

When should a triggered action be executed ? Many 
proposals do not support explicit specification of trig- 
gered operation scheduling; it is determined by a fixed 
algorithm embedded in the system [lo, 17, 19, 201. 
The most elaborate scheme to date seems to be that 
of HIPAC [7], that offers immediate, deferred, and de- 
coupled execution (See section 7). We believe that a 
more flexible definition of scheduling is both desirable 
and feasible. 

Consider, in the banking example, a transaction 
that updates the balance in several of a customer’s ac- 
counts, and after some additional processing retrieves 
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the new total balance. Since account balances are be- 
ing updated, the total balance must be recomputed. 
However, there is no need to perform this update im- 
mediately; it must be executed only before the total 
balance is retrieved. Postponing the recomputation 
has the advantages that it can be performed once 
only, although several accounts were updated, and 
that the system may have some freedom in choosing 
the precise time when it is performed. We would like 
to be able to specify such behavior. 

Our solution is to allow a programmer to specify 
an execution interval, in which the triggered ac- 
tion must be executed. An interval is specified by 
describing its end points. These points are events 
recognizable by the system. We consider events re- 
lated to the execution of methods (not necessarily 
the method that triggered the action). In the above 
example, suppose that the transaction invokes two 
methods: The accounts are updated by the method 
up&e-accounts (which, in turn, calls the method 
update-account for each account). This is the trig 
gering method. Then the total balance is retrieved 
by get-balance. The execution interval for the trig- 
gered action that updates the total balance starts at 
the end of update-accounts execution, and ends just 
before get- balance begins. Thus, the beginning and 
end of method execution are events. 

A method may be executed several times within a 
transaction, and any number of times in other trans- 
actions. Obviously, an event refers to a specific exe- 
cution of a method. It follows that the system must 
provide a mechanism for referring to method execu- 
tions, Recall that every method execution is a node 
in the forest of the nested transactions in a system 
execution. The programmer of a triggering method 
cannot refer to other transactions; but should be able 
to refer to other nodes in the tree that contains that 
method. In our example, the programmer may label 
the executions of update-accounts and get- balance, 
and use those labels as event denotation in the execu- 
tion interval. It is also desirable to refer to methods 
by name or type, such ss “any retrieval”. See section 
5. Also other events e.g., time points, such as ‘12:O0 
noon’, or ‘monday morning’ should also be specifi- 
able. We consider those in section 6.2. 

In addition, it seems desirable to have events con- 

structors, to create complex events. For example min 
and max specify the first or last of a set of events, 
and specifies that all events in a set need to occur, 
and so on. Finally, to be able to specify only one end 
point of an interval, it is useful to have the event any 
time. 

In summary, we envision an event specification lan- 
guage, that supports naming conventions for events, 
and event expressions. Since we do not describe a 
specific system, we do not present a specific language. 

An execution interval is described by the tuple: 

type ezecution-interval = 

[start-euent,end-event] 

The triggered action must be executed as early as the 
start event and no later than the end event. 

We conclude with two observations. First, for each 
event, the system must be able to detect that it has 
occurred, for otherwise it cannot ensure that trig- 
gered actions are executed in the appropriate time. 
Second, it is in principle possible to specify an in- 
terval such that the start event follows the end event. 
This is considered as error; it is the the programmer’s 
responsibility to provide correct specifications. 

In general, there may exist several triggered actions 
that are simultaneously eligible for execution. This 
subject is considered in section 6 and 6. 

3.3 Failures 

Transaction management is concerned with concur- 
rency and failures, and these need also be addressed 
for triggered actions. We leave the discussion of con- 
currency to Section 5, and consider here failures. It is 
necessary to specify what happens to a triggered ac- 
tion in case the triggering method aborts, and what 
should be done in case a triggered action fails. 

It is convenient to assume that the system has a 
transaction managemeni sublanguage, that is used in 
triggered action definitions for specifying what should 
be done in the various failure cases. We do not 
present any specific language, but the discussion be- 
low presents options it should support. 

3.3.1 Triggering Method Failure 

There are two options in this csse. Either the abort 
of the triggering method causes the rollback of the 
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triggered action if it has already been executed and 
its deletion otherwise; or the triggered action is ex- 
ecuted as planned. In the bank example, when an 
account update is aborted, there is no need to re- 
compute the total balance. But in an access control 
system that uses triggers for logging of update re- 
quests, those triggers should be executed regardless 
of whether their triggering updates succeed or abort. 

This idea is not new; in the HIPAC system [7] 
irreversible triggering is achieved by the decoupling 
mechanism (the triggered action that logs the access 
is executed aa a separate top transaction) However, 
in HIPAC whenever the triggered action is not decou- 
pled, it is a subtransaction of the triggering method 
and is aborted if that method aborts. We propose 
to allow the triggered action not to be aborted, in- 
dependently of whether it is a subtransaction of the 
triggering method. This can be specified by abort 
and ignore statements in the appropriate part of the 
triggered action description. 

An issue that deserves attention is the relationship 
with the execution interval specification. What hap- 
pens if a triggered action is scheduled for execution 
after the termination of a method that failed? One 
option is that in this case the termination event never 
occurs, hence the triggered action will never be exe- 
cuted. This means that irrespective of the specifica- 
tion given by the programmer, the triggered action 
is in effect aborted and it can be deleted. Better 
option is to distinguish explicitly between successful 
and aborted terminations, and specify the execution 
interval in terms of these event types. 

3.3.2 Triggered Action Failure 

In the banking example, the recomputation of the 
total balance is essential for the correctness of subse- 
quent retrievals. If the execution of this trigger fails, 
the system must either roll back the balance update 
that triggered it, or retry to execute the trigger and 
block retrievals of the total balance until it succeeds. 

In general the options that one should be able to 
specify for such failures should include ignore and 
abort(trans) for specifying that the failure of the trig 
gered action should be ignored, or should cause some 

(sub)transaction in its transaction tree to be aborted. 
Other useful options include: Iry n times before de- 
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tiding 20 abort, and run 2 instead. (the second op- 
tion allows, in particular, to execute a compensating 
transaction for the triggering method.) More gener- 
ally, combinations of these basic options are useful, 
for example: “Try to run the action at least 5 times 
and if they all fail try to run t instead. If t also fails, 
abort the transaction”. 

3.4 The Triggered Action Description 

The description of a triggered action should include 
the action it executes, i.e. a name of the method to be 
executed, and the object where it is to be executed. 
This may be the same object as the one in which 
the triggering method executed, or a different object. 
In the banking example, the ‘update total balance’ 
operation is executed on the same customer object 
in which the balance updates took place. Similarly, 
it includes the parameters passed from the trigger- 
ing method execution. In summary, the information 
about each triggered action is recorded by a tuple: 

type triggered-action-description = 

[triggered-action, 

ad- to-perform(location,parametere), 

etecution- interval, 

scheduling- information, 

triggered-action-fail, 

trigger-fail] 

The attribute triggered-action contains the name 
of the trigger. Its value serves to connect this tuple 
with the method specifications where the same value 
appears in the third field. act -to-perform names 
the action to be taken, the object where it is to be ex- 
ecuted, and parameters. Of the other attributes, only 
scheduling-information has not yet been described. 
It records information, such as a priority, that may 
be used by the system to determine which of a set of 
enabled triggers is to be scheduled for execution. 

Naturally, the inheritance and overriding mecha- 
nisms apply to the new data that we have now added 
to classes. Method and trigger descriptions apply 
to all objects in the class, and are inherited by sub- 
classes. Each field in these tuples, except for the name 
field , may be redefined. Thus, one can add or delete 
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triggered actions, change the behavior under failures 
of an action, and so on. 

4 Active Objects 

When a method is executed, actions may be trig- 
gered, but they need not be executed immediately. 
Hence there is a need to store information about trig- 
gered actions, until they are executed. The informa- 
tion is derived from the data recorded in triggered- 
action-descriplion, possibly by instantiation of at- 
tribute valueaS We discuss in this section the struc- 
ture used for storing this information, and avoid the 
consideration of where, i.e., in which object, this in- 
formation is stored. For simplicity, we assume for now 
that both triggering and execution of an action occur 
at the same object, and the information is stored in 
this object. The multi-object environment will be 
considered later, 

4.1 Object Structure 

We extend the structure of the object state so aa to 
contain information about triggered actions that are 
waiting for execution at the object. The regular 
part of the state is referred M the passive part, and 
the new information as the aciive part. For each ac- 
tion waiting for execution, there is a record of the 
following form: 

type active-action = 

[triggered-oction(parameters), 

triggering-method-identity(localion), . . .] 

The triggering method identity identifies both its 
name and the execution, since several instances of a 
method may execute concurrently, and it is necessary 
to relate a given triggered action instance with the 
appropriate execution of the method. In the present 
context, location that describes the object where the 
triggering method executed is redundant, but it is 
needed in the general case. 

Whenever a triggering method executes on an ob- 
ject, elements that represent the method’s triggered 

?E.g., o template reprerenting the triggering method is re- 
placed by its actual identity. 
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actions are inserted into the active part of the object, 
and kept there until after the corresponding actions 
have been successfully executed. 

4.2 Methods for Handling The Active 
Part 

The information in the active component is an in- 
tegral part of the object. It can be accessed by any 
authorized user, and is also used by the system for ex- 
ecuting the triggered actions. Following the OODB 
paradigm, the active part is accwed only by meth- 
ods. We mention three methods (actually, methods 
types) that are relevant here. One is used for insert- 
ing active-actions, the second is used for retrieving 
and executing, and the third for deleting triggered 
actions when no longer needed. These methods share 
the properties of regular methods, they are inherited, 
and may trigger other operations. They are not visi- 
ble to application programs. 

We can use the same three methods for handling all 
triggers in all classes, But we suggest to use for every 
triggered-action a special insertion method to handle 
its insertion. The following example illustrates why 
this may be useful. Recall that the update-balance 
method triggers a total balance recomputation. But 
several account updates for the same customer will 
trigger several instances of this action, and obviously 
only one is really needed. This problem can be solved 
by using for this trigger a special insertion method, 
that inserts a record for the triggered action only if 
there is no record for the same action in the object. 
Thus, the first update to any account of the customer 
causea the insertion of an update-total triggered ac- 
tion, but subsequent updates do not insert this action 
again, as long a the trigger has not been executed 
yet. 

The use of special insertion methods enables us to 
explicitly define how new triggered action relates to 
the waiting actions, to cancel the triggered action, or 
merge it with other actions. It is possible to have a 
general insertion method that is used for all triggered 
actions, and define special insertion behavior by over- 
riding. Another option is to record the method to be 
used in an attribute, called insert-method- name, 
that is added to the triggered-action record. 
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5 An Execution Model 

So far we have presented fragments of our ap- 
proach, such as what information concerning triggers 
is needed, and how it is recorded. In this section we 
describe a mechanism, that is responsible for all the 
activities of method execution, trigger recording and 
execution (but is still essentially restricted to a one 
object situation). 

The basic idea is that when a method is invoked by 
a message, a me2liod processor takes control. It is re- 
sponsible for executing the method, recording its trig- 
gers, and executing triggers that need to be executed. 
In the following we refer to the execution of this pro- 
cessor when a method m is invoked as extended-m. 

5.1 General Execution Plan 

In the set of actions triggered by a method m, one 
can distinguish two subsets: actions t,hat do not use 
any of the output parameters of m, and those that do. 
Those in the second set must be scheduled after m ter- 
minates. We denote the first set by TI and the second 
by Ta. The execution of the method processor when 
m is invoked is composed of five sub-transactions: 

l The first sub-transaction, called insert-start-m, 
inserts records corresponding to the elements in 
TI into the active part of the object by invok- 
ing the insertion method of the triggered action, 
as a subtransaction. insert-start-m may also 
chooses the insertion order, or carries some main- 
tenance activity such as changing priorities of 
elements in the active part of the object. At 
the end of the insertion, the active part contains 
the information about all the triggered actions 
of in Tl, as well as about all triggered actions 
that where triggered by some other methods, and 
have not yet been executed. 

l The second subtransaction, called execute - 
start-m, now checks the contents of the active 
part of the object and executes the triggered ac- 
tions that must be executed before the beginning 
of m, and possibly some that may be executed 
now but can also be executed later. Each of these 
actions is also executed by the method processor 
and may also trigger some actions. 
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The third sub-transaction executes the method 
m. If m invokes other methods, a nested transac- 
tion structure is created and executed, using the 
method processor for each method. In particu- 
lar, methods invoked by m may trigger actions. 

After the execution of m terminates, the values 
of the output parameters of m are well defined, so 
the fourth subtransaction, called insert-end-m, 
inserts records describing the actions in T2 into 
the active part of the object. It thus completes 
the task partially executed by insert-start-m. 

l The last sub-transaction, execute-end-m, exe- 
cutes the actions that must be executed no later 
than the end of m, and possibly a few others. It 
has the same structure aa execute-start-m. 

The following diagram describes the nested struc- 
ture of extended- m generated by the execution of 
the method processor for m: 

The root node global -control-m is the execu- 
tion of the method processor. It executes the five 
subtransactions in a sequence, as indicated by 4 in 
the diagram. It receives notifications about the suc- 
cess or failure, and in the latter case determines the 
course of action by analyzing the content of the ac- 
tive part of the object. For example, if m aborts, 
it may decide to abort itself, or to only delete some 
triggered actions, or to roll back some of those that 
have executed. (Note that such a rollback applies to 
the complete tree rooted at the aborted action.) Al- 
though such behavior might be considered abnormal 
if m were the root, it is now standard behavior of a 
nested transaction. 

Also note that actions triggered by other methods 
may be executed as sub-transactions of extended-m. 
For example, if a previous method updated any of 
the accounts, then a trigger for updating the total 
balance was posted, and may be executed as part of 
a balance retrieval method. 

In section 3 we defined a method as a triple that 
contains the method’s name, code, and triggered ac- 
tions. Now, we need to add components: the names 
of the methods that fill the roles of insert-start - 
m, execute-start-m, insert-end-m, execute-end-m 
for it. As remarked above, it may be reasonable to use 
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global-control-m 

maintenance choose execute1 executen maintenance choose execute,+1 executem 

diagram 1, extended-m 

special method for these tasks in some cases, rather 
than use general purpose methods. 

Although the mechanism we have described is very 
flexible, it might seem too complicated; the effort in- 
volved in defining all the components of a method 
may seem to be a high price to pay. That is not 
the case however. Using a general method processor 
(which accepts m aa parameter) implies a standard 
treatment of the triggered action execution for all 
classes and methods. Definitions of these standard 
methods are included in the class object, that is the 
root of the class hierarchy, and are inherited by all 
classes. Once this is given, the definition of a regu- 
lar method is very simple: One must only specify the 
method name, its code, and the actions it triggers. 
This is the same amount of work as required in any 
other active system. The flexibility described above is 
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still available for cases that need a special treatment 
by using the overriding mechanism. 

5.2 The Sub-transactions 

Of the five subtransactions, most of the work is done 
by execute-start-m and execute-end-m. It suffices 
to describe one of these, since they are almost identi- 
cal. We present a full description of execut+start-m, 
followed by some general remarks. 

The subtransaction execute-start-m is in charge 
of executing triggered actions before the start of m. 
It goes through a cycle composed of the following 
phases: 

maintenance - The event ‘beginning of m’ is now 
considered as having happened. The execution 
intervals of the triggered actions are examined, 
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and those whose start event ‘has happened’ are 
marked, if not already marked (perhaps in a pre- 
vious execution of the method processor). In ad- 
dition, actions whose end event ‘has happened’ 
(for example, those whose end event is ‘beginning 
of m’) are marked as manda2ory. These must be 
executed now, before m is executed. The other 
marked actions are considered aa optional. These 
actions can be executed at any time between now 
and the end of their interval. 

choose - A set of actions is now chosen for execu- 
tion. The considerations may include system 
load and performance (e.g., in a loaded system 
only .mandatory actions may be chosen). If an 
empty set is chosen, then execute-start-m ter- 
minates. Hence, as long as mandatory actions 
remain, one of them at least will be chosen. It 

is not necessary to choose all the mandatory ac- 
tions; those that were not chosen now will be 
chosen and executed subsequently. For example, 
it is possible to choose only the set of actions with 
the highest priority. Actions with lower priorities 
will be executed later. The cycles mechanism of 
HIPAC [ll] is essentially such an algorithm. 

execute - If the system supports parallel execution 
of subtransactions, the actions that were cho- 
sen can be executed in parallel: otherwise they 
are executed sequentially. The execution order 
among those that were chosen can be determined 
by analyzing the scheduling information that is 
stored for each action. Each of the actions is ex- 
ecuted aa a subtransaction unless it is specified 
to be independent (see section 5.3). 

To execute an action, etecule - start - m marks 
it as ‘being executed’, then invokes it as a sub- 
transaction (except when it is independent) . If 
this subtransaction aborts, execute-start-m ex- 

ecutes the program in the attribute triggered- 
action-fail, which aa explained in section 3 con- 
tains a specification of what to do when the trig- 
gered action fails. Note that execute-start-m 

can execute commands such as ignore, execute n 
times, or execute t instead. However, it can not, 
for example, execute abort m (since m is not one 
of its sub transactions). For such a command, it 
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informs its parent, the method processor about 
the failure and request the desired treatment, If 
the execution of a triggered action terminates 
successfully, the element describing it is removed 
from the active part. 

The triggered actions that are executed are meth- 
ods, so each of them may trigger actions. The exe- 
cution of an action may spawn a subtree of triggered 
actions of its own. When the execution of this eubtree 
terminates, control returnsto ezecute-start-m. The 
database state may then contain information about 
additional triggered actions that have not executed 
yet. Therefore, the cycle of maintain, choose, and 
execute must be repeated. 

5.3 Concurrency Control, Failures, 
and Recovery 

A triggered action may be executed as a subtrans- 
action of the method processor of some m, or as an 
independent transaction (if independence is explicitly 
specified). If for an action, neither the execution in- 
terval, nor any of its other parameters such aa behav- 
ior in case of failure and scheduling information are 
related to m, than there is no reason to execute it as a 
subtrirnsaction, which may delay the execution of m. 
If this is the case, the triggered action should be exe- 
cuted aa an independent transaction, by sending 
an appropriate message to the transaction manager. 
We assume that the key word independent may be 
used in the specification of the triggered action for 
this purpose. The correctness of the specification is, 
as in other cases, the programmer’s responsibility. 

If the right end of the action’s execution interval 
is the end of the triggering method, than it is exe- 
cuted as a sub-transaction of the extended trigger- 
ing method. If the execution interval extends be- 
yond the triggering method’s end, than the algorithm 
used in choose determines in which transaction tree 
it executes. The data in the trigger- fail and the 
triggered-action- fail attributes must be compati- 
ble with the position that may chosen for the action 
in the transaction forest. One may specify that if the 
action aborts then so must do some or all of its par- 
ents. However, if the action is executed in a different 
transaction then the triggering method, it makes no 
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sense to specify that the latter should be aborted - 
it may have committed already when the action fails, 
Of course, it is still possible to specify that a compen- 
sating transaction to the triggering method should be 
executed. 

We recall from the way the method processor op- 
erates that triggering an action entails writing data 
in the active part of the object, and executing a trig- 
ger entails reading data from the active part, then 
modifying and finally deleting it. To ensure a serial- 
izable execution, concurrency control must apply to 
the active part of the object &9 well EM on the passive 
part. Since every method that operates on an object 
must access its active part, if the whole active part is 
locked for each access, it may become a bottle neck. 
Our solution is baaed on locks for components of the 
active part of the object, and on a variant of predicate 
locking. Details will be presented elsewhere. 

6 The General Multi Object 
Model 

So far we have assumed a simplified situation where 
both triggering and execution occur at the same ob- 
ject. We now consider the general multi-object case, 
where the triggering method and the triggered ac- 
tions may operate on different objects, and the events 
mentioned in the execution interval may occur in 
other objects. For example suppose that every de- 
posit of more than lOO,OOO$ triggers a notification to 
the branch manager, to be executed at 6pm. The de- 
posit is executed on a customer’s object, the triggered 
action on the manager object, and the event occurs 
at the system’s clock. 

Where should triggered actions be stored ? We 
adopt the principle that an object should encapsulate 
all the information relevant to it. Hence, the active 

part of an object must contain all the information 
regarding the triggered actions that will be executed 
at the object. It follows that each triggered action is 
inserted into the active part of the object on which 
that action operates. 

The second issue is how does a method processor 
in an object know about events that occur in other 
objects. Such knowledge is needed for it to execute 
actions whose execution interval usea events of other 

proceedings of the 17th International 
Conference on Very Large Data Bases 

objects. Our solution is based on n&@&ions about 
the occurrences of events that are sent to it. The final 
issue we consider here is the notion of time events, 
such aa ‘at 6p.m.’ 

6.1 The Notification Mechanism 

Suppose that a method m of object o triggers an ac- 
tion on the object o’ that is scheduled to be executed 
when the event e occurs at an object o’~. Our so- 
lution is to decompose the triggered action into a 
notification action on o”, whose task is to notify o’ 
about the occurrence of the desired event e (it is 
scheduled to the occurrence of the event), and the 
original triggered action on 0’. Each of those will 
be stored, and executed, at the appropriate object. 
We sasume that every object has send-notification 
and receive-notification methods, for notifying and 
receiving notifications. Additionally, since execution 
intervals may contain complex events, it is necessary 
that each object should be able to store information 
it receives about events that occurred in other ob- 
jects (or alternatively that we should be able to sim- 
plify complex events by removing events that had oc- 
curred). 

In particular, receive - notification is a method 
and is executed by the method processor just like 
any other method. Note that actions that should 
be executed when some event in another object oc- 
curs, will be executed at the end of the extended 
receiue - notification, since only then it is known 
that the event has indeed occurred. 

6.2 Time Events 

The mechanism we have described is appropriate for 
events that are the beginning or end of a method. 
Now, we can easily extend it to time events, such 
aa ‘6pm 11.1.91’. All that is needed is to have one 
active object in the database, call it a timer. For 
each triggered action whose execution interval con- 
tains a time event, it contains a triggered action, to 
send a notification to the appropriate object when 
the time arrives. It receives inputs from the system 
clock (at a sufficiently high frequency), and treats 
each ‘clock tick’ as a message from the outside world. 
The method processor than wakes up a notification 
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method to send messages to the appropriate objects. 
The mechanism is, therefore, a special case of that 
described above. 

7 Related Work 

There have been quite a few proposals for augmenting 
a database with triggers or production rules [6, 7, 10, 
12, 17, 18, 19,20, 161. We discuss here briefly some of 
the concepts and ideas of these proposals, and their 
implementation in our model. 

7.1 Events 

The above models typically consider relational 
databases and actions that are triggered by stan- 
dard database operations such as retrieve and up- 
date [20, 18). ETM [12] and HIPAC [7) have refined 
the event concept to include triggers caused by “ab- 
stract“ events. We have followed and refined this ap- 
proach: every method (even points in its execution) 
is a potential triggering event. 

The HIPAC system also allows definition of com- 
posite events [8] using disjunction, sequencing. and 
closure. Our mode1 does not directly support se- 
quencing and closure but they can be simulated (i.e., 
programmed). For example, the sequence of two ac- 
tions can be simulated by defining the first event, as 
a trigger to an action that records it has occurred in 
a given transaction. The second event triggers the 
desired action, but its insertion method first checks if 
the active part contains the needed information about 
the first event. Closure is simulated similarlya Thus, 
in a sense, our mode1 is more general since it allows 
programming of a variety of constructs, and is not 
restricted to a given set. 

7.2 Rules 

Focusing on relational databases, [20] presented set- 
oriented rules, that are triggered by an arbit’rary 
set of changes to the database and may perform 
a set of changes. (For example a single set ori- 
ented rule might operate on all tuples that were in- 
serted/updated/deleted from the database during the 
course of a (sub)transaction). Our model is essen- 
tially an instance oriented model. However, a set, ori- 
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ented approach can easily be implemented in it. We 
can make a (sub)transaction which operates on some 
class a trigger to an operation that accepts the set of 
changes as a parameter. In addition, each access to 
an object in the class triggers an action that records 
the changes, and sends the object id to the class, as 
a parameter to be used in the previous action. The 
overall algorithm is similar to the one described in 
[20]. The idea can of course be extended in various 
ways, since it is now under the control of the method 
programmer, rather than built into the system. 

Generally, a production rule take the form of when 
X lhen Y, where X is a triggering condition(event) 
and Y is an action [20]. Our model considers rules of 
the form when X then {v) , i.e all the actions that 
are triggered by an event are grouped together. This 
can be seen to be only a syntactic change. 

Central to the HIPAC mode1 is the concept of 
event -condition-a&ion (ECA) rules[8]. When the 
event occurs, the condition is evaluated and if satis- 
fied the action is executed. Our mode1 supports only 
events and actions. However, this idea can be pro- 
grammed in our model: The event triggers an opera- 
tion that evaluates the condition, and if the condition 
is satisfied it triggers3 the action. Hipac uses similar 
mechanism for implementing ECA rules [ 111. 

HIPAC also supports enabling and disabling of trig- 
gers. Following HIPAC’s implementation, a new at- 
tribute can be added to triggered actions to indicate 
whether they are enabled. insert - start -m and 
insert-end-m will insert only enabled actions. 

7.3 Triggers and -Transactions 

In System R [lo], Postgres [17] and Sybase (191, trig- 
gered actions are typically executed in the same trans- 
action as the triggering updates. They are either exe- 
cuted immediately (Sybase,System R), or deferred to 
the end of the transaction (assertions in system R). In 
Postgres, triggered actions can also occur on demand. 
In [20) triggers are executed at the end of the execu- 
tion unit. The HIPAC model [7] supports three ex- 
ecution options: immediate - immediately when the 
event occurs, deferred - at the end of the transaction 

3The triggering can he done by execution a “nuIl“ action 
which does not affect the database state, and is defined as a 
trigger to the desired action. 
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in which the event occurred, decoupled - in a separate 
transaction. In the first and second options, triggers 
are executed as sub-transactions of the transaction in 
which the triggering event occurred. In the third op- 
tion the actions are executed as separate transactions, 
which can be either causally dependent, .i.e must be 
serialized after the triggering event, and aborted if 
the triggering transaction fails, or independent. The 
HIPAC model supports two options for handling a 
rule failure: either the execution of that rule alone is 
aborted, or the whole transaction is aborted [9]. It 
can be easily seen from the discussion in the previous 
sections that our model supports all these features, 
and a few more. 

7.4 Execution Order 

Proposed systems offer different strategies for order- 
ing triggered actions scheduled for the same time. In 
early System R (10) triggered actions are executed in 
a system defined order. Sybase [19] does not allow 
more than one trigger to be defined for an operation 
on a relation. Postgres [17] uses a conflict resolution 
strategy such that only the highest priority action is 
executed. In [20] several strategies are offered includ- 
ing partial order, and preferring least recently used 
rules. In HIPAC [7] triggered operations can be ex- 
ecuted concurrently, using priority categories for or- 
dering. It supports a cycling mechanism for deferred 
sub-transactions, and a pipeline mechanism for de- 
coupled actions. We have not treated this issue in 
our model, but any mechanism or language for de- 
scribing scheduling information can be incorporated 
into it, without affecting the overa!l structure. 

8 Discussion 

The model we have presented in this paper is a logi- 
cal model that provides a clear semantics for the ac- 
tive behavior of an object oriented database. The 
integrations of the three paradigms (acfiue behavior, 
OODB’s, and nesied transactions) supporta a very 
powerful and flexible trigger mechanism. An advan- 
tage of our approach is uniformity: The standard 
mechanisms of OODB’s and of nested transactions 
are applied to all the extensions needed to support ac- 
tive behavior. This includes inheritance and overrid- 
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ing, and identification of methods, actions and sub- 
transactions. 

We have left many issues open. These include: the 
development of appropriate sublanguages for specifi- 
cation of events, scheduling, transactional structure 
and behavior; developmpnt of concurrency control 
protocols that will prevent the active components of 
objects from becoming bottlenecks; appropriate ef- 
ficient strategies for storing active-behavior related 
data; mechanisms for selective execution of triggers 
(a feature that is very helpful for debugging). These 
are left for future research. 
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