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Abstract 
A non-equijoin of relations R and S is R bnnd join if the join 
predicate requires valnes in the join att.ribr1t.e of R 10 fall 
within a specified hand ahcmt the valnrs in the join r.tt.rihnte 
of S. We propose a new algorithm. t.ermed a partitionerl hnnd 
join, for evaluating band joins. We present a comparison be- 

tween the partitioned band ,join algorithm and the classical 
sort-merge join algorit.hm (op(.imixed for band ,jnins) using 
bot,h an analytical model and an implemenlaCon on top of 
the WiSS storage system. The results show that the par- 
titioned ba.nd join algorithm outperforms sort.-merge unlrsp 
memory is scarce and t.he opernnda of t,he join are of equal 
size. We also describe a parallel implementation of the pnr- 
titioned band join on the Gamma database machine. and 
present data from speedup and scalcup experiments demon- 
strating that the partitioned hand join is efficiently paral- 
lelirsble. 

1 Introduction 
In this paper we consider evaluation algorithms for a clans of 
non-equijoins that we call “hand joins.“ A bantl join hctwrcsrl 
relations R and S on nt,trihncas fLA and S. R is a ,join in whit h 
the join condition can be writ,ten I?.. A -’ CI < S. R < R. A + (‘2 
The constants cl and c? may br: oq~lnl, and one of I.hr Iwo 
may be zero. We use the term “hand” heca.uae a InpIe 7 in R 
joins with a tuple s in S only if r.A appears within a “hand” 
of size cl + c2 about s-5. To the best’ of our knowledge, 
currently systems implement band joins using eitfher nested 
loops or sort.-merge. We propose a new algorithm, the par- 

titioned band join algorif.hm, and present hobh nnalytic and 

experimental evidence (from an implt.ment’at.ion on top of 
the WiSS st,orage system [CDKKM]) t.hat it is fast.er I.han 

sort-merge over a wide range of band join queries and mem- 
ory sizes. Another desirable property of the partitioned band 
join algorit.hm is that it maps well to shared-nothing paral- 
Irl dntahase machines. We also present experimental scaleup 
results from our implementation on the Gamma database 
machine [DGS+ 901. 
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Band joins arise in queries that require joins over contin- 
UOllfi “real world” domains such as time or distance. For 
example. if the triples in R and S represent events, an’d the 
at,lribntes R.A and S.B represent the times at which events 
occnr, then finding all pairs of events that occurred at nearly 
t,he same time will entail a band join. Note that unless the 
clocks measuring events in R and S are exactly synchronized, 
even finding events that occurred at the “same time” will re- 
quire a band join, where the band is large enough to capture 
the skew hetween the two clocks. 

From an algorithmic point of view, band joins are interest- 
ing because they present challenges not present in equijoins. 
There is a growing body of both analytic and experimen- 
tal evidence that hash-based algorithms are highly effective 
for equijoins, surpassing the performance of sort-merge and 
nested-loops almost everywhere. Unfortunately, hash-based 
algorithms are ineffective for band joins, since the join con- 
dit.ion involves ranges of values rather than exact matches 
of valuen. Furthermore, there is no way to use hashing to 
pnrt,ilion R into disjoint Rubsets RI, Ra,. . . , Rk, and S into 
diqjoint subsets St, Sz, , , , Sk, such that the band join can 
be computed by the union of the joins Ri W S,. 

The algorithm we develop in this paper, the partitioned 
band join algorithm, works by partitioning R and S in such 
a way that the S partitions overlap both portions of other 
S partitions and portions of multiple R partitions. The ba- 
Ris for t.hr partibioning lies in finding the quantiles for the 
,join attrihut,e of R; t,o nvoid iully sorting R, we find these 

quantiles by sampling. We compute the number of samples 
required to find the quantiles to the required accuracy and 
confidence by using the Kolmogorov test statistic. The cost 
of this sampling is included in both our analytic and experi- 
mental results. 

A critical parameter of a. band-join is the number of t,u- 
PICR of R and S lhat fit within one band. (Two tuples 11 and 
(2 appear in the same band if the constants in the join at- 

tribute in each are within CI +cz of each other.) In this paper 
we assume that the bands are “small” in the sense that the 
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number of tuples that fit in one band will also fit in memory. 
This is the most interesting case t.o consider; if the number 
of tuples that fit in one band will not, fit. in memory, then the 
join result will be huge, and gains due to clever evaluation 
algorithms will be swamped by the cost of writing the result 
relation to disk. 

The rest of this paper is organized as follows. Section 2 de- 
scribes the partitioned band join algorithm, while Section 3 
describes our adapt,ation of the sort-merge join algorit.hm to 
band joins. Section 4 presents an analytic comparison be- 
tween the partitioned band join algorithm and the classical 
sort-merge join algorithm applied to band joins. In Section 5 
we describe an implementation of the algorithms and present 
results from experiments with the implementation in Sec- 
tion 6. Section 7 describes how the partitioned band join al- 
gorithm can be adapted for a shared-nothing multiprocessor 
and gives speedup and scaleup results from the implementa- 
tion on Gamma. 

2 Partitioned Band Join 
The partitioned band join algorithm works by splitting up R 
and S into partitions Ri and Si, then computing the band 
join by joining Ri and Si for each i. The algorithm achieves 
its high performance by carefully choosing the partition sizes 
and overlaps, by performing the partitioning without sorting 
either R or S, and by using an efficient method for computing 
the subjoins between Ri and S,. 

2.1 Overview of the Partitioned Band 
Join Algorithm 

A primary goal of the algorithm is to try to minimize the 
number of disk accesses by guaranteeing that pages never 
need to be re-read during the join of Ri with Si. We can 
achieve this goal by ensuring the following two conditions: 

1. Each of the Ri fits entirely into t.he buffer pool, and 

2. For every tuple r in Ri, all tuples of S that join with T 
appear in Si. 

When these two conditions are satisfied, then we can join R, 
and Si by reading R, into memory, then reading in S, one 
page at a time, joining all tuples on each page of S, with all 
of Ri before reading the next page of S;. 

We ensure the first condition by choosing partitioning ele- 
ments by sampling R. This process is described more fully in 
Subsection 2.2. Here we consider the second condition, which 
determines the required overlaps between the partitions. 

If condition two above is to be satisfied, then it must be the 
case that the range of tuples in S, overlaps the range of tuples 
in Ri. The precise requirement is that if hi is the greatest 
element appearing in R.A in some t,uple of Ri, and I, is the 
least element appearing in R.A in some tuple of R,, t.hen S, 
must contain all tuples s such that 1, - cr < s.E 5 h, + cz 
(A and B are the join attributes of R and S, respectively). 
Since it is possible that h, = li+r , this implies that the range 
for Si+r must overlap the range for Si by CI + ~2. 
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Assuming that the partitioning values have been deter- 
mined (by sampling), the tuples of the relations must actually 
be partitioned into the R, and the Si. There are two ways to 
do this, which we term “hybrid” and “Grace” partitioning, 
after the corresponding partitioning methods for hash-based 
equijoins [DKO+ 84, KTMo83]. Grace partitioning works by 
allocating a number of buffer pages equal to the number of 
part.itions. Then each page of the relation is read into an 
input. buffer, and each tuple 1 on the page is copied into the 
buffer page for the partition in which t belongs. To deter- 
mine which partition a tuple t belongs, we binary search a 
table of partitioning values (constructed by sampling, as de- 
scribed below). The table contains the join attribute values 
that mark the boundaries between the R partitions. As a 
buffer page for a partition is filled up, it is written to disk. 
Note t,hat when partitioning S the tuples in the overlapping 
portions of the S partitions are copied into multiple buffer 
pages, since these tuples must appear in multiple consecutive 
partitions. 

Suppose that s is determined (by consulting the partition- 
ing table) to fall in partition Si, and suppose again that we 
are computing the join S.B -cl 5 R.A 5: S.B+cz. Further- 
more, let the value zi+r divide partitions Ri and RI+!. To 
see if s also belongs in S,+r , we check if the join attribute of 
s, denoted s.E, satisfies Zi+r - cr 5 s.B 5 z,+r + cs. This 
can be seen by noting that the largest value in Si is z,+r +cz, 
while the smallest value in Si+l is Zi+r - cl. 

Hybrid partitioning works in the same way as Grace parti- 
tioning, except that enough buffer pages are allocated to keep 
all of RI in memory during the partitioning phase. Then af- 
ter R has been partitioned, partition RI remains in memory, 
while pa.rtitions Rz, . . . , RN are on disk. When S is being 
partitioned, if an S tuple s falls in partition Sr, it is imme- 
diately joined with RI rather than written to disk. The goal 
of hybrid partitioning is to avoid re-reading RI between the 
partitioning and joining phases. 

Once the relations have been partitioned as described 
above, the band join problem is reduced to computing the 
individual joins R, W Si for 1 5 i 5 I;, where I; is the total 
number of partitions. The basic idea for computing one of 
these subjoins, as mentioned above, is to read in Ri, then 
read in Si one page at a time, joining each tuple of the cur- 
rent S page with all of Ri. To avoid scanning all of R, for 
each S tuple, we first sort R, using an in-memory sort. Then 
the join of each S tuple s with Ri can be accomplished by 
first binary searching R, to find the first R tuple that joins 
with s, then scanning R, until we pass the last R tuple that 
joins with s. 

2.2 Sampling and Partitioning 
To guarantee that each R, fits in memory, we need to parti- 
tion R into approximately equal sized partitions, each parti- 
tion about the size of the buffer pool. The most straightfor- 
ward way to partition R would be to sort R on R.A, then scan 
R to find the partitioning elements. This would incur the cost 
of a full iort of R during the partitioning phase, something 
that we wish to avoid. A better way is to randomly sample 
R to determine partitioning elements that with high proba- 
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bility are close to elements that would be found if we sorted 
R. 

Suppose that, we wish to partition R into k equal sized, 
disjoint partitions. We begin by taking n random samples 
(tuples) from R which are then sorted on R.A. Let the n 
sorted tuples be designated ~1, ~2, , . . , T,, in order of increas- 
ing R.A valhe. If we wish to part,it,ion R into k partitions 
RI through &, we take T,,/~.A t,o he the partitioning el- 
ement between RI and Rz, r2”lk.A to be the partit,ioning 
element bet.ween R2 and RJ, etc. By the Kolmogorov test 
statistic [Con’ll], with 99% certainty the percentile of each 
of the partitioning elements is off by at most plus or mi- 
nus l.SZS/fi. F or example, suppose we take 256 samples, 
recording the join attribute value of each sample, and then 
sort the resulting 256 values. If a value z appears at the 50% 
mark in the sorted list of samples, t,hen with 99% certainty I 
appears between the 40th and 60th percentile in the sorted 
list of the join attribute of all tuples of R. Note that this error 
guarantee requires no assumptions about the distribution of 
the values in R.A; the Kolmogorov test is a non-parametric 
test that works equally well for any distribution. 

Choosing the number of partitions is an interesiing prob- 
lem, perhaps best explained by an example. Suppose that. R 
has jR( pages, and that, we have lRj/3 memory huffer pages 
available. Furthermore, suppose that. we are using hybrid 
partitioning. The buffer pages required by hybrid during 
partitioning are of two types: those for partition RI, and 
those for partitions R2,. . . , Rk. For the purposes of this ex- 
ample, we will ignore those pages for R2,. . , , Rk, since k will 
be small but the size of RI will not. (Our implementation 
does not ignore these pages, but, including t,hem complicat,es 
the exposition.) 

In an ideal situation, we could choose k = 3, and RI would 
exactly fit in memory. Since our partitioning elements are 
only approximate, we cannot expect the partitions to be of 
equal size, so k = 3 is unreasonable. Note that if RI is actu- 
ally larger than the buffer pool, the correctness of the algo- 
rithm is not affected: however, during both the partit.ioning 
and t,he joining phases performance will suffer due t,o buffer 
pool thrashing. Thus, for performance reasons, we need to 
pick k so that it is highly unlikely t,hat RI will exceed the 
available buffer space. 

The next logical choice is to set k = 4. In this case, the 
expected size of RI will be (RI/4 pages, so we are left with 
IR1(1/3 - l/4) = IRj/l2 buffer pages available to handle any 
overflow due to errors in the est,imation of the partitioning 
elements. Now suppose we wish t,o be 99% certain that RI fit,s 
in the buffer pool. With it samples, the expected error in the 
quantiles is l.SZS/fi. Since a quantile is just a percentage, 
this means that the expected number of error pages is 1.628 * 
IRI/fi, We need that this quantity is less than IR1/12, SO 
the equation defining the number of samples required is 

which implies that we must take at least. n = 382 samples. 
Still another choice would be to set. k = 5. The same 

analysis as above shows that in this case we must take only 
n= 150 samples. However, now the expected size of RI is 
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smaller by IRj/4 - jR1/5 = IRl/20. This in turn means that 
we can expect to do /RI/20 more reads and writes with k = 5 
than with k = 4, since we save less by leaving a smaller RI 
in memory. 

To summarize, there is a tradeoff between reducing non- 
sampling I/O by choosing k small, and reducing sampling 
I/O by choosing k large. To resolve this tradeoff, we have 
writ.ten an optimization procedure that takes as input IRI, 
the available memory size, the cost of a sample, and the cost 
of other I/O, and chooses a reasonable k and the number of 
samples required so that with 99% certainty there will be no 
thrashing of the buffers. We re-emphasize that this is not to 
say the join algorithm is 99% correct; it is always correct, 
the .99% merely refers to the probability that no paging of 
the buffer pool will be needed. 

An interesting point to note is that the number of samples 
required does not depend upon IRIB Rather, it depends upon 
the ratio of IRI to the available memory. This implies that 
if we scale IRI and the available memory together (keeping 
the ratio constant) the cost of sampling relative to the cost 
of reading the relation diminishes. 

3 Sort-Merge Band Join 
The standard sort-merge join algorithm for equijoins can be 
adapted to handle band joins. However, in the case of band 
joins, the algorithm can be expected to “back up” much more 
often than in the case of equijoins, as it scans to pick up 
joining pair5 of tuples. Our implementation of sort-merge 
was further complicated in that we used the optimization of 
skipping the final merge of each sort, performing the j&n 
on the final set of runs instead of on the two completely 
sorted relations. More detail on this optimization in particu- 
lar, and on the band sort-merge algorithm in general, is given 
in Section 5. Here we focus on the question of how to handle 
backing-up in the final joining merge. 

Suppose that we have sorted R and S down to their final 
set of runs (just, before the merge that would produce the 
sorted relations). The general idea for the band merge-join 
is as follows: at all times, we have in the memory buffers 1) 
one page from each run of R, 2) one page from each run of S, 
and 3) a ‘window” of pages from the fully sorted S relation. 
Let the pages in this Uwindow” of the sorted S relation be 
numbered S[m], S[m + l], . . ., S[m + k], where S[m] is the 
most recent page of tuples merged out of the S runs. 

At any given time, let T be the tuple with the smallest value 
in any of the R sorted runs. That is, if we were proceeding 
with the final merge in a sort of R, then r would be the 
next tuple to be added to the output. The tuple r is used 
to probe the tuples in the S window, searching for joining S 
tuples. If r does not join with any tuplee in page S[rn f k], 
then S[rn + k] is eliminated from the buffer pool, since no 
subsequent R tuple could join with any tuple in S[m + k]. 
Note that it is not necessary to write S[m + k] to disk, since 
it will not be referred to again. If r joins with the last tuple 
in sorted order in page S[m], then another page of S tuples, 
S[m - 11, is merged out of the S runs. Finally, r is deleted 
from the buffer page for the R run from which it was taken. 
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If r was the last tuple on this page, the next page from that 
R run is read into memory. 

4 Analytic Comparison 
In this section we give simple cost formulas for evaluating 
the relative performance of sort-merge band join and both 
variants of the partitioned band join algorithm (that is, using 
hybrid and Grace partitioning.) The formulas below omit the 
cost of creating the answer tuples and writing the answer, 
since this cost will be similar for both algorithms. 

For both algorithms, we used the following set of parame- 
ters: 

COMP 0.001 ms. to compare keys 
KEYSWAP 0.003 me. to exchange two keys 
MOVE 0.010 ms. to move a tuple 
SWAP 0.030 me. to swap two tuples 
IOSEQ 10.0 ms. to do a sequential IO 
IORAND 25.0 ms. to do a random IO 

Furthermore, assume that t,here are B tuples per page, let. R 
contain /R) pages, and let S cont’ain ISI pages, and let, F he 
the fraction of R pages that fit in memory. 

For the sort-merge band join, assuming that the memory 
is large enough so that both relations can be sorted in two 
passes each, the I/O cost consists of three parts: 

(1 R( + 1st) * IOSEQ to read the relations 
+ (IR\ + ISI) * IOSEQ to write t.he initial runs 
+(/RI + ISI) * lORAN& re-read initial runs 

Assuming that when forming the initial runs we sort, [join 
attribute, pointer) pairs using some n log n internal sort and 
then copy the runs into sorted order (in memory), the CPU 
cost for the algorithm is 

JR] * B * log(JRJ * B r F) * (KEYSWAP + COMP) 
// form initial R runs 

+ la.31 * B * log(lSI * B + F) * (KEYSWAP + COMP) 
// form initial S runs 

+ (IRI + ISl) * MOVE 
// copy to sorted positions 

+ IRI * B * log(JRJ/F) * (COMP + SWAP) 
// merge R runs 

+ 1st * B * log((Sl/F) * (COMP + SWAP) 
// merge S runs 

The total cost of the algorithm is the sum of the CPU and 
IO costs. 

For the Grace partitioned algorithm, the I/O consists of 
four parts. Letting s be the number of samples taken, and Ic 
the number of partitions, the I/O cost is 

s * IORAND 
// initial sampling 

+ (IRI + IS0 * IOSEQ 
//to read the relations 

+ (IRI + 1st) * IORAND 
// to write the partitions 

+ (IRt + 1st) * IOSEQ 
// to re-read partitions 
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The CPU cost is given by 

(IRI + ISI) * B * log(k) + COMP 
// find partition 

+(IRI + IS() * B * MOVE 
// copy to output partition 

+ IRI + B + log(R * B/k) + (KEYSWAP + COMP) 
// sort R partitions 

+tRj*B*MOVE 
// copy to sorted order 

t 1st * B * log(R * B/k) * COM P 
// find first joining R tuple 

Again, the total cost is the sum of I/O and CPU costs. 
Finally, for hybrid partitioning, the cost is 

s * IORAND 
// initial sampling 

t (IR1-t ISl) * IOSEQ 
// to read the relations 

t ((k - 1)/k) + IRI t ISI) * IORAND 
// to write the partitions 

+ ((k - 1)/k) * jR1-f ISI) * IOSEQ 
// to re-read partitions 

The CPU cost is the same as the CPU cost for Grace parti- 
tioning, and again the total cost is the sum of I/O and CPU 
costs. 

We tested these equations for a wide variety of parameters, 
and also tested similar cost formulas for two other algorithms, 
nested-loops and a variant of the partitioned band join algo- 
rithm in which for 1 5 i 5 t, both R; and Si are sorted 
and are simultaneously memory resident. Since these two 
algorithms were worse than sort-merge and the basic parti- 
tioned band join algorithms everywhere, we did not pursue 
them further. A representative graph of these cost formulas 
for various fractions of R fitting in memory appears in Fig- 
ure 1. In that graph, both R and S had 500 pages, and 40 
tuples per page. The optimal number of samples and parti- 
tions for each memory configuration were computed by the 
same optimization procedure used in our implementation of 
the partition band join algorithm. Since the model gave per- 
formance results similar to our implementation, we defer a 
discussion of the performance results until Section 6. 

5 Implementation Details 
In order to evaluate the relative performance of the sort- 
merge and partitioned band join algorithms, each was im- 
plemented using the single user version of WiSS [CDKK85]. 
The services provided by WiSS include sequential files, byte- 
stream files as in UNIX, Bt tree indices, long data items, 
an external sort utility, and a scan mechanism. A sequential 
file is a sequence of records that may vary in length (up to 
one page) and that may be inserted and deleted at arbitrary 
locations within a file, Optionally, each file may have one or 
more associated indices that map key values to the record 
identifiers of the records in the file that contain a match- 
ing value. One indexed attribute may be designated to be a 
clustering attribute for the file. 

Bsrcelona. September, 1991 



time 

(se4 

90 - 

80 - 

70 - 

60 - 

50 - 

1 I I 
0 0.5 1 

Percent of R in buffers 

Figure 1: Model comparison between GP, HP, and SM. 

Rather than using the standard WiSS buffer pool (which 
uses an LRU replacement policy) to buffer data pages, each of 
the join algorithms explicitly managed its own buffer space. 
Several factors motivated this decision. First, doing so sim- 
plified the task of varying the nmonnt of buffer space avail- 
able for a query without having to recompile WiSS each time. 
Second, since the WiSS sort code (which we int.ended t,o use 
as the basis for the sort-merge band join algorit,hm) already 
managed its own buffer space, doing the same thing for two 
partitioning algorithms seemed the fairest t,hing to do. Fi- 
nally, allowing each algorithm to carefully manage replace- 
ment of pages directly, ensures that each algorithm is evalu- 
ated in the best possible light. 

In order to avoid the difficulties of gathering reprodncihlp 
results on a time-shared system wit.h multiple users, file sys- 
tem buffering, and virtual memory paging, we elect.ed instead 
to use a single node of the iPSC-2 hypercube on which the 
Gamma database system is implemented. Each node has a 
386 processor, 8 megabytes of memory, and a 330 megabyte 
disk; more details are given in Section 7. 

5.1 Hybrid and Grace Partitioned Band 
Join Algorithms 

As described in Section 2, both the hybrid and Grace band 
join algorithms begin by splitting the the two relations to be 
joined, R and S, into partitions R, and S,, for 1 5 i 5 N. 
The inputs to the partitioning operator include N, t,he num- 
ber of partitions, a description of t,he partit.ioning (join) at- 
tribute (type, length, offset), an N-element partitioning vec- 
tor that specifies the upper and lower bounds of each part6 
tion (as discussed in Section 2, these bounds are produced 
by sampling the inner relation, R), and the number of buffer 
pages to be used to hold tuples of each partition during split- 
ting process. With the hybrid algorithm, typically one page 
is allocated to partitions 2 to N wit,h t,he remaining buffer 
space being used for partiCon 1. In the case of the Gracr 
algorithm, each partition is allocat,ed the same number of 
buffers, typically 1 or 2, depending on t,he number of parti- 
tions selected during the sampling phase. 

Sampling was implemented by randomly generating a key 

value for the relation, and retrieving the tuple with that 
value. For implementational convenience, we used a dense 
index on the key attribute for this purpose, although the 
ability to take random samples from a relation does not de- 
pend upon this assumption [OR89, ORX90]. 

Our sampling technique effectively means at least one I/O 
per sample (more if the pages forming the upper levels of 
the index are not resident in the buffer pool.) Optionally, 
we could sample at the page level, using all tuples on a page 
when it is brought in. (Page level sampling has been pro- 
posed in [HOT@] for the purpose of join and selection se- 
lectivity estimation.) If the tuples on each page are not cor- 
related on their join attribute, page level sampling is very 
effective, and would reduce the sampling overhead in our al- 
gorithms by a factor equal to the number of tuples per page. 
We did not implement this alternative, so our performance 
figures are “worst-case” numbers for sampling. 

Partitioning the relations proceeds as described in Sec- 
tion 2. However, as an important optimization, as the inner 
relation (R) is being partitioned, a “range-vector” filter is 
formed containing the actual minimum and maximum at- 
tribute values of each partition. As each tuple is added to its 
partition, its join attribute value is compared to the current 
minimum and maximum values for the partition to determine 
if t,he value constitutes a new minimum or maximum. This 
is most significant for the “first,, and “last,, partitions - for 
example, the range-vector only gives an upper’ bound on the 
join attribute values for tuples in the first partition. If the 
actual smallest value appearing in the join attribute of the 
first partition is z, and the band is c, then any tuple in the 
out,er (S) relation with join attribute less than I - c can be 
discarded, since it could not possibly join with any tuple of 
the inner relation. This filter is employed while partitioning 
the outer relation much as bit vector filters are used when 
processing equijoins [DG85, SD89]. 

Once both relations have been partitioned, the actual join 
proceeds as follows (the differences between the Grace and 
hybrid algorithms will be discussed below). For each parti- 
tion, the pages of the corresponding partition of the inner 
relation are read into memory and sorted (actually, instead 
of sorting entire tuples, pointers to the tuples are sorted). 
Next, the pages of the corresponding outer partition are pro- 
cessed. For each outer tuple, a lower (upper) bound is com- 
puted by subtracting (adding) the band value from (to) the 
tuple’s join attribute value. The lower bound is then used to 
perform a binary search of the sorted inner partition to de- 
termine the appropriate starting tuple. Beginning with this 
tuple, t.he outer tuple is then joined with all subsequent in- 
ner t,uples whose join attribute values are greater than the 
computed upper bound. As result tuples are produced they 
are blocked into pages and written to the result relation. 

With the Grace algorithm all partitions are treated iden- 
tically, In the case of the hybrid algorithm, the partitioning 
of t,he inner relation sorts partition 1 and leaves it resident 
in memory rather than writing it back to disk. Then, as the 
out,er relation is partitioned, tuples that overlap the range of 
partition 1 are joined immediately rather than being written 
to disk. Partitions 2 to N are processed in the same way as 
they are with the Grace algorithm. 
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5.2 Sort Merge Band Join Algorithm 

The sort-merge equijoin algorithm begins by sorting both 
relations on the join attribute. Then, the two sorted relations 
are scanned, joining tuples with equal join attribute values. 
While each tuple of the “outer” relation is examined only 
once, if the join attribute values of the outer relation are 
not unique, the scan of the inner relation must be “backed 
up” in order to produce the correct result. As mentioned in 
Section 3, adapting this algorithm to handle band joins is 
straightforward except that since each outer tuple joins with 
a band of tuples from the inner relation, the scan of the inner 
relation needs to be backed up after almost every single outer 
tuple. 

In the past our comparisons of the relative performance of 
the sort-merge and hybrid equijoin algorithms have some- 
times been criticized [Gra] for not being totally fair. In 
particular (as we ourselves first observed in fDG85]), it is 
possible to improve the performance of t.he sort,-merge join 
algorithm (for both equi- and band-joins) by combining the 
final merge phase of both sort, steps wit.h the act.unl join 
phase, avoiding reading and writ,ing the final runs of the two 
sorted relations. For this paper, we implemented this modi- 
fied merge-join algorithm as discussed below. 

Our sort-merge band join algorithm operates as follows. 
As with the hybrid and Grace algorit,hms, bhe algorit.hm man- 
ages its own buffer space so that. the replacement of pages can 
be directly controlled. The algorithm begins by performing 
a partial external merge sort of the inner relation. Given a 
K + 1 page buffer, the initial runs of K pages are sorted in 
memory using the same pointer-based, quick-sort algorithm 
used to sort the inner partitions of the two partitioning al- 
gorithms. Runs are then merged using a K-way merge until 
the first two pages of the final sort,ed run are produced. (This 
implicitly assumes that if there are B tuples per page, then 
there are no more than B tuples in the band. This was true 
for all our test cases.) At this point the sort of the inner 
relation is “suspended” until more inner tuples are needed 
(this will become clearer below). 

Next, the sort of the outer relation is initiated. This sort 
is processed in a similar fashion to the sort of the inner rela- 
tion except that as the final sorted run is being formed out,er 
tuples are immediately joined with t,he appropriate tuples of 
the inner relation. Additional tuples from the inner relat,ion 
are produced “as needed” during this join process by reacti- 
vating the sort of the inner relation to produce the next page 
of sorted inner tuples. (In effect, the sort of the inner rela- 
tion and the sort/join of the outer relat,ion are implemented 
as co-routines,) Pages of the sorted inner relation are dis- 
carded as soon as it can be safely determined that the tuples 
t,hey contain cannot possibly join wit.h any additional tupks 
from the out#er relation. Result tuples are blocked into pages 
and written to the output relation. 

It is important to understand that this performance “op- 
timization” does not come totally for free. In particular, 
during the join phase, one must. allocat,e input. buffers for 
runs of both the inner and out.er rela.tions as well as several 
buffers for the merged input tuples and t.he out,put t,uples. 
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Figure 2: 20K tuples join 20K tuples, answer 20K tuples. 

6 Uniprocessor Experiments 
In t.his section we describe a series of experiments that we 
ran on our uniprocessor implementation of the band join al- 
gorithms. In all cases the test relations were based upon the 
Wisconsin Benchmark relations [BDT83], with some fields 
modified to be more useful in testing band joins. The new 
fields will be discussed as they are used in the experiments 
below. The tuple size was 188 bytes. Furthermore, in each 
of the experiments below an answer tuple 1 was defined to 
be t,he concatenation of the pair of tuples that joined to pro- 
duce t, so answer tuples were 376 bytes long. In all cases we 
used a symmetric band, that is, cl = ~2. 

For the first experiment we ran, we used the uwo attributes 
hundreds and hundredePlus1. In a relation with N tuples, 
the attribute hundreds contains the numbers 0, 100, . . . , 
100 * (N - 1) in random order, while hundredsPlus 1 contains 
the numbers 1, 101, . . , 100 * (N - I) + 1, again in random 
order. In t*his experiment, each relation had 20,000 tuples; we 
joined column hundreds in R with hundredsPlus in S with 
a band of size two (c = 1). This means that each tuple of R 
joins with one tuple of S, and vice-versa. Figure 2 gives the 
results for memory sizes ranging from l/10 of R in memory to 
all of R in memory. The curve for sort-merge is labeled SM; 
the curves for Grace partitioned band join and the hybrid 
partitioned band join are labeled GP and HP, respectively. 

Nore the similarity in the shapes and relative positions 
of the curves to those generated by the analytical model, 
shown in Figure 1. The absolute values for the plots in the 
graphs differ for a number of reasons, primarily because 1) 
the graph in Figure 1 omits the cost of forming and writing 
the answer, and 2) we made no attempt to do an exact match 
of t.he hardware parameters in the model with the hardware 
paramet,ers of our implementation. 

The high cost for the Grace and hybrid partitioned band 
join algorithms when less than about l/3 of R fits in the 
buffer pool is due to sampling overhead. Table 1 gives the 
percentage of execution time due to sampling for the Grace 
partitioned band join curve in Figure 2. Note that if we 
implemented page-level sampling (as described in Section 5) 
t.his overhead would be reduced by a factor of 43, the number 
of t,uples per page. 
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Table 1: Sampling costs as a percentage of running time. 

The next experiment we ran was designed to test the per- 
formance of the three algorithms when the input, relation 
sizes differ. For t.his purpose, we used an R relation of lOI< tu- 
pies, and an S relation of 1OOK triples. For the join, we used 
the attrihut,e twenties in R, and the attribute twentywrap 
in S. These attributes are defined such that for these relation 
sizes, the R tuples contain the join attribute values 0, 20, . . . , 
20 * (10000 - 1) in random order, while S contains the join 
attribute values O,l,. . . I 9, 20,21,. . . ,29, . . . , 20 * (10000 - I), 
20 + (10000 - 1) + 1, . , 20 * (lOOfl0 - 1) + 9. With a band of 
size 2 (c = l), every R tuple joins wit,h two S tuples, while 
2/10 of S tuples join with one R tuple and 8/10 of S t,uples 
join with no R tuple, giving a result size of 20K. A graph 
of the results of this experiment is presented in Figure 3. 
Note that although not all S tuples join with an R tuple, the 
ranges for the join attributes in R and in S are essentially 
the same, so range-filtering had no effect. 

This graph illustrates several import,ant properties of the 
algorithms. Most obvious is the benefit that, both the par- 
titioned band join algorithms gain from not having to sort, 
a 1OOK relation (S). This is most apparent for the small 
memory data points. At memory equal to 0.1 of R pages, 
sort-merge had to make multiple passes over R and S before 
even beginning the final merge; it wasn’t until memory equal 
to 0.5 of R that the large S relation could be sorted in two 
passes (with the join computed on the second pass,) It, is 
also clear that hybrid performs much better than Grace for 
large memory sizes. There are two reasons for this: first, 
hybrid doesn’t have to re-read the portion of R that falls in 
RI. However, this is not very significant, since the cost of 
re-reading part of the 10,000 R tuples is dwarfed by the cost 
of reading the 100,000 S tuples and writing 20,000 answer 
tuples that are twice as large as the R t,uples. Much more 
importantly in this case, the portion of S t,hat, falls in SI is 
never written to disk or read back in, because those tuples in 
.SI are immediately joined with RI in the partitioning phase 
of the algorithm. 

The final experiment we ran was designed to demonstrate 
the effect of range filtering, as described in Section 5. We 
again joined 20K tuples with 20K tuples, but this time 
the join at)tribute in R contained the values 0, 20, . . . , 
20 * (20000 - 1) (in random order}, while the join attrihut,e 
in S contained t,he values 0, 100, . , , , 100 r(20OOO - 1) (again 
in random order). With a band of size 100 (c = 50), l/5 
of the S tuples join with 5 R tuples, and the remaining S 
tuples join with no R tuples, so the answer size is again 20K 
tuples. However, in this case the range for the join attribute 
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Figure 3: 10K by IOOK, band 2, answer 20K tuples. 
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Figure 4: 20K tuples join 20K tuples, answer 20K tuples. 

in the R relation is l/5 the range of the join attribute for the 
S relation, so range filtering has a significant affect. 

The result graph for this experiment appears in Figure 4. 
Both Grace and hybrid are able to “filter” 415 of the S tu- 
ples, which means that these tuples are just read once and 
thrown away. Hybrid does even better than Grace for large 
memory sizes, again since it 1) doesn’t re-read RI, and 2) 
joins S1 without writing it or re-reading it. Hybrid is es- 
pecially successful here, since for large memory sizes, all S 
tuplee either fall in S1 or are filtered out, EO the result is that 
the join is computed by reading the pages of the S relation 
and never writing them. 

7 Multiprocessor Experiments 

In this section we consider the execution of band joins in 
a parallel environment. In order to simplify the implemen- 
tation effort, we implemented only a parallel version of the 
hybrid partitioning band join algorithm. 
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7.1 Parallel Hybrid Partitioning Band 
Join 

The Gamma Database Machine [DGS+90] served as our ex- 
perimental vehicle. Gamma falls into the class of shorerf- 
nothing [Sto86] architectures. The hardware consists of a 32 
processor Intel iPSC/2 hypercube. Each processor is config- 
ured with a 80386 CPU, 8 megabytes of memory, and a 330 
megabyte MAXTOR 4380 (5 l/4 in.) disk drive. Each disk 
drive has an embedded SCSI cont,roller which provides a 45 
Kbyte RAM buffer that acts as a disk cache on sequential 
read operations. 

The nodes in the hypercube are interconnected to form a 
hypercube using custom VLSI routing modules. Each mod- 
ule supports eight full-duplex, serial, reliable communication 
channels operat,ing at 2.8 megabyt.es/sec. A custom operat- 
ing system, NOSE, tailored especially for database process- 
ing, runs on each processor. 

In Gamma, relations are horizontally partitioned [RE78] 
(also known as declustering [LKB87]) across all disk drives 
in order to increase the aggregate I/O bandwidth provided 
by the hardware. The query language of Gamma provides 
the user with several alternative declust,ering methods. For 
the experiments described below, t.he user determined which 
tuples reside on each site based on a range predicate applied 
to the partitioning attribute of each t,uple of the relation. A 
collection of tuples stored on a processor is referred to as a 
fragment of the relation, 

Extending the sequential version of the hybrid partitioning 
band join algorithm to a parallel environment was relatively 
straightforward. To simplify the implementation, each part,i- 
tion was mapped to an individual processor. In addition, we 
assumed that each partition of the inner relation was small 
enough to fit entirely in a processor’s buffer pool. 

The parallel version of the hybrid partitioned band join al- 
gorithm is as follows. First, each processor randomly samples 
its local fragment of the inner relation and sends the join at- 
tribute values of the sampled tuples t,o a central coordinator. 
The coordinator sorts all the sampled values and determines 
the partitioning elements such that, the inner relation will be 
divided into as many buckets as there are processors. The 
coordinator then sends a copy of these partitioning elements 
to each processor whose disk contains a fragment of the inner 
relation. Each processor reads its local fragment of the inner 
relation and re-distributes it over the network using the par- 
titioning elements. As tuples from the inner relat’ion arrive 
at a processor, t#hey are stored in memory and subsequent,ly 
sort.ed. Aft,er this phase is complet.e, t,he out#er joining TP- 
lat,ion is similarly re-distribubed over t,he network using the 
partitioning elements derived from t’he inner joining relation. 
Of course, tuples that fall into a neighboring bucket due to 
the width of the band are replicated and sent to the proces- 
sor that is handling this bucket. Hence, in a parallel environ- 
ment, an increase in the size of t.he band result,s in increased 
net,work t,raffic. As tuples from t#hc out.er relat,inn arrive at. 
a processor, they are used to binary search t’he sort.ed inner 
tuples and compute any output tuples, exact,ly as was done 
in the uni-processor version of the algorithm. 

One problem to overcome with this parallel algorithm is 
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how to to correctly and efficiently sample the inner relation 
in parallel in order to determine the partitioning elements. 
For correctness, the relation must be sampled randomly as if 
it were stored on a single processor. That is, each tuple, re- 
gardless of the processor that it is stored on, must be equally 
likely to be sampled. Note that if we wish to take N sam- 
ples, it is not acceptable to have each processor take l/N 
samples, since this will not result in a truly random sample. 
To see t,hie, note that if each processor takes I/N samples, 
then we will never get a set of N samples in which more than 
l/N tuples come from any single processor’s portion of the 
database. 

To take a truly random sample while still making use of 
the parallelism available, in our implementation, each pro- 
cessor attempts to sample N tuples from its local fragment 
of the relation (each processor uses the same random num- 
ber generator with the same seed). However, for efficiency, 
each processor checks the local catalog information to deter- 
mine if the tuple to sample is indeed stored on its local disk. 
If so, the tuple is retrieved from disk and its join attribute 
value is sampled. If the tuple is not stored locally, the sample 
can be ignored. In terms of disk I/O, the effect is the same 
as if some central processor generated N random keys, then 
sent to each processor p only the keys that for tuples in the 
part.ition stored at p. As in the uni-processor experiments, a 
B-tree index is used to efficiently retrieve the tuple to sample. 

Note that this optimization does not require that the join 
attribute of the inner relation be identical to the attribute 
used to partition the inner relation during relation creation, 
Instead, it only requires that the attribute used to fetch, a 
random tuple is the same attribute used to partition the in- 
ner relation during relation creation. Furthermore, if no such 
catalog informat,ion is available the algorithm still works cor- 
rectly, it will only suffer a performance degradation due to 
unsuccessful searches of the index for tuples stored on other 
processors. 

7.2 Experiments and Results 
Scaleup and speedup are useful metrics for evaluating mul- 
tiprocessor database machines [DG90]. Scaleup is an in- 
teresting metric for multiprocessor database machines as it 
indicates whether a constant response time can be main- 
tained as the workload is increased by adding a proportional 
number of processors and disks. Speedup is an interest- 
ing metric because it indicates whether additional processors 
and disks result in a corresponding decrease in the response 
t,ime of a query. A similar set of experiments were reported 
in [EGKS89] for equi-join queries on Release 2 of Tandem’s 
Nonstop SQL system and in [DGSt90] for equi-join queries 
in Gamma. 

7.2.1 Scaleup 

For the scaleup experiments, we varied the number of proces- 
sors with disk from 1 to 30. At 1 processor, a 10,000 tuple re- 
lation was joined with a 100,000 tuple relation. At 10 proces- 
sors, the relations were scaled to 100,000 tuples and l,OOO,OOO 
tuples, respectively. Similarly, at 30 processors, the sizes of 
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Figure 5: Scaleup performance. 

the relations to be joined were 300,000 and 3,000,OOO tuples. 
For every configuration, each of the relations to be joined 
was evenly distributed during relation creation amongst all 
the processors by applying a range predicat,e to rhe unique1 
attribute (whose values range from 0 to the relat,ion cardi- 
nality minus 1). The join query tested was the twenties join 
twentywrap, as described in the uniprocessor experiment in 
Section 6. 

Figure 5 presents the scaleup results for the parallel hy- 
brid partitioning band join algorithm for band sizes of 2 and 
10. Three factors contribute to the slight increase in re- 
sponse times. First, the task of initiating five processes at 
each site (two relation scans, a join, a store, and a sam- 
pling operator) is performed by a single processor. Second, 
as the number of processors increase, t,he efrccts of short- 
circuiting [DGS+90] messages during the execution of the 
query diminishes. For example, in the 5 processor configura- 
tion, approximately l/Sth of the tuples of the input relations 
and the result relation will be sent to a process on the same 
processor, thereby short-circuiting the communications net- 
work. As the number of processors is increased, the number 
of these short-circuited packets decreases to the point, where, 
with 30 processors, only 1/3Oth of the packets will be short- 
circuited. Because these intra-node packets are less expensive 
than their corresponding inter-node packets, smaller config- 
urations will benefit more from short-circuiting. Finally, the 
more processors added, the larger the skew in the sizes of the 
subjoins allocated to each processor. 

This demonst,rates another int,eresting tradeoff between 
sampling time and execution time. Roughly speaking, t,he 
more sampling, the lower the skew, hence the faster the exe- 
cution time exclusive of sampling; but clearly, the more sam- 
pling, the higher the overhead of sampling. In more detail, 
as we increase the workload, the totsa relation size increases. 
Since the errors in the sizes of the partitions are proport,ionnl 
to the size of the total relation, this means that if t#he tot.al 
number of samples is kept const.ant, 1,hen the expect.ed et- 
rot in the partitions will increase. In our implement,a.tion, 
we scaled the number of samples along wit,h the number of 
processors, keeping the expect.ed number of samples per pro- 
cessor constant. For example, the five processor join took five 
times as many samples as the one processor join. However, 
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since the error is inversely proportional to square root of the 
number of samples, scaling the number of samples linearly 
is not sufficient to keep the expected error in the partitions 
constant. That is why we saw larger skews at the larger 
configurations. 

To keep the skew constant as we add processors, we would 
have to scale the number of samples quadratically in the 
number of processors. Since the number of processors grows 
linearly, this means that the expected number of samples 
taken by each processor will also grow linearly. For example, 
in the 30 node configuration, if we wish the skew to be the 
same’as in the two processor case, each processor will need 
to take, on average, 15 times as many samples as in the 
two node case. This implies that while we saw good scaleup 
to 30 processors, the parallel hybrid partitioning band join 
algorithm will not scale indefinitely. 

7.2.2 Speedup 

For the speedup experiments, we kept the size of the rela- 
tions to be joined constant at l,OOO,OOO and 100,000 tuples 
while varying the number of ‘processors from 5 to 30. We 
also held const,ant t#he number of samples used to determine 
the partitioning elements. We again used the twenties join 
taent.yYrap query with band size 2 as our test query. 

no. of processors 
5 
10 I 15 
20 
30 

Table 2 Speedup results. 

execution time 
349.2 
177.5 
125.6 
100.1 
75.9 

The response time and speedup for a band join of size two 
(result relation size of 200,000 tuples) are shown in Table 2. 
It is obvious that adding additional processors significantly 
reduces the execution time of the query. Several factors pre- 
vent the system from achieving perfectly linear speedups. (It 
is important to note that since the base case was 5 proces- 
sors a perfect speedup factor for 30 processors would be 6.0 
and not 30.0!) As was the case in the scaleup experiments. 
performance is limited by the overhead of scheduling the op- 
erators of the query tree, the effects of short-circuiting, and 
the effects of skew in the size of the subjoins allocated to 
each processor. 

To demonstrate the effect of skew, we measured the num- 
ber of tuples produced at each join site. We then took the 
maximum of these values and measured how far it differed 
from the optimal value (assuming a perfectly uniform dis- 
trihut,ion). In the 5 processor configuration, the maximum 
skew,was approximately 5%. In the 30 processor configura- 
tion, though, the maximum skew was found to be 18% above 
optimal. Since in a multiprocessor, performance is limited by 
the slowest site, the increase in skew as processors are added 
results in sublinear speedups. 
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8 Conclusions 

The two variants of the partitioned band join algorithm, 
Grace and hybrid, compare favorably t,o the optimized sort,- 
merge band join algorithm. This ia encouraging and perhaps 
somewhat surprising: while it has previously been damon- 
strated that the equijoin hash-based join algorithms outper- 
form sort-merge, it was not initially obvious that these new 
algorithms would be as effective for band joins as the hash 
based algorithms are for equijoins. This is because, when 
compared to the hash-based equijoin algorithms, the par- 
titioned band join algorithms do significantly more work: 
where the equijoin algorithm hashes a bucket.of the inner 
relation, the partitioned band join algorithm sort,s a parti- 
tion of the inner relation; where the equijoin algorithm does 
a hash-based lookup, the partitioned band join algorithms do 
a binary search; and finally, the equijoin algorithms have no 
equivalent to the sampling overhead in the partitioned band 
join algorithms. 

Unlike the sit,uation for the hyhrid and Grace hashed equi- 
join algorithms, Grace partitioned band join does not always 
dominate sort-merge, and hybrid part,ition band join does 
not always dominate Grace partitioned band join. The rea- 
son for this is the added cost of sampling; when memory is 
scarce, both the Grace and the hybrid variants of the par- 
t#itioned band join algorithm must take a lot of samples t,o 
ensure that, the errors in the partition sizes do not cause 
thrashing of the buffer pool. For small memory sizes, hybrid 
must sample more than Grace because there is effect.ively less 
memory available for RI in hybrid partitioning than t,here is 
for the partitions in the Grace algorithm. This implies that 
a system should probably have all three algorithms available 
for performing band joins; the optimizer must decide which 
algorithm is appropriate for a given band join. 

The partitioned band join algorithms perform especially 
well in two cases: when a significant, fraction {say, more than 
50%) of one of the operands fits in memory, and when the 
input relation sizes are different. The latt,er is an especially 
important case, since it will often occur when the band join 
is part of a query of the form b(R) W S. Finally, we have 
demonstrated that the partit,ioned band join algorithm is ef- 
fective in multiprocessor systems, achieving good speedy and 
scaleup for configurations of at least. 30 processors (t.he max- 
imum we could measure.) 
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