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Abstract 
In order to cope efficiently with simple or 
complex queries as well as different 
application requirements (e.g., ad-hoc 
versus repetitive queries), a query 
optimizer ought to support an extensible 
search strategy that can ideally reduce fo 
enumerative, randomized or more recent 
genetic search algorithms. In this paper, 
we give a solution to the extensibility of 
the query optimizer search strategy. This 
solution is based on the object-oriented 
modeling of the query optimizer, where the 
search space and the search strafegy are 
independently specified. It is illustrated by 
the application to different search 
strategies. This modeling facilitates the 
specification of assertions that enforce the 
successful termination of the search process 

1. Introduction 
Query optimization refers to the process of 

producing an “optimal” execution plan, for a given 
query, where optimality is with respect to a cost 
function to be minimized. This is made difficult by 
the necessary trade-off between optimization cost 
and quality of the generated plans (the latter 
translates into query execution cost). A “high” 
optimization cost may be acceptable for a 
repetitive query since it can be amortized over 
multiple executions. However it is not practical for 
ad-hoc queries that are executed only once. The cost 
of optimizing a query is mainly incurred by the 
investigation of the solution space for alternative 
execution plans. Typically, these plans are 
abstracted in terms of processing trees 
[Krishnamurty86] to capture in a compact way the 
aspects that are essential for cost estimation and 
optimization. 

As the solution space gets larger for complex 
queries, the search strategy that investigates 
alternative solutions is critical for the 

optimization cost. Traditional query optimization 
uses an enumerative search strategy which 
considers most of the points in the solution space, 
but tries to reduce the solution space by applying 
heuristics. The. System R optimizer [Selinger79] 
exemplifies this approach by restricting the 
solution space to binary processing trees and using 
dynamic programming for searching. Enumerative 
strategies can lead to the best possible solution, but 
face a combinatorial explosion for complex queries 
(e.g., a join query with more than ten relations) 
IIbaraki841. In order to investigate larger spaces, 
randomized search strategies have been proposed 
to improve a start solution until obtaining a local 
optimum. Examples of such strategies are 
simulated-annealing (Ioannidis871 and iterative- 
improvement [Swami88]. With the same objective, 
genetic search strategies (Goldberg891 can be 
applied to query optimization, as a generalization 
of randomized ones [EibengOl. Randomized or 
genetic strategies do not guarantee that the best 
solution is obtained, but avoid t’he high cost of 
optimization. As an optimizer might face different 
query types (simple vs. complex) with different 
requirements (ad-hoc vs. repetitive), it should be 
easy to adapt the search strategy to the problem, 
which implies some form of extensibility. 

Extensibility in query optimization has been 
studied in the framework of extensible database 
systems IGraefe87, Lohman881. Extensible query 
optimizers have primarily focused on adapting to 
extensions of the search space (e.g., new features of 
the database language or physical storage system). 
However, they have not stressed the extensibility 
of the search strategy. In particular, it is difficult, 
if not impossible, to implement randomized or 
genetic strategies in such extensible optimizers. 
The main reason is the adoption of a rule-based 
approach IFreytag871, which is appropriate for 
query rewriting (e.g., using algebraic restructuring 
rules) but inconvenient for specifying the search 
strategy, which is essentially procedural. 

* This work was partially funded by the Esprit project EDS. 
1 Visiting INRIA on leave from the Pontificia Universidade Cat6lica do Rio de Janeiro (WC-RIO). 
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In this paper we give a solution to the 
extensibility of the search strategy in a query 
optimizer. This solution has three important 
aspects: the independence of the search strategies 
from the search space, the viewing of query 
optimization as a particular case of a search 
system, and the object-oriented modeling of query 
optimization search systems to gain extensibility 
of both the search space and the search strategy. 
This is illustrated by modeling within the same 
framework different enumerative, randomized and 
genetic search strategies, Furthermore, we show 
how the search strategies thus produced can be 
controlled in the sense that successful termination 
can be enforced by assertions. The isolation of the 
search strategies from the search space makes the 
solution compatible with that of [Valduriez891 and 
thus applicable to more general database 
programming languages which can be deductive or 
object-oriented [Lanzelotte901. However, for 
simplicity and without loss of generality, we limit 
ourselves to relational queries. 

The rest of the paper is organized as follows. In 
Section 2, we model the search space, which 
describes the query optimization problem and the 
associated cost model. In Section 3, we view query 
optimization as a generic search problem and 
introduce a class hierarchy to model search 
strategies. These two class hierarchies are the 
building blocks for the optimizer. In Section 4, we 
illustrate the use of the previous classes in 
specifying different search strategies. In Section 5, 
we show how the behavior of the generated search 
strategies can be controlled by means of assertions. 
Section 6 concludes and indicates the status of a 
prototype that implements this solution. 

2. Modeling the Search Space 
In this section, we introduce the optimization 

problem following the model of [Krishnamurtyllcjl 
for relational query optimization. In particular, we 
model the search space independently of the 
optimization algorithms and related heuristics. 
Therefore, a query execution plan is modelled as a 
processing tree which captures all the 
optimization decisions for executing the query, e.g., 
join ordering, join algorithms, etc. In order to keep 
this section short, we limit ourselves to conjunctive 
select-project-join queries. After extending the 
definition of [Krishnamurty861, we present the 
operations to manipulate processing trees and 
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incorporate them within a SearchSpace class 
hierarchy. 

2.1. Processing Trees 

A processing tree (PT) is a labelled binary tree 
where the leaf nodes are relations of the input 
query and each non-leaf node is a temporary 
relation. Different from [Krishnamurty861, we 
consider a temporary relation to be materialized 
only when explicitly indicated. Thus, we are able 
to model pipelined and non-pipelined joins with 
the same binary PT. This removes the need for n- 
ary nodes to model pipelined joins and facilitates 
the uniform specification of operations on PTs. 

A join node is a non-leaf node of a PT that 
captures the join between an outer join node and an 
inner join node. The outer join node corresponds to 
the operand relation from which tuples are 
retrieved first by the join algorithm. The inner join 
node corresponds to the operand relation from 
which tuples are retrieved next, possibly using join 
values of the outer relation. If there is no join 
predicate connecting the outer join node to the inner 
join node, the join reduces to a Cartesian product. 
The distinction between the two operand relations 
is important because some join cost formulas (e.g., 
nested loop join) are not symmetric with respect to 
the inner and outer relations [Selinger791. We 
illustrate these definitions with the following 
query: 

Select * From Rl, R2, R3 Where 
Rl.A=RZ.A and R2.B=R3.B and Rl.CclOO 

Figure 1 shows two different PTs for the sample 
query. We always represent the outer relation as 
the left child of a join node and the inner as the 
right one. 

R3 

Rl iC2 

P 
A4 il 

R3 Rl R2 

Figure 1: Two PI’s for the sample query 

The inner join node reduces to a base relation if 
the optimizer does not investigate bushy PTs (e.g., 
the second one in Figure 1 j. The ability of changing 
the type of inner to cope with bushy or non-bushy 
PTs, as well as with PTs involving Cartesian 
products or not is called adaptability of the search 
space in [Ono901. 
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2.2. Operations on PTs 

The optimization process consists essentially in 
building and modifying PTs. We now describe the 
operations on PTs, that constitute the basic actions 
of a query optimizer which are controlled by its 
search strategy. 

We call PT generation the process of successively 
building join nodes. A step in this process, called 
expansion, is to connect a PT to a new node by 
adding a relation (see Figure 21. A PT is complete 
when its root join node involves all the operand 
relations of the input query (e.g., j2 and j3). 
Conversely, a PT is incomplete when it does not 
capture at least one operand relation, 

P 

A 

expand jl 
P (add R3 as inner? 

ti 
p 

R3 

R1 R2 R1 R2 

Figure 2: Expanding a join node 
Randomized search strategies require the 

ability of applying transformations to complete 
PTs to generate neighbor PTs (which are also 
complete PTs). This phase is referred to as PT 
modification. Examples of transformations are the 
exchange of two relations inside a PT [Swami88, 
Ioannidis901. Our model for M’s is appropriate for 
implementing transformations, because we can 
distinguish inside each join node the incremental 
part added by an expansion (i.e., the inner part). 
Then, when transforming a PT, it is not necessary to 
rebuild it completely. 

Transformations can be specified with rules as in 
transformation-based optimizers iFreytag871. The 
proposed definition of join node enables to use the 
join operator as a recursive functional symbol for 
describing PTs in a syntactical way. Thus, it is the 
basis for specifying rewrite rules. For example, join 
node j2 of Figure 1 is specified as 
join(join(Rl,R2),R3). The left join exchange rule of 
[IoannidisBO], which is illustrated in Figure 3 ((a 
join bl join c + (a join c) join b), 
(join (a, b),c) 4 join (join (a, c), b). 

is written as join 

R2 Rl R2 R3 

Figure 3: Transforming a M’ 
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The basic actions in genetic strategies are 
crossover and mutation. A crossover consists in 
selecting two (the parents) from a population of 
complete PTs and generating two offsprings (the 
descendants) according to some principle (e.g., by 
merging characteristics of the parents). The 
individuals to be crossed are chosen at random, but 
the choice is biased by their fitness. The fitness is 
related to the function to be optimized (i.e., the 
cost function). Thus, new generations are expected to 
contain better individuals than the previous ones, 
because they are built from the features of selected 
parents. For example, consider a query involving 10 
relations and two non-bushy PTs a and b 
represented by their sequences of relations: 

a = R9 R8 R4 R5 R6 R7 Rl R3 R2 R10 
b= R8 R7 Rl R2 R3 RlO R9 R5 R4 R6 

The partially matched crossover operator 
(called PMXi is one possible crossover operator 
[Goldberg89]. It consists in choosing at random two 
points in the sequences corresponding to the 
individuals. Two descendants are generated such 
that the central sections (inside the two points) are 
exchanged and the other relations are exchanged 
accordingly. Then, PMX applied to individuals a 
and b produces two descendants a’ and b’. 

a’= R9 R8 R4 ] R2 R3 RlO] Rl R6 R5 R7 
b’= R8 R7 Rl t R5 R6 R7 t R9 R2 R4 R3 

PMX or other crossover operators can be specified 
by means of functional syntactical transformation 
rules. Mutations may also come, when generating 
the new individuals, with a small probability (as 
in Nature). A mutation applies to a unique 
individual and has the same nature of 
transformations in randomized strategies. The 
incremental nature of PT nodes are also important 
for efficiently implementing crossover actions. 

2.3. Search Space Class Hierarchy 

The specification of the optimization search 
space is influenced by the input query and the 
nature .of investigated PTs (i.e., bushy or not, 
involving Cartesian products or not). Figure 4 shows 
the SearchSpace class hierarchy. In the graphical 
representation of class hierarchies throughout this 
paper, the name of the class and its attributes are 
shown inside the ovals. The attached methods are 
shown outside, The type of an attribute or of the 
returned value from a method is denoted as : type 
(when the type is a set, it is denoted as (type-of- 
element)). Methods not in bold are deferred, i.e., 
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they are actually implemented at a lower-level 
class (e.g., method phytranslate is deferred at the 
SearchSpace class level and actually implemented 
at the spjQuery class level). An arrow between two 
classes is for inheritance (“inherits from”). 

bushy0: boolean 
cartesian(): boolean 
phytranslate0: (State] 
expandBtate): (State] 
transform(State): State 
crwsover((State)): (State) 

Figure 4: The Search Space class hierarchy 
Class SearchSpace is specialized to conform to 

different types of input queries (e.g., relational or 
object-oriented ones). Some of the attached 
methods implement the basic operations on PTs 
(i.e., expand, transform and crossover). A method 
phytranslate is attached to any class that 
specializes the SearchSpace class. It implements 
the translation of the input query to the physical 
database schema, stored in attribute phyEnt, that 
is a set of subparts of the input query used when 
building PTs. A subpart is an object of the State 
class, whose hierarchy is shown in Figure 5. 

cost0 float 
cardO: int 
goal0: boolean 
equivalent(State): boolean 
s&Relations& (relation) 

( NewJoinAlgorithm\ / J”‘natr.= , 

\ / 
sne: strmg 
order: strinn 

cosli): float 

Figure 5: State class hierarchy 

Class State is specialized by the Relation class, 
whose objects are the individual relations of the 
input query (together with selection predicates), 
and the Join class, whose objects are the generated 
PT join nodes. From the previous discussion, an 
instance of the Join class has attributes outer and 
inner of type State (if only inners of type Relation 
are allowed, bushy M’s are not investigated). Class 
Join can be further specialized to cope with several 
join algorithms (e.g., NewJoinAlgorithm), 
attributes specific to a given environment (e.g., 
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JoinSiteOrder), the materialization or pipelining 
of intermediate results, etc. 

In [Lanzelotte9lbl we model the search space for 
object-oriented databases. There, the Join class 
corresponds to the implicit join (i.e., due to the 
connection between ‘objects and their sub-objects), 
which is implied by the database schema. Explicit 
joins due to the occurrence of join predicates in the 
query are modelled as a specialized class. 

For simplicity, in the rest of this paper, we 
adopt the definition of Join that corresponds to the 
Join class in Figure 5. It models a pipelined nested- 
loop join between the outer and the inner relations. 

3. Query Optimization: a search problem 
To establish the framework for modeling search 

strategies, we view the query optimization 
problem as a search problem in the most general 
sense. In this section, we propose an object-oriented 
modeling of search systems through a class 
hierarchy which can be easily extended to support 
various query optimization search strategies. We 
first introduce an enumerative search method 
which is further specialized to implement 
randomized and genetic strategies. Doing so we are 
able to identify common aspects of several search 
strategies and to specify them separately from 
other features of a query optimizer (e.g., the cost 
model). The resulting modeling is powerful enough 
to allow the easy implementation of different 
known optimizers within the same framework as 
well as the dynamic change of the search strategy, 
as suggested in [Ioannidi&Ol. 

3.1, Object-oriented Modeling of Search Systems 

To formulate a search problem the following 
elements are required [Shapiro87]: 

l states, which are configurations of the objects 
relevant to the problem; whether a state 
describes the problem totally or partially 
constitutes a design decision in a search 
problem; distinguished states are the initial 
state and goal states 

l actions that, when applied to one state, 
generate a set of successor states 
This framework applies to query optimization in 

two different ways. In PT generation, the initial 
state is constituted by the relations and predicates 
from the input query together with related schema 
information, states are join nodes, an action is an 
expand method and goal states are join nodes that 
correspond to complete PTs (e.g., j2 and j3 in Figure 
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1). In PT modification, which occurs in randomized 
and genetic strategies, states are complete IQ, an 
action is a transform or a crossover method and the 
goal description involves a stop condition based on 
specific parameters of the search strategies (e.g., 
time constraint in iterative-improvement, 
temperature in simulated-annealing or number of 
generations in genetic strategies). 

3.2. A Class Hierarchy for Enumerative Search 

In enumerative strategies, several states are 
successively inspected for the optimal solution 
(e.g., by breadth-first, best-first or depth-first 
search). The SearchStrategy class hierarchy 
shown in Figure 6 grasps the essence of enumerative 
strategies. 

search&pace): State 
setInitState(Sspace): (State) 
stopCondO: boolean 
setNextState0: State 
action&pace): (State) 
optimalO: State 

prune((State)I: (State) 

stopCond 0: boolean stopCond 0: boolean 
aetNextState0: State setNextState0: State 
action&pace): (State) action6spacek (State) 
pnme((State)): (State) prune ((State)): State 

Figure 6: Search Strategy class hierarchy for 
enumerative strategies 

Algorithm 1 implements the search method of 
the enumerative class, that performs the 
generation of PTs. It is based on a generic branch- 
and-bound search strategy [Papadimitriou82]. The 
other methods used within its body constitute the 
extensibility primitives. They capture the 
properties that, when modified, change the 
behavior of the search strategy. By overloading 
them, the same enumerative algorithm can be used 
for implementing different search strategies, as 
shown in Section 4. In the specification of the 
methods and extensibility primitives, we denote a 
method or attribute of an object or a set of objects by 
qualifying it with the corresponding variable name 
(e.g., currentgoal). We use capital letters for 

beginning set-valued variable names and small 
letters for single-valued ones. The signature of a 
method determines the class to which it is 
attached and type of the returned value (e.g., 
class::methodO : returntype). 

An enumerative search strategy is first 
characterized by the choice of the next state to 
apply an action on, performed by the setNextState 
method, which determines in which way the 
states are investigated. If its implementation is 
such that the least recent state is chosen, then the 
search strategy is breadth-first. If it chooses the 
most recently generated state, then it implements 
depth-first search. The method action decides of a 
number of successors to be generated. Heuristics are 
used to discard bad states, which are recognized by 
comparison with equivalent ones and pruned from 
the set Succ of successor states. Pruning is a feature 
of the so-called branch-and-bound algorithm, 
which is a variant of the enumerative search one. 

Algorithm 1: Enumerative (branch-and-bound) 

enumerative::search (Sspace: SearchSpace): State 
begin 

Open :P 8etlnitState (Sspace); 
while not stopcond () 
begin 

current :I aetNextState 0; 
Open :I Open - (current}; 
if current.goal () 
then Goal := Goal u {current} 
else begin 

Succ :- action (Sspace); 
SUCC := prune (Succ); 
Open :I Open u Succ 
end 

end; 
return optimal () 

ad 

Figure 7 shows the states generated by 
Algorithm 1 implementing the breadth-first 
search strategy of System R [Selinger79] for the 
sample query. 

r-l j7 

Rl Ifi R3 

Figure.7: The states generated for the sample query 
by System R 
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search6space): State 
setInitState(Sspace): (State) 
stopCondO: boolean 
setNextState0: State 

search(Sspace): State 
MInitState... 

setNextState.. . 

SetInitState... setInitState... SetInitState... 
. . . . . . . . . 
acceptAction.. acceptAction.. . acceptAction., 

Figure 8: Class Hierarchy for implcmcn ting Randomized and Genetic Search Strategies 

3.3. Class Hierarchy for Randomized Search 

While enumerative search strategies consider 
the state space as a whole, randomized ones 
concentrate on searching a local optimal solution 
around some particular points. They consist of two 
steps. First, one or several start solutions are 
obtained by depth-first search, possibly using some 
heuristics. Second, the start solutions are improved 
until local optimal solutions are obtained. In this 
second phase, the search system framework is such 
that each state matches the goal description and 
an action is rather a transformation of a goal state 
into another goal state. Neighboring solutions are 
randomly obtained by applying transformations. A 
local optimal solution is the best among all the 
neighboring solutions. Randomized strategies 
involve the definition of several parameters (the 
number of transformations to apply, the criterion 
for accepting a transformation, the criterion for 
considering a solution to be a local optimal one,etc). 

Genetic strategies start with a population of 
solutions, from which new generations are built by 
successively applying crossovers to individuals of 
the original population. A crossover generates two 
new individuals obtained by merging 
characteristics of the parents. If mutations are 
allowed, then an action in a genetic strategy is a 
crossover possibly followed by a mutation. 
Compared to other strategies, the genetic one is 
easily adaptable to the problem: by changing some 
parameters (e.g., the number of generations), the 
same genetic algorithm can be customized to get 
faster to an acceptable solution or to spend a longer 

time to get to a better solution. Randomized 
strategies can be modelled as particular cases of a 
genetic algorithm (Eiben901. It is sufficient to 
reduce the size of the population to one and to 
produce new individuals only by mutations. 

Figure 8 presents an extension of the class 
hierarchy for a search system that supports 
randomized and genetic strategies. Now, an action 
corresponds to the application of a transformation 
or a crossover to complete PTs. 

81gorlthm 2: Randomized (abstract genetic algorithm) 

rndomired::search(Sspace:SearchSpace) : State 
egin 

8etlnitState (&pace); 
while not stopCond () 
begin 

nmoves :I 0; 
while IocalStopCond () 
begin 

Current := select 0; 
Succ :I actlon (Sspace); 
if acceptAction (Succ) 
then Goal := (Goal - Current) u Succ; 
nmoves :I nmoves + 1 

end; 
setNextState () 

end; 
return optimal () 

Algorithm 2 implements the generic control 
strategy for randomized strategies. It is based on 
the Abstract Genetic Algorithm proposed in 
[Eiben90] for modeling at the same time the genetic 
and simulated-annealing strategies. The methods 
in bold are the extensibility primitives for them. 

Proceedings of the 17th International 
Conference on Very Large Data Bases 

368 Barcelona, September, 1991 



4. Customizing the Search Strategy 
In this section we show how to customize the 

search strategy by overloading the extensibility 
primitives introduced by the SearchStrategy class 
hierarchy. They capture the common aspects of 
various known search strategies. The advantages of 
this approach are twofold. First, an already 
implemented search strategy can be easily tuned or 
modified. The motivation for this is that, even to 
well settled strategies (e.g., simulated annealing), 
several algorithms have been proposed 
iIoannidis87, Swami88, Ioannidis901 and the 
differences between them go beyond the simple 
setting of parameter values. Second, new search 
strategies can be implemented with little effort. 

4.1. Search Strategies for Generating FTs 

To customize the search strategy for generating 
I%, one must specify the methods attached to the 
enumerative class and its subclasses. These are: 

setInitState, stopcond, setNextState, action and 
prune. They have been used in the implementation 
of the search method shown in Algorithm 1. To 
specify them, the extensibility primitives 
associated to the instances of the Join class are 
used, which refer to the properties of join nodes. 
Examples of this is j.setRelationsO, that returns 
the set of all the relations included in a join node j, 
and j.equivalent(k), which returns true if join node j 
is equivalent to k (according to some criterion, e.g., 
the set of contained relations). 

Table 1 summarizes the specifications of the 
extensibility primitives for PT generation. Three 
cases are discussed here: the implementation of an 
enumerative branch-and-bound strategy, the one in 
[Selinger79] and the depth-first generation of a 
single or several PTs, which constitute the start 
solution for randomized or genetic strategies. In 
this table, we refer to the set of all relations of the 
input query by Relation. 

Branch-and-bound Augmentation Heuristic Augmentation Heuristic 
(one PT) (a population of PTs) 

SetInitStatc return Sspace.phyEnt j:=Sspace.phyEnt.leastCardO return Sspace.phyEnt 
(Sspace) phyEnt := phyEnt - {j) 

I return (jl 
stopcond (Open = 0) (Open = 0) (Open = 0) 

setNextState jeOpen I jeOpen I je Open 1 (j=Open.mostRecentO 

j=Open.leastRecentO j=Open.mostRecentO A card(j.setRelationsO > 1)) v 

(j = Open.leastCardO) 

action(Ssp) Ssp.expand(current) Ssp.expand(current) Ssp.expand(current) 

prune CJ) 1 j E J 1 Wj’ E JNj’.equivalent(j) A j E J 1 j=J.leastCardO j E J 1 j=J.leastCardO 

j.costO c j’.costOl ) 

Table 1: Extensibility primitives for PT generation 

In the enumerative strategy of [Selinger79], as 
all the relations are used for starting PTs, the set 
Open is initialized with all of them. Search stops 
when no more open states exist . The extensibility 
primitive stopCond tests whether the Open set is 
empty. The search strategy proceeds by breadth- 
first. Thus, setNextState is specified using a 
method leastRecent on the Open set. Pruning 
eliminates expensive states that are equivalent to 
less expensive ones, where equivalence is related to 
the contents in terms of relations. 

We now show that the same set of extensibility 
primitives presented for a branch-and-bound 
enumerative search strategy can be overloaded in 
order to transform Algorithm 1 into an algorithm 
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that generates only one solution by depth-first 
search. We model the Augmentation Heuristic 
[Swami89], in which the relation with the least 
cardinality is chosen for starting a PT. This 
relation is eliminated from the phyEnt set, so that 
further calls to search will choose other relations. 
Compared to the previous version of setInitState, 
only one join node is generated, that corresponds to 
the relation with least cardinality. A depth-first 
search strategy is characterized by choosing the 
most recent state as the next one to expand. Pruning 
reduces the successors to only one state. Several 
heuristics can be used for choosing the state to be 
kept (five such heuristics have been proposed in 
[Swami89]1. One possible heuristic is to keep the 
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state that corresponds to the most selective join. 
This means that the intermediate result is the one 
of least cardinality. 

In the case of a depth-first search strategy for 
generating a population of PTs, as needed in genetic 
strategies, all the relations are used for starting 
PTs. Actions proceed by depth-first search until one 
complete PT starting with each different relation 
is genera ted. 

4.2. Randomized Strategies for Transforming PTs 

Table 2 shows the specifications of the 
extensibility primitives of Algorithm 2 to 
implement either Iterative Improvement, 
Simulated Annealing or a genetic strategy. 

4.2.1. Iterative Improvement 

Iterative Improvement is characterized by the 
choice of several start states, one for each run (the 
inner loop in Algorithm 2). Both setInitState and 
setNextState generate one start solution (i.e., a 
complete PT) by calling AH.search, which 
implements the generation of one PT by 
Augmentation Heuristic. Each time AHsearch is 

called, a new PT is depth-first generated starting 
at a different relation. For each start state, which 
is the unique element of the Goal set, neighbor 
states are obtained (i.e., by applying actions, 
which correspond to transformations) until a local 
mininum is reached. The modified PT replaces the 
original one if the acceptAction method returns true 
(i.e., if the cost of the transformed PT is less than 
that of the original one). The method stopcond 
corresponds usually to a time constraint LSwami89X. 
A local minimum is defined as the least costly 
solution in the neighborhood of the current state. 
Then, to guarantee that a local minimum was 
reached, all the neighbors of the current state 
should be tested, which would be very expensive. 
We simplify the criterion, by setting to zero the 
counter of transformations, nmoves, every time the 
current state is replaced by a neighbor conditioned 
by acceptAction (i.e., the replacement of the 
current state implies that the neighborhood has 
changed). Then, the method 1ocalStopCond can be 
related to the number of neighbors of a state. This 
has been estimated as card(phyEnt) * k (factor k 
has been proposed to be equal to 1 in [Swami891 and 
to 16 in [Ioannidis901). 

Iterative Improvement Simulated Annealing Genetic Algorithm 
setInitState Goal := AH.searchtSspacel Goal := AH.search(Sspacel Goal := AH*.search(Sspacel 

(Sspace) temp := 2 l s.costO numGen := 0 
stopcond elapsedTime > maxTime tempclh numGen 2 maxGen 

Goal unchanged for 4 stages 

IocalStopCond nmoves > card(phyEnt)*k nmoves > card(phyEnt)*k nmoves > card(Goal)/2 
select Goal Goal Goal.2randomFitncssO 

action(Ssp) Ssp.transform(Current) Ssp.transform(Current) Ssp.crossover(Current) 

acceptAction (s E Current) (s’e Succ) (s E Current) We Succ) true 

(Succ) (s’.costO c s.costO) (s’.costO < s.costO) v (s’.costO > 
if true then nmoves := 0 s.costO A Prob (temp,s,s’)) 

SetNextStatc Goal := AH.search(Sspace) temp:=0.95*temp numGen:=numGen+l 

Table 2: Extensibility Primitives for implementing randomized and genetic strategies 

4.2.2. Simulated Annealing the system has frozen). It is important to . . 
Contrary to Iterative Improvement, all the 

stages in Simulated Annealing (the inner loop in 
Algorithm 2) are performed over the same start 
state. Besides nmoves, the system has a 
temperature property, temp, that is set by 
setInitState and reduced by setNextState. The 
method stopcond, which is the global stop 
condition, is related to the temperature and not to 
the elapsed time (it corresponds to the fact that 

parameterize this constraint, because several 
authors provide different definitions for it 
[SwamiSS, Ioannidis901. To precise “unchanged for 4 
stages”, some temporary variables are needed that 
are not shown here. The specifications of 
1ocalStopCond and action are the same as in 
Iterative Improvement. The criterion for accepting 
a transformation is different, because transformed 
PTs with higher cost than the original PT are. 
accepted with some probability. Then, the method 
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acceptAction uses Prob, which is a boolean function 
that returns true with a probability that depends 
on temp and the costs of the compared states, 
usually e ~~s’~cost~s~cost~~temP. Accepting bad moves 
corresponds to perform what is called a hill 
climbing: on the other side of the hill there may 
exist a better solution. 

4.2.3, Genetic Algorithms 

To implement a genetic algorithm, a population 
is first generated by calling AH*.search, which 
implements Augmentation Heuristic for generating 
a population of PTs. Unlike with randomized 
strategies, where the Goal set contains a unique PT, 
it contains several PTs. Primitive stopcond is 
related to a parameter maxGen, which specifies 
the number of generations to be produced. The 
number of generations numGen is increased each 
time a new generation is produced, which is 
performed by the inner loop of Algorithm 2. This 
stops when a new generation with the same number 
of individuals as the previous one has been 
produced. The selection of the parents for crossover 
is performed by select, usually by applying a 
random function biased by the fitness of 
individuals Le., the ratio between their costs and 
the total cost of all the individuals). An action in 
this case is a crossover performed by any available 
operator, which generates two individuals of the 
new generation from two selected parents from the 
precedent generation. The new generation always 
replaces the previous one. 

5. Enforcing Successful Termination 
When the search strategy is extensible, it is 

essential to assure that the optimizer behaves as 
expected and that the process will end. The 
extensibility primitives that we proposed can also 
be used for specifying asserfions that provide a 
form of monitoring the behavior of the optimizer. 
The introduction of some form of metacontrol by 
assertions depends on the implementation 
environment of the optimizer. In any case, it is 
important to be able to make explicit the condi Cons 
that guarantee the success of the optimization 
process. 

To exemplify, we state the assertion for 
successful termination. Successful termination is 
attained if, when the search stops, at least one 
goal state has been obtained. The control of the 
optimization process is implemented by the search 
algorithms. In the two of them, a step forward is 
performed by the action method, that is 
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responsible for generating successor states from the 
current state. Successful termination is, then, 
characterized by one of two conditions: either when 
stopcond is met there exists at least one state that 
matches the goal description (i.e., a complete PT) 
or there exists an open state that is still liable to 
an action. We state formally the assertion for 
successful termination: 

11 (stopCondO A Goal#O) v (action(Sspk()) 
We discuss separately the assertion in the case 

of each one of the algorithms. 

5.1. Enumerative Strategies 

In PT generation by Algorithm 1, the assertion 
can be rewritten as: 

11 (Open=Or\ Goal&) v (Ssp.expandkurrent)r[)) 
The methods attached to the Search Space class 

hierarchy can also be specified in a high-level 
way, for example: 

Definition 1: A PT is generated by successively 
applying expand which is defined as 
Sspace.expand(s) = ( j E Join 1 j.outer = s A 

j.inner e Sspace.setInners(s)) 

Recall that the definition of setInners, that 
specifies the set of possible inners for a join node, is 
referred to as adaptability of the search space 
[OnoS)O]. Tn the following definition, we assume 
that Relation is the set of all relations referenced 
in the input query, Predicate is the set of join 
predicates of the input query and an instance of 
Predicate has an attribute relations that is the set 
of relations referenced in the predicate. 

Definition 2: Search space NX, in which bushy 
PTs and PTs with Cartesian products are not 
investigated, is characterized by the following 
specification for seff nners 
NXsetInnersW = ( r E Relation 1 

(s.setRelationsO u (r))s Relation A 
(s.setRelationsO A (r)) = fl A 

(3pe Predicate)((r)=p.relations-s.setRelationsO)) 

Definition 2 includes the disjointness criterion of 
(Ono901, i.e., (ssetRelations0 A (rl = 0) besides the 
requirements of a join predicate and a bound on, 
setRelations (i.e., @setRelations u (r-1) c 
Relation). In our implementation, as any set of 
relations (i.e., of a State or of a predicate) is 
implemented through a bit string, ,it is very 
efficient to determine setInners. 
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The formalized assertions and the specifications 
of the extensibility primitives are the basis for 
proving the successful termination of the 
optimization process. The proofs are not shown 
here for space reasons (see Lanzelotte9lal for more 
details). 

5.2. Randomized Strategies 

In randomized or genetic strategies, Goal f () is 
always true. A PT obtained by an action, which 
corresponds to the transform or crossover methods, 
should satisfy the same constraints that were 
posed when generating PTs (this is referred to as 
valid transformations in [Swami881). Analogously 
to the expand method, the specifications of 
transform and crossover require the setInners 
definition. 

5.3. Controlling the Behavior of the Optimizer 

The ability to specify assertions for controlling 
the behavior of the optimizer using the 
extensibility primitives illustrates well their 
power of abstracting the optimization problem. 
Assertions can be used as a basis for an exception 
mechanism, which is worth in two ways. Either an 
exception means an error condition or it enables the 
dynamic change of the behavior of a program, 
which is useful in our context. For example, the 
specifications of some extensibility primitives can 
be changed during the optimization process to 
conform to some unexpected configuration of the 
input problem. An example is the possibility of 
moving from a search space that does not admit PTs 
with Cartesian products (NX) to one that does by 
changing the definition of setInners. Another 
example is to change the goal condition (usually 
s.setRelationsO = Relation) to be also met in case of 
non-applicability of the expand method during PT 
generation: 

II 

s.setRelationsO = Relation v Ssp.expand(s) = 0 
=a s.goalO 

This goal condition prevents the optimizer from 
investigating PTs with Cartesian products. The 
search stops when the incomplete PTs which do not 
involve Cartesian products have been generated. 
Of course, the incomplete PTs must then be put 
together to form the complete PTs, but this task 
does not require any more search, unless the 
optimizer considers features that influence the 
execution time when commuting the operands of a 
Cartesian product (e.g., the scqucnce order or the 
site of the results). 
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The proposed object-oriented approach matches 
well the idea of using the violation of assertions as 
exceptions. The dynamic change of the 
extensibility primitives can be performed through 
late binding. New subclasses can be specified where 
the extensibility primitives are overloaded and 
the dynamic change of behavior is obtained by 
moving an object from one class to a subclass. 

6. Conclusion 

In this paper, we gave a solution to the 
extensibility of the query optimizer search 
strategy. This solution is based on the clear 
separation between the search space and the 
search strategies for which we provided an object- 
oriented design in order to gain extensibility. 
Therefore, we maintain high independence of the 
search space from the optimization algorithms and 
related heuristics. By viewing query optimization 
as a particular case of a search system, we were 
able to capture the extensibility primitives which 
can be customized to generate various search 
strategies. We illustrated our solution in specifying 
enumerative search strategies with different 
heuristics and three randomized strategies 
(Tterative Improvement, Simulated Annealing and 
genetic). 

This approach can be useful in many ways. 
Overall, we can use it to build an optimizer with 
several search strategies, each one being best for a 
particular class of queries. Thus, the search 
strategy can be dynamically selected to achieve 
the desirable trade-off between optimization cost 
and execution cost for a given query. In the case of 
an ad-hoc query for which a randomized strategy is 
probably best, an “optimization budget” could be 
assigned to the query (somehow by the “user” or the 
compiler) in order to provide an upper bound for 
optimization cost. 

An important result was that the extensibility 
primitives also provide a means for specifying 
assertions that enforce the successful termination of 
the optimization process. Unlike rule-based 
optimizers, our approach insists on the procedural 
specification of the control in search strategies. 

To simplify our presentation, we limited 
ourselves to relational queries, in fact, conjunctive 
select-project-join queries. Thus, we were able to 
reuse the model of processing trees 
[Krishnamurty86] for specifying the search space. 
To deal with more general queries such as object- 
oriented or deductive queries, the same approach 
holds providing that the search space is changed 
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(in [Lanzelotteglb] we extended this approach to 
object-oriented queries). 

The proposed solution has been validated at 
INRIA by the implementation in C++ of an 
optimizer prototype, as part of the EDS database 
compiler [Bergstein I. The code corresponding to 
the search space class hierarchy for TTs as dcfincd 
in this paper consists of about 800 lines of code. 
Another implementation of the search space class 
hierarchy for coping with an object-oriented 
database model and language was implemented 
where 400 of those were replaced by 600 lines of 
code. Two search strategies implementing the 
branch-and-bound algorithm and Itcra tivc 
Improvement incurred only 60 additional lines of 
code each. These numbers are quite encouraging. 
The prototype will, be enhanced with other 
strategies and extended to cope with more general 
cost models (e.g., considering the cost of evaluating 
complex predicates). Overall, we plan to use it as 
an experimental vehicle to measure the 
effectiveness of randomized search strategies in 
optimizing more complex (deductive, object- 
oriented) queries. 
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